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EDIF: Editing via Dynamic Interactive Tuning with Feedback
Supplementary Material

This supplementary material presents:

e A. Limitations.

e B. Future Research.

o C. Motivation Details of Experiments and Architecture Analysis.
e D. Detailed Explanation on Singals.

o E. Experiments Details and Qualitative Results

A LIMITATIONS

Our model has been developed and evaluated in the Flux-based Kontext framework (Labs
et al., 2025), where image and text are treated as independent conditions. While this
setting provides a clean and controllable environment, it also limits the ability to explore
more integrated or joint conditioning strategies. Beyond pure generation, recent LLM-
guided image editing methods (Wu et al., 2025) highlight the need to evaluate broader
conditioning strategies across diverse architectures.

B FUTURE RESEARCH

From our investigation, we obtained a key insight regarding condition control. In the con-
ventional CFG (Ho & Salimans, 2022), the condition guidance scale s is applied uniformly
across the network and cannot be modulated selectively. However, our study demonstrates
that when conditions are applied in a layer-wise instead of in a uniform manner, controlled
editing becomes feasible. We believe this opens a new direction for effectively managing
editing conditions. Currently, fine-grained control in editing models relies on drag-based
methods (Mou et al., 2023; Bertazzini et al., 2025) or training additional target-specific
concepts (Gandikota et al., 2023). Through our approach, we show that an effective TIE-
based methodology can also enable such fine-grained control. In future research, we plan to
broaden the scope of controlled editing beyond existing paradigms.

C ZEROING EXPERIMENT

C.1 BLOCKWISE ZEROING AND ATTENTION REDISTRIBUTION.

Blockwise analyses of U-Net—based models have been reported (Ho et al., 2020; Si et al.,
2023; Li et al., 2023; Kim et al., 2025). In contrast, in DiT-based models (Peebles & Xie,
2023), blockwise characterization has not yet been extensively explored. Among these, Sta-
bleFlow (Avrahami et al., 2025) emphasizes that different layers exhibit distinct properties
through a layer analysis of DiT models. Building on these prior studies, we aim to provide
a more systematic investigation of the blockwise behavior in DiT-based models.

To examine the role of each condition across model layers, we apply blockwise latent ze-
roing, where either the image or text latent is set to zero at individual transformer blocks
during inference. Our experiments are conducted on 30 source images paired with 10 care-
fully designed editing prompts, resulting in a total of 300 editing tasks. Zeroing is applied
separately to image and text latents across all 57 transformer blocks in FLUX (Yang et al.,
2024).
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Figure C1: Effect of blockwise zeroing of image and text condition latents in the Kontext.
The title of each image in this plot specifies the block index and the latent type that was
zeroed. For example, B18 Image indicates that the image latent at block 18 was set to zero.

The edited images are then evaluated using CLIP directional similarity (Gal et al., 2021),
which measures whether the edits align with the given prompt, SSIM (Wang et al., 2004),
which evaluates the preservation of structure from the source image, and ImageReward (Xu
et al., 2023a), which assesses the overall quality of the generated images. As shown in
Figure 3, zeroing the image latent at certain blocks can unexpectedly increase the CLIP
directional score or SSIM compared to the base model. Although the effect is generally
smaller for text-zeroing than for image-zeroing, we also observe that zeroing out text latent
at some blocks improves the CLIP directional score.

The example of results are shown in Figure C1. Figure C1 presents the source image and
edited outputs using the prompt a road in a flood scene. The base model fails to render any
visible flood. Interestingly, zeroing either the image or text conditioning latent at specific
blocks can actually improve performance: Zeroing the image conditioning at blocks 5, 16,
and 33, or the text conditioning at blocks 16, 18, 20, and 23, restores the source structure.
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Zeroing the image conditioning at blocks 5, 6, 16, 17, 18, 19, 20, 24, and 43, or the text
conditioning at blocks 2, 8, 16, 18, 20, 23, 24, 33, and 55, reveals the intended flood edits
that were absent under the default configuration.
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Figure C2: Comparison between the baseline (left) and the case where the text latent is
zeroed at different blocks (right). For each image panel, the label on the left indicates the
block at which the corresponding attention was probed (e.g., BLO denotes Block 0). TC, SA,
and IC denote text cross-attention, self-attention, and image cross-attention, respectively.

