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1 CODE AND DATASETS

Code and datasets are available at

https://anonymous.4open.science/r/xEN-AF83/ReadMe.md.

2 PROOF

We adopt definitions of the point and the extension region and three axioms of the connection rela-

tion in (Dong| [2008)) for the proof.

A point is a geometric entity without extensions, which can be understood as an object that if any
two objects connect with it, the two objects will connect with each other.

Definition 1. A geometric object p is a point, Pt(p), is defined as that for any geometric objects
x, Yy, if p connects with x and vy, then x will connect with y.

Pt(p) £ Vz,y[C(z,p) A C(y,p) — C(z,y)]

The connection relation is governed by the axiom as follows: if two objects connect with each other,
for any third object that can be moved to a location where it connects with the first two objects.

Axiom 1. YO, 05[C(0y,05) — Y0IO[O € 0 A C(Oy,0) A C(O3, O)]]

Here, 0 is any O-shaped object, and objects are only distinguished by their shapes, so 0 is also the
type of O and we write type(Q) as the type of O. Any two objects Oy, Oz in type(O), O can be
moved and rotated to completely coincide with Q. Thus, VO3O|. ..] means for any object, it can
be moved and roated to a place where this object satisfies such and such spatial relations.

The connection relation is self-reflective and symmetric. Any object connects with itself.


https://anonymous.4open.science/r/xEN-AF83/ReadMe.md
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Axiom 2. YO[C(O, O)]

For any objects Oy, Oq, if O; connects with O, then Oy connects with O;.

Axiom 3. VO, 02[0(01, 02) — C(OQ, Ol)]

A man with a stick can reach objects that are located further away from him. The space that the
man with his stick can reach is the spatial extension of the body. Let O,,, and O be the body of the

man and the stick. 09+ is the extension of O,,, by O, which means any object O, connecting with
0%, the man can move his stick to touch O,.

Definition 2. An extension of an object O with an object O, is the object O such that any object
O, connects with O%, there is an object O., that connects with O and O, where O., and O, are
of the same type, written as O, € type(O,).

0% £ 0[N0, C(O,,0) = OO, € type(O.) A C(O,,0) AC(O.,0,)]]

Lemma 1. For any Ox and Oy, if Ox connects with Oy, there is O, such that O¢ is part of both
Ox and an extension of Oyy.

VOw, Ox[C(Ow, Ox) — 3(95[1:)((967 Ox) A\ :P(C)67 Owe)]]
Proof (sketch) 1. Let Oy« be an extension of Oy

Ow- 2 10[VyC(y, O) = Jeo[eo € type(e) A Clen, Ow) A Cleo, y)]] (1)

C(OX’OW) (*)
VZHOZ[OZ S ZAC(Ox,Oz)/\C(Oz,Ow)] (**)

Axioml

() Let Z be type
Jeoleo € type(e) A C(Ox, €

€) Ogzbeecy
A Cleo, Ow)l  (+)

(
)
(1) Let y be Ox
LO[C(Ox, 0) = Jepleo € type(e) A Cleg, Ow) A Cleo, Ox)]] (2)

(2)
C(OX7 OWs) = 360[60 S type(e) AN C(Eo, Ow) AN C(Eo, Ox)] (3)

(+) (3)
C(Ox,0we) (4)

the definition of .

VOXC(OX7OW) — C(OX7OWe). (*)(4)
So, Oy is part of both Oy, P(Ow, Owe).

Let O, be Owe N Ox. Any Oy, if Oy connects with O, Oy will connect with Oye and Ox.
Therefore O, is part of Ox and Oyy-e.

VOW, Ox[C(Ow, Ox) — HOe[P(Oe, Ox> A P(OE, OWG)]]

O

Theorem 1. If over-smoothing (all output feature embeddings are the same), these output embed-
dings will be points.

Proof (sketch) 2. We consider part-whole relations among feature embeddings and for any Oy and
Ow, if Oy is a part of Ow, Oy and Ow will coincide, EQ(Ov, Ow ). We prove that Oy is a
point Pt(Ow).

For any Ox, if Ox connects with Oy, there is a region O, such that O, is part of Ox and part of
an extension of Oy (Lemma 1), namely,

YOw, Ox[C(Ow,Ox) = FO[P(O, Ox) ANP(Oc, Owe)]] (5)
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As any feature coincides with its any part, we have EQ(O,,, Owe) and EQ(O,,, Ox), so
P(OW€7 060) /\ P(0607 OX) (6)

the transitive relation of P

P(Ow-,0,) AP(O,,,Ox) — P(Oye, 0x) (7)

(6) (7)
P(Ow-,0x) (8)

(5) (1)
YOxC(Ow,Ox) — P(Ow.,0x) (8)

(8) P(Owe,O0x) = P(Ow,Ox)
VOXC(Ow,Ox) — P(Ow,Ox) (9)

P(Ow,Ox)
VOY[C(Oy, Ow) — C(Oy, Ox)] (10)

(9) (10
VOX [C(Ow, Ox) — VOY[C(Oy, Ow) — C(Oy, Ox)H (11)

definition of P

rewrite P

(11) is equivalent with
VOX7OY[C(OX7OW)/\C(OY,OW) — C(Ox,Oy)] (12)
(12)

——————— Definiti Pt
Ow is a point ¢finition of

3  VARIOUS FORMS OF LOGICAL REASONING
We list 36 forms of logical reasoning that have the root on syllogistic reasoning (Betz et al.|[2021).

