
Under review as a conference paper at ICLR 2024

CONTENTS

A Related Work 12

B Preliminaries: Differential Privacy 13

C Details of Section 3: Private Majority Algorithms 14
C.1 Randomized Response with Constant � . 14

C.2 Proof of Lemma 3.1: the Subsampling � Function 15

C.3 Proof of Lemma 3.2: Generality of DaRRM . 17

C.4 Proof of Lemma 3.3: � Privacy Condition . 17

D Provable Privacy Amplification in i.i.d. Setting under Pure DP 21
D.1 Characterizing Worst Case Probabilities . 21

D.2 Proof of Main Results on Privacy Amplification (Theorem 4.1) 24

E Details of Optimizing � in DaRRM 37
E.1 Deriving the Optimization Objective . 37

E.2 Practical Approximation of the Objective . 37

E.3 Reducing # Constraints From1 to A Polynomial Set 39

F Full Experiment Results 40
F.1 Optimal � in Simulations . 40

F.2 Private Distribued Sign-SGD . 44

F.3 Private Semi-supervised Knolwedge Transfer . 44

A RELATED WORK

Private Composition. In the blackbox composition setting, one can do no better than the O(K✏)
privacy analysis for pure differential privacy Dwork et al. (2014). For approximate differential privacy,
previous work has found optimal constants for advanced composition by reducing to the binary case
of hypothesis testing with randomized response; and optimal tradeoffs between ✏, � for black box
composition are given in Kairouz et al. (2015), where there could be a modest improvement 20%.

Thus, for specific applications, some work has turned to white-box composition analysis for improved
utility analysis. Abadi et al. (2016) applied a technique called moment accountant for private SGD
to reduce the log(1/�) dependence in the ✏ term and linear dependence on k in the � term. For
general private stochastic convex optimization, one can avoid the linear dependence on k in ✏ by
using iterative application of contractive maps Feldman et al. (2018). For the specific case of model
ensembles, Papernot et al. (2018) uses student model learning to privately aggregate a ensemble of
teacher models trained on disjoint datasets and shows a data-dependent privacy bound that vanishes
as the probability of disagreement goes to 0. Their method provides no utility analysis but they
empirically observed less privacy loss when there is greater ensemble agreement.

When g is the maximization function, some previous work shows that an approximately maximum
value can be outputted with high probability while incurring O(✏) privacy loss, independently of K.
They proposed a random stopping mechanism for m = 1 that draws samples uniformly at random
from Mi(D) at each iteration. In any given iteration, the sampling halts with probability � and the
final output is computed based on the samples collected until that time. This leads to a final privacy
cost of only 3✏ for the maximization function g, which can be improved to 2✏ (Papernot & Steinke,

12

Under review as a conference paper at ICLR 2024

2022). In addition to the aforementioned works, composing top-k and exponential mechanisms also
enjoy slightly improved composition analysis via a bounded-range analysis Durfee & Rogers (2019);
Dong et al. (2020).

Bypassing the Global Sensitivity. To ensure differential privacy, it is usually assumed the query
function g has bounded global sensitivity — that is, the output of g does not change much on any

adjacent input datasets differing in one entry. The noise added to the output is then proportional to
the global sensitivity of g. If the sensitivity is large, the output utility will thus be terrible due to a
large amount of noises added. However, the worst case global sensitivity can be rare in practice, and
this observation has inspired a line of works on designing private algorithms with data-dependent
sensitivity bound to reduce the amount of noises added.

Instead of using the maximum global sensitivity of g on any dataset, the classical Propose-Test-
Release framework of Dwork Dwork & Lei (2009) uses a local sensitivity value for robust queries
that is tested privately and if the sensitivity value is too large, the mechanism is halted before the
query release. The halting mechanism incurs some failure probability but deals with the worst-case
sensitivity situations, while allowing for lower noise injection in most average-case cases.

