Under review as a conference paper at ICLR 2025

A THEORY OF MULTI-AGENT GENERATIVE FLOW
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative flow networks utilize a flow-matching loss to learn a stochastic pol-
icy for generating objects from a sequence of actions, such that the probability
of generating a pattern can be proportional to the corresponding given reward.
However, a theoretical framework for multi-agent generative flow networks (MA-
GFlowNets) has not yet been proposed. In this paper, we propose the theory
framework of MA-GFlowNets, which can be applied to multiple agents to gen-
erate objects collaboratively through a series of joint actions. We further pro-
pose four algorithms: a centralized flow network for centralized training of MA-
GFlowNets, an independent flow network for decentralized execution, a joint flow
network for achieving centralized training with decentralized execution, and its
updated conditional version. Joint Flow training is based on a local-global princi-
ple allowing to train a collection of (local) GFN as a unique (global) GFN. This
principle provides a loss of reasonable complexity and allows to leverage usual
results on GFN to provide theoretical guarantees that the independent policies
generate samples with probability proportional to the reward function. Experi-
mental results demonstrate the superiority of the proposed framework compared
to reinforcement learning and MCMC-based methods.

1 INTRODUCTION

Generative flow networks (GFlowNets) Bengio et al.|(2023]) can sample a diverse set of candidates in
an active learning setting, where the training objective is to approximate sampling of the candidates
proportionally to a given reward function. Compared to reinforcement learning (RL), where the
learned policy is more inclined to sample action sequences with higher rewards, GFlowNets can
perform exploration tasks better. The goal of GFlowNets is not to generate a single highest-reward
action sequence, but rather is to sample a sequence of actions from the leading modes of the reward
function Bengio et al.| (2021). However, based on current theoretical results, GFlowNets cannot
support multi-agent systems.

A multi-agent system is a set of autonomous interacting entities that share a typical environment,
perceive through sensors, and act in conjunction with actuators [Busoniu et al.| (2008)). Multi-agent
reinforcement learning (MARL), especially cooperative MARL, is widely used in robot teams, dis-
tributed control, resource management, data mining, etc |Zhang et al.| (2021)); |Canese et al.[(2021);
Feriani & Hossain| (2021). There two major challenges for cooperative MARL: scalability and
partial observability |Yang et al.[(2019); |Spaan| (2012)). Since the joint state-action space grows ex-
ponentially with the number of agents, coupled with the environment’s partial observability and
communication constraints, each agent needs to make individual decisions based on the local ac-
tion observation history with guaranteed performance [Sunehag et al.| (2018); Wang et al.| (2020);
Rashid et al.|(2018). In MARL, to address these challenges, a popular centralized training with
decentralized execution (CTDE) paradigm [Oliehoek et al.|(2008); |Oliehoek & Amato|(2016) is pro-
posed, in which the agent’s policy is trained in a centralized manner by accessing global information
and executed in a decentralized manner based only on the local history. However, extending these
techniques to GFlowNets is not straightforward, especially in constructing CTDE-architecture flow
networks and finding IGM conditions for flow networks need investigating.

In this paper, we propose the multi-agent generative flow networks (MA-GFlowNets) framework
for cooperative decision-making tasks. Our framework can generate more diverse patterns through

Under review as a conference paper at ICLR 2025

sequential joint actions with probabilities proportional to the reward function. Unlike vanilla
GFlowNets, the proposed method analyzes the interaction of multiple agent actions and shows how
to sample actions from multi-flow functions. Our approach consists of building a virtual global GFN
capturing the policies of all agents and ensuring consistency of local (agent) policies. Variations of
this approach yield different flow-matching losses and training algorithms.

Furthermore, we propose the Centralized Flow Network (CFN), Independent Flow Network (IFN),
Joint Flow Network (JFN), and Conditioned Joint Flow Network (CJFN) algorithms for multi-agent
GFlowNets framework. CFN considers multi-agent dynamics as a whole for policy optimization
regardless of the combinatorial complexity and demand for independent execution, so it is slower;
while IFN is faster, but suffers from the flow non-stationary problem. In contrast, JFN and CJFN,
which are trained based on the local-global principle, takes full advantage of CFN and IFN. They can
reduce the complexity of flow estimation and support decentralized execution, which are beneficial
to solving practical cooperative decision-making problems.

Main Contributions: 1) We are the first to propose a theory of multi-agent generative flow net-
works for cooperative decision-making tasks; 2) We propose four algorithms, namely CFN, IFN,
JFN and CJFN, for training multi-agent GFlowNets, which are respectively based on centralized
training, independent execution, and the latter two algorithms are based on the CTDE paradigm; 3)
We propose a local-global principle and then prove that the joint state-action flow function can be
decomposed into the product form of multiple independent flows, and that a unique Markovian flow
can be trained based on the flow matching condition; 4) We conduct experiments based on cooper-
ative control tasks to demonstrate that the proposed algorithms can outperform current cooperative
MARL algorithms, especially in terms of exploration capabilities.

2 PROBLEM FORMULATION

Multi-agent setting is formalized by the data of a measurable state space S and a measurable action

. . S .. T . .
space A with a given state map .A — S and a transition kerneﬂA — &S. The set of actions available
from the state s € S is A, = S71(s).

We place ourselves in the sparse reward setting, we thus have a A

reward R on S, i.e. a finite non-negative measure. We have a p® p@
finite agent set I, an observation space O() for each agent i € I, / (ﬂ %
the observation 0 € @) is obtained from the state via pro- A S AW

jection maps S & O Each agent has its own action space (i)l p® R P J(.
A we assume that each agent may freely choose its own ac- s §
tion independently from the actions chosen by other agents: this ol R, O

is formalized via Ay = [;e; Aff(z) | ~ is the Cartesian product Figure 1: Multi-agent formalism
of agent actions space up to identification of the STOP actions.

From a state s, each agent has access only to an observation o(*) = p()(s); it may freely choose
an action in its own action set Afj()) A policy of the multi-agent is a kernel], s 0@ 5 A such
that [T;c; p™ o S o 7 = Id. To simplify the exposition, we identify S = [T;.; O(). The agent action
spaces A, each contain a special action STOP; the environment is such that once an agent chooses

STOP, it is put on hold until all agents do as well. The game finishes when all agent have chosen
STOP, a reward is given based on the last state. We denote by 7 the space of trajectories in S.

Measurable GFlowNets [Brunswic et al.| (2024)); [Lahlou et al.| (2023); [Li et al.| (2023d)); Deleu &
Bengio| (2023)); Bengio et al.| (2023) are defined in the single-agent setting i.e.

S
AT IS PR, with|l]= 1.
~_

T

'We adopt the naming convention of [Douc et al.[(2018). The kernel K : X —) is a stochastic map which
is formalized as follows: for all z € X, K(x — -) is a probability distribution on). In addition, K (x — -)
varies measurably with z in the sense that for all measurable set A c), the real valued map = — K(z — A)
is measurable.

Under review as a conference paper at ICLR 2025

A GFlowNets on (S, .A4,S,T, R) is a triplet (7%, F%;, Finit) of a star-policy 7* together with an
outflow F}; and an initial flow Fjy;, which are non-negative finite measures on S. A prior to define
GFlowNets areward is not needed Denoting the outflow by Fi,,¢ := F,; + R, the GFlowNets policy

ism(s >) = -2 (8)dsTOoP + O“t s)m* (s — -) and trained to satisfy the so-called flow-matching
AFous

constraint,
Enit + Fout’]TT =: Fin = Fouta (l)

as measures on S. In passing we introduce R:= Fin - Fu. Fi o= Flwm T and Fygtion = Four ® .
The induced Markov chain starts at sy sampled from the unnormahzed distribution F}.;; and then
for every ¢t the policy is applied until the action STOP is picked: a; ~ w(s; — -) and if a; # STOP,
St+1 ~ T(ay —). Fing is usually parameterized by « x £(6) with £ a known, easily sampled
from, distribution family. The sampling time 7 is the ¢ such that a; = STOP. The key property of
GFlowNets that motivates the flow-matching constraint is as follows:

Theorem 1 ((Brunswic et al.,2024) Theorem 2) Letr F := (7, F.;, Finit) be a GFlowNets on
(S,A,S,T,R). If the reward R is non-zero and F satisfies the flow-matching constraint, then
its sampling time is almost surely finite and the sampling distribution is proportional to R. More

precisely:

Fout(S) 1
— -1 d o~
R(S) , an s R(S)R

P(7 < +00) =1, E(r) < 2)

Flow-matching losses (FM), denoted by Lg);, compare the outflow Fy,¢ with the inflow Fj, :=
Fiit + FoutT'm; They are minimized when Fi, = Fy, so that, surely, a gradient descent on
GFlowNets parameters enforces equation [T} In the original works Bengio et al| (2021)); Malkin
et al.[(2022)), Bengio et al. used divergence-based FM losses valid as long as the state space does
not have cycle and Brunswic et al.| (2024)) introduced stable FM losses allowing training in presence
of cycles:

dlv IFG]Es~1/ ol 3
) < B golos () ®

stable dFe dFogu
[’F!;Mbl (]Fe) =]ES"‘Vstate (: ()) (4)

where g is some positive function, decreasing on [-o0, 0], g(O) = 0 and increasing on [0, +oo], and
A is a reference measure on S. A practical stable training loss on graphs can be written as

£(F9)=E;{log[1+5| (st) = out (st)|] (1+77((s¢) + F, out (St))) } o)

where s; are path sampled from any distribution of paths in S, and the parameters satisfy the condi-
tion {e,n, o, 8 > 0}.