To understand why disabling conditioning at a specific block influences the entire image, we
analyze per-block attention maps for each zeroing intervention. In Figure C2, TC, SA, and
IC denote text cross-attention, self-attention, and image cross-attention, respectively.

As shown in Figure C2, zeroing at Block 18 redistributes attention that was previously over-
concentrated in self-attention. At Block 13, attention to the text condition increases, while
at Block 18, attention to the source image increases. At Block 9, regions previously focused
solely on self-attention shift toward the source image, while at Block 56, attention that was
excessively concentrated on the text in the base setting spreads to other components.

Intuitively, one might expect that reducing the text latent would decrease TC. However,
when zeroing one block, the effect is not confined to that block alone. Adjusting a single
block does not remain confined to that block alone, and text zeroing does not necessarily
result in a simple reduction of attention to the text. Adjustments at a specific block prop-
agate to others, and the condition change evolves in ways that contradict simple intuition.

C.2 ARCHITECTURAL ANALYSIS
Contrary to intuition, our zeroing experiments reveal that the conditions governing im-

age editing are organically intertwined, and that manipulating one condition can induce
qualitatively different outcomes through its interaction with the others. We argue this in-
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Figure C3: Attention at specific blocks in Kontext. The left panels show attention under
the base setting, while the right panecls show attention after scaling the text embeddings.
Despite scaling, the resulting attention scores remain broadly similar to the base.

tertwined influences to the underlying model architecture. To clarify this point, we present
an architectural analysis of DiT-based editing models.

A autoencoder encodes the source image into tokens zg, which are appended to the target-
image tokens z; to form a long visual sequence [z¢,zg]. Within each transformer block,
this visual sequence is concatenated with the text embeddings z. to yield [z.; z+; zo]. The
resulting sequence is then used as the queries, keys, and values for self-attention.

Consider a transformer block b* where we scale the text tokens by a factor s. This modifi-
cation affects the text embeddings of @), K, and V at that block and thereby perturbs the
attention. However, because attention is composed of vector products followed by a softmax
normalization, the resulting attention distributions remain close to the base routing pattern.
In this regime, scaling neither erases the text information nor induces large deviations from

the original text signal.

Instead, it redistributes attention between the text and source embeddings. This departs
from the intuitive expectation that weakening the text embedding should simply diminish
text-driven editing. Because the cross-attention patterns are highly similar, scaling does not
behave as intuitively expected when compared to the baseline; decreasing the scaling does
not reliably reduce text semantics, nor does increasing it consistently strengthen semantics.
Rather, attenuation can instead rebalance the text and source image condition and result

in improved edited outcomes.
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D DETAILED EXPLANATION ON SIGNALS

D.1 COMPARISON LATENT SELECTION

According to the flow-matching framework, the noisy latent at timestep ¢ € [0, 1] can be
written as a convex combination of the clean image and Gaussian noise:

zZt :Jt6+(1—0t)20, FNN(O,I) (Dl)

where zg is the latent of the clean image. The flow-matching training objective is

2
EG = ]Etwp(t), T,2;,Zc f@(zta ta Zo, ZC) - (E - ZO) ‘ N (DQ)
Following Eq. D2, the clean latent can be estimated from z; as
20 =& = f@(zhta anzC)7 (D3)

where fy denotes the flow-matching model. However, naive using the predicted clean image
2} at every timestep can yield misleading feedback during denoising.

