
A Appendix

A.1 HoareLSTM and Contrastive HoareLSTM Training Data

Two algorithms presented in Section 3.3 and Section 3.4 require different trianing data. HoareLSTM
only requires one reference program that is correct. However, Contrastive HoareLSTM requires the
teacher to provide a few (in the case of Car, one; in the case of Bounce, ten) incorrect programs. We
believe this does not place a heavy burden on the teachers.

A.2 Car Environment

Let the center of the environment be (0, 0), the opposite boundaries are -10 and 10. The car’s initial
x-y coordinates are uniformly sampled from [−2, 2]. There are four discrete actions for the agent to
take, each action applies an acceleration or deceleration of 0.2 to the velocity along the corresponding
direction, with max speed of any direction capped at 1. This allows the car to have more complex
trajectories than zig-zag lines.

When a bug-state is reached, the car’s physical movement is altered. The velocity is first clipped to
be in [−0.5, 0.5]. At each step, instead of responding to an action from the agent, the car simply flips
the sign of the previously clipped velocity, resulting in back-and-forth movement around the same
location – reflecting the idea that the car is “stuck”.

A.3 Car-Easy Experiment Setup

For HoareLSTM and contrastive HoareLSTM, we use a fully connected network (FCN) to project
input into 128-dim latent representations, and then use a LSTM with hidden state dimension of 128,
and at last, use a FCN to project it down to output. The nonlinearity is GeLU (Gaussian Error Linear
Units function).

A.4 Car-Hard Agent Trajectory

We can directly examine how collaborative training taught the agent by looking at its trajectory. At
first, the agent drives the car randomly. But after 1 round of collaborative training, the agent becomes
sharply focused and only visits the possible buggy areas.

Figure A.1: We show in the Car-Hard environment, a random agent (in blue) can use bug classifier’s
decision as reward to quickly learn to drive straight to the bug states (in red).

A.5 Bounce Data Risk Statement

As shown in Figure A.3a, because Bounce is only a drag-and-drop interface, there is no place to add
custom comments or include any other custom text in the homework submission. The dataset we
release does not provide timestamp, identifier information, and any metadata linked to the submission.
The dataset only contains the programs themselves, which are represented in JSON. We deem the
risk of exposing personal identifiable information through our dataset to be negligible.

14

A.6 Bounce Task Details

Gold annotations We generate the ground-truth gold annotations by defining legal or illegal
commands under each condition. For example, having more than one “launch new ball” under “when
run” is incorrect. Placing “score opponent point” under “when run” is also incorrect. Abiding by
this logic, we put down a list of legal and illegal commands for each condition. We note that, we
intentionally chose the bounce program as it was amenable to generating gold annotations due to the
API that code.org exposed to students. While our methods apply broadly, this gold annotation system
will not scale to other assignments. The full annotation schema is provided as code in the code base.

Interface We show an interface of how students write the program in Figure A.3a. We also show
a log-log distribution plot to show that the distribution of unique student programs conforms to a
Zipfian distribution. Even though students can create visually stimulating programs by setting various
themes (illustrated in Figure A.2), we side-step this issue by focusing on the velocity and positions of
objects instead. Looking into thematic invariance could be an interesting future direction.

Blocks

Set paddle speednormal

Set ball speednormal

Set scenehardcourt

Set ballhardcourt

Set paddlehardcourt

Launch new ball

Move left

Move right

Bounce ball

Score opponent point

Score point

Hardcourt H-R-R Retro R-H-H

R-R-H R-H-R H-H-R H-R-H

Figure A.2: Bounce can have different “themes” for the background, paddle, and ball. There are two
themes to choose from: “hardcourt” and “retro”. We show the complete eight different combinations
of themes and what the game would look like under these settings.

When run

Set paddle speednormal

Set ball speednormal

Set scenehardcourt

Set ballhardcourt

Set paddlehardcourt

Launch new ball

When left arrow

Move left

When right arrow

Move right

When ball hits wall

Bounce ball

When ball misses paddle

Launch new ball

Score opponent point

When ball in goal

Score point

Launch new ball

When ball hits paddle

Bounce ball

(a) This is the simplest combination that makes up a correct program.

