SUPPLEMENTARY MATERIAL

Anonymous authors

Paper under double-blind review

CONTENTS

1	Cod	e and d	atasets	2
2	Proc	of		2
3	Vari	ous for	ms of logical reasoning	4
	3.1	Genera	alized modus ponens	4
		3.1.1	Basic schema	4
		3.1.2	Negative variant	4
		3.1.3	Complex predicates	4
		3.1.4	De Morgan	4
	3.2	Genera	alized contraposition	5
		3.2.1	Basic schema	5
		3.2.2	Negative variant	5
		3.2.3	Complex predicates	5
		3.2.4	De Morgan	5
	3.3	Hypot	hetical syllogism 1	5
		3.3.1	Basic schema	5
		3.3.2	Negative variant	5
		3.3.3	Complex predicates	5
		3.3.4	De Morgan	5
	3.4	Hypoth	hetical syllogism 2	5
		3.4.1	Basic schema	5
		3.4.2	Negative variant	5
		3.4.3	Complex predicates	6
		3.4.4	De Morgan	6
	3.5	Hypoth	hetical syllogism 3	6
		3.5.1	Basic schema	6
		3.5.2	Negative variant	6
		3.5.3	Complex predicates	6
		3.5.4	De Morgan	6
	3.6		alized modus tollens	6
	- 10		Pagio schama	6

		3.6.2	Negative variant	6
		3.6.3	Complex predicates	6
		3.6.4	De Morgan	7
	3.7	Disjun	nctive syllogism	7
		3.7.1	Basic schema	7
		3.7.2	Negative variant	7
		3.7.3	Complex predicates	7
		3.7.4	De Morgan	7
	3.8	Genera	alized dilemma	7
		3.8.1	Basic schema	7
		3.8.2	Negative variant	7
		3.8.3	Complex predicates	7
		3.8.4	De Morgan	7
4	24 v	alid typ	pes of syllogistic reasoning	8
5	Self-	supervi	ised Euler Net	8
	5.1	Bench	mark dataset of Euler Net	8
	5.2	Autom	natic searching for new training data	8
	5.3	Experi	imental Results	8
1	Co	DE AN	ND DATASETS	

Code and datasets are available at

https://anonymous.4open.science/r/xEN-AF83/ReadMe.md.

2 Proof

We adopt definitions of the point and the extension region and three axioms of the connection relation in (Dong, 2008) for the proof.

A point is a geometric entity without extensions, which can be understood as an object that if any two objects connect with it, the two objects will connect with each other.

Definition 1. A geometric object p is a point, Pt(p), is defined as that for any geometric objects x, y, if p connects with x and y, then x will connect with y.

$$\mathbf{Pt}(p) \triangleq \forall x, y [\mathbf{C}(x, p) \land \mathbf{C}(y, p) \to \mathbf{C}(x, y)]$$

The connection relation is governed by the axiom as follows: if two objects connect with each other, for any third object that can be moved to a location where it connects with the first two objects.

Axiom 1.
$$\forall \mathcal{O}_1, \mathcal{O}_2[\mathbf{C}(\mathcal{O}_1, \mathcal{O}_2) \to \forall 0 \exists \mathcal{O}[\mathcal{O} \in 0 \land \mathbf{C}(\mathcal{O}_1, \mathcal{O}) \land \mathbf{C}(\mathcal{O}_2, \mathcal{O})]]$$

Here, 0 is any \mathcal{O} -shaped object, and objects are only distinguished by their shapes, so 0 is also the type of \mathcal{O} and we write $\mathsf{type}(\mathcal{O})$ as the type of \mathcal{O} . Any two objects \mathcal{O}_1 , \mathcal{O}_2 in $\mathsf{type}(\mathcal{O})$, \mathcal{O}_1 can be moved and rotated to completely coincide with \mathcal{O}_2 . Thus, $\forall 0 \exists \mathcal{O}[\dots]$ means for any object, it can be moved and roated to a place where this object satisfies such and such spatial relations.