In theoretical, SNR is

SRt = L= (D4)

Ot

Figure D1 compares two SNR curves: the theoretical (scheduler-derived) one and the SNR
computed from the predicted clean image Zy. As seen in the figure, the #y based one is
higher in the early denoising steps; however, as denoising progresses, the theoretical SNR
surpasses it. This pattern is also visible in the example images on the right. Early in
denoising, the predicted clean image looks relatively clean, but at later steps the decoded
current latent shows much clear image than the clean predicted one.
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Figure D1: SNR dynamics across two contrasting editing cases. (Left) SNR over denoising
steps. The pink curve is computed from the predicted clean image, while the blue curve
is the theoretical (scheduler-derived) SNR. (Right) intermediate images along the editing
pathway during denoising. The top row shows the decoded current latent, and the row
below shows the pixel-space predicted clean image. The rightmost column corresponds to
denoising time ¢t=1, with columns to the left approaching ¢=0.

In EDIF, we diagnose the latent state along the editing pathway. At cach denoising timestep,
we select the latent that provides a cleaner and more reliable signal. As the SNR results
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Figure D2: Evolution of SNRg.. (a) shows SNRg. across all runs, and (b) shows SNRg;.
throughout the denoising process. The panels on the right indicate the values obtained in
successful editing cases and in failed cases, respectively.
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show, the predicted clean image and the decoded current latent are strong candidates; by
comparing their SNRs with respect to the source and choosing the one with the higher SNR,
we obtain a more accurate estimate of the editing state.

D.2 SNR 1IN DIFFUSION DYNAMICS

The signal-to-noise ratio (SNR) is a fundamental quantity that measures the relative
strength of the desired signal to the noise. Formally, the forward diffusion process in DiT is
defined as Eq. D1 SNR decreases monotonically along the forward noising process, reflecting
the fact that as ¢ increases, the latent z; becomes increasingly dominated by Gaussian noise.
During denoising, the reverse dynamics aim to recover zg by progressively improving the
SNR of the intermediate latent states.

The theoretical SNR follows Eq. D4. In practice, one can compute it directly from the latent
as

SNRpum (£) = (D5)

Je =, —wcﬂH

where JJO) denotes the predicted clean image at step t. Intuitively, when x; is highly cor-

rupted by noise, the discrepancy ||x: — .LO)||2 becomes large, yielding low SNR. Although
SNRum is not identical to the theoretical one, in practice it exhibits the same qualitative
trend.

SNR with Respect to the Original Image While the previous formulation relies on

predicted clean estimates af?ét), Our ultimate question is: how much of the original source
image xg is preserved in the current latent z;? To answer this, we directly compute an SNR,
that references the ground-truth xy. Specifically, we define

2
SNRyo(t) = ol _ (D6)

e — woll3

Here, the numerator captures the energy of the original image signal, and the denominator
measures the deviation of the current latent from the source. A large value of SNR.(t)
indicates that the denoised latent closely resembles the source image, while a small value
suggests that the latent has diverged significantly due to noise. This formulation effec-
tively quantifies the proportion of source information that remains embedded in the latent
representation.
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Empirically, we observe that SNRg.(t) increases monotonically along the denoising trajec-
tory, serving as a reliable indicator of structural preservation with respect to the original
image.

Figure D2 presents both quantitative and qualitative evidence that successful edits. (a)
When editing succeeds, the SNR is generally higher than in failed cases. Moreover, when
stratified by denoising time, the successful editing cases exhibit higher SNR at every
timestep. This demonstrates that the source-based SNR is both theoretically reliable and
empirically verifiable as a signal, enabling EDIF to leverage it effectively to preserve the
structure of the source image.

D.3 EXPERIMENTS ON VLM LoGIT
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Figure D3: SNR-logit scatter. Blue points denote successful trajectories and red points
denote failures. The green curve shows a smoothed Pareto frontier estimated from the
successes.