Problem Formulation: We intend to build a GFlowNets framework in order to generalize mea-
surable GFlowNets to the multi-agent setting introduced earlier. Our guiding principle is that
a MA-GFlowNets is a tuple ((F(?);;,F), where each local GFlowNets F() is defined on
(0D, A® s 7@ R for i e I and the global GFlowNets F is defined on (S, A, S, T, R).
In general, some GFlowNets (local or global) may be virtual in the sense that it is not implemented.

3 MULTI-AGENT GFLOWNETS

This section is devoted to details and theory regarding the variations of algorithms for MA-
GFlowNets training. If resources allow, the most direct approach is included in the training of
the global model directly, leading to a centralized training algorithm in which the local GFlowNets
are virtual. As expected, such an algorithm suffers from high computational complexity, hence,
demanding decentralized algorithms. Decentralized algorithms require the agents to collaborate to
some extent. We achieve such a collaboration by enforcing consistency rules between the local and
global GFlowNets. The global GFlowNets is virtual and is used to build a training loss for the local
models ensuring the global model is GFlowNets, so that the sampling Theorem applies. The sam-
pling properties of the MA-GFlowNets are then deduced from the flow-matching property of the
virtual global model.

Under review as a conference paper at ICLR 2025

3.1 CENTRALIZED TRAINING

Centralized training consists in training of the global flow directly. Here, the local flows are virtual
in the sense that they are recovered from the global flow as image by the observation maps. We use
FM-losses as given in equations applied to the flow on (S,.A). See Algorithm m Implicitly,
Fout contains a parameterizable component from Fy ., while Fj, contains the parameterization of
m* and -Finit-

Algorithm 1 Centralized Flow Network Training Algorithm for MA-GFlowNets

Input: A multi-agent environment (S, A4, O, A® p; S T, R), a parameterized GFlowNets IF :=
(7T, Fo*um Enit) on (87 -A)
while not converged do
Sample and add trajectories (s;);»0 € 7 to replay buffer with policy w(s; — a;).
Generate training distribution vggate.
Apply minimization step of the FM loss £5{Pe(F?) .
end while

From the algorithmic viewpoint, the CFN algorithm is identical to a single GFlowNets. As a conse-
quence, usual results on the measurable GFlowNets apply as is. There are, however, a number of key
difficulties: 1) even on graphs, the computational complexity increases as O(|.4,|") at any given
explored state; 2) centralized training requires all agents to share observations, which is impractical
since in many applications the agents only have access to their own observations.

3.2 LOCAL TRAINING: INDEPENDENT

The dual training method is embodied in the training of local GFlowNets instead of the global one.
In this case, the local flows F(*) are parameterized and the global flow is virtual. In the same way,
a local FM loss is used for each client. In order to have well-defined local GFlowNets, we need a
local reward, for which a natural definition is R (0{”) := E(R(s)|0!"). The local training loss
function can be written as:

L) =E Y {log[L+e|Fy (o) - Fli ()] < (10 (B (o) + Foi (o))} ©
t=1

The algorithm [3]in Appendix [B] describes a simplest training
method, which solves the issue of exponential action com-
plexity with an increasing number of agents. In this formu-
lation, however, two issues arise: the evaluation of ingoing

100

80

60

40

Mode Found

flow Flgf) (0" becomes harder as we need to find all transi-
tions leading to a given local observation (and not to a given ! : - i .
global state). This problem may be non-trivial as it is also Epochs

related to the actions of other agents. More importantly, in

this case, we cannot accurately estimate the action reward Figure 2: Performance comparison

RO (6 of each node; worse, we may have to fall back to ©n Hyper-grid task.

using R (o) := R(st)|0§i) which is stochastic. This transition uncertainty and spurious rewards
can cause non-stationarity and/or mode collapse as shown in Figure 2]

3.3 LoCAL-GLOBAL TRAINING

3.3.1 LOCAL-GLOBAL PRINCIPLE: JOINT FLOW NETWORK

Local-global training is based upon the following local global principle:

Theorem 2 (Joint MA-GFlowNets) Given local GFlowNets FY on some environments
((’)(’),A(’),S(’),T(’)) there exists a global GFlowNets F°™ on a multi-agent environment

(Tie; O, A, S, T) consistent with the local GFlowNets 9, such that

Fro=TIFO*, Fu=T]FY. (7)
el el

Under review as a conference paper at ICLR 2025

Moreover, if FI9™ satisfies equation or a reward R and each R\ > 0 then R = [Ticr R®.

The point of Theorem [2|is that from an MA-GFlowNets, we may always formally build the joint
MA-GFlowNets and train the joint MA-GFlowNets in a centralized way (see algorithm[2). Indeed, if
the joint GFlowNets satisfies the flow-matching constraint, by Theorem [T} its sampling distribution
is proportional to the reward. That is, in our Joint Flow Network (JFN) algorithm, we sample
trajectories with policy

o = pi(st") and 7D (o > af?), i1 ®)

with a; = (agi) siel)and sgp1 =T(s¢,a4).

Algorithm 2 Joint Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, 4,0, A®) p; S T R).
Input: Local parameterized GFlowNets (7(9:*, F()* Fl(m)t)ze I
while not converged do
Sample and add trajectories (s;):»0 € 7 to replay buffer with policy according to equation
Generate training distribution of states vgate from the replay buffer.
Apply minimization step of the FM loss £5taP1e(F9:i°int) for reward R.
end while

This training regiment presents two key advantages: over centralized training, the action complexity
is linear w.r.t. the number of agents and local actions as in the independent training; over independent
training, the reward is not spurious. Indeed, in £§52P'e(F¥3°int) by equation 7} the computation of
Fi, and FJ; reduces to computing the inflow and star-outflow for each local GFlowNets. Also,
only the global reward R appears. The remaining, possibly difficult, challenge is the estimation of
local ingoing flows from the local observations as it depends on the local transitions 7(), see first
point below. At this stage, the relations between the global/joint/local flow-matching constraints
are unclear, and furthermore, the induced policy of the local GFlowNets still depends on the yet
undefined local rewards. The following point clarify those links.

First, the collection of local GFlowNets induces local transitions kernels 7@ . 00 o OO
which are not uniquely determined in general by a single GFlowNets. Indeed, the local policies

induce a global policy 7(s; = ai) = [Lies ﬂ(ogi - aE)). Then, the (virtual) transition kernel

7 (agl)) = (T(at)|atz)) of the GFlowNets ¢ depends on the distribution of states and the corre-
sponding actions of all local GFlowNets. See appendix for details. Note that 7() are derived
from the actual environment 7" and the joint GFlowNets on the multi-agent environment with the
true transition 7', while the Theorem above ensures splitting of star-inflows and virtual rewards only
for the approximated T. Furthermore, local rewards may be formalized as a stochastic reward to
take into account the lack of information of a single agent, but they are never used during training:
the allocation of rewards across agents is irrelevant. Only the virtual rewards R() = F, O(u)t f-F) @
are relevant but they are effectively free. As a consequence, Algorithm 2] effectively trains both the
joint flow as well as a product environment model. But since in general T" # T Algorlthmlmay fail
to reach satisfactory convergence.

Second, beware that in our construction of the joint MA-GFlowNets, there is no guarantee that the
global initial flow is split as the product of the local initial flows. In fact, we favor a construction in
which Fj,¢ is non-trivial to account for the inability of local agents to assess synchronization with
another agent. See Appendix for formalization details.

Third, we may partially link local and global flow-matching properties.