The connection relation is self-reflective and symmetric. Any object connects with itself.

Axiom 2. $\forall \mathcal{O}[\mathbf{C}(\mathcal{O}, \mathcal{O})]$

For any objects \mathcal{O}_1 , \mathcal{O}_2 , if \mathcal{O}_1 connects with \mathcal{O}_2 , then \mathcal{O}_2 connects with \mathcal{O}_1 .

111 Axiom 3. $\forall \mathcal{O}_1, \mathcal{O}_2[\mathbf{C}(\mathcal{O}_1, \mathcal{O}_2) \to \mathbf{C}(\mathcal{O}_2, \mathcal{O}_1)]$

A man with a stick can reach objects that are located further away from him. The space that the man with his stick can reach is the spatial extension of the body. Let \mathcal{O}_m and \mathcal{O}_s be the body of the man and the stick. $\mathcal{O}_m^{\mathcal{O}_s}$ is the extension of \mathcal{O}_m by \mathcal{O}_s , which means any object \mathcal{O}_x connecting with $\mathcal{O}_m^{\mathcal{O}_s}$, the man can move his stick to touch \mathcal{O}_x .

Definition 2. An extension of an object \mathcal{O} with an object \mathcal{O}_e is the object $\mathcal{O}^{\mathcal{O}_e}$ such that any object \mathcal{O}_x connects with $\mathcal{O}^{\mathcal{O}_e}$, there is an object \mathcal{O}'_e that connects with \mathcal{O} and \mathcal{O}_x , where \mathcal{O}'_e and \mathcal{O}_e are of the same type, written as $\mathcal{O}'_e \in \mathsf{type}(\mathcal{O}_e)$.

$$\mathcal{O}^{\mathcal{O}_e} \triangleq \iota \mathcal{O}[\forall \mathcal{O}_x \mathbf{C}(\mathcal{O}_x, \mathcal{O}) \equiv \exists \mathcal{O}_e' [\mathcal{O}_e' \in \mathsf{type}(\mathcal{O}_e) \wedge \mathbf{C}(\mathcal{O}_e', \mathcal{O}) \wedge \mathbf{C}(\mathcal{O}_e', \mathcal{O}_x)]]$$

Lemma 1. For any \mathcal{O}_X and \mathcal{O}_W , if \mathcal{O}_X connects with \mathcal{O}_W , there is \mathcal{O}_{ϵ} such that \mathcal{O}_{ϵ} is part of both \mathcal{O}_X and an extension of \mathcal{O}_W .

$$\forall \mathcal{O}_W, \mathcal{O}_X[\mathbf{C}(\mathcal{O}_W, \mathcal{O}_X) \to \exists \mathcal{O}_{\epsilon}[\mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_X) \land \mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_{W^{\epsilon}})]]$$

Proof (sketch) 1. Let $\mathcal{O}_{W^{\epsilon}}$ be an extension of \mathcal{O}_{W}

$$\mathcal{O}_{W^{\epsilon}} \triangleq \iota \mathcal{O}[\forall y \mathbf{C}(y, \mathcal{O}) \equiv \exists \epsilon_0 [\epsilon_0 \in \mathsf{type}(\epsilon) \land \mathbf{C}(\epsilon_0, \mathcal{O}_W) \land \mathbf{C}(\epsilon_0, y)]] \tag{1}$$

$$\frac{\mathbf{C}(\mathcal{O}_X,\mathcal{O}_W) \quad (*)}{\forall \mathtt{Z} \exists \mathcal{O}_Z [\mathcal{O}_Z \in \mathtt{Z} \land \mathbf{C}(\mathcal{O}_X,\mathcal{O}_Z) \land \mathbf{C}(\mathcal{O}_Z,\mathcal{O}_W)] \quad (**)} \ \mathrm{Axiom} 1$$

