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A Broader Impact

When labeling cost is high, DNNs are inevitably trained in few-shot learning settings. Then, the
DNNs are prone to be biased toward undesirable features as shown in § 4. Thus, taking advantage
of OOD examples for improving the generalization power is a very promising approach because
no labeling is needed for the OOD examples. An application whose labeling cost is very high, e.g.,
bio-medical image analysis, is the sweet spot of our approach. Moreover, due to the task-agnostic
nature of TAUFE, more tasks, not limited to classification, can benefit from the OOD examples.
Meanwhile, we do not expect any potential negative societal impact of our work, because it is a
regularization technique for improving the generalization power.

B In-Depth Theoretical Analysis

Because a DNN extracts any type of features if it is statistically correlated with the target label y,
a feature vector fφ of an in-distribution example x contains both a desirable feature fdesirable and

an undesirable feature fundesirable. That is, fφ(x) = fdesirable(x) + fundesirable(x), where f ∈ Rd.
On the other hand, because an OOD example x̃ does not contain any features that semantically
indicate the target label y, fφ(x̃) = fundesirable(x̃).

For ease of exposition, let’s consider a binary classification setting. Let x+ be an in-distribution
example of the positive class and x− be an in-distribution example of the negative class. Then, via
standard learning, fφ(x

+) = fdesirable(x
+) + fundesirable(x

+) and fφ(x
−) = fdesirable(x

−) +
fundesirable(x

−). Because fundesirable(x
+) and fundesirable(x

−) are expected to share some fea-
tures with fundesirable(x̃), both OAT and TAUFE attempt to reduce their effect by the regularization
on fφ(x̃) = fundesirable(x̃). Here, fφ(x

+) and fφ(x
−) correspond to the red and blue circles,

respectively, in Figure 2(a).

For notational simplicity, we denote fφ(x
+) and fφ(x

−) as follows:

fφ(x
+) = f+

desirable + f+
undesirable and

fφ(x
−) = f−desirable + f−undesirable.

(4)

OAT. As analyzed in § 3.3, OAT regularizes the undesirable features from OOD examples being
activated into the decision boundary. Thus, each class feature in Equation (4) is forced to be changed
as follows:

fOAT
φ (x+) = f+

desirable +

(
α
(f+

desirable + f−desirable)
2

+ f+
⊥

)
and

fOAT
φ (x−) = f−desirable +

(
β
(f+

desirable + f−desirable)
2

+ f−⊥

)
,

(5)

where α, β ∈ R, (f+
desirable + f−desirable)/2 is a vector on the decision boundary, and f⊥ is an

orthogonal vector to the plane basis of f+
desirable and f−desirable. Then,

fOAT
φ (x+) =

(
1 +

α

2

)
f+
desirable +

α

2
f−desirable + f+

⊥ and

fOAT
φ (x−) =

β

2
f+
desirable +

(
1 +

β

2

)
f−desirable + f−⊥ .

(6)

Therefore, because the undesirable feature fundesirable moves the activation of the desirable feature
toward the decision boundary, these two types of the features (i.e., fdesirable and fundesirable) tend
to be entangled, as illustrated in Figure 2(b).
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Table 7: OOD detection performance (%) of TAUFE compared with Standard using uncertainty-based
and energy-based OOD detection methods.

OOD detector Uncertainty Energy

Dataset Method AUROC AUPRout FPR95 AUROC AUPRout FPR95

CIFAR-10
Standard 92.20 88.56 20.67 93.6 89.96 20.06

TAUFE 92.17 89.71 22.96 93.37 90.08 22.88

CIFAR-100
Standard 83.31 79.37 45.76 88.46 86.04 35.35

TAUFE 82.03 79.21 47.89 88.42 88.56 37.82

TAUFE. As analyzed in § 3.3, TAUFE regularizes the undesirable features from OOD examples
being deactivated on the feature space (i.e., toward the zero vector). Thus, each class feature in
Equation (4) is forced to be changed as follows:

fTAUFE

φ (x+) = f+
desirable +

�0 and

fTAUFE

φ (x−) = f−desirable +�0.
(7)

Therefore, this regularization does not affect the activation of fdesirable, as illustrated in Figure
2(c), thereby encouraging a prediction of a DNN to be solely based on the desirable features. This
concludes the theoretical analysis of the novel L2 penalty term on TAUFE.

C Effect of TAUFE on OOD detection

We verify the effect of TAUFE on OOD detection, which aims at detecting out-of-distribution (OOD)
examples in the test phase to support a trustworthy machine learning model.