One popular way to estimate average-case sensitivity is to use the Subsample-and-Aggregate frame-
work by introducing the notion of perturbation stability, also known as local sensitivity of a function
g on a dataset D Thakurta & Smith (2013); Dwork et al. (2014), which represents the minimum
number of entries in D needs to be changed to change g(D). One related concept is smooth sensitivity,
a measure of variability of g in the neighborhood of each dataset instance. To apply the framework
under smooth sensitivity, one needs to privately estimate a function’s local sensitivity Ls and adapt
noise injection to be order of O(Ls

✏), where Ls can often be as small as O(e�n), where n = |D|, the
total dataset size Nissim et al. (2007). Generally, the private computation of the smooth sensitivity of
a blackbox function is nontrivial but is aided by the Subsample and Aggregate approach for certain
functions.

These techniques hinge on the observation that a function with higher stability on D requires less
noise to ensure worst case privacy. Such techniques are also applied to answer multiple online
functions/queries in model-agnostic learning Bassily et al. (2018). However, we highlight two
key differences in our setting with a weaker stability assumption. First, in order to estimate the
perturbation stability of g on D, one needs to downsample or split D into multiple blocks Thakurta &
Smith (2013); Dwork et al. (2014); Bassily et al. (2018), D̂1, . . . , D̂B , and estimate the perturbation

stability based on the mode of g(D̂1), . . . , g(D̂B). This essentially reduces the amount of change in
the output of g due to a single entry in D, with high probability and replaces the hard-to-estimate
perturbation stability of g with an easy-to-compute perturbation stability of the mode. Such a
notion of stability has also been successfully applied, along with the sparse vector technique, for
model-agnostic private learning to handle exponentially number of queries to a model Bassily et al.
(2018). Note that in these cases, since a private stochastic test is applied, one cannot achieve pure
differential privacy Dwork et al. (2014). In practice, e.g. federated learning, however, one does not
have direct access to D, and thus it is impractical to draw samples from or to split D. Second, to
ensure good utility, one relies on a key assumption, i.e. the subsampling stability of g, which requires
g(D̂) = g(D) with high probability over the draw of subsamples D̂.

Learning the Optimal Noise Distribution. Most of these works only claim improved utility and
there is no optimality guarantee. There have been limited works that attempt to derive or learn the
best noise distribution. For deep neural networks inference, Mireshghallah et al. (2020) attempts to
learn the best noise distribution to maximizing utility subject to an entropy Lagragian, but no formal
privacy guarantees were derived. For queries with bounded sensitivity, Geng & Viswanath (2015)
demonstrate that the optimal noise distribution is in fact a staircase distribution that approaches the
Laplacian distribution as ✏! 0.

B PRELIMINARIES: DIFFERENTIAL PRIVACY

Definition B.1 (Differential Privacy (DP) Dwork et al. (2014)). A randomized mechanism M :
D ! R with a domain D and range R satisfies (✏, �)-differential privacy for ✏, � � 0 if for any

two adjacent datasets D,D0
and for any subset of outputs S ✓ R it holds that Pr[M(D) 2 S] 

13

Under review as a conference paper at ICLR 2024

e
✏ Pr[M(D0) 2 S] + �. � = 0 is often called pure differential privacy; while � > 0 is often called

approximate differential privacy.

Theorem B.2 (Simple Composition Dwork et al. (2014)). Let M1 : D ! R1 be an ✏1-differentially

privacy mechanism and M2 : D ! R2 be an ✏2-differentially privacy mechanism, then their

combination M1,2(x) = (M1(x),M2(x)) is (✏1 + ✏2)-differentially private.