$$\frac{(**) \quad \textit{Let Z be } \mathsf{type}(\epsilon) \quad \mathcal{O}_{\textit{Z}} \textit{ be } \epsilon_0}{\exists \epsilon_0 [\epsilon_0 \in \mathsf{type}(\epsilon) \land \mathbf{C}(\mathcal{O}_X, \epsilon_0) \land \mathbf{C}(\epsilon_0, \mathcal{O}_W)] \quad (+)}$$

$$\frac{(1) \quad \text{Let } y \text{ be } \mathcal{O}_X}{\iota \mathcal{O}[\mathbf{C}(\mathcal{O}_X, \mathcal{O}) \equiv \exists \epsilon_0 [\epsilon_0 \in \mathsf{type}(\epsilon) \land \mathbf{C}(\epsilon_0, \mathcal{O}_W) \land \mathbf{C}(\epsilon_0, \mathcal{O}_X)]] \quad (2)}$$

$$\frac{(2)}{\mathbf{C}(\mathcal{O}_X, \mathcal{O}_{W^{\epsilon}}) \equiv \exists \epsilon_0 [\epsilon_0 \in \mathsf{type}(\epsilon) \land \mathbf{C}(\epsilon_0, \mathcal{O}_W) \land \mathbf{C}(\epsilon_0, \mathcal{O}_X)]} \text{ the definition of } \iota$$

$$\frac{(+) \quad (3)}{\mathbf{C}(\mathcal{O}_X, \mathcal{O}_{W^{\epsilon}}) \quad (4)}$$

$$\therefore \forall \mathcal{O}_X \mathbf{C}(\mathcal{O}_X, \mathcal{O}_W) \to \mathbf{C}(\mathcal{O}_X, \mathcal{O}_{W^{\epsilon}}). \quad (*)(4)$$

So, \mathcal{O}_W is part of both $\mathcal{O}_{W^{\epsilon}}$, $\mathbf{P}(\mathcal{O}_W, \mathcal{O}_{W^{\epsilon}})$.

Let \mathcal{O}_{ϵ} be $\mathcal{O}_{W^{\epsilon}} \cap \mathcal{O}_X$. Any \mathcal{O}_Y , if \mathcal{O}_Y connects with \mathcal{O}_{ϵ} , \mathcal{O}_Y will connect with $\mathcal{O}_{W^{\epsilon}}$ and \mathcal{O}_X . Therefore \mathcal{O}_{ϵ} is part of \mathcal{O}_X and $\mathcal{O}_{W^{\epsilon}}$.

$$\forall \mathcal{O}_W, \mathcal{O}_X[\mathbf{C}(\mathcal{O}_W, \mathcal{O}_X) \to \exists \mathcal{O}_{\epsilon}[\mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_X) \land \mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_{W^{\epsilon}})]]$$

Theorem 1. If over-smoothing (all output feature embeddings are the same), these output embeddings will be points.

Proof (sketch) 2. We consider part-whole relations among feature embeddings and for any \mathcal{O}_V and \mathcal{O}_W , if \mathcal{O}_V is a part of \mathcal{O}_W , \mathcal{O}_V and \mathcal{O}_W will coincide, $\mathbf{EQ}(\mathcal{O}_V, \mathcal{O}_W)$. We prove that \mathcal{O}_W is a point $\mathbf{Pt}(\mathcal{O}_W)$.

For any \mathcal{O}_X , if \mathcal{O}_X connects with \mathcal{O}_W , there is a region \mathcal{O}_{ϵ} such that \mathcal{O}_{ϵ} is part of \mathcal{O}_X and part of an extension of \mathcal{O}_W (Lemma 1), namely,

$$\forall \mathcal{O}_W, \mathcal{O}_X[\mathbf{C}(\mathcal{O}_W, \mathcal{O}_X) \to \exists \mathcal{O}_{\epsilon}[\mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_X) \land \mathbf{P}(\mathcal{O}_{\epsilon}, \mathcal{O}_{W^{\epsilon}})]]$$
 (5)