Theorem 3 Let (F)),_; be local GFlowNets and let F be their joint GFlowNets. Assume that
none of the local GFlowNets are zero and that each R > 0. If F satisfies equation 1| then there

exists an “essential” subdomain of each O on which local GFlowNets satisfy the flow-matching
constraint.

The restriction regarding the domain on which local GFlowNets satisfy the flow-matching constraint
is detailed in Appendix[A.7] this sophistication arises because of the stopping condition of the multi-

Under review as a conference paper at ICLR 2025

agent system. The essential domain may be informally formulated as “where the local agent is still
playing”: an agent may decide (or be forced) to stop playing, letting other agents continue playing,
the forfeited player is then on hold until the game stops and rewards are actually awarded.

To conclude, the joint GFlowNets provides an approximation of the target global GFlowNets, this
approximation may fail if the transition kernel 7" is highly coupled or if the reward is not a product.

3.3.2 CONDITIONED JOINT FLOW NETWORK

As discussed training of MA-GFlowNets via training of the virtual joint GFlowNets is an approx-
imation of the centralized training. In fact, the space of joint GFlowNets is smaller than that of
the general MA-GFlowNets, as only rewards that splits into the product R(s) = [T;c; R (o)
may be exactly sampled. If the rewards are not of this form, the training may still be subject
to a spurious reward or mode collapse. For instance, consider the case of S = {1,2}? with two
agents of respective positions s1,ss € {1,2}, actions {(0,+1),(+1,0),(0,0),(+1,+1)}, and re-
ward R(s1,52) = 1s,-—s,. In this case, the reward does not split and it is easy to see that inde-
pendent agents cannot sample states proportionally to R. One may easily build more sophisticated
counter-examples based on this one.

Our proposed solution is to build a conditioned JFN inspired by augmented flows Dupont et al.
(2019); Huang et al.| (2020) methods, which allow the bypass of architectural constraints for Nor-
malization flows [Papamakarios et al.[(2021)). The trick is to add a shared “hidden” state to the joint
MA-GFlowNets allowing the agent to synchronize. This hidden state is constant across a given
episode and may be understood as a cooperative strategy chosen beforehand by the agents. The
size of this hidden parameterization is a tradeoff: it should be large enough to allow the proper
parameterization of the target reward and transition but the larger the size the harder the training.
Formally, this simply consist in augmenting the state space and the observation spaces by a strat-
egy space Q2 to get S = S x Qand OO = OO x O, F,;; is augmented by a distribution P on 2,
the observation projections as well as transition kernel act trivially on 2 ie T'(s;w) = T'(s) and
P (s;w) = (p(s),w). The joint MA-GFlowNets theorem applies the same way, beware that
the observation part of 7 now have a dependency on Q2 even though 7" does not. In theory,
may be big enough to parameterize the whole trajectory space 7T, in which case it is possible to
have decoupled conditioned local transition kernels 7°() (-;w) so that T = T on a relevant domain.
Furthermore, the limitation on the reward is also lifted if the flow-matching property is enforced on
the expected joint flow E ™, Two possible losses may be considered: [, £i@ble(Fo-joint (..))
or Lable(oot (. y)). The former, which we use in our experiments, is simpler to implement
but does not a priori lift the constraint on the reward.

The training phase of Conditioned Joint Flow Network (CJFN) is shown in Algorithm [in the
appendix. We first sample trajectories with policy

o = pi(st”) and w0 > af”), e ©

with a; = (agi) 24 €I)and s;11 = T(s¢,at). Then we train the sampling policy by minimizing the
FM loss E,, £{iable (RO:doint (..).

Discussion: Finally, we discuss the connection between MA-GFlowNets and multi-agent RL in
Appendix C and prove some related properties.

4 RELATED WORKS

Generative Flow Networks: GFlowNets is an emerging generative model that could learn a pol-
icy to generate the objects with a probability proportional to a given reward function. Nowadays,
GFlowNets has achieved promising performance in many fields, such as molecule generation Ben-
gio et al.[(2021); Malkin et al.| (2022); Jain et al.|(2022)), discrete probabilistic modeling|Zhang et al.
(2022), structure learning [Deleu et al.| (2022), domain adaptation Zhu et al.| (2023), graph neural
networks training |L1 et al.[(2023bza), and large language model training |Li et al.| (2023c)); [Hu et al.
(2023); [Zhang et al.| (2024). This network could sample the distribution of trajectories with high
rewards and can be useful in tasks where the reward distribution is more diverse.

Under review as a conference paper at ICLR 2025

GFlowNets is similar to reinforcement learning (RL) Sutton & Barto| (2018)). However, RL aims to
maximize the expected reward and often only generates the single action sequence with the highest
reward. Conversely, the learned policies of GFlowNets can ensure that the sampled actions are
proportional to the reward, making them more suitable for exploration. This exploration ability
makes GFlowNet promising as a new paradigm for policy optimization in the RL field, but there are
many problems, such as solving multi-agent collaborative tasks. Previously, the meta GFlowNets
algorithmJi et al.[(2024) was proposed to solve the problem of GFlowNets training under distributed
conditions, but it requires the observation state and task objectives of each agent to be the same,
which is not suitable for multi-agent problems. Later, a multi-agent GFlowNets algorithm was
proposed in [Luo et al. (2024), but this algorithm is an approximate algorithm without theoretical
support and is difficult to converge when solving large-scale multi-agent problems. In contrast, we
established the theory of multi-agent GFlowNets in measure space, and our algorithm can support
large-scale multi-agent environments, such as StarCraft missions.

Cooperative Multi-agent Reinforcement Learning: There exist many MARL algorithms to solve
collaborative tasks. Two extreme algorithms for thus purpose are independent learning [Tan| (1993)
and centralized training. Independent training methods regard the influence of other agents as part
of the environment, but the team reward function often has difficulty to measure the contribution of
each agent, resulting in the agent facing a non-stationary environment |[Sunehag et al.| (2018)); [Yang
et al.| (2020).

On the contrary, centralized training treats the multi-agent problem as a single-agent counterpart.
However, this method has high combinatorial complexity and is difficult to scale beyond dozens
of agents [Yang et al.| (2019). Therefore, the most popular paradigm is centralized training and
decentralized execution (CTDE), including value-based |Sunehag et al.|(2018)); [Rashid et al.| (2018));
Son et al.| (2019); [Wang et al.[| (2020) and policy-based |[Lowe et al.| (2017); [Yu et al|(2022); Kuba
et al.| (2022) methods. The goal of value-based methods is to decompose the joint value function
among the agents for decentralized execution. This requires satisfying the condition that the local
maximum of each agent’s value function should be equal to the global maximum of the joint value
function. The methods, VDN |Sunehag et al.| (2018) and QMIX |Rashid et al.| (2018)) employ two
classic and efficient factorization structures, additivity and monotonicity, respectively, despite their
strict factorization method.

In QTRAN |Son et al.| (2019) and QPLEX Wang et al.| (2020), extra design features are introduced
for decomposition, such as the factorization structure and advantage function. The policy-based
methods extend the single-agent TRPO |Schulman et al.|(2015)) and PPO|Schulman et al.|(2017)) into
the multi-agent setting, such as MAPPO |Yu et al.| (2022)), which has shown surprising effectiveness
in cooperative multi-agent games. The goal of these algorithms is to find the policy that maximizes
the long-term reward. However, it is difficult for them to learn more diverse policies in order to
generate more promising results.

5 EXPERIMENTS

We first verify the performance of CFN on a multi-agent hyper-grid domain where partition func-
tions can be accurately computed. We then compare the performance of CFN and CJFN with stan-
dard MCMC and some RL methods to show that our proposed sampling distributions better match
normalized rewards. All our code is done using the PyTorch |Paszke et al.| (2019) library. We re-
implemented the multi-agent RL algorithms and other baselines.

