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B Details on the BGS Algorithm

As described in section 3, the ES objective is given by:

Fσ(θ) = Eδ∼N (0,Id)[F (θ + σδ)], (2)

where σ > 0 controls the precision of the smoothing, and δ is a random normal vector with the same
dimension as the policy parameters θ.

ES does not use derivatives or back-propagation to update policy parameters. Instead, the gradient of
the policy parameters θ with respect to the objective is estimated with various Monte Carlo techniques.
In this work we apply Monte Carlo leveraging in addition the antithetic sampling trick, widely applied
by the community.

Specifically, θ is perturbed either by adding or subtracting Gaussian perturbations δRi
and completing

environment rollouts using the perturbed parameters. As a result each perturbation is associated with
a reward, one for each direction R+

i and R−i .

Assuming the perturbations, δRi , are rank ordered with δR1 being the top performing direction, then
the policy update can therefore expressed as follows.

θ
′

= θ + α
1

σR

k∑
i=1

[(( 1

m

m∑
j=1

R+
i,j

)
−
( 1

m

m∑
j=1

R−i,j

))
δRi

]
, (3)

where α is the step size, σR is the standard deviation of each distinct reward (positive and negative
direction), k is the number of top directions (elites), N is the number of directions sampled per
parameter update, and k < N . m is the number of repeats per direction and R+

i,j is the reward
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corresponding to the j-th repeat of i-th in the positive direction. R−i,j is the same but in the negative
direction.

Our BGS algorithm is built on two pillars that we describe in detail below.

Novel Elite-Choice Algorithm: One of the key features of BGS is the novel algorithm of selecting
top directions (the elites). In ARS [68], the ranking of the elites is determined by treating each
antithetic direction separately. All rewards are ranked yielding an ordering of directions based on the
absolute rewards of either the positive or negative directions (Equation 4). Whereas in BGS we take
the difference in rewards between the positive and negative directions and rank the differences to
yield an ordering over directions (Equation 5).

ARS : Sort δRi
by max{R+

1 , ..., R
+
i , R

−
1 , ..., R

−
i }. (4)

BGS : Sort δRi
by max

{( 1

m

m∑
j=1

R+
1,j −

1

m
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j=1

R−1,j

)
, ...,

( 1

m

m∑
j=1

R+
i,j −

1

m

m∑
j=1

R−i,j

)}
. (5)

ARS can be interpreted as ranking directions in absolute reward space, whereas BGS ranks directions
according to reward curvature because it ranks based on reward deltas. The new elite-choice algorithm
was the game changer for all policy-training experiments. We could not train efficient policies with
ARS (even in the simulator).

Orthogonal Perturbations (Samples): The other key feature of the BGS algorithm is the use of
the orthogonal ensembles of perturbations (samples) δRi . This technique was originally introduced
in [64] and relies on constructing perturbations δRi in blocks, where each block consists of pairwise
orthogonal samples. Those samples are still of Gaussian marginal distributions, matching those of
the regular non-orthogonal variant. The feasibility of such a construction comes from the isotropic
property of the Gaussian distribution (see: [64] for details). We observed that orthogonal perturbations
led to faster convergence in training.

In addition to our novel-elite choice algorithm and orthogonal perturbations, we apply a number of
common approaches used in ES methods; state normalization [66, 75], reward normalization [68],
and perturbation filtering [66]. We also repeat and average rollouts with the same parameters to
reduce variance.

C Iterative-Sim-to-Real Procedure

For the table tennis rallying task, we found 3 iterations to be sufficient. The policy was trained for 30k
to 45k updates for the first round of training in simulation since it has to learn everything from scratch.
For subsequent simulation rounds, the policy was only trained for 5k updates, since we warm start
from latest real world policy weights and its primary task here is adaptation to a change in human
behavior. Due to the human cost of real world fine-tuning and evaluation, we did not experiment with
shorter or longer training cycles. In the real world, the policy was fine-tuned for 70 parameter updates
per cycle for the last two cycles and 60 updates for the first cycle to make 200 updates in total. This
is equivalent to approximately 2 hours of wall clock time per cycle, which was our budget per player.