As any feature coincides with its any part, we have $\mathbf{EQ}(\mathcal{O}_{\epsilon_0}, \mathcal{O}_{W^{\epsilon}})$ and $\mathbf{EQ}(\mathcal{O}_{\epsilon_0}, \mathcal{O}_X)$, so $\mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_{\epsilon_0}) \wedge \mathbf{P}(\mathcal{O}_{\epsilon_0}, \mathcal{O}_X)$ (6)

165
166 $\mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_{\epsilon_0}) \wedge \mathbf{P}(\mathcal{O}_{\epsilon_0}, \mathcal{O}_X) \rightarrow \mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_X) \quad (7)$ the transitive relation of \mathbf{P}

$$\frac{(6) \quad (7)}{\mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_X) \quad (8)}$$

$$\frac{(5) \quad (7)}{\forall \mathcal{O}_X \mathbf{C}(\mathcal{O}_W, \mathcal{O}_X) \to \mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_X) \quad (8)}$$

$$\frac{(8) \quad \mathbf{P}(\mathcal{O}_{W^{\epsilon}}, \mathcal{O}_{X}) \to \mathbf{P}(\mathcal{O}_{W}, \mathcal{O}_{X})}{\forall \mathcal{O}_{X} \mathbf{C}(\mathcal{O}_{W}, \mathcal{O}_{X}) \to \mathbf{P}(\mathcal{O}_{W}, \mathcal{O}_{X}) \quad (9)}$$

$$\frac{\mathbf{P}(\mathcal{O}_W,\mathcal{O}_X)}{\forall \mathcal{O}_Y[\mathbf{C}(\mathcal{O}_Y,\mathcal{O}_W) \to \mathbf{C}(\mathcal{O}_Y,\mathcal{O}_X)] \quad (10)} \ \textit{definition of } \mathbf{P}$$

$$\frac{(9) \quad (10)}{\forall \mathcal{O}_X[\mathbf{C}(\mathcal{O}_W, \mathcal{O}_X) \to \forall \mathcal{O}_Y[\mathbf{C}(\mathcal{O}_Y, \mathcal{O}_W) \to \mathbf{C}(\mathcal{O}_Y, \mathcal{O}_X)]] \quad (11)} \text{ rewrite } \mathbf{P}$$

(11) is equivalent with

$$\forall \mathcal{O}_{X}, \mathcal{O}_{Y}[\mathbf{C}(\mathcal{O}_{X}, \mathcal{O}_{W}) \wedge \mathbf{C}(\mathcal{O}_{Y}, \mathcal{O}_{W}) \rightarrow \mathbf{C}(\mathcal{O}_{X}, \mathcal{O}_{Y})] \qquad (12)$$

$$\frac{(12)}{\mathcal{O}_{W} \text{ is a point}} \text{ Definition of } \mathbf{Pt}$$

3 VARIOUS FORMS OF LOGICAL REASONING

We list 36 forms of logical reasoning that have the root on syllogistic reasoning (Betz et al., 2021).