5.1 HYPER-GRID ENVIRONMENT

We consider a multi-agent MDP where states are the cells of a NV-dimensional hypercubic grid of
side length H. In this environment, all agents start from the initialization point z = (0,0, ---), and
are only allowed to increase coordinate ¢ with action a;. In addition, each agent has a stop action.
When all agents choose the stop action or reach the maximum H of the episode length, the entire
system resets for the next round of sampling. The reward function is designed as

R(z)=Ro+ R [[1(0.25< |z;/H - 0.5]) + Ro [[1(0.3 < |z;/H - 0.5] < 0.4), (10)

Under review as a conference paper at ICLR 2025

1000 wmappo 250 — MAPPO 400 wappo
MASAC N— N\~ MASAC MASAC
80 A N 1 /\/\/\ _
— o 2 o e ¥ o //\
60— JiN_ =N —— — JFN — JFN
200 — CJFN

Mode Found
N B
o o
\ ‘
a
=4
{
Mode Found
o
w o w
o o o
o
Z
Mode Found
=
o
o
|
|

o
o

0 5 10 15 20 0 5 10 15 20 5 10 15
Epochs Epochs Epochs

o
N
o

Lot

N ®» ©

or

l Lo S

o © ©
N O N
o o u
[
o ©
IS,

R
w (o))
353
Zg£

o83
L1E
R
e} ©o
~ o
w o
0=2z2x2
;o)»,
=92 3/
080
|
|
(
)
\
|
L1 Error
- -
o [oe]
o v
NI
2{'}))
223
o850

L1 Error
=
>
3
3
o
rr

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Epochs Epochs Epochs

Figure 3: Mode Found and L1 error performance of different algorithms on various hyper-grid
environments. Top and bottom are respectively Mode Found (higher is better) and L1 Error (lower
is better). Left: Hyper-Grid v1, Middle: Hyper-Grid v2, Right: Hyper-Grid v3.

where x = [z1,-+, 2] includes all agent states and the reward term 0 < Ry < R; < Rs leads a
distribution of modes.

By changing Ry and setting it closer to 0, this environment becomes harder to solve, creating an
unexplored region of state space due to the sparse reward setting. We conducted experiments in
Hyper-grid environments with different numbers of agents and different dimensions. We used dif-
ferent version numbers to differentiate these environments, where the higher the number is, the
more the number of dimensions and proxies are. The specific details about the environments and
experiments can be found in the appendix.

We compare CFN and CJFN
with a modified MCMC and
RL methods. In the modi-
fied MCMC method Xie et al.
(2021)), we allow iterative reduc-
tion of coordinates on the basis
of joint action space and can-
cel the setting of stop actions
to form a ergodic chain. As 0 S0, B 20 0 5oL 20
for the RL methods, we con-

sider the maximum entropy al- Figure 4: Comparison results of JEN and Conditional JEN.
gorithm, i.e., multi-agent SAC

Haarnoja et al| (2018)), and a previous cooperative multi-agent algorithm, i.e., MAPPO, |Yu et al.
(2022). Note that the maximum entropy method uses the Softmax policy of the value function to
make decision, so as to explore the state of other reward, which is related to our proposed algorithm.
To measure the performance of these methods, we define the empirical L1 error as E[p(s¢)-m(sy)]
with p(sy) = R(sf)/Z being the sample distribution computed by the true reward. Moreover, we
can consider the mode found theme to demonstrate the superiority of the proposed algorithm.

—— w.o. Condition
—— with Condition

®
o

=

©

o
=}
=
g

Mode Found

o
o

L1 Error

g
o

—— w.o. Condition
—— with Condition

=
v

N
o

Figure [3]illustrates the performance superiority of our proposed algorithm compared to other meth-
ods in the L1 error and Mode Found. We find that on small-scale environments shown in Figure 3}
Left, CFN can achieve the best performance because CFN can accurately estimate the flow of joint
actions when the joint action space dimension is small. As the complexity of the joint action flow
that needs to be estimated increases, we find that the performance of CFN degrades. However,
the joint-flow based methods still achieve good estimation and maintain the speed of convergence,

Under review as a conference paper at ICLR 2025

as shown in Figure 3}Middle. Note that the RL-based methods do not achieve the expected per-
formance. Their performance curves first rise and then fall, because as training progresses, these
methods tend to find the highest rewarding nodes rather than finding more patterns. Figure [shows
the performance superiority of the CJFN. When the algorithm introduces conditions to coordinate
multiple agents, the performance is closer to the optimal.

5.2 STARCRAFT

Figure [5] shows the performance of the proposed algorithm on the StarCraft 3m map, where (a)
shows the win rate comparison with different algorithms, and (b) and (c) show the decision results
sampled using the proposed algorithm. In the experiment, the outflow flow is calculated when the
flow function is large, and the maximum flow is used to calculate the win rate when sampling. It
can be found that since the experimental environment is not a sampling environment with diversi-
fied rewards, although the proposed algorithm is not significantly better than other algorithms, it
still illustrates its potential in large-scale decision-making. In addition, the proposed algorithm can
sample results with more diverse rewards, such as (b) and (c), and the number of units left implies
the trajectory reward. More detailed results are given in the Appendix.

Win Rate

—— VDN
— JFN

0.0 0.1 04 05

02 03
Million Steps

(a) Win Rate (b) Episode 1 (c) Episode 2

Figure 5: The performance comparison results on the 3m map of StarCraft

6 CONCLUSION

In this paper, we discussed the policy optimization problem when GFlowNets meets the multi-agent
systems. Different from RL, the goal of MA-GFlowNets is to find diverse samples with probability
proportional to the reward function. Since the joint flow is equivalent to the product of independent
flow of each agent, we designed a CTDE method to avoid the flow estimation complexity prob-
lem in a fully centralized algorithm and the non-stationary environment in the independent learn-
ing process, simultaneously. Experimental results on Hyper-Grid environments and StarCraft task
demonstrated the superiority of the proposed algorithms.

Limitation and Future Work: Our theory is incomplete as it does not apply to non-cooperative
agents and has limited support of different game/agent terminations or initialization. A local-global
principle beyond independent agent policies would also be particularly interesting. Our experiments
do not cover the whole range of the theory in particular regarding continuous tasks and CJFN loss
on projected GFN. An ablation study analyzing the tradeoff of small versus big condition space 2
would enlighten its importance. Finally, a metrization of the space of global GFlowNet would allow
a more precise functional and optimization analysis of JEN/CJFN and their limitations.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In NeurlPS,
2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. JMLR, 24(1):10006—10060, 2023.

Under review as a conference paper at ICLR 2025

Leo Brunswic, Yinchuan Li, Yushun Xu, Yijun Feng, Shangling Jui, and Lizhuang Ma. A theory of
non-acyclic generative flow networks. In AAAI Conference on Artificial Intelligence, 2024.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156-172, 2008.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spano. Multi-agent reinforcement learning: A review of challenges and applica-
tions. Applied Sciences, 11(11):4948, 2021.

Tristan Deleu and Yoshua Bengio. Generative flow networks: a markov chain perspective. arXiv
preprint arXiv:2307.01422, 2023.

Tristan Deleu, Anténio Gois, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, 2022.

Randal Douc, Eric Moulines, Pierre Priouret, Philippe Soulier, Randal Douc, Eric Moulines, Pierre
Priouret, and Philippe Soulier. Markov chains: Basic definitions. Springer, 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learning for ai-enabled
wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 23(2):1226-1252,
2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the
gap between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In /ICML, 2022.

Xinyuan Ji, Xu Zhang, Wei Xi, Haozhi Wang, Olga Gadyatskaya, and Yinchuan Li. Meta genera-
tive flow networks with personalization for task-specific adaptation. Information Sciences, 672:
120569, 2024.

Olav Kallenberg et al. Random measures, theory and applications, volume 1. Springer, 2017.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. In /CLR,
2022.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernandez-Garcia, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In ICML, 2023.

Wengian Li, Yinchuan Li, Zhigang L1i, Jianye Hao, and Yan Pang. Dag matters! gflownets enhanced
explainer for graph neural networks. arXiv preprint arXiv:2303.02448, 2023a.

Yinchuan Li, Zhigang Li, Wengian Li, Yunfeng Shao, Yan Zheng, and Jianye Hao. Generative flow
networks for precise reward-oriented active learning on graphs. arXiv preprint arXiv:2304.11989,
2023b.

Yinchuan Li, Shuang Luo, Yunfeng Shao, and Jianye Hao. Gflownets with human feedback. arXiv
preprint arXiv:2305.07036, 2023c.

10

Under review as a conference paper at ICLR 2025

Yinchuan Li, Shuang Luo, Haozhi Wang, and Jianye Hao. Cflownets: Continuous control with
generative flow networks. In ICLR, 2023d.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In NeurIPS, 2017.

Shuang Luo, Yinchuan Li, Shunyu Liu, Xu Zhang, Yunfeng Shao, and Chao Wu. Multi-agent
continuous control with generative flow networks. Neural Networks, 174:106243, 2024.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. In NeurIPS, 2022.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289-353, 2008.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In ICML, 2018.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In ICML, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In ICML,
2019.