C.1 Seed Selection for Rounds of Simulated Training

We have used the following methodology when training in simulation. When training in simulation is
required, whether it is training from scratch or intermediate steps of i-S2R, we train 3 models with 3
different random seeds. Different random seeds were used for different players. When transferring to
the physical robot, each model is evaluated for 50 episodes according to the training and evaluation
instructions provided in subsection H.1. The model with the highest average return is selected for
fine-tuning and further experiments. We have used a simple, sparse reward structure for evaluation: if
the robot hits the ball, a reward of +1 is given, and if the ball lands on the human side, an additional
+1 is given reward. Therefore, the maximum episode reward is +2. If the robot misses the ball, there
is no reward, and if the robot faulted or stopped during an episode, a -2 reward is assigned to the
episode.
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C.2 Bringing the Fine-Tuned Model from the Real World Back to Simulation

In i-S2R the fine-tuned model from the real world is brought back to simulation in the next iteration
for two reasons. First, the fine-tuned model has been trained on the most up to date human behavior.
As a result it is likely better adapted to play with the updated human behavior model than the latest
set of policy weights from simulated training which were trained on the prior human behavior model.

Second, there are aspects of our real world system which we have not been able to model accurately
in simulation on top of the challenges in modeling human behavior. Our vision system does not detect
spin, there are calibration defects, variability in estimated delays, conditions of the surface materials,
wear and tear (of table tennis balls), physical robot properties mismatched with the simulated robot.
Therefore, our policies are subject to a sim2real gap and real world fine-tuning adapts the policy
to real world conditions. When we transfer the fine-tuned policy weights back to simulation we
observe that some adaptation to real world conditions persist from iteration to iteration, reducing the
adaptation time in subsequent fine-tuning iterations.

However it is possible that this approach makes training in simulation more difficult. It would be
interesting to compare our approach with a variant in which the policy weights are not transferred
back to simulation from the real world. Instead training in simulation would continue using the latest
policy weights from the previous iteration but using the latest human model after real fine-tuning. We
leave this to future work.

C.3 Human Behavior Models

Table 1 shows the changes of the ball behavior models, M0, M1, and M2, for each player. Skill
levels: players 3 and 5 are beginners, players 2 and 4 are intermediate, and player 1 is advanced.
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C.4 Details on Modeling Human Ball Distributions

We use the model, ẍt = g−Kd||ẋt||ẋt, xt+1 = xt+∆t(ẋt+
∆tẍt

2 ), ẋt+1 = ẋt+∆tẍt to simulate a
trajectory, where (1) xt, ẋt, and ẍt denote the position, velocity, and acceleration of the ball at time t,
(2) g = −9.81m/s2[0, 0, 1]T is the gravity, and (3) Kd = Cdρ

A
2m . m = 0.0027kg is the ball’s mass,

ρ = 1.29kg/m3 is the air density, Cd = 0.47 is the the drag coefficient, and A = 1.256× 10−3m2

is the cross-sectional area for a standard table tennis ball.

D Hardware Details

D.1 Robot Hardware Overview

Player Robot: The player robot (Figure 1) is a combination of an ABB IRB 120T 6-DOF robotic arm
mounted to a two-dimensional Festo linear actuator, creating an 8-DOF system. The robot arm’s end
effector is a standard table tennis paddle with the handle removed attached to a 174.3mm extension.
The arm is controlled with ABB’s Externally Guided Motion (EGM) interface at approximately
248Hz by specifying joint position and speed targets [76]. The 2D linear actuator is independently
controlled at up to 125Hz with position target commands for each axis at a fixed velocity through
Festo’s custom Modbus interface. Position feedback from the robots is received at the command
rate. The policy outputs individual joint velocity commands which are converted by a safety layer (to
prevent collisions / stay within performance limits) into raw hardware commands. The robot starts
from a forehand-pose as the home position and is controlled by the learned policy as soon as a ball is
in play. As soon as the policy either makes contact with the ball returning it or misses it, the robot is
returned to the home position and continues the rally with the next or returned ball as fresh inputs to
the policy.