While CLIP directional similarity (CLIPg;,) is widely used as a proxy for editing fidelity,
we observed that it can yield inaccurate diagnoses of the editing state—in particular, cases
where editing is qualitatively successful yet CLIPg;; remains spuriously low. To analyze
this limitation in greater depth, we compare CLIP 4;, against vision—language model (VLM)
logits that directly measure the presence of the target concept.

In our experiment, we used the same image-text prompt pairs as in the zeroing setup,
yielding a total of 300 editing tasks. Given an image x( and a text prompt ¢, we performed
editing and measured both CLIPg4;, and VLM logits at each stage. Figure D3 reports the
mean and standard deviation (std) of these measurements. The left panel shows the std
at early and late denoising steps, where CLIP4;; exhibits a much larger std than the VLM
logits. This indicates that, as denoising proceeds, the VLM logits vary relatively little,
whereas CLIPg;, fluctuates substantially. The right panel corroborates this observation:
as shown in the plot, the magnitude of CLIPg4;, is much smaller than that of the VLM
logits, which in turn makes its relative changes appear larger and its std higher. In other
words, CLIPg;, is a very small and sensitive quantity, and using such a too-sensitive signal
to diagnose the state of the editing latent makes constructing a Pareto line challenging.

We hypothesize that this behavior arises because CLIP g;, is trained and calibrated primarily
on clean, high-quality (low-FID) images. As a result, CLIPg;, provides unstable signals for
noisy intermediate latents along the editing pathway; in such out-of-distribution conditions,
the image and text embeddings become overly sensitive to low-level artifacts and stochastic
variations.

Moreover, cosine-direction signals are inherently small in scale at intermediate timesteps,
which makes constructing a stable Parcto line difficult. Taken together, these factors explain
why CLIPg;, underperforms as a diagnostic metric on noisy latents, even when editing is
proceeding successfully.
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D.4 PARETO LINE CONSTRUCTION

We evaluate the same image—prompt pairs used in
the zeroing experiments and, during denoising-based
editing, record the source-based SNR and the VLM
logit at each step from the mid-trajectory to the fi-
nal step. As visualized in Figure D4, successful ed-
its (blue dots) and failures (red dots) occupy clearly
separated regions in the SNR—-logit plane. Notably,
successful trajectories concentrate within a common
region. Connecting the terminal segment of these
trajectories yields a Pareto front, as shown in green.
This observation motivates casting image editing as
a Pareto-style multi-objective optimization problem.

In multi-objective optimization, a solution is Pareto
optimal if no objective can be improved without de-
grading at least one other objective. Applied to
image editing, strengthening structure preservation
typically weakens prompt fidelity, and vice versa.
Hence, successful edits must steer into a coexis-
tence region where both objectives are jointly sat-
isfied. Empirically, the upper envelope of the suc-
cessful cloud approximates this front. Points on or
near this upper bound constitute Pareto-optimal or
near-optimal trade-offs.
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Figure D4: SNR-logit scatter. Blue
points indicate successful trajecto-
ries, while red points failures. The
green plot denotes the smoothed
Pareto line derived from the success
case.

While the precise shape of the Pareto line can vary across samples, our experiments consis-
tently show that successful trajectories converge toward this region. This insight motivates
the design of EDIF’s Pareto-line—based feedback pipeline.
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D.5 EDIF ALGORITHM

We present the pseudocode of EDIF, which (1) selects a comparison latent per step, (2)
computes two feedback signals, and (3) applies Pareto-guided blockwise conditioning up-
dates.