3.1 GENERALIZED MODUS PONENS

3.1.1 BASIC SCHEMA

$$\forall x F(x) \to G(x)$$

$$\frac{F(a)}{G(a)} \therefore$$

3.1.2 NEGATIVE VARIANT

3.1.3 COMPLEX PREDICATES

$$\forall x F(x) \land H(x) \rightarrow G(x)$$

$$F(a)$$

$$H(a)$$

$$G(a) \quad \therefore$$

3.1.4 DE MORGAN

$$\forall x \neg [F(x) \lor H(x)] \to G(x)$$

$$\neg F(a)$$

$$\neg H(a)$$

$$\overline{G(a)} \therefore$$

216 3.2 GENERALIZED CONTRAPOSITION 217 218 3.2.1 BASIC SCHEMA 219 $\forall x F(x) \to \neg G(x)$ 220 $\forall x G(x) \rightarrow \neg F(x)$:. 221 222 3.2.2 NEGATIVE VARIANT 223 $\forall x F(x) \to G(x)$ 224 $\forall x \neg G(x) \rightarrow \neg F(x)$:. 225 226 3.2.3 COMPLEX PREDICATES 227 228 $\forall x [F(x) \land H(x)] \rightarrow \neg G(x)$ 229 $\forall x G(x) \to \neg [F(x) \land H(x)]$ 230 231 3.2.4 DE MORGAN 232 $\forall x [F(x) \land H(x)] \to \neg G(x)$ 233 $\forall x G(x) \rightarrow \neg F(x) \vee \neg H(x) \quad \therefore$ 234 235 3.3 Hypothetical syllogism 1 236 237 3.3.1 Basic schema 238 $\forall x F(x) \to G(x)$ 239 $\forall x G(x) \to H(x)$ 240 $\forall x F(x) \to H(x)$:. 241 242 3.3.2 NEGATIVE VARIANT 243 244 $\forall x F(x) \rightarrow \neg G(x)$ 245 $\forall x \neg G(x) \rightarrow H(x)$ $\forall x F(x) \to H(x)$:. 246 247 248 3.3.3 Complex predicates 249 $\forall x F(x) \to G(x)$ 250 $\forall x F(x) \to I(x)$ 251 $\forall x G(x) \land I(x) \rightarrow H(x)$ 252 $\forall x F(x) \to H(x)$: 253 254 3.3.4 DE MORGAN 255 $\forall x \neg F(x) \land \neg I(x) \to G(x)$ 256 $\forall x G(x) \to H(x)$ 257 $\forall x \neg [F(x) \lor I(x)] \to H(x)$:. 258 259 3.4 HYPOTHETICAL SYLLOGISM 2 260 261 3.4.1 BASIC SCHEMA 262 $\forall x F(x) \to G(x)$ 263 $\forall x \neg H(x) \to \neg G(x)$ 264 $\forall x F(x) \to \overline{H(x)}$:. 265 266 3.4.2 NEGATIVE VARIANT 267 268 $\forall x F(x) \rightarrow \neg G(x)$ $\forall x \neg H(x) \rightarrow G(x)$

269

 $\forall x F(x) \to H(x)$:.

270 3.4.3 Complex predicates 271 $\forall x F(x) \to G(x) \lor I(x)$ 272 $\forall x H(x) \rightarrow \neg [G(x) \lor I(x)]$ 273 $\forall x F(x) \to H(x)$:. 274 275 3.4.4 DE MORGAN 276 277 $\forall x F(x) \to G(x) \lor I(x)$ 278 $\forall x H(x) \rightarrow \neg G(x) \land \neg I(x)$ 279 $\forall x F(x) \to H(x)$: 280 281 3.5 Hypothetical syllogism 3 282 283 3.5.1 Basic schema 284 $\forall x F(x) \to G(x)$ 285 $\exists x H(x) \land \neg G(x)$ 286 $\exists x H(x) \land \neg F(x) \quad \therefore$ 287 288 289 3.5.2 NEGATIVE VARIANT 290 $\forall x \neg F(x) \rightarrow G(x)$ 291 $\exists x H(x) \land \neg G(x)$ 292 $\exists x H(x) \land F(x)$: 293 294 3.5.3 COMPLEX PREDICATES 295 296 $\forall x F(x) \to G(x)$ $\forall x F(x) \rightarrow I(x)$ 297 $\exists x H(x) \land \neg [G(x) \land I(x)]$ 298 $\exists x H(x) \land \neg F(x)$:. 299 300 301 3.5.4 DE MORGAN $\forall x F(x) \to G(x)$ 303 $\forall x F(x) \rightarrow I(x)$ 304 $\exists x H(x) \land [\neg G(x) \lor \neg I(x)]$ 305 $\exists x H(x) \land \neg F(x)$: 306 307 3.6 GENERALIZED MODUS TOLLENS 308 309 3.6.1 Basic schema 310 $\forall x F(x) \to G(x)$ 311 $\neg G(a)$ 312 $\neg F(a)$: 313 314 315 3.6.2 NEGATIVE VARIANT 316 $\forall x F(x) \rightarrow \neg G(x)$ 317 G(a)318 $\neg F(a)$:. 319 320 3.6.3 Complex predicates 321 322 $\forall x F(x) \to G(x) \land H(x)$