D.2 Ball Vision Model

The ball location is determined through a stereo pair of Ximea MQ013CG-ON cameras positioned
above and to the side of the table and running at 125Hz. A recurrent 2D detector model detects the
ball position in each camera independently. This detector was trained with ≈ 2 hours of ball video
data with an additional ≈ 15 minutes of humans pretending to play without a ball which is used
for hard negative mining. During training, horizontal flipping augmentation are applied to video
sequences to balance detection performance across both directions. The 2D detections from each
camera are fed to standard OpenCV triangulation to produce 3D coordinates, which are in turn run
filtered through a 3D tracker and interpolated to the 75Hz frequency that the policy does inference on.
There is roughly ≈ 15ms of lag between image capture and 3D coordinate availability.

E Model Architecture

We represent our policy using a three layer 1D fully convolutional gated dilated CNN with 976
parameters. Details are given in Table 2. The observation space is 2-dimensional (timesteps x [ball
position, robot joint position]) which is an (8 x 11) matrix. The networks outputs a vector (8,)
representing joint velocities.

Layer
Parameter 1 2 3
Convolution dimension 1D 1D 1D
Number of filters 8 12 8
Stride 1 1 1
Dilation 1 2 4
Activation function tanh tanh tanh
Padding valid valid valid

Table 2: CNN model architecture.
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F Training Hyperparameters

Table 3 presents the ES hyper-parameters used for both simulated and real world training.

Parameter Simulation Real fine-tuning
Step size 0.00375 0.00375
Perturbation standard deviation 0.025 0.025
Number of perturbations 200 5
Number of rollouts per perturbation 15 3
Percentage to keep (top x% rollouts) 30% 60%
Maximum environment steps per rollout 200 200
Use orthogonal perturbations True True
Use observation normalization True True

Table 3: ES hyperparameters.

G Simulation details

Our simulation handles robot dynamics and contact dynamics (via PyBullet), and we model the ball
using Newtonian dynamics, incorporating air drag but not spin. At the beginning of an episode, a ball
throw is sampled according the the parameterized distribution described in section 4.

One major difference between simulated and real world robotic systems is the existence of sensor
latency and noise in the latter but not the former. We seek to minimize this difference by measuring
the latency of the major system components and modeling them in our simulation. These components
include (a) ABB and Festo action latency, (b) ball observation latency, (c) ABB and Festo observation
latency. The latency of each component is modeled by N (µ, σ2) where µ and σ2 were measured
empirically. The details are given in subsection G.1. At the beginning of each episode during training
in simulation the latency of each component is sampled and remains fixed throughout the episode.

G.1 Sensor Latency Model

Table 4 details the parameters used in the simulated sensor latency model described above.

Latencies (ms)
Component µ σ2

Ball observation 40 8.2
ABB observation 29 8.2
Festo observation 33 9
ABB action 71 5.7
Festo action 64.5 11.5

Table 4: Sensor latency model parameters per component.

G.2 Rewards in Simulation and the Real World

Table 5 describes the rewards used in simulation to train and fine-tune in the real world. Rewards 1
- 3 are common between simulation and the real world. The fault reward (4) is only available on a
physical robot. Rewards 6 - 8 are proxies for this in simulation. Rewards 9 - 11 are used in simulation
to encourage the policy to learn safe style (e.g. paddle not coming close to the table) to reduce the
likelihood of collisions in the real world upon transfer.
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Reward Range Sim
weight

Real
weight

Sim
weighted
max
score

Real
weighted
max
score

(1) State transition plus bonus
for landing the ball close to a
target in the center of the table

[0, 5] 1 1 5 5

(2) Bonus for clearing the net
with a target height

[0, 1] 1 1 1 1

(3) Bonus for hitting the ball
and landing it on the opponent
side of the table

[0, 1] 0.1 0.1 0.1 0.1

(4) Actual fault reward in real {-2, 0} 0.0 1.0 0 0
(5) Episodic jerk reward
(proxy for faulting in real)

[0, 1] 0.3 0 0.3 0

(6) Episodic acceleration re-
ward (proxy for faulting in
real)

[0, 1] 0.3 0 0.3 0

(7) Episodic velocity reward
(proxy for faulting in real)

[0, 1] 0.4 0 0.4 0

(8) Episodic joint angle reward
(safety reward, aimed to pre-
vent faulting in real )

[0, 1] 1 0 1 0

(9) Safety reward, penalty for
robot colliding with itself or
table

[-1 *
timesteps,
0]

1 0 0 0

(10) Paddle height reward [-1 *
timesteps,
0]

0.5 0 0 0

(11) Style reward (sim only) [-1 *
timesteps,
0]

1 0 0 0

Total 8.1 6.1

Table 5: Rewards used in simulation to train and fine-tune in the real world.