Baseline. Numerous OOD detection methods have been proposed [38]. Here, we use two representa-
tive OOD detection methods—uncertainty-based [39] and energy-based [40]—to validate the effect
of TAUFE on the OOD detection task.

Experiment Setting. CIFAR-10 and CIFAR-100 are used for in-distribution datasets; LSUN is used
for exposing an OOD dataset in the training phase, and SVHN is used for measuring the detection
performance in the test phase. The other training configurations are the same as those in §4.1.

Evaluation Metric. The OOD detection performance is commonly quantified using three metrics [39,
40]. AUROC is the area under the receiver operating characteristic, which is calculated by the area
under the curve of the false positive rate (FPR) and the true positive rate (TPR). AUPRout is the area
under the curve of the precision and the recall, where they are calculated by considering OOD and
in-distribution examples as positives and negatives, respectively. FPR95 is the FPR at 95% of the
TPR, which indicates the probability that an OOD example is misclassified as an in-distribution
example when the TPR is 95%.

Result. Table 7 shows the OOD detection performance of the two representative OOD detection
methods without and with TAUFE. According to the three metrics, the performance with TAUFE

is slightly higher than or just comparable to that without TAUFE in both OOD detection methods.
Overall, as TAUFE is not geared for OOD detection, it does not significantly affect the OOD detection
performance on two CIFAR datasets.

D Details of Experiment Results

The source code for reproducing our experiment results is available at https://github.com/
kaist-dmlab/TAUFE. In support of reliable validation, we show the standard deviation of our
results for all three tasks in Tables 8, 9, and 10, respectively. These small deviations confirm that the
results are stable with multiple (five) executions.
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Table 8: Classification accuracy and standard deviation (%) of TAUFE on two CIFARs (32×32),
ImageNet-10 (64×64), and ImageNet-10 (224×224).

Datasets # Examples (N )

In-dist. OOD 500 1,000 2,500 5,000 Full-shot

CIFAR-10
(32×32)

SVHN 41.58±0.15 56.72±0.10 73.61±0.07 82.88±0.05 94.45±0.02

LSUN 42.51±0.11 56.79±0.05 74.15±0.04 83.73±0.02 95.02±0.03

CIFAR-100
(32×32)

SVHN 11.30±0.14 15.13±0.21 24.91±0.07 43.61±0.05 75.38±0.03

LSUN 12.26±0.09 15.97±0.07 25.36±0.04 44.50±0.04 75.69±0.02

ImgNet-10
(64×64)

ImgNet-990 42.80±0.11 46.04±0.10 60.40±0.07 70.51±0.04 81.09±0.03

Places365 43.25±0.07 47.61±0.08 60.02±0.07 68.25±0.06 80.89±0.04

ImgNet-10
(224×224)

ImgNet-990 48.39±0.20 59.06±0.15 76.47±0.06 85.05±0.03 89.24±0.03

Places365 50.08±0.16 59.27±0.11 77.22±0.03 84.81±0.04 89.06±0.02

Table 9: IoU and standard deviation (%) of TAUFE on CUB200 (224×224) and CAR (224×224)
under few-shot and full-shot learning settings.

Datasets
L1 L1-IoU

# Examples (N ) # Examples (N )

In-dist. OOD 2,000 4,000 Full 2,000 4,000 Full

CUB200
(224×224)

ImageNet 67.16±0.05 74.31±0.03 77.12±0.02 67.22±0.02 74.40±0.04 77.24±0.03

Places365 66.70±0.07 73.55±0.05 76.86±0.03 66.87±0.10 73.63±0.05 77.01±0.04

CAR
(224×224)

ImageNet 85.23±0.04 87.82±0.02 91.32±0.01 85.82±0.05 89.11±0.04 91.40±0.03

Places365 84.26±0.06 87.59±0.07 90.86±0.02 84.73±0.05 88.83±0.04 91.28±0.02

Table 10: GT-known Loc and standard deviation of TAUFE on CUB200 (224×224) and CAR
(224×224) under few-shot and full-shot learning settings.

Datasets # Examples (N )

In-dist. Out-of-dist. 2,000 4,000 Full-shot

CUB200
(224×224)

ImageNet 59.68±0.07 61.88±0.04 65.56±0.05

Places365 58.24±0.09 60.90±0.05 64.84±0.04

CAR
(32×32)

ImageNet 65.82±0.10 69.05±0.07 72.14±0.02

Places365 65.70±0.08 67.64±0.06 71.62±0.02
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