 $\neg G(a)$

 $\neg F(a)$

324 3.6.4 DE MORGAN 325 $\forall x F(x) \to G(x) \land H(x)$ 326 $\neg G(a) \lor \neg H(a)$ 327 $\neg F(a)$:. 328 3.7 DISJUNCTIVE SYLLOGISM 330 331 3.7.1 Basic schema 332 $\forall x F(x) \to G(x) \lor H(x)$ 333 $\forall x F(x) \rightarrow \neg G(x)$ 334 $\forall x F(x) \to H(x)$: 335 336 3.7.2 NEGATIVE VARIANT 337 338 $\forall x F(x) \to G(x) \lor H(x)$ 339 $\forall x G(x) \rightarrow \neg F(x)$ $\forall x F(x) \to H(x)$: 340 341 3.7.3 Complex predicates 342 343 $\forall x F(x) \to G(x) \lor H(x) \lor I(x)$ 344 $\forall x F(x) \rightarrow \neg G(x)$ 345 $\forall x F(x) \rightarrow \neg I(x)$ 346 $\forall x F(x) \to H(x)$: 347 348 3.7.4 DE MORGAN 349 $\forall x F(x) \land I(x) \rightarrow G(x) \lor H(x)$ 350 $\forall x G(x) \to \neg F(x) \lor \neg I(x)$ 351 $\forall x F(x) \land I(x) \rightarrow H(x)$: 352 353 3.8 GENERALIZED DILEMMA 354 355 3.8.1 BASIC SCHEMA 356 $\forall x F(x) \to G(x) \lor H(x)$ 357 $\forall x G(x) \to J(x)$ 358 $\forall x H(x) \to J(x)$ 359 $\forall x F(x) \to J(x)$: 360 361 3.8.2 NEGATIVE VARIANT 362 $\forall x F(x) \to G(x) \lor H(x)$ 363 $\forall x J(x) \rightarrow \neg G(x)$ 364 $\forall x J(x) \to \neg H(x)$ 365 $\forall x F(x) \to J(x)$:. 366 367 3.8.3 Complex predicates 368 $\forall x F(x) \to G(x) \lor H(x) \lor I(x)$ 369 $\forall x J(x) \rightarrow \neg G(x)$ 370 $\forall x J(x) \rightarrow \neg H(x)$ 371 $\forall x F(x) \to J(x) \lor I(x)$:. 372 373 3.8.4 DE MORGAN 374 375 $\forall x F(x) \rightarrow \neg [G(x) \land H(x)]$ 376 $\forall x \neg G(x) \rightarrow J(x)$ $\forall x \neg H(x) \rightarrow J(x)$ 377 $\forall x F(x) \to J(x)$:.

4 24 VALID TYPES OF SYLLOGISTIC REASONING

Each valid syllogism is given a name whose vowels indicate types of moods, e.g., 'CELARENT' indicates types of moods are 'E', 'A', 'E', respectively. 'A' for *universal affirmative*, all X are Y, 'I' for *particular affirmative*, some X are Y; 'E' for *universal negative*, no X are Y, 'O' for *particular negative*, some X are not Y. All 24 valid types of syllogistic reasoning is listed in Table 1.

5 Self-supervised Euler Net

5.1 BENCHMARK DATASET OF EULER NET

Data sets of Euler Net are randomly created as follows. Let R_{min} and R_{max} be the pre-defined values denoting the minimum and the maximum lengths of radii. Let $\bigodot_A(O_A,R_A)$ represent circle A with the central point O_A and the radius R_A . The Euler diagram where $\bigodot_A(O_A,R_A)$ is inside $\bigodot_B(O_B,R_B)$ is generated as follows: R_A is randomly chosen between R_{min} and R_{max} ; R_B is randomly chosen between $\lambda_1 R_{min}$ and $\lambda_2 R_A$ ($0 < \lambda_1 < \lambda_2 < 1$); O_A is fixed to $(R_{min} + R_{max}, R_{min} + R_{max})$; O_B is set to $O_A + (\delta_x, \delta_y)$, in which δ_x and δ_y are randomly chosen between $(R_B - R_A)/2$ and $(R_A - R_B)/2$. Other Euler diagrams are generated in similar ways. In total, 96000 input-output pairs are created, which are separated into 80000 pairs for training, 8000 for validation, and 8000 for testing. Euler Net reached 99.8% accuracy in testing data.