H Evaluation Methodology

Each model was evaluated by (a) the model’s trainer and (b) two other players. In each evaluation,
50 rallies (defined as a sequence of consecutive hits ending when one player fails to return the ball)
were played with the human always starting and the rally length calculated as the number of paddle
touches for both the human and robot. While the human can be responsible for a rally ending, almost
all ended with the robot failing to return the ball or returning it such that the human could not easily
continue the rally. The model trainer also evaluated intermediate checkpoints (see Figure 2) using
the same methodology to shed light on the training dynamics. To ensure fair evaluation, all models
were tested in random order and the identity of the model was kept hidden from the evaluator (“blind
eval”).

We introduced a bijective model for anonymization to make it easier for the players to evaluate
the models fairly. Each player evaluated all their ten models and three models trained by two
other randomly selected players in the roster. The identity of the models is revealed once all the
evaluations have been completed. A successful evaluation must contain at least 50 valid rally balls
(see subsection H.2 for further instruction on determining a valid rally ball). In addition to rally
length, we have also collected statistics such as whether the player or robot is at fault for ending the
rally.

All players trained and evaluated the following ten models:

1. i-S2R sim 1
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2. i-S2R fine-tuned 35%
3. i-S2R sim 2
4. i-S2R fine-tuned 65%
5. i-S2R sim 3
6. i-S2R fine-tuned 100%
7. S2R fine-tuned 65%
8. S2R fine-tuned 100%
9. S2R-Oracle sim

10. S2R-Oracle fine-tuned

Each player cross evaluated three models each from two other players:

1. i-S2R fine-tuned 100%
2. S2R-Oracle fine-tuned
3. S2R fine-tuned 100%

Table 6 shows the trainer and evaluator combinations for cross evaluations.

Trainer Evaluators
player 1 player 4 player 5
player 2 player 1 player 3
player 3 player 1 player 4
player 4 player 2 player 5
player 5 player 2 player 3

Table 6: Trainer and evaluator combinations.

H.1 Instructions for Human Players

We have provided the following instructions while gathering initial ball trajectories and rallying with
the robot.

Initial Ball Distribution: The player lobs the ball over the net from the left hand quadrant of the
opponent side to the right hand quadrant of the robot side. All the players used the same standard
table tennis racket.

Training and Evaluation: The player always starts a rally. The player lobs the ball from the left
hand quadrant of the opponent side to the right hand quadrant of the robot side as naturally as possible.
During the play, for all the return balls from the robot, the player tries to return the ball to the right
hand quadrant of the robot. In all cases, we have instructed the player to cooperate with robot as
much as possible.

H.2 Details on Rally Score Evaluations

Table 7 contains the rally length evaluation and end-of-rally attribution instructions for raters. For
each evaluation, the cases marked as “Filter” are removed. Then, the top 60 rallies are selected and
sorted by rally length. For reporting, we have selected the top 50 rallies from this set.
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Description did-robot-end-
rally

Instruction

Human hit the first ball to the net. - Filter
Human hit the first ball over the table. - Filter
Human hit the first ball out of distribution, robot
did not return.

Yes

Human hit the first valid ball and the robot did not
react.

Filter

Human returning a ball out of distribution, robot
did not return.

Yes

Human returns a ball that bounces multiple times
on the human side (robot has returned the ball).

No

Human returning a ball over the table. No
Human returning a ball to the edge of the table,
robot did not return.

Yes

Human hit a ball that graces the net which robot
did not contact.

- Filter

Human hit a ping pong type service and the robot
did not return.

- Filter

Robot returns a ball which graces the net, but the
human cannot return.

No

Robot returns a ball which lands at the corner of
the table and the human cannot return.

No

Rally ends due to the robot cannot contact the ball
and/or the encoder diff is high (obvious behavior
change from a previous rally, if applicable)

Yes

Robot is in ABB home pose, not the episode start
state. You throw a dummy ball by hand so that the
robot moves to episode start state.