3.1 GENERALIZED MODUS PONENS

3.1.1 BASIC SCHEMA

VaF(z) — G(x)
F(a)
G(a)

3.1.2 NEGATIVE VARIANT

VaF(z) = -G(x)
F(a)

3.1.3 COMPLEX PREDICATES

3.1.4 DE MORGAN
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3.2 GENERALIZED CONTRAPOSITION

3.2.1 BASIC SCHEMA

VaeF(z) = -G(x)
VeG(z) — - F(z)

3.2.2 NEGATIVE VARIANT

Ve F(x) — G(z)
V-G (z) = —F(x)

3.2.3 COMPLEX PREDICATES

Vz[F(x) AN H(z)] — -G (x)
VxG(z) — —[F(z) A H(x)]

3.2.4 DE MORGAN
Ve[F(xz) A H(z)] = -G(z)

VeG(x) = —F(z) V -H(x)

3.3 HYPOTHETICAL SYLLOGISM 1

3.3.1 BASIC SCHEMA

3.3.2 NEGATIVE VARIANT

3.3.3 COMPLEX PREDICATES

3.3.4 DE MORGAN

3.4 HYPOTHETICAL SYLLOGISM 2

3.4.1 BASIC SCHEMA

3.4.2 NEGATIVE VARIANT

(9}
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3.4.3 COMPLEX PREDICATES

VeF(x) = G(x) V I(x)

VeH (z) — —[G(z) V I(x)]

VoF(z) — H(x) ..
3.4.4 DE MORGAN

VeF(x) = G(x) V I(z)

Ve H (z) — —G(x) A —I(x)

VeF(x) — H(x)

3.5 HYPOTHETICAL SYLLOGISM 3

3.5.1 BASIC SCHEMA

3.5.2 NEGATIVE VARIANT

3.5.3 COMPLEX PREDICATES

3.5.4 DE MORGAN

3.6 GENERALIZED MODUS TOLLENS

3.6.1 BASIC SCHEMA
VeF(xz) = G(x)
—~G(a)
-F(a)

3.6.2 NEGATIVE VARIANT

VeF(z) = -G(x)
G(a)
ﬂF(a)

3.6.3 COMPLEX PREDICATES

VaF(z) — G(z) A H(x)

G(a)
-F(a)
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3.6.4 DE MORGAN

3.7 DISJUNCTIVE SYLLOGISM

3.7.1

BASIC SCHEMA

3.7.2 NEGATIVE VARIANT

3.7.3 COMPLEX PREDICATES

VeF(x) = G(x) A H(z)
-G(a) vV —H(a)
-F(a) ..

VeF(x) — G(x) V H(z)
Ve F(x) = -G(x)

VeF(x) = G(x) V H(z)
VaG(x) — —F(x)
VaeF(x) — H(x)

VeF(x) — G(x)V H(z) vV I(x)
VeF(z) = =G(x)

VaF(x) — —1(x)

VeF(x) — H(x) .

3.7.4 DE MORGAN

3.8 GENERALIZED DILEMMA

3.8.1

BASIC SCHEMA

3.8.2 NEGATIVE VARIANT

3.8.3 COMPLEX PREDICATES

3.8.4 DE MORGAN




Under review as a conference paper at ICLR 2025

4 24 VALID TYPES OF SYLLOGISTIC REASONING

Each valid syllogism is given a name whose vowels indicate types of moods, e.g., ‘CELARENT’
indicates types of moods are ‘E’, ‘A’, ‘E’, respectively. ‘A’ for universal affirmative, all X are Y, ‘I’
for particular affirmative, some X are Y; ‘E’ for universal negative, no X are Y, ‘O’ for particular
negative, some X are not Y. All 24 valid types of syllogistic reasoning is listed in Table[I]

5 SELF-SUPERVISED EULER NET

5.1 BENCHMARK DATASET OF EULER NET

Data sets of Euler Net are randomly created as follows. Let R,,;, and R,,,, be the pre-defined
values denoting the minimum and the maximum lengths of radii. Let () , (O, R 4) represent circle
A with the central point O 4 and the radius R4. The Euler diagram where () ,(Oa4, R4) is inside
©) 5(OB, Rp) is generated as follows: R, is randomly chosen between R, and Rya.; R
is randomly chosen between i R, and Ao R4 (0 < A1 < Ag < 1); O4 is fixed to (Ryin +
Rz Rmin + Rmaz); Op is setto O 4+ (05, 6, ), in which §,, and ¢, are randomly chosen between
(Rp — Ra)/2 and (R4 — Rp)/2. Other Euler diagrams are generated in similar ways. In total,
96000 input-output pairs are created, which are separated into 80000 pairs for training, 8000 for
validation, and 8000 for testing. Euler Net reached 99.8% accuracy in testing data.

5.2 AUTOMATIC SEARCHING FOR NEW TRAINING DATA

As illustrated in Figure 5 in our submitted paper, in each iteration, our self-supervised Euler Net
firstly searches for new training data. The size of the newly created training data set in each iteration
is set to 10,000. In the procedure of random search, the central point and the radius of a circle are
totally random. We set two restrictions as follows: (1) circles are complete; (2) the minimum radius
is set to 0.1. We allow all possible combinations between two circles. Following these criteria, we
created two new testing data sets D1 and Dy: Dy with one circle (half of input images in D; have
green circles, the rest of inputs are one red circle, one blue circle), Do with two circles, and the size
of D5 is 9 times larger than the size of D;. In each iteration, the newly trained Euler Net is tested
with Dy = D1 U Dy. We set the maximum iteration number to 20.

5.3 EXPERIMENTAL RESULTS

We fed Dr to the original Euler Net, which achieved an accuracy of 56.0% — this means that the
original 99.8% accuracy of Euler Net is only for the benchmark datasets. Through repeated train-
ing of newly created data sets, Euler Net improves its accuracy. It reaches a peak value of 97.8% in
accuracy after the 19* iteration.
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