A APPENDIX

This Section consists of the implementation details for the image classification and text classification
models used in the paper. It also contains the experimental details of how we identified the best-
performing combinations for the last three bits of the mantissa for the computable number. In the
final section, we discuss the flexibility of AntiFault and how it can be applied selectively to specific
parts of an Al model to achieve minimal computational overhead.

A.1 IMPLEMENTATION DETAILS

A.1.1 RANDOM SEED

To ensure random fault injections, we performed dual seeding. First seed of 42 is given to generate
a random number. Then a random number is generated in the range [1,100] and is used as the final
seed to generate random bit flips before inference of each batch.

A.1.2 IMAGE CLASSIFICATION

All models were initialized with pretrained ImageNet weights, and the final classification layer
was replaced to match the number of classes in the target datasets. We conducted experiments
on two datasets ie. CIFAR-100 and MNIST. Each model is fine-tuned for 5 epochs using the Adam
optimizer and a batch size of 64, with cross-entropy loss as the objective function. We implemented
our experiments using PyTorch and utilized the timm library for model loading and fine-tuning.

Both the datasets CIFAR-100 consists of 60,00 images categorized into 100 classes with 10,000
test images. MNIST consist of 70,000 gray-scale images, of handwritten digits, classified into 10
classes.are resized to 224x224 and normalized. MNIST is converted to RGB images by duplicated
channels.

A.1.3 TEXT CLASSIFICATION

Pretrained models of textattack/roberta-base-ag-news and bhadresh-savani/distilbert-base-uncased-
emotion are used which are finetuned for their respective classification tasks. For preprocessing,
tasks like lower casing, token truncation, padding and addition of special tokens are handled by
Hugging Face tokenizers to ensure that the input representation is consistent with the representation
the models are originally trained on.

For experiments, the test split of the Hugging Face Emotion dataset is used. This dataset consists of
2,000 text samples categorized into six emotion classes: sadness, joy, love, anger, fear, and surprise.
The test split of the AG News dataset, which contains 7,600 news samples distributed across four
categories: World, Sports, Business, and Science/Technology.

A.2 EXPERIMENTATION FOR IDENTIFYING THE LAST 3 BITS OF THE COMPUTABLE NUMBER

In the AntiFault format, we only use 4 bits for the mantissa, but the computable number requires
7 mantissa bits. We conducted controlled simulations to determine the best values for last three
missing mantissa bits.

We generated a set of input values ranging from -1 to +1, with step size of 0.0001. This gave us a
large number of test points to analyze. For each value, we created a 16-bit computable floating-point
number by appending all possible 8 3-bit combinations to the existing 4-bit mantissa. This allowed
us to test which 3-bit extensions resulted in the most accurate approximations.

To measure the approximation error, we used the average absolute error which is, the average of the
absolute differences between the original values and the reconstructed values over the entire range.
Results of this experiment can be seen in in Table 1. The 3-bit patterns 011, 100, and 101 resulted
in the lowest errors. Therefore, any one of these bit patterns can be used as the last three bits of the
mantissa to minimize error during approximation.



Table 1: Error while using different combinations for last three bits of mantissa
3rd last bit 2nd last bit last bit Error

0 0 0.010
1 0.008
0 0.006
1 0.005
0
1
0
1

0.005
0.005
0.006
0.008

— == OO OO
—_—— O O == O

A.3 SELECTIVE USE OF ANTIFAULT

16-bit data types in Al models consumes less power during arithmetic operations compared to stan-
dard 32-bit data types. However, adding fault tolerance to these 16-bit numbers such as checking
and correcting each bit can introduce some extra computational overhead. In the case of AntiFault,
this overhead depends on how many parts (or modules) of the model are being protected using the
AntiFault format.

AntiFault is flexible and does not need to be applied to every single parameter in the model. Instead,
it can be used only on the most important or vulnerable layers of the Al model. This means that the
less critical or more robust parts of the model can still use a simpler representation, such as a 16-bit
format with 1 sign bit, 8 exponent bits, and 7 mantissa bits. These layers do not need the added fault
protection, so they can operate more efficiently.

By selectively applying AntiFault only where it is truly needed, we can have more reliability with
minimum computational overhead. This strategy helps minimize the overall computational overhead
while still ensuring that the most sensitive parts of the model are protected from soft errors like
single-bit flips.