- Filter

Robot is in ABB home pose, not the episode start
state. You throw with a paddle so that the robot
moves to episode start state.

- Filter

Table 7: Rally score evaluation and end-of-rally attribution.

I Player Skill Level

Table 8 contains further details on player rally length, calculated over all 10 models that a player
evaluated (see Appendix H). This data was used to group players into three skill levels; beginner
(players 3 and 5), intermediate (players 4 and 2), and advanced (player 1). Note that player 5 was the
non author player.

We grouped players according to empirical skill (i.e. how they actually played) as opposed to using
self-reported skill because non-professional players’ perception of their skill level may not be well
calibrated across players. In future it would be interesting to consider self-reported skill in addition
to empirical skill.

J Rally Length Normalization Details

Let x be the rally length, µx the mean rally length, and σx the standard deviation of the rally lengths,
then rally length is normalized as follows:

x− µx
σx

(6)

Evaluations Here µx and σx are calculated over all 10 evaluations (see Appendix H), making
500 (10 x 50) rallies in total. The values per player are given in Table 8. This can be interpreted
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Rally length

Player Min 25th Mean (Std.) 75th Max

3 (beginner) 2 3.0 7.0 (5.9) 9.0 52
5 (beginner) 2 3.8 10.4 (10.9) 13.0 85
4 (intermediate) 2 4.0 14.0 (16.1) 18.0 117
2 (intermediate) 2 4.0 16.8 (27.1) 15.0 190
1 (advanced) 2 5.0 19.4 (27.6) 22.0 345

Table 8: Rally length statistics by player. Values were calculated over all 10 models that a player evaluated (see
Appendix H), making 500 (10 x 50) rallies in total

.

as normalizing for player skill and is intended to make rally length comparable between players of
different skill levels (e.g. beginner, advanced). This approach was used in Figure 3 and Figure 8.

Cross-Evaluations Here µx and σx are calculated per model (50 rallies in total) and rallies are
normalized with respect to the player who trained the model. This is intended to make rally length
comparable across models and players (e.g. S2R+FT player 3, i-S2R player 1). This approach was
used in Figure 7 and Figure 12 to estimate the % difference in performance when a model is evaluated
by different players (cross-evaluations) who did not train the model.

K Additional Results

Here we present additional results. Figure 8 contains additional presentations of the data aggregated
over all five players; (a) mean normalized rally length, (b) distribution of normalized rally length, and
(c) mean rally length. Figure 9 presents mean rally length by player skill level. Figure 10 contains
additional presentations of the data aggregated over 4/5 players with the outlier (advanced player)
excluded; (a) mean normalized rally length, (b) distribution of normalized rally length, and (c) mean
rally length.

Figure 11 and Figure 12 break out results per player. Note that player 5 was the non-author player
and was categorized as a beginner. Figure 11 shows the mean and distribution of rally length for
each player, ordered from top to bottom by skill level, beginner to advanced. Figure 12 shows cross
evaluation data by player with the same ordering by player skill.

Figure 13, Figure 14, and Figure 15 present additional details on ball distributions per player during
training and evaluation.

Figure 16 and Figure 17 present additional data on the robot return rate per player in the form of
heatmaps. The color of each square represents the robot return rate (darker = higher return rate) and
the number in each square represents the percentage of balls. The grid operates on two scales, a large
3 x 3 grid, and within each cell, a smaller 3 x 3 grid. In each heatmap, the large scale grid represents
where the incoming ball bounced on the robot side of the table.

In Figure 16 the small scale grid represents the position on the player side where the ball originated.
So, Figure 16 shows the conditional return rate given the start position of the incoming ball and where
the ball bounced on the robot side of the table. For example, let’s look at the player 3 i-S2R (top left
grid). The middle large grid represents the middle of the robot side of the table, and shows that 48.6%
of the balls land here, out of which 12.6% are coming from the opponent (human) hitting the ball
from the far left of the human side of the table, and 0.3% from the middle right of the human side of
the table.