Theorem B.3 (Advanced Composition Dwork et al. (2014)). For all ✏, �, �
0 � 0, the class of (✏, �)-

differentially private mechanisms satisfies (✏0, k� + �
0)-differential privacy under k-fold adaptive

composition for

✏
0 =

p
2k ln(1/�0)✏+ k✏(e✏ � 1) (4)

C DETAILS OF SECTION 3: PRIVATE MAJORITY ALGORITHMS

C.1 RANDOMIZED RESPONSE WITH CONSTANT �

Recall the classical Randomized Response (RR) algorithm that provides a binary output algorithm
with differential privacy guarantee proceeds as follows: With probability p� , one returns the true
output of the algorithm; otherwise, one returns a random answer. In this section, we show the
magnitude of the constant probability p� in RR to use RR to solve Problem 1.1 and to ensure RR is
(m✏, �)-differentially private. We can view the p� probability in RR as a constant � : {0, 1, . . . ,K}!
[0, 1] function such that �(l) = p� , 8l 2 [K].
Lemma C.1 (Randomized Response (constant) �). Consider Problem 1.1 with privacy allowance

m > 0 and failure probability � � 0. Let p� be the probability of outputting the true majority

based on K samples in Randomized Response (RR). Let the majority of K (✏,�) mechanisms be

(⌧✏,�)-differentially private, reasoned by simple composition or advanced composition for some

0 < ⌧  K, 0  � < 1. If one sets

p� =
e
m✏ � 1 + 2�

2(e⌧✏�em✏+2�)
e⌧✏+1 + em✏ � 1

(5)

then RR is (m✏, �)-differentially private.

Proof. For convenience, let x 2 {0, 1} denote the output majority, and qx, q
0
x denote the probability

the aggregated majority from K samples is x on dataset adjacent D and D0 respectively. Recall each
mechanism we aggregate is (✏,�)-differentially private. The output of the aggregated majority from
K samples is (⌧✏,�)-differentially private, for some ⌧  K. When � = 0, ⌧ = K and � = 0 can
be reasoned through simple composition. When � > 0, ⌧ ⇡

p
K and � ⇡ K� can be reasoned

through advanced composition. And so simultaneously the following four constraints on qx, q
0
x apply:

qx  e
⌧✏
q
0
x + �, and 1� q

0
x  e

⌧✏(1� qx) + � (6)
q
0
x  e

⌧✏
qx + �, and 1� qx  e

⌧✏(1� q
0
x) + � (7)

To ensure RR is (m✏, �)-differentially private, one needs � such that for all possible qx, q
0
x,

Pr[RR(D) = x]  e
m✏ Pr[RR(D0) = x] + � (8)

� · qx +
1

2
(1� �)  e

m✏(� · q0x +
1

2
(1� �)) + � (9)

(qx � e
m✏

q
0
x +

1

2
e
m✏ � 1

2
) · �  1

2
e
m✏ � 1

2
+ � (10)

To maximize the utility, one wants to maximize � while conforming to the above privacy constraints.
Hence, we solve solve the following Linear Programming (LP) problem:

Objective: max
qx,q0x

f(qx, q
0
x) = qx � e

m✏
q
0
x +

1

2
e
m✏ � 1

2
(11)

Subject to: 0  qx  1, 0  q
0
x  1 (12)

qx  e
⌧✏
q
0
x + �, 1� q

0
x  e

⌧✏(1� qx) + � (13)

14

Under review as a conference paper at ICLR 2024

q
0
x  e

⌧✏
qx + �, 1� qx  e

⌧✏(1� q
0
x) + � (14)

Figure 4: A visualization of the LP problem.