5.2 Automatic searching for New Training Data

As illustrated in Figure 5 in our submitted paper, in each iteration, our self-supervised Euler Net firstly searches for new training data. The size of the newly created training data set in each iteration is set to 10,000. In the procedure of random search, the central point and the radius of a circle are totally random. We set two restrictions as follows: (1) circles are complete; (2) the minimum radius is set to 0.1. We allow all possible combinations between two circles. Following these criteria, we created two new testing data sets \mathcal{D}_1 and \mathcal{D}_2 : \mathcal{D}_1 with one circle (half of input images in \mathcal{D}_1 have green circles, the rest of inputs are one red circle, one blue circle), \mathcal{D}_2 with two circles, and the size of \mathcal{D}_2 is 9 times larger than the size of \mathcal{D}_1 . In each iteration, the newly trained Euler Net is tested with $\mathcal{D}_T = \mathcal{D}_1 \cup \mathcal{D}_2$. We set the maximum iteration number to 20.

5.3 EXPERIMENTAL RESULTS

We fed \mathcal{D}_T to the original Euler Net, which achieved an accuracy of 56.0% – this means that the original 99.8% accuracy of Euler Net is only for **the benchmark datasets**. Through repeated training of newly created data sets, Euler Net improves its accuracy. It reaches a peak value of 97.8% in accuracy after the 19^{th} iteration.

REFERENCES

Gregor Betz, Christian Voigt, and Kyle Richardson. Critical thinking for language models. In Sina Zarrieß, Johan Bos, Rik van Noord, and Lasha Abzianidze (eds.), *Proceedings of the 14th International Conference on Computational Semantics (IWCS)*, pp. 63–75, Groningen, The Netherlands (online), June 2021. Association for Computational Linguistics. URL https://aclanthology.org/2021.iwcs-1.7.