In Figure 17 the small scale grid represents the position on the player side where the ball landed
(i.e. where the robot returned the ball to). So, Figure 17 shows the conditional return rate given
the landing position of the returned ball (i.e. where the robot hit it to) and where the incoming ball
bounced on the robot side of the table. As an example, if we look at the player 3 i-S2R middle grid, it
accounts for 53.4% of the balls, out of which 17.4% of the returns are to the middle of the table.
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Statistical Significance We note that the un-normalized mean rally lengths for i-S2R, S2R+FT
and S2R-Oracle+FT are not statistically significantly different, since the 95% confidence intervals
overlap (Appendix K, Figure 8 (c)). However, the histogram of rally lengths for i-S2R and S2R+FT
(Figure 3, right) shows that a large fraction of the rallies for S2R+FT are shorter (i.e. less than 5),
while i-S2R achieves longer rallies more frequently. This suggests i-S2R yields policies that are more
fun to play with on average.

When rally length is normalized to account for differences in skill level between players (Appendix K,
Figure 8 (a)), the mean rally length for S2R-Oracle+FT is statistically significantly higher than
S2R+FT, although the difference is small.

Finally, when the advanced player (outlier) is excluded (Figure 10), the mean rally length (normalized
and un-normalized) for i-S2R is statistically significantly higher than S2R+FT and the difference is
large. The mean rally length for i-S2R and S2R-Oracle+FT are not statistically significantly different.
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Figure 8: Aggregated results across all 5 players after learning. Vertical lines are 95% confidence intervals (CIs).
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Figure 9: Mean rally length by player skill level. Vertical lines are 95% confidence intervals (CIs). Note:
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lines are 95% confidence intervals (CIs).
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Figure 13: Evolution of ball distributions for each player projected to 2D using t-SNE [77] (up to 500 random
ball trajectory are used for ∆D1 and ∆D2, and Di = D0 +

∑i
j=1 ∆Dj .)
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Figure 14: Evolution of ball distribution for each player and the overlapping evaluation distributions for i-S2R(2D
projected using t-SNE [77] and up to 500 random ball trajectory are sample from each round).
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Figure 16: Heatmaps of the robot hit rate with respect to the (x, y) position where the episode initiated from. left:
i-S2R right: S2R+FT. The outermost block represents the robot side. Each 3x3 blue block represents the human
(opponent) side of the table. Each block shows, if the human throw landed on the robot side, where would the
human throw initiated from. The block color represents the robot hit rate.

30



x

-0.152-0.000

-0.304--0.152

-0.457--0.304

-0.609--0.457

-0.761--0.609

-0.913--0.761

-1.066--0.913

-1.218--1.066

-1.370--1.218
y

0.0 0.0 0.0 0.8 0.8 0.0 0.5 1.3 0.3

0.0 0.0 0.0 0.5 4.1 0.3 0.0 1.8 0.0

0.0 0.0 0.0 4.6 1.0 0.0 1.3 0.3 0.3

0.0 0.0 0.0 5.1 4.4 0.3 0.8 5.1 0.3

0.0 0.5 0.0 4.4 17.4 2.1 0.3 9.7 0.3

1.3 0.0 0.0 15.1 3.3 1.3 3.8 1.5 0.5

0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 2.1 0.0 0.3 0.3 0.0

0.0 0.0 0.0 1.3 0.3 0.0 0.0 0.3 0.0

player3, episodes=397
0.0 0.0 0.0 0.4 1.6 0.0 0.0 2.4 0.8

0.0 0.0 0.0 0.0 1.2 0.0 0.4 1.6 0.0

0.4 0.0 0.0 4.0 0.0 0.0 1.6 0.4 0.0

0.0 0.0 0.0 0.0 6.9 0.8 0.0 9.7 1.2

0.0 0.0 0.0 0.4 11.3 2.0 0.0 17.0 5.7

1.2 0.0 0.0 5.3 0.0 0.0 11.3 1.6 1.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.6 0.4 0.0 0.0 0.4

0.0 0.0 0.0 0.8 1.6 0.0 2.8 0.8 0.8

player3, episodes=254

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

-0.152-0.000

-0.304--0.152

-0.457--0.304

-0.609--0.457

-0.761--0.609

-0.913--0.761

-1.066--0.913

-1.218--1.066

-1.370--1.218

y

0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0

0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0

0.0 0.0 0.0 1.9 0.5 0.0 2.6 3.4 0.0

0.0 0.0 0.0 8.2 7.7 0.7 4.6 17.3 0.2

0.0 0.0 0.0 5.5 3.4 0.5 4.6 6.2 0.7

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.7 3.4 0.0 2.4 8.9 0.0

0.0 0.0 0.0 1.9 1.4 0.2 2.9 5.8 0.2

player5, episodes=425
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.1 0.0