The optimum of any LP problem is at the corners of the feasible region. Here, the fea-
sible region F is shown in Figure 4. This means (q⇤x, q

0⇤
x) = argmaxqx,q0x f(qx, q

0
x) 2

{(0, 0), (1, 1), (0,�), (�, 0), (1 � �, 1), (1, 1 � �), (1��
e⌧✏+1 ,

e⌧✏+�
e⌧✏+1), (

e⌧✏+�
e⌧✏+1 ,

1��
e⌧✏+1)}. The optimum

of the above LP problem is at

qx
⇤ =

e
⌧✏ + �

e⌧✏ + 1
, q

0
x
⇤ =

1� �

e⌧✏ + 1
(15)

We need to set � according to the following upper bound to ensure privacy while maximizing � to
maximize utility,

� ·max
qx,q0x

f(qx, q
0
x) 

1

2
(em✏ � 1) + � (16)

Hence, we want � that

� ·
⇣
e
⌧✏ + �

e⌧✏ + 1
� e

m✏ 1� �

e⌧✏ + 1
+

1

2
e
m✏ � 1

2

⌘
=

1

2
(em✏ � 1) + � (17)

� ·
⇣
e
⌧✏ � e

m✏ + 2�

e⌧✏ + 1
+

1

2
(em✏ � 1)

⌘
=

1

2
(em✏ � 1) + � (18)

� =
e
m✏ � 1 + 2�

2(e⌧✏�em✏+2�)
e⌧✏+1 + em✏ � 1

(19)

For small m, ✏,K, using the approximation e
y ⇡ 1 + y,

� ⇡ m✏+ 2�
2(⌧✏�m✏+2�)

⌧✏+2 +m✏

=
m+ 2�/✏

2(⌧�m+2�/✏)
⌧✏+2 +m

(20)

C.2 PROOF OF LEMMA 3.1: THE SUBSAMPLING � FUNCTION

Lemma 3.1. Consider Problem 1.1, and the sum of observed outcomes of the mechanisms, l =PK
i=1 Si 2 {0, 1, . . . ,K}. For m 2 Z+

, m  K, if one sets a success probability �Subsampling,

15

Under review as a conference paper at ICLR 2024

dependent on the value of l, by

�Subsampling(l) =

8
><

>:

�Subsampling(K � l) = 1� 2
Pm

j=m+1
2

(lj)(
K�l
m�j)

(Km)
for odd m

�Subsampling(K � l) = 1� 2
Pm

j=m
2 +1

(lj)(
K�l
m�j)

(Km)
�

(l
m
2
)(K�l

m
2
)

(Km)
for even m

(21)
then outputting the majority of m out of K subsampled mechanisms without replacement and

DaRRM�Subsampling have the same output distribution.

Proof. Let algorithm SS denote outputting the majority based on m out of K subsampled mechanisms
without replacement. Note the output of SS is the same as drawing one sample per mechanism
S = {Si}Ki=1, where Si ⇠Mi(D), subsample m of the observed samples without replacement and
outputs the majority based on the m subsamples. Let L =

PK
i=1 Si be the sum of observed outcomes

from K mechanisms, and conditioned on L, notice the output follows a hypergeometric distribution.
Hence, the output probability of SS can be written as

Pr[SS(D) = 1] =
KX

l=0

Pr[SS(D) = 1 | L = l] · Pr[L = l] (22)

=
KX

l=0

Pr[
mX

j=1

Sj �
m

2
| L = l] · Pr[L = l] (23)

=

8
><

>:

PK
l=0(

Pm
j=m+1

2

(lj)(
K�l
m�j)

(Km)
) · Pr[L = l] if m is odd

PK
l=0(

Pm
j=m

2 +1
(lj)(

K�l
m�j)

(Km)
+ 1

2

(l
m
2
)(K�l

m
2
)

(Km)
) · Pr[L = l] if m is even

(24)

Recall � : {0, 1, . . . ,K} ! [0, 1] is the noise function in DaRRM. The output probability of
DaRRM� is:

Pr[DaRRM�(D) = 1] =
KX

l=0

Pr[DaRRM�(D) = 1 | L = l] · Pr[L = l] (25)

=
KX

l=0

(�(l) · I{l � K + 1

2
}+ 1

2
(1� �(l))) · Pr[L = l] (26)