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement Learning, pp.
387-414. Springer, 2012.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. In AAMAS, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In ICML, 1993.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. In NeurIPS, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
Markov molecular sampling for multi-objective drug discovery. In ICLR, 2021.

11

Under review as a conference paper at ICLR 2025

Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, Haitham Bou Ammar, and Jun Wang. a*-rank:
Scalable multi-agent evaluation through evolution. 2019.

Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang.
Multi-agent determinantal g-learning. In /CML, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. In NeurIPS, 2022.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In ICML, 2022.

Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, and
Shuangfei Zhai. Improving gflownets for text-to-image diffusion alignment. arXiv preprint
arXiv:2406.00633, 2024.

Kaiqing Zhang, Zhuoran Yang, and Tamer Bagar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321-384, 2021.

Didi Zhu, Yinchuan Li, Yunfeng Shao, Jianye Hao, Fei Wu, Kun Kuang, Jun Xiao, and Chao Wu.
Generalized universal domain adaptation with generative flow networks. In Proceedings of the
31st ACM International Conference on Multimedia, pp. 8304-8315, 2023.

12

Under review as a conference paper at ICLR 2025

A JOINT FLOW THEORY

The goal of this section is to lay down so elementary points on the measurable theory of MA-
GFlowNets as well as prove the main theorem on the joint GFlowNet.

A.1 NOTATIONS ON MEASURES AND KERNELS

We mostly use notations from Douc et al.| (2018)) regarding kernels and measures. In the whole
section, since we deal with technicalities, we use kernel type notations for image by kernels and
maps (seen as deterministic kernels). So that for a kernel K : X — Y and a measure p on X
we denote by pK the measure on Y defined by uK(B) = [. K(z - B)du(z) for B c Y
measurable and ;1 ® K is the measure on X x Y so that 4 ® K(Ax B) = [, _, K(z - B)du(z).
Recall that a measure v dominates a measure i which is denoted i << v, if for all measurable A,
v(A) =0 = p(A) = 0. The Radon-Nykodim Theorem ensures that if ;1 << v and p, v are finite then
there exists ¢ € L' (v) so that u = v. This function ¢ is called the Radon-Nykodim derivative and
is denoted %' We favor notations ;1 (A — B) when p is ameasure on X xY and Ac X and Bc Y,
also (A — -) means the measure B — p(A > B).

A.2 ENVIRONMENT STRUCTURES

We introduce first a hierarchy of single-agent environment structures.

. s

* An action environment is a triplet (S,.A,S) with A — S a measurable map between
measurable space is called of state space S, action space .4 and State map S. We denote
As:={aeAlaS =s}.

* An interactive environment is a quadruple (S,.A, S,T) where (S, A, S) is an action envi-
ronment and 7" : A — § is a quasi-Markov kernel.

» A Game environment is a quintuple (S, A, S, T, R) where (S,.A,S,T) is an interactive
environment and R is a finite non-negative non-zero measure on S. We may allow the

reward to be stochastic so formally, R is allowed to be random measure instead (Kallenberg
et al.,[2017).

For multi-agent environment, we have a similar hierarchy:

« A multi-agent action environment is a tuple (S,.A4,S,0®, A® &) (), with
(S,A,S) and each (OW A (1)) being mono-agent action environments. Further-
more, we assume S = [[;c; O and p® : S - O are the natural projection maps.
Also

\ {STOP}).

P (s)

VseS, A N{STOP}=]] (A(i)
iel

« A multi-agent interactive environment is a tuple (S,A,S,T,0® A® () 5@y,
where (S,A4,8,00 A® SO pD), ;1 is a multi-agent action environment and
(S, A, S,T) is a mono-agent interactive environment.

« A multi-agent game environment is a tuple (S,A,S,T,R, 00 A® & 5y,
such that (S, A, S, 7,00, A® S 5, ; is multi-agent interactive environment and
(S,A,S,T, R) is a mono-agent game environment.

A.3 GFLOWNET IN A GAME ENVIRONMENT

A generative flow networks may be formally defined on an action environment (S, A, .S), as a triple
(m*, F% ., Finit) where 7% : § - A is a Markov kernel such that 7*S = Ids, F,, and Fi,; are a
finite non-negative measures on S. Furthermore, we assume that for all s € S, 7* (s - STOP) = 0.

On an interactive environment (S, A, S,T), given a GFlowNet (7%, F.* ;, Finit), we define the on-

out»
going flow as Fiy, := F 7" T + Finit and the GFlowNet induces an virtual reward R := Fi, — F;

out*
Note that the virtual reward is always finite as the star-outflow and the initial flow are both finite and

7% and T are Markovian.

13

Under review as a conference paper at ICLR 2025

Definition 1 (Weak Flow-Matching Constraint) The weak flow-matching constraint is defined as

R>0 (1)

If the GFlowNet satisfies the weak flow-matching constraint, we may define a virtual GFlowNet
policy as
dF3 ..
Ti= —2Wg* 12
= 2 T (12)
where dstop is the deterministic Markov kernel sending any s to STOP,. The virtual action and edge
flows are then:

Fhction = Fin ® 7 € M (S x A); (13)

Fedge = F‘ln®(7%T)EM+(8X8) (14)

In a game environment, a GFlowNet comes with an outgoing flow, a natural policy, a natural action
flow and a natural edge flow

Fou = F;ut+R (15)
dF3 ..
. out _* 16
" dFoutﬂ- ()
chgc = Foue ® (7TT) € M+(S X S) (17
Fiction = Fous ® T € M+(S X A) (18)

By abuse of notation we also write Fjcqion (resp. Faction) for Fyyym (resp. Fiym). and the flow-
matching property may be rewritten as follows.

Definition 2 (Flow-Matching Constraint) The flow-matching constraint on a Game environment
(S, A,S, T, R) is defined as
R=E(R). (19)

Remark 1 In an interactive environment (S, A, S, T, 0 AD SO p(1)Y, 1 a GFlowNet satisfy-
ing the weak flow-matching constraint satisfies the (strong) flow-matching constraint on the Game
environment (S, A, S, T, R, O™, A® S0 p)y), .

We may recover part of the GFlowNet (7, F (, Finit) from any of Fiction, ﬁ'action as in general:

dFyction(- > ANSTOP) dFycion(- — A\ STOP)

(- A) = = — (20)
() dFaction(' - AN STOP) dFaction(' - A~ STOP)

R= Faction(' - STOP) R = Faction(' - STOP) (21)
gut = Faction(' - A) -R= Faction(' - A) - R (22)
Finit = F T+ R (23)

If the flow-matching constraint is satisfied, then
Fpiw = F.T+R. 24)

Before going further, the presence densities.

Definition3 Ler F = (7%, Fout, Finit) be a GFlowNet in an interactive environment

(87 A7 S7 T7 O(Z)) A(l)7 S(l)un(l))i€I~
The initial density of F is the probability distribution

1
VR init *= mﬂnit
The virtual presence density of I is the probability distribution Uy defined by
D o< Y VR inieft'
=0

14

Under review as a conference paper at ICLR 2025

The anticipated presence density of F is the probability distribution Uy defined by
1

—— .

Fin(S)

VR =

In a game environment, the presence density of F is the probability distribution vy defined by

o0

t

VR <) VR initTT -
t=0

Lemma 1 Let F be a GFlowNet in an interactive environment satisfying the weak flow-matching
constraint. If Uy > Uy, then g = Uy.

Proof 1 Let (S, A,S,T,00 A®, S("),p(i))id be the interactive environment and let F =
(7*, Fout, Finit). To begin with, F' := (7%, Finis(S)p — R Finit) is a GFlowNet satisfying the
strong flow-matching constraint for reward R, its edgeflow F, dge may be compared to the edgeflow

Feage of F: by Proposition 2 of |Brunswic et al.|(2024), we have Fogge > Fedge, and the difference
Feqge - F, e,dge is a O-flow in the sense this same article. Also, the domination hypothesis implies that
F/

edge > Fedge > F?

cdge = Fedge = edge Since the edge-policy of Fyqge is the same as that of F, edge

t t—=+oo 0

we deduce that

we deduce that it is also the same as F°

edge BY the same Proposition 2, we have E! 7t ——

> FY

therefore, ,tmt Loree, 0 for any i < F! edge

out*

Again by domination, Fedge

t totoo

Therefore, FO, . wt ——— 0. Finally, since ° is a O-flow, F2 .7 = F?

out» we deduce that

A
F ut > F out
F5 = 0and thus Foqee = Fedge ie Uy = Up.