0.0 0.0 0.0 0.0 5.2 1.1 14.9 9.8 1.7

0.0 0.0 0.0 14.9 2.9 0.6 10.3 6.3 2.3

0.0 0.0 0.0 0.0 1.7 0.0 0.6 0.0 0.0

0.0 0.0 0.0 0.0 1.7 1.1 4.0 4.6 1.7

0.0 0.0 0.0 2.9 0.6 0.0 4.0 2.9 0.6

player5, episodes=176

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

-0.152-0.000

-0.304--0.152

-0.457--0.304

-0.609--0.457

-0.761--0.609

-0.913--0.761

-1.066--0.913

-1.218--1.066

-1.370--1.218

y

0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.1 0.0

0.0 0.0 0.0 0.6 1.3 0.1 0.1 3.0 0.1

0.0 0.0 0.0 0.7 0.2 0.0 0.2 0.2 0.0

0.0 0.0 0.0 1.0 3.4 0.0 1.3 12.8 1.3

0.0 0.0 0.0 0.1 8.9 0.7 0.7 24.9 8.7

0.2 0.0 0.0 2.2 1.5 0.1 4.9 3.2 1.7

0.0 0.0 0.0 0.0 0.1 0.0 0.5 2.0 0.4

0.0 0.0 0.0 0.0 0.2 0.1 0.1 7.2 1.1

0.0 0.0 0.0 0.4 0.1 0.0 1.3 0.9 0.4

player4, episodes=830
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0

0.0 0.0 0.0 1.0 0.4 0.0 0.8 1.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.2 1.2 0.0

0.0 0.0 0.0 0.0 7.6 2.3 1.6 33.3 2.7

0.2 0.0 0.0 3.1 2.1 0.8 4.3 7.2 3.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.0 0.0 0.0 0.8 0.2 1.6 6.8 0.6

0.0 0.0 0.0 1.2 0.6 0.6 4.9 7.6 0.8

player4, episodes=488

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

-0.152-0.000

-0.304--0.152

-0.457--0.304

-0.609--0.457

-0.761--0.609

-0.913--0.761

-1.066--0.913

-1.218--1.066

-1.370--1.218

y

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.9 0.0

0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0

0.0 0.0 0.0 0.2 3.1 0.3 0.0 5.1 0.5

0.0 0.0 0.0 0.1 24.3 0.4 0.1 25.1 5.0

0.0 0.1 0.0 3.4 1.8 0.2 2.9 1.4 1.2

0.0 0.0 0.0 0.0 0.6 0.0 0.0 1.5 0.1

0.0 0.0 0.0 0.1 7.1 0.2 0.1 6.6 0.9

0.1 0.0 0.0 0.9 1.7 0.1 0.8 1.8 0.6

player2, episodes=1017
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.6 0.0

0.5 0.0 0.0 1.1 0.5 0.0 0.5 0.0 0.0

0.0 0.0 0.0 0.5 4.2 0.0 0.5 1.1 0.0

0.0 0.0 0.0 2.6 8.9 2.6 0.0 13.7 0.5

1.1 0.0 0.5 11.6 4.7 0.0 4.7 4.2 0.0

0.0 0.0 0.0 0.0 0.5 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.5 6.8 1.1 1.1 5.8 1.1

1.6 0.0 0.0 7.9 3.2 0.5 1.1 1.6 0.0

player2, episodes=193

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

-0
.7

62
--0

.5
93

-0
.5

93
--0

.4
24

-0
.4

24
--0

.2
54

-0
.2

54
--0

.0
85

-0
.0

85
-0

.0
85

0.
08

5-
0.

25
4

0.
25

4-
0.

42
4

0.
42

4-
0.

59
3

0.
59

3-
0.