To let Pr[DaRRM�(D) = 1] = Pr[SS(D) = 1], if m is odd, for l  K�1
2 ,

1

2
(1� �(l)) =

mX

j=m+1
2

�l
j

��K�l
m�j

�
�K
m

�) �(l) = 1� 2
mX

j=m+1
2

�l
j

��K�l
m�j

�
�K
m

� (27)

and for l � K+1
2 ,

1

2
+

1

2
�(l) =

mX

j=m+1
2

�l
j

��K�l
m�j

�
�K
m

�) �(l) = 2
mX

j=m+1
2

�l
j

��K�l
m�j

�
�K
m

� � 1 (28)

Similarly, if m is even, for l  K�1
2 ,

1

2
(1� �(l)) =

mX

j=m
2 +1

�l
j

��K�l
m�j

�
�K
m

� +
1

2

� l
m
2

��K�l
m
2

�

�K
m

�) �(l) = 1� 2
mX

j=m
2 +1

�l
j

��K�l
m�j

�
�K
m

� �

� l
m
2

��K�l
m
2

�

�K
m

�

(29)

and for l � K+1
2 ,

1

2
+

1

2
�(l) =

mX

j=m
2 +1

�l
j

��K�l
m�j

�
�K
m

� +
1

2

� l
m
2

��K�l
m
2

�

�K
m

�) �(l) = 2
mX

j=m
2 +1

�l
j

��K�l
m�j

�
�K
m

� +

� l
m
2

��K�l
m
2

�

�K
m

� � 1

(30)

16

Under review as a conference paper at ICLR 2024

Note that this �(l) is symmetric around K
2 , since for l  K�1

2 (and so K � l � K+1
2), if m is odd,

�(K � l) = 2
mX

j=m+1
2

�K�l
j

�� l
m�j

�
�K
m

� � 1 = 2
⇣
1�

m�1
2X

j=1

�K�l
j

�� l
m�j

�
�K
m

�
⌘
� 1 (31)

= 1� 2

m�1
2X

j=1

�K�l
j

�� l
m�j

�
�K
m

� = 1� 2
mX

j=m+1
2

�l
j

��K�l
m�j

�
�K
m

� (32)

= �(l) (33)

Similarly, if m is even,

�(K � l) = 2
mX

j=m
2 +1

�K�l
j

�� l
m�j

�
�K
m

� +

� l
m
2

��K�l
m
2

�

�K
m

� � 1 = 2
⇣
1�

m
2 �1X

j=1

�K�l
j

�� l
m�j

�
�K
m

� � 1

2

� l
m
2

��K�l
m
2

�

�K
m

�
⌘
� 1

(34)

= 1� 2

m
2 �1X

j=1

�K�l
j

�� l
m�j

�
�K
m

� �

� l
m
2

��K�l
m
2

�

�K
m

� = 1� 2
mX

j=m
2 +1

�l
j

��K�l
m�j

�
�K
m

� �

� l
m
2

��K�l
m
2

�

�K
m

�

(35)
= �(l) (36)

Therefore, setting � as in Eq. 27 if m is odd, and as in Eq. 29 if m is even makes DaRRM� have the
same output distribution as SS. We hence call this � function �Subsampling .

C.3 PROOF OF LEMMA 3.2: GENERALITY OF DARRM

Lemma 3.2 (Generality of DaRRM). Let A be any randomized algorithm to compute the majority

function g on S such that for all S , Pr[A(S) = g(S)] � 1/2 (i.e. A is at least as good as a random

guess). Then, there exists a a general �: {0, 1}K+1 ! [0, 1] such that if one sets p� by �(S) in

DaRRM, the output distribution of DaRRM� is the same as the output distribution of A.

Proof. For some D and conditioned on S, we see that by definition Pr[DaRRM�(S) = g(S)] =
�(S)+ (1/2)(1� �(S)). We want to set � such that Pr[DaRRM�(S) = g(S)] = Pr[A(S) = g(S)].
Therefore, we set �(S) = 2Pr[A(S) = g(S)]� 1.