0 1 2 3 4 5
log Rank

6

5

4

3

2

1

lo
g

Pr
ob

ab
ili

ty

Head

Body

Tail

(b) The probability distribution
conform to a Zipf distribution.

Figure A.3: This is the drag-and-drop style code editor that students use to create the game Bounce.
Conditions such as “when run” or “when left arrow” are fixed in space. Students place commands
such as “Score point”, under each condition. The submission frequency of each unique program
conforms to a Zipfian distribution on a log-log plot.

Sample student programs We show some sample student programs in Figure A.4 to illustrate how
complicated the programs can be – even with a limited set of blocks and conditions. Note that even
though Figure A.4(a) triggers a visual change when the ball hits the wall, in our current formulation,
it does not affect the position and velocity of objects in the game.

15

When ball hits wall

Bounce ball

Set scenerandom

Set ballrandom

Set paddlerandom

(a) Hit wall change to random theme

When run

Launch new ball

Launch new ball

Launch new ball

Launch new ball

Launch new ball

(b) Multiple balls when run

When ball hits paddle

Bounce ball

Score point

Score point

(c) Hit paddle wins two points

Figure A.4: We demonstrate three examples of how Bounce can be programmed freely by allowing
infinite repetition of commands and commands to be placed under any condition. Only (a) is
considered correct since theme change does not affect game play. Both (b) and (c) are considered
incorrect. (c) represents a reward design error (give points at incorrect condition). This demonstrates
the difficulty of generalization in our setting.

A.7 Bounce Additional Experiments

A.7.1 Sampled Evaluation

The experiment result reported in Section 5.2 is from a balanced sampled dataset where we have equal
number of correct and broken programs.The underlying submissions are actually imbalanced. We
have far more incorrect unique implementations than correct unique implementations. The majority
guess (labeling all input programs as broken) would give 86.1% accuracy for body distribution and
94.3% accuracy for the tail distribution. The tail distribution has 66,580 incorrect and 3,999 correct
solutions. We show the result in Table 4.

Contrastive HoareLSTM Majority Class Accuracy Precision Recall F1

Body-Balanced 50.0 93.4 99.5 87.2 93.0
Body-Sampled 84.6 88.8 99.7 87.0 92.9
Tail-Balanced 50.0 94.0 97.4 90.4 93.8
Tail-Sampled 92.8 94.4 100 94.0 94.4

Table 4: We show the precision/recall/F1 for identifying the bug program.

A.7.2 Ablation on Number of Bug Examples

In our Contrastive HoareLSTM formulation, we assume that teachers will provide a few bug examples.
Here we show an ablation study on if we vary the number of provided bug examples, how would
it affect our distance-based classifier’s performance. We would like to point out that not all broken
examples are created equal – some are probably more crucial than others (this could be a great future
direction). We simply used our best guess again to choose a smaller set of representatives of broken
programs. We did not re-pick the set in any way to optimize their performance. We show the result in
Table 5.

16

Contrastive HoareLSTM Accuracy Precision Recall F1

Body-Balanced (3 bug examples) 50.0 50.0 100.0 66.7
Body-Balanced (5 bug examples) 89.4 99.5 79.2 88.2
Body-Balanced (7 bug examples) 92.4 99.5 85.2 91.8
Body-Balanced (10 bug examples) 93.4 99.5 87.2 93.0

Body-Sampled (3 bug examples) 84.6 84.6 100.0 91.7
Body-Sampled (5 bug examples) 84.6 84.6 100.0 91.7
Body-Sampled (7 bug examples) 86.0 99.7 83.7 91.0
Body-Sampled (10 bug examples) 88.8 99.7 87.0 92.9

Tail-Balanced (3 bug examples) 50.0 50.0 100.0 66.7
Tail-Balanced (5 bug examples) 92.8 97.4 88.0 92.4
Tail-Balanced (7 bug examples) 93.2 97.4 88.9 92.9
Tail-Balanced (10 bug examples) 94.0 97.4 90.4 93.8

Tail-Sampled (3 examples) 92.8 92.8 100.0 96.3
Tail-Sampled (5 examples) 92.8 92.8 100.0 96.3
Tail-Sampled (7 examples) 92.8 92.8 100.0 96.3
Tail-Sampled (10 examples) 94.4 100 94.0 94.4

Table 5: We show the precision/recall/F1 for identifying the bug program.

17