76
2

x

-0.152-0.000

-0.304--0.152

-0.457--0.304

-0.609--0.457

-0.761--0.609

-0.913--0.761

-1.066--0.913

-1.218--1.066

-1.370--1.218

y

0.0 0.0 0.0 1.0 0.5 0.0 0.7 0.5 0.0

0.0 0.0 0.0 0.2 0.5 0.0 0.2 1.7 0.0

0.5 0.0 0.0 0.7 0.5 0.0 0.5 0.5 0.0

0.0 0.0 0.0 6.9 5.0 0.0 4.3 8.1 0.0

0.2 0.0 0.0 3.8 8.1 0.0 1.4 18.9 0.0

0.5 0.0 0.0 5.3 2.1 0.0 8.6 4.3 0.5

0.0 0.0 0.0 0.0 0.2 0.0 1.7 2.4 0.0

0.0 0.0 0.0 0.2 0.2 0.0 0.2 2.6 0.2

0.2 0.0 0.0 1.0 0.5 0.0 3.1 1.4 0.0

player1, episodes=426

-0
.7

62
--0

.5
93

-0
.5

93
--0

.4
24

-0
.4

24
--0

.2
54

-0
.2

54
--0

.0
85

-0
.0

85
-0

.0
85

0.
08

5-
0.

25
4

0.
25

4-
0.

42
4

0.
42

4-
0.

59
3

0.
59

3-
0.

76
2

x

0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.5 2.7 0.0 0.0 1.6 0.0

0.0 0.0 0.0 0.4 0.9 0.0 0.3 0.9 0.1

0.0 0.0 0.0 1.2 3.8 0.0 2.0 9.0 0.0

0.0 0.0 0.0 5.2 15.3 0.0 3.2 37.0 0.3

0.0 0.0 0.0 1.4 1.8 0.0 1.5 4.5 0.0

0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.1

0.0 0.0 0.0 0.0 0.5 0.0 0.0 3.5 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.1 0.1

player1, episodes=2046

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: Heatmaps of the robot hit rate with respect to the (x, y) position where the episode ends. left:
i-S2R right: S2R+FT. The outermost block represents the robot side. Each 3x3 blue block represents the human
(opponent) side of the table. Each block shows, if the human throw landed on the robot side, where would the
robot hit the ball such that it lands on the opponent side. The block color represents the robot hit rate.
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K.1 Oracle Ball Distribution Ablation

To assess the contributions of the human behavior model, we hand-designed large, medium, and
narrow ball distributions as shown in Table 9. The medium distribution is restricted to throwing
balls towards the forehand hand side of the robot with a restricted velocity range, and the narrow
distribution is modeled based on our ball thrower machine. Figure 18 compares these distributions
with S2R-Oracle. Evaluations were done using a single human subject and are zero-shot from
simulation with no fine-tuning. The large model performed ≈ 40% lower then S2R-Oracle. Further,
we observe that lower zero-shot scores substantially increase the fine-tuning time required to match
final performance, which is costly when a human is in the loop. We also observe that zero-shot
transfer with the medium distribution is comparable to S2R-Oracle. This is because there is a high
overlap between the two human behavior models. This indicates that human behavior modeling via
ball distributions plays an important part in the ability for cooperative interaction with a table tennis
playing robot.

Parameter Large Medium Narrow S2R-Oracle
min z velocity (ms−1) -10 -0.1 -1.2 -1.72
max z velocity (ms−1) 10 2 1.5 2.72
max x velocity (|ms−1|) 10 1.5 0.9 3.45
min y velocity (|ms−1|) 2 3.5 5.0 2.96
max y velocity (|ms−1|) 35 8.5 9.4 7.35
x start min (m) -0.76 -0.75 0.15 -0.82
x start max (m) 0.76 0.4 0.55 0.82
y start min (m) 0.1 1.2 1.01 0.03
y start max (m) 2.0 1.37 1.57 1.58
z start min (m) -0.4 0.15 0.25 0.19
z start max (m) 1.2 0.6 0.64 0.75
x land min (m) -0.76 -0.2 0.18 -0.62
x land max (m) 0.76 0.7 0.62 0.75
y land min (m) -1.37 -1.3 -1.26 -1.36
y land max (m) -0.1 -0.5 -0.33 -0.15

Table 9: The ball distribution parameters for each of the ablated distributions. land here implies landing on the
robot side.
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Figure 18: Zero-shot transfer of rally length for different ball distributions as defined in Table 9.
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