Remark 2 As long as the GFlowNets considered are trained using an FM-loss on a training train-
ing distribution Vgate extracted from trajectory distributions vy or vy of the GFlowNets themselves,
we may assume that Uy > Uy as flows are only evaluated on a distribution dominated by vr. The
singular part with respect to vr is irrelevant for training purposes as well as inference purposes.
Therefore, we may generally assume that U = U

Remark 3 The main interest of the virtual reward Ris for cases where the reward is not accessible
or expensive to compute. Since a GFlowNet satisfying the weak flow-matching property always

satisfies the strong flow-matching property for the reward R, the sampling Theorem usually applies

to R. Therefore, R may be used as a reward during inference instead of the true reward R so that
we actually sample using the policy 7 instead of .

A.4 MA-GFLOWNETS IN MULTI-AGENT ENVIRONMENTS (I): PRELIMINARIES
To begin with, let us define a MA-GFlowNet on a multi-agent environment.

Definition 4 An MA-GFlowNet on a multi-agent action environment is the data of a global
GFlowNet F on (S, A, S) and a collection of local GFlowNets F®) on (O™, A® SO forie .

We give ourselves a multi-agent interactive environment (S, A, S, T, 00, A0 5 (i),p(i)). We
wish to clarify the links between local and global GFlowNet.

* A priori, there the local GFlowNets are merely defined on an action environment, they lack
both the local transition kernel 7*) and the reward R(*).

* Given a global GFlowNet, we wish to define local GFlowNets.
* Given a family of local GFlowNets, we wish to define a global GFlowNet.

For simplicity sake, for any GFlowNet [F defined on an interactive environment satisfying the weak
flow-matching constraint, we set R = R and apply remarkassume that oy = Uy = vp.

Deﬁnition 5 Let (S, A, S,T,00, A SO ()Y be a multi-agent interactive environment and let

= (7%, F}., Finit) be a GFlowNet on (S, A) satisfying the weak flow-matching constraint. We
lntroduce the following:

15

Under review as a conference paper at ICLR 2025

* the local presence probability distribution yéi) = vpp);

o the measure map o'") — Vp|oti) as the disintegration of vy by p®
e the Markov kernel #® : 00 5 A by 50(7:)7?(") = VRlo() T

o the Markov kernel =7 : O — AG) py 7(D) = 7D ().

o the Markov kernel T : A®) - O py T = SO ZO (),

The situation may be summarized by the following diagram:

(Swr)e s " (Awm)

p(i)

7

o)

(0,1 50— (AD, /079
7@

Before going further, we need to check that these definitions are somewhat consistent.

Lemma 2 The following diagrams are commutative in the category of probability spaces.

V) (S,vpnT) . (Awm)
T
p(4) p™ p(4)
o)
(O(i)vyﬂgl)) = 0 Q(A(i)wg)ﬁ(i)) (@(i)v,,]gﬂﬂ(i)T(i)) (A(i)ﬂ,[g’)ﬁ(i))
T(i)

Proof 2 For the left diagram, with the definition chosen, we only need to check that Véi)ﬁ(i) = UFT.
For all p € L' (A, vpm) we have

[e@dwm@ = [[e(aydn(s,a)dm(s)
/c:(i)eO(i) /SE(PU))’](O(Z')) fae.A wla)dm(s, a)dvgoe (S)dyﬂgi) (o)

_ () () (o0
/o<i>e(9(i> [aeAgo(a)dw (a)dvg’ (o)
[e@d70)).

acA

For the right diagram, we need to check that vmp® = v 7@ and that verTp® = Vﬂgi)w(i)T(i).
We already proved the first equality for the left diagram and for the second:
vprp DT = pp p® D 7O Pp(@) = ep@ D) = V]B(j)ﬂ(i)T(i)

—— —
=p(Q)

We see that from a global GFlowNet, we may build local policies as well as local transition kernels.
These policies and transitions are natural in the sense that of local the induced local agent policy an
transition are exactly the one wed would have if the observations of the other agents were provided
as a random external parameter. The local rewards are then stochastics depending on the state of the
global GFlowNet.

16

Under review as a conference paper at ICLR 2025

A.5 MA-GFLOWNETS IN MULTI-AGENT ENVIRONMENTS (II): FROM LOCAL TO GLOBAL
We would like to settle construction of global GFlowNet from local ones, key difficulties arise:

* the global distributions induce local ones but the coupling of the local distributions may be
non trivial;

* the defining the star-outflow and initial flow requires to find proportionality constants
Fin(O(i)) o< Véi) Fﬁn)t O VRG) init
* The coupling of the local transition kernels 7(*) and the global one is in general non-trivial.

We try to solve these issues by looking at the simplest coupling: independent local agents. Recall
that A = [T;c; A" therefore, independent coupling means that 7* (s — -) = [T;e; 7 (0 —
-). We may generalize this relation to a coupling of GFlowNets writing Fiaction (IT;er oW -
et AD) = Ties F;Ct)lon(O(i) — A(D). We are led to following the definition:

Definition 6 Let (S, A, S, 7,00, AD SO (D) be a multi-agent interactive environment and let
F=(n*E},, Finit) be a global GFlowNet on it satisfying the weak flow-matching constraint. The

out7
GF lowNet F is said to be
o star-split if for some local GFlowNets F®) and ¥ A®) ¢ A® < STOP we have:
actlon(H A()) H Fa(ct)lon A(l)) : (25)
iel

* strongly star-split if for some local GFlowNets F® and vA®D B ¢ O we have:
Fugge(TTAD - T[] BD) =[] FD.(AD - BD), (26)

i€l i€l el
The local GFlowNets F) are called the components of the global GFlowNet F.

However we encounter an additional difficulty: what happens when an agent decides to stop the
game ? Indeed, local agents have their own STOP action, we then have at least three behaviors.

1. Unilateral Stop: if any agent decides to stop, the game stops and reward is awarded.

2. Asynchronous Unanimous Stop: if an agent decides to stop, it does not act anymore, waits
for the other to leave the game and then reward is awarded only when all agents stopped.

3. Synchronous Unanimous Stop: if an agent decides to stop but some other does not, then
the stop action is rejected and the agent plays a non-stopping action.
Similar variations may be considered for how the initialization of agents:
1. Asynchronous Start: the game has a free number of player, agents may enter the game
while other are already playing.
2. Synchronous Start: the game has a fixed number of players, and agents all start at the same

time.

These 6 possible combinaisons leads to slight variations on the formalization of MA-GFlowNets
from local GFlowNets.

A.6 INITIAL LOCAL-GLOBAL CONSISTENCIES

Let us formalize Asynchronous and Synchronous starts. In synchronous case, the agents are ini-
tially distributed according to their own initial distributions and independently. Therefore, vi,;; is a

product and
(%)
let X Vinit = H Vlmt H Fm]t
iel i€l

Also, by strong star-splitting property, F}; = [T;cs FIEI) *. By Fi, = Fit + F}} we obtain the
definition below.

17

Under review as a conference paper at ICLR 2025

Definition 7 A strongly star-split global GFlowNet is said to have Synchronous start if

Fo =TT F +TTEY

iel iel

On the other hand, in the asynchronous case, an incoming agent may “bind” to agent arriving at the
same time and other already there hence, the initial flow is a combination of any of the products

Fa=) T1 FR T AR =TIER R -TTR™

ie{incoming} je{already in} i€l iel
Definition 8 A strongly star-split global GFlowNet is said to have Asynchronous start if

Fu = TI(ES, + FD™).

init in
iel

A.7 TERMINAL LOCAL-GLOBAL CONSISTENCIES

We focus on terminal behaviors 1 and 2 which we formalize as follows. Local-global consistency
consists in describing the formal structure linking local environments with global ones. The product
structure of the action space is slightly different depending on the terminal behavior. It happens that
we may up to formalization, we may cast Asynchronous Unanimous STOP as a particular case of
Unilateral STOP local-global consistency. More precisely:

Definition 9 (Unilateral STOP Local-Global Consistency) With the same notations as above, we
say that a multi-agent action environment has unilateral STOP if

A, = (1‘[Aom)/ ~ ay ~ay < 3i,j e I,al? =STOP® o{) =sTOPW. (27
iel

Definition 10 (Asynchronous Unanimous STOP Local-Global Consistency) With the same no-

tations as above, we say that a multi-agent game environment has Asynchronous Unanimous

STOP if is has Unilateral STOP and the observation space O may be decomposed into O =

(’),(l}e) U O,Sf;lga,on‘, and for any observation o) ¢ (91(’}3 we have some 5 ¢ O() such that :

purgatory
€
) O O]
o) 500)

- S
sTop® f
0

STOP®

where the value on top of arrows are constrained flow values.