Algorithm 1: EDIF (Pareto-guided): Feedback-Driven Image Editing

Input : Source image xo; prompt p; initial latent zp; decoder D;
VLM M ; editing model M qj; scheduler Sched;

per-block condition scales nff,}g, ng{)t € R5;

block-importance masks mf’;ng, mfxt, mfng, mZ, €[0,1]5;
pareto line [, pareto line area R,; step sizes ng, ng; clip bounds Kmin, Kmax;
max feedback iterations Ky,

Output: Edited image %

// Step 1: Prompt distillation (key concept)

1 Prey < DistillPrompt(zo, p; Myim)

2

10
11

12

13

14

15

16

17

18
19

20

21

fort=T...1do

// Forward pass with current per-block conditioning

) (t)
E¢ & Medit (Zta b, Zo; K‘img’ K’tXt)
Ty + D(z) // decoded reconstruction
A (t . . .
xé) — CleanEstlmate(zt, ety t, p) // e.g., scheduler inversion

y® « argmax SNRg.(y. o)

ye{fc((f), Tt}
// Compute feedback signals
S; < SNRg(y®, z0), E, VLMLogit(y(“7 DPkey)
// Pareto-guided, mask-aware one-sided feedback loop
k<« 0
while (St, Et) € R, and k < Ky, do
// Positive deficits to feasible region R,
(1s.7E) < ClosestPoint((S;, Ey), 1)
eg lifrg > Syelse 0, eg+ 1if 75 > F; else 0
// One-sided Pareto weights (nonnegative, sum to 1)
d<es+ep+1078 wg <+ es/d, wg < eg/d
// layerwise updates

t . t
i(nzg <~ Chp(K'i(nzg +wsnses © mis;ng7 Rmin, Kmax)

(®) ; (t) E
Kixt € Chp Kixt + wg NE €E O] mMi i, Rmins Rmax

K

// Re-evaluate with updated conditioning
Et < Medit(zta P, To; K’i(;r)lg? K"Ef{)t)
Ty + D(z), :%(()t) + CleanEstimate(z;, &4, t, Prey)
y® « argmax SNRg.(y, o)
ye{ig), Ze}

Sy + SNRge(y"). z9), E; + VLMLogit(y®, piey)
| k< k+1

// Scheduler step
| 21 < Sched(z, &, 1)

return & « y®
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E EXPERIMENTS DETAILS

E.1 EXPERIMENTAL DETAILS ON PLACES365

We conduct large-scale editing experiments on the Places365 images (Zhou et al., 2016) to
evaluate generalization across diverse scenes and layouts. We sample 100 validation images
from Places365 (Zhou et al., 2016) and, for each source image, generate editing instructions
with GPT-4 (OpenAl, 2025) (conditioned on a brief scene description). For every image
we create 20 prompts, constrained to semantically plausible edits. Figure E1 illustrates the

prompt generation process.

### Overview :

You are helping create scene-editing instructions for an image editing model.

## Inputs
SCENE DESCRIPTION: {brief_description_from_image}

## Requirements

Write 3 single-sentence editing instructions that:

- Modify the scene PLAUSIBLY given the description (weather, lighting, materials, minor geometry, time of day).
- Avoid unsafe content, identity targeting, or contradictions with the description.

- Avoid adding implausible objects that cannot reasonably exist in the scene.

- Be concise and concrete; include visual attributes when relevant (lighting/colors/texture/atmosphere).

- Use imperative mood (e.g., “Make the road wet and reflective under soft rain at dusk.”).

- Encourage diversity across the 3 outputs (do not repeat the same attribute family).

- Do not mention camera brands or country names unless visually necessary.

- Do not include numbers or labels in the sentence.

### Examples :

# Example Input

SCENE DESCRIPTION: A tidy bedroom with a window, wooden floor, and neutral tones.

# Example Output (JSON Lines)

{"instruction": "Warm the scene with a soft bedside lamp glow and gentle dusk light spilling through the window."}
{"instruction": "Make the wooden floor slightly glossy and enhance the linen bedding texture in a muted gray palette."}
{"instruction": "Shift to an early-morning atmosphere with cool, low-angle light casting long, soft shadows across the floor."}

### Output format (JSON Lines; exactly 3 lines)

For each instruction, output one line of JSON with the field:
{"instruction": "<ONE SENTENCE>"}

{"instruction": "<ONE SENTENCE>"}

{"instruction": "<ONE SENTENCE>"}

Return ONLY these JSON lines. No extra commentary.