T. Dong. A Comment on RCC: from RCC to RCC⁺⁺. *Journal of Philosophical Logic*, 37(4): 319–352, 2008.

Num	Name	Premise	Conclusion	Qualitative spatial relations statement
П	BARBARA	all s are m , all m are p	all s are p	$\mathbf{P}(\mathcal{O}_s,\mathcal{O}_m)\wedge\mathbf{P}(\mathcal{O}_m,\mathcal{O}_p)\to\mathbf{P}(\mathcal{O}_s,\mathcal{O}_p)$
7	BARBARI	all s are m , all m are p	some s are p	$)\wedge \mathbf{P}(\mathcal{O}_n)$
κ	CELARENT	no m is p , all s are m	$a \sin s$ on	$(a) \wedge \hat{\mathbf{P}}(a)$
4	CESARE	no p is \tilde{m} , all s are m	$a = \frac{1}{2} \sin s$ on	$(a) \wedge \mathbf{P}(\mathcal{O}_s, \mathcal{O}_m) o \mathbf{D}(\mathcal{O}_s)$
2	CALEMES	all \bar{p} are m , no m is s	$a \sin s$ on	$(\mathcal{O}_m) \wedge \mathbf{D}(\mathcal{O}_m, \mathcal{O}_s) o \mathbf{D}(\mathcal{O}_s)$
9	CAMESTRES	all \hat{p} are m , no s is m	$a = \frac{1}{2} \sin s$ on	$\mathcal{O}_m) \wedge \mathbf{D}(\mathcal{O}_s, \mathcal{O}_m) o \mathbf{D}(\mathcal{O}_s)$
7	DARII	all m are p , some s are m	some s are p	$\mathbf{P}(\mathcal{O}_m,\mathcal{O}_p) \land \neg \mathbf{D}(\mathcal{O}_s,\mathcal{O}_m) \to \neg \mathbf{D}(\mathcal{O}_s,\mathcal{O}_p)$
∞	DATISI	all m are p , some m are s	some s are p	$\mathcal{O}_{v}) \wedge \neg \mathbf{D}(\mathcal{C})$
6	DARAPTI	all m are s , all m are p	some s are p	$(\widetilde{\mathcal{O}}_s) \wedge \mathbf{P}(\mathcal{C})$
10	DISAMIS	some m are p , all m are s	some s are p	$(\mathcal{O}_p) \wedge \mathbf{P}(\mathcal{O}_m, \mathcal{C}_m)$
11	DIMATIS	some p are m , all m are s	some s are p	$(m) \wedge \mathbf{P}(\mathcal{C})$
12	BAROCO	all p is m , some s are not m	some s are not p	$(n) \land \neg \mathbf{P}(\mathcal{C})$
13	CESARO	no p is m , all s are m	some s are not p	$_{n})\wedge\mathbf{P}(\mathcal{O}_{s},0)$
14	CAMESTROS	all s are m , no m is p	some s are not p	$\mathbf{P}(\mathcal{O}_s,\mathcal{O}_m)\wedge\mathbf{D}(\mathcal{O}_m,\mathcal{O}_p) ightarrow \neg\mathbf{P}(\mathcal{O}_s,\mathcal{O}_p)$
15	CELARONT	no s is m , all p are m	some s are not p	$(\mathcal{O}_m) \wedge \mathbf{P}(\mathcal{O}_p, \mathcal{O}_m) ightarrow 1$
16	CALEMOS	all p are m , no m is s	some s are not p	$\mathbf{P}(\mathcal{O}_p,\mathcal{O}_m)\wedge\mathbf{D}(\tilde{\mathcal{O}_m},\mathcal{O}_s) ightarrow \neg\mathbf{P}(\mathcal{O}_s,\mathcal{O}_p)$
17	BOCARDO	some m are not p , all m are s	some s are not p	$\neg \mathbf{P}(\mathcal{O}_m, \mathcal{O}_p) \wedge \mathbf{P}(\mathcal{O}_m, \mathcal{O}_s) \rightarrow \neg \mathbf{P}(\mathcal{O}_s, \mathcal{O}_p)$
18	BAMALIP	all m are s , all p are m	some s are p	$\mathbf{P}(\mathcal{O}_m,\mathcal{O}_s) \wedge \mathbf{P}(\mathcal{O}_p,\mathcal{O}_m) o \neg \mathbf{D}(\mathcal{O}_s,\mathcal{O}_p)$
19	FERIO	some s are m , no m is p	some s are not p	<u>†</u>
20	FESTINO	some s are m , no p is m	some s are not p	$\neg \mathbf{D}(\mathcal{O}_s, \mathcal{O}_m) \wedge \mathbf{D}(\mathcal{O}_p, \mathcal{O}_m) \rightarrow \neg \mathbf{P}(\mathcal{O}_s, \mathcal{O}_p)$
21	FERISON	some m are s , no m is p	some s are not p	<u></u>
22	FRESISON	some m are s , no p is m	some s are not p	$\neg \mathbf{D}(\mathcal{O}_m,\mathcal{O}_s) \wedge \mathbf{D}(\mathcal{O}_p,\mathcal{O}_m) \rightarrow \neg \mathbf{P}(\mathcal{O}_s,\mathcal{O}_p)$
23	FELAPTON	all m are s, no m is p	some s are not p	$\mathbf{P}(\mathcal{O}_m,\mathcal{O}_s) \wedge \mathbf{D}(\mathcal{O}_m^-,\mathcal{O}_p) \rightarrow \neg \mathbf{P}(\mathcal{O}_s,\mathcal{O}_p^-)$
24	FESAPO	all m are s no n is m	some s are not n	$\mathcal{O} \setminus D \setminus D \cup $