The formal definition of Unilateral STOP is straightforward as any local STOP activates the global
STOP so that any combination of local actions that contains at least one STOP is actually a global
STOP. The quotient by the equivalence relation formalizes this property. Regarding Asynchronous
Unanimous STOP, the chosen formalization allows to store the last observation of an agent while it
is put on hold until global STOP. Indeed, a standard action (# STOP) is invoked to enter purgatory,
the reward is supported on purgatory and as long as all the agent are not in purgatory its value is zero
(recall that from the viewpoint of a given agent, R(*) is stochastic but in fact depends on the whole
global state). The local STOP action is then never technically called on an “alive” observation, once
in purgatory the ¢ self-transition is called by default as long as the reward is non zero, hence until
all agents are in purgatory. When the reward is activated, the policy at a purgatory state 6(*) is then

_de__ 5 dRY
d(e+R®) %6 T s RD)
else WAIT”. This behavior is exactly the informal description of Asynchronous Unanimous STOP,
the formalization is rather arbitrary and does not limit the applicability as it simply helps deriving

formulas more easily.

dstop. As e - 07, the policy becomes equivalent to ”if reward then STOP,

We now prove Theorem 2}

18

Under review as a conference paper at ICLR 2025

Theorem 4 Let (S, A, S,T,0W, AD SO ()Y be a multi-agent interactive environment. Let
F®) be non-zero GFlowNets on (OW AW SO for € I satisfying the weak flow-

matching constraint, then there exists a transition kernel T and a star-split GFlowNet on
(S,A,8,T,00 AW SO 5 whose components are the F().

Furthermore,

* if the multi-agent environment is a game environment with Asynchronous Unanimous STOP
and if the global GFlowNet satisfies the strong flow-matching constraint on [];cr Ol(izfi then

each local GFlowNet satisfies the strong flow-matching constraint on Ol(:fi

* if the multi-agent environment is a game environment with Asynchronous Unanimous STOP
and if each local GFlowNets satisfy the strong flow-matching constraint on C’)l(ilﬂ)3 then R =
HieI R(l)

Proof 3 We simply define F = (1*, F.., Finit) by 7*(5) := ([Tie; 7 *(0))/ ~ ie the projection
on A of the policy toward [1;e; AW then EZ .. as the product of the measures FD* Then we

° 3 1 oug * 7
define T = T1;e; T® so that F,(Tier AD) = Ty F (AD) and Fiygy = Tiep (B + FOy -

ITier Fi(niwP as the product measure of the o)

init*

By construction this GFlowNet is star-split.

Assume that F satisfies the strong flow-matching constraint. It follows that for any A® c (’)l(iif?e we

have .))) .)

[TED(AD) = [TELNAD) =TT Faa™ (A9).

iel i€l iel
Since, by assumption, all local GFlowNets satisfy the weak flow-matching constraint, all terms in
the left-hand side product are bigger than those in the right-hand side product. Equality may only

occur if some term is zero on both sides or if for all i € I, Fl(r:) = Fo(fli Since we assume that the

F, (Sfl)t* # 0 we may take all the A = Ol(iifl except one to ensure we are in the later case. We conclude

that the strong flow-matching constraint is satisfied for all local GFlowNets on Ol(lzf)o

If the strong flow-matching constraint is satisfied on Ol(iif)e , then R® = R = 0 on (’)l(l?e By

construction, FOx 2 O _ g o o) Therefore, on purgatory, we have

out init purgatory*
R = Fin = Fow = Fy = Foo = [T R - TT R =TT FD" = TTR®.
iel iel iel iel

B ALGORITHMS

Algorithm [3| shows the training phase of the independent flow network (IFN). In the each round of
IFN, the agents first sample trajectories with policy

of? =pi(s(”) and 7O (of? > af?), ier @8

with a; = (agi) 24 €I)and s;11 = T(s¢,a¢). Then we train the sampling policy by minimizing the
FM loss L3ble(F(D:9) for i € I.

Algorithm 3 Independent Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, A, OW AW p; ST, R).

Input: Local GFlowNets ((9*, () ()
while not converged do
Sample and add trajectories (s;)0 € T to replay buffer with policy according to equation

Generate training distribution of observations Vs(tiite for 7 € I from train buffer

Apply minimization step of FM-loss E?ﬁ,‘fle(Fécizi’gn, R®) foriel.
end while

)ies parameterized by 6.

19

Under review as a conference paper at ICLR 2025

Algorithm[d]shows the training phase of Conditioned Joint Flow Network (CJEN). In the each round
of CJFN, we first sample sample trajectories with policy

ol = p;(s$7) and 7D (687 - al?), ier (29)

with a; = (agi) 24 € I) and s, = T(s¢,a¢). Then we train the sampling policy by minimizing the
FM loss E,, £3@ble(pfioint .) R).

action

Algorithm 4 Conditioned Joint Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, 4,0, A®) p; S T R).
Input: Simple Random distribution (2, P)
Input: Local GFlowNets (=), F()* F()
while not converged do
Sample wy, -+, wp, ~ P and then trajectories (s)¢ € T to replay buffer with policy according
to equation 29]for w € {wy, -+, wp}
Generate training distribution of states/omega v/{}, . from the train buffer
Apply minimization step of the FM loss E,, £3ble (R9:3°int (.. ())) under the constraint of Weak
flow-matching.
end while

)icr parameterized by 6 and w € .

C DISCUSSION: RELATIONSHIP WITH MARL

Interestingly, there are similar independent execution algorithms in the multi-agent reinforcement
learning scheme. Therefore, in this subsection, we discuss the relationship between flow conser-
vation networks and multi-agent RL. The value decomposition approach has been widely used in
multi-agent RL based on IGM conditions, such as VDN and QMIX. For a given global state s
and joint action a, the IGM condition asserts the consistency between joint and local greedy action
selections in the joint action-value Q. (s, a) and individual action values [Q;(0;, ai)]é‘;l:

argmax Qo (s,a) = (arg max @Q1(01,a1), -, arg max Qk(ok,ak)) ,VseS. (30)
acA areA; apeAk

Assumption 1 For any complete trajectory in an MADAG T = (so,...,S5), we assume that
Qla(s-1,0) = R(s) f(sg1) with £(5n) = TTio sy

Remark 1 Although Assumption |l|is a strong assumption that does not always hold in practical
environments. Here we only use this assumption for discussion analysis, which does not affect the
performance of the proposed algorithms. A scenario where the assumption directly holds is that we
sample actions according to a uniform distribution in a tree structure, i.e., p(als) = 1/|A(s)|. The
uniform policy is also used as an assumption in|Bengio et al.|(2021).

Lemma 3 Suppose Assumption 1 holds and the environment has a tree structure, based on Theo-
rem[2 and IGM conditions we have:

1) Qio(s,0) = F(s,a) f(s);

2) (argmax,, Qi(0s,a;))r, = (argmax,, F;(0;,a;))k .
Based on Assumption[I] we have Lemma [3] which shows the connection between Theorem [2] and

the IGM condition. This action-value function equivalence property helps us better understand the
multi-flow network algorithms, especially showing the rationality of Theorem

C.1 PROOF OF LEMMA[3]
Proof 4 The proof is an extension of that of Proposition 4 in|Bengio et al.| (2021). For any (s,a)

satisfies s¢ = T'(s,a), we have Q' (s,a) = R(sy)f(s) and F(s,a) = R(sy). Therefore, we have
Qr.(s,a) = F(s,a)f(s). Then, for each non-final node s', based on the action-value function in

20

Under review as a conference paper at ICLR 2025

terms of the action-value at the next step, we have by induction:

Qlu(s.a) = R(s") + plals’) Y Qh(s',d's R)

a’eA(s")

Do+ pals) Y (LR,
a’eA(s")

€1V

where R(s') is the reward of Q" (s,a) and (a) is due to that R(s") = 0 if s’ is not a final state.
Since the environment has a tree structure, we have

F(S,CL) = Z F(S,’a’,)’ (32)
a’eA(s")
which yields
Qloi(s,a) = p(als")F(s,a) f(s") = p(als") F (s, a)f(S)@ = F(s,a)f(s).