Lastly, we need to justify that � 2 [0, 1]. Clearly, �(S)  2 � 1  1 since Pr[A(S) = g(S)]  1.
Note that the non-negativity follows from assumption.

C.4 PROOF OF LEMMA 3.3: � PRIVACY CONDITION

Lemma 3.3 (� privacy condition and privacy cost objective). Consider using DaRRM to solve

Problem 1.1. Let ↵l = Pr[L(D) = l] and ↵
0
l = Pr[L(D0) = l], for l in support {0, . . . ,K} and

adjacent datasets D,D0
. For � : {0, 1, . . . ,K}! [0, 1] such that �(l) = �(K � l), 8l, DaRRM� is

(m✏, �)-differentially private if and only if for all ↵l,↵
0
l,

f(p1, . . . , pK , p
0
1, . . . , p

0
K ; �):=

K�1
2X

l=0

(em✏
↵
0
l � ↵l) · �(l) +

KX

l=K+1
2

(↵l � e
m✏

↵
0
l) · �(l)  e

m✏ � 1 + 2�

(37)

We call f the privacy cost objective.

Proof. By the definition of differential privacy,

DaRRM� is (m✏, �)-differentially private

17

Under review as a conference paper at ICLR 2024

() Pr[DaRRM�(D) = 1]  e
m✏ Pr[DaRRM�(D0) = 1] + �, (38)

and Pr[DaRRM�(D) = 0]  e
m✏ Pr[DaRRM�(D0) = 0] + �, 8 adjacent D,D0 (39)

Consider random variables L(D) =
PK

i=1 S(D) and L(D0) =
PK

i=1 S(D0), based on which one
sets �. Note, when the output is 1,

Pr[DaRRM�(D) = 1]  e
m✏ Pr[DaRRM�(D0) = 1] + � (40)

()
KX

l=0

Pr[DaRRM�(D) = 1 | L(D) = 1] · Pr[L(D) = l] (41)

 e
m✏

⇣ KX

l=0

Pr[DaRRM�(D0) = 1 | L(D0) = 1] · Pr[L(D0) = l]
⌘
+ �

()
KX

l=0

⇣
�(l) · I{l � K

2
}+ 1

2
(1� �(l))

⌘
· Pr[L(D) = l] (42)

 e
m✏

⇣ KX

l=0

⇣
�(l) · I{l � K

2
}+ 1

2
(1� �(l))}

⌘
· Pr[L(D0) = l]

⌘
+ �

()
KX

l=K+1
2

⇣
�(l) +

1

2
(1� �(l))

⌘
· Pr[L(D) = l] +

K�1
2X

l=0

1

2
(1� �(l)) · Pr[L(D) = l] (43)

 e
m✏

⇣ KX

l=K+1
2

⇣
�(l) +

1

2
(1� �(l))

⌘
· Pr[L(D) = l]

⌘
+ e

m✏
⇣ K�1

2X

l=0

1

2
(1� �(l)) · Pr[L(D0) = l]

⌘
+ �

()
KX

l=K+1
2

1

2
�(l)↵l �

K�1
2X

l=0

1

2
�(l)↵l +

1

2
(44)

 e
m✏

KX

l=K+1
2

1

2
�(l)↵0

l � e
m✏

K�1
2X

l=0

1

2
�(l)↵0

l +
1

2
e
m✏ + �

()
KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)�

K�1
2X

l=0

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (45)

where ↵l = Pr[L(D) = l] and ↵
0
l = Pr[L(D0) = l], 8l 2 {0, 1, . . . ,K}.

Similarly, when the output is 0,
Pr[DaRRM�(D) = 0]  e

m✏ Pr[DaRRM�(D0) = 0] + � (46)

()
KX

l=0

Pr[DaRRM�(D) = 0 | L(D) = 0] · Pr[L(D) = 0] (47)