Figure E1: Example of GPT-based editing prompt generation for Places365 images.
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E.2 USER STUDY DETAILS

To evaluate human preference for scene centric image editing, we conduct a user study
capplying our method EDIF with two strong baselines, Kontext (Labs et al., 2025) and
CosXL (Wei et al., 2025a). We have recruited 30 participants, including Al researchers
and designers. Each trial presented a source image, a natural-language editing prompt,
and three edited images labeld with model name of Model A, Model B, and Model C.
Participants have ranked the three results from 1st (best) to 3rd (worst) based on: (1) visual
quality, (2) structural consistency with the source layout, and (3) alignment with the text
instruction. Test samples are drawn from three datasets (ImgEdit-Bench (Ye et al., 2025),
Emu Edit Bench (Sheynin et al., 2023), Places365 (Zhou et al., 2016)). Each participant
have completed 36 trials. An example question of the user study is provided in Figure F2

Image editing user study

In this study, you will compare the outputs of three image-editing models. For each trial, a prompt and three

corresponding edited images are provided. Your task is to rank the images (1st, 2nd, 3rd) according to overall

preference, balancing the following criteria:

- Visual Quality : clarity, realism, and level of detail in the edited image.

- Structural Consistency : how well the global layout and spatial structure of the source image are
preserved after editing.

- Text-Instruction Alignment : the degree to which the edit reflects the intended modification described in
the prompt.

Images are displayed left to right and labeled A, B, and C. Assign a unique rank (1st, 2nd, 3rd) to each image
based on a holistic judgment across all three criteria.

Editing Prompt
Make it into a spring scene

Source Imge

Model A Model B Model C

Model A Model B Model C

Visual Quality O O O
Structure Consistency O O O
Text-Instruction Alignment O O O

Figure E2: Example of user study instructions and a sample question presented to partici-
pants.
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E.3 QUALITATIVE RESULTS

We additionally report qualitative results of EDIF from Figure E3 to Figure E6. For a
fair comparison, We compare EDIF against a basic Kontext baseline that does not use our
algorithm.

Input
Image
Editing Change the sky into Change the Change the market Change the hill into
Prompt twilight landscape into urban into outdoor garden mountain
w/o
EDIF
w/
EDIF
over-interpreted arbitrarily interpreted
Succes “twilight” as midnight, Intended urban editing Editing unrelated the prompt term “hill,”
Point original becomes never expressed to source image resulting in unintended
unrecognizable snow generation

Figure E3: Qualitative results on ImgEdit.
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Input
Image

Editing

Change the scene to be
Prompt

Change the scene to an
in a hurricane

Make it in the middle
empty backyard pool

Change the scene to a
of a sand storm

thanksgiving dinner table

w/0
EDIF

w/
EDIF

Editing

model ignore the source
Prompt structure

Ignore “empty backyard”

model ignore the source
editing prompt

model ignore the source
structure

structure and the contents

Figure E4: Ilustration of result on Emu Edit
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Input
Image

Editing

A road in an autumn
Prompt

scene

w/o
EDIF

w/

EDIF

model generates
Sucees aggressively on its
Point OWIL

Figure E5: Illustration of result on Place365

Aroad in a lavender Aroad in a cherry
field scene blossom scene

Strong color spill, Over-aggressive

model generates
causing global, editing, unnatural aggressively on its
unintended changes looking results. own.
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Input
Image

Editing

A café in a living
Prompt

A café in a lavender
room scene

A café in a rustic
field scene

A café in a cherry
wooden cabin scene

blossom scene

w/o
EDIF

w/
EDIF

Succes In indoor scene editing, the model tends to generate content aggressively, largely ignoring the
Point structure of the original source image.

Figure E6: Illustration of result on indoor scene.
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