According to Theorem we have F(s¢,a;) = [1; F; (o}, al), yielding
argmax Q(s,a) @ argmax log F'(s,a) f(s)

k
b
© argmax Y log Fi (07, a;) (33)
@ =1

© (arg max Fy(o1,a1), -, arg max Fy(og, ak)) ,
aléAi akéAk

where (a) is based on the fact F and f(s) are positive, (b) is due to Theorem Combining with

the IGM condition

argmax Qr,(s,a) = (arg max @1(01,a1), -, arg max Qk(ok,ak)) ,VseS. (34)
acA areA; apeAy

we can conclude that

k k

(arg max F;(o;, ai)) = (arg max Qi(oi,ai))
aiE.Ai i=1 alé.Al i=1

Then we complete the proof.

D ADDITIONAL EXPERIMENTS

D.1 HYPER-GRID ENVIRONMENT
D.1.1 EFFECT OF SAMPLING METHOD:

We consider two different sampling methods of JEN; the first one is to sample trajectories using the
flow function F; of each agent independently, called JFN (IS), and the other one is to combine the
policies 7; of all agents to obtain a joint policy 7, and then performed centralized sampling, named
JEN (CS). As shown in Figure [§] we found that the JEN (CS) method has better performance than
JFN (IS) because the error of the policy 7 estimated by the combination method is smaller, and
several better samples can be obtained during the training process. However, the JEN (IS) method
can achieve decentralized sampling, which is more in line with practical applications.

D.1.2 EFFECT OF DIFFERENT REWARDS:

We study the effect of different rewards in Figure In particular, we set Ry = {1071,1072,1074} for
different task challenge. A smaller value of Ry makes the reward function distribution more sparse,
which makes policy optimization more difficult Bengio et al.| (2021); |Riedmiller et al.| (2018); |Trott:
et al|(2019). As shown in Figure [/] we found that our proposed method is robust with the cases
Ry = 107" and Ry = 1072. When the reward distribution becomes sparse, the performance of the
proposed algorithm degrades slightly.

21

Under review as a conference paper at ICLR 2025

1.9 — JFN(IS)
80 — JFN(CS)
- = 1.8
560 5
S k) 1.7
[} [}
S 40 gLl6
= =
1.5
20 — JFN(IS)
—— JFN (CS) 1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs
(a) Mode Found (b) L1-Error
Figure 6: The performance of JEN with different methods.
19 & —— CFNRo=10"!
80 —v— CFNRo=10"?
S 1.8 < CFN R =10
5 60 Ty —— JFNRy=10""
2 , CFN Ro~:10 £17 —v— JFN Ro=10"2
[J] —v— CFNRy=1072 wome JENRo=10"%
-é 40 -m- CFNRo=10"% 3 1.6 2 R —————
—— JFNRo=10"1 e
20 —v— JFNRo=1072 1.5
: e JFN Rg=10"4
1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs

Figure 7: The effect of different reward Ry on different algorithm.

D.1.3 FLOow MATCH LosS FUNCTION:

Figure 8| shows the curve of the flow matching loss function with the number of training steps. The
loss of our proposed algorithm gradually decreases, ensuring the stability of the learning process.
For some RL algorithms based on the state-action value function estimation, the loss usually os-
cillates. This may be because RL-based methods use experience replay buffer and the transition
data distribution is not stable enough. The method we propose uses an on-policy based optimization
method, and the data distribution changes with the current sampling policy, hence the loss function
is relatively stable. Then we present the experimental details on the Hyper-Grid environments. We
set the same number of training steps for all algorithms for a fair comparison. Moreover, we list the

key hyperparameters of the different algorithms in Tables [2}{6]

— CFN 10 — CEN
| — JFN — JFN
6 8
wn
0 w6
g4 §
4
2
2
0
0 100 200 300 0 100 200 300
Training Steps Training Steps

Figure 8: The flow matching loss of different algorithm.

22

Under review as a conference paper at ICLR 2025

In addition, as shown in Table[I] both the reinforcement learning methods and our proposed method
can achieve the highest reward, but the average reward of reinforcement learning is slightly better
for all found modes. Our algorithms do not always have higher rewards compared to RL, which is
reasonable since the goal of MA-GFlowNets is not to maximize rewards.

Environment MAPPO MASAC MCMC CFN JFEN

Hyper-Grid v1 2.0 1.84 1.78 2.0 2.0
Hyper-Grid v2 1.90 1.76 1.70 1.85 1.85
Hyper-Grid v3 1.84 1.66 1.62 1.82 1.82

Table 1: The best reward found using different methods.

D.2 STARCRAFT

We present a visual analysis based on 3m with three identical entities attacking to win. All compar-
ison experiments adopted PyMARL framework and used default experimental parameters. Figure 0]
shows the decision results of different algorithms on the 3m map. It can be found that the proposed
algorithm can obtain results under different reward distributions, that is, win at different costs. The
costs of other algorithms are often the same, which shows that the proposed algorithm is suitable for
scenarios with richer rewards.

Figure 9: The sample results of different algorithm on 3m map. Upper: QMIX, Bottom: JFN

D.3 SPARSE-SIMPLE-SPREAD ENVIRONMENT

In order to verify the performance of the CFN and JEN algorithms more extensively, we also con-
ducted experiments on Simple-Spread in the multi-agent particle environment. We compared two
classic Multi-agent RL algorithms, QMIX [Rashid et al.| (2018)) and MAPPO (2022), which
have achieved State-of-the-Art performance in the standard simple-spread environment. Since the
decision-making problems solved by GFlowNets are usually the setting of discrete state-action
space, we modified Simple-Spread to meet the above conditions and named it discrete Sparse-
Simple-Spread. Specifically, we set the reward function such that if the agent arrives at or near
a landmark, the agent will receive the highest or second-highest reward. And this reward is given to
the agent only after each trajectory ends. In addition, we fix the speed of the agent to keep the state
space discrete and all agents start from the origin.

We adopt the average return and the number of distinguishable trajectories as performance metrics.
When calculating the average return, JEN and CFN select the action with the largest flow for testing.
As shown in Figure [TO}Left, although the MAPPO and QMIX algorithms converge faster than the
JEN, the JFN eventually achieves comparable performance. The performance of JFN is better than
that of the CFN algorithm, which also shows that the method of flow decomposition can better learn

23

Under review as a conference paper at ICLR 2025

the flow F; of each agent. In each test round, we collect 16 trajectories and calculate the number of
trajectories, which can be accumulated for comparison. The number of different trajectories found
by JEN is 4 times that of MAPPO in Figure [I0}Right, which shows that MA-GFlowNets can obtain
more diverse results by sampling with the flow function. Moreover, the performance of JFN is not
as good as that of the RL algorithm. This is because JFN lacks a guarantee for monotonic policy
improvement [Schulman et al.[|(2015;2017). It pays more attention to exploration and does not fully
use the learned policy, resulting in fewer high-return trajectories collected. MAPPO finds more
high-return trajectories in Figure [I0}Right, but it still struggles to generate more diverse results.
In each sampling process, the trajectories found by MAPPO are mostly the same, while JFEN does
better.

800
— JFN
3 — MAPPO
S 600 QMIX
% CFN
=400
[}
=
©
i =
3 200
[a)
O ([N S
0 20 40 60 80 100 0 1000 2000 3000
Episodes (x103) Visited Trajectories

Figure 10: Average return and the number of distinctive trajectories performance of different algo-
rithms on Sparse-Simple-Spread environments.

Table 2: Hyper-parameter of MAPPO under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3
Grid Dim 2 3 3
Grid Size [8,8] [8.8] [8,8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
PPO Entropy le-1 le-1 le-1

Table 3: Hyper-parameter of MASAC under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001

24

Under review as a conference paper at ICLR 2025

Table 4: Hyper-parameter of JEN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8.,8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

Table 5: Hyper-parameter of CJEN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8.,8] [8.8] [8.8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005
Number of w 4 4 4

Table 6: Hyper-parameter of CEN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

25

	Introduction
	Problem Formulation
	Multi-Agent GFlowNets
	Centralized Training
	Local Training: Independent
	Local-Global Training
	Local-Global Principle: Joint Flow Network
	Conditioned Joint Flow Network

	Related Works
	Experiments
	Hyper-grid Environment
	StarCraft

	Conclusion
	Joint Flow Theory
	Notations on Measures and Kernels
	Environment structures
	GFlowNet in a Game Environment
	MA-GFlowNets in multi-agent environments (I): Preliminaries
	MA-GFlowNets in multi-agent environments (II): from local to global
	Initial local-global consistencies
	Terminal local-global consistencies

	Algorithms
	Discussion: Relationship with MARL
	Proof of Lemma 3

	Additional Experiments
	Hyper-Grid Environment
	Effect of Sampling Method:
	Effect of Different Rewards:
	Flow Match Loss Function:

	StarCraft
	Sparse-Simple-Spread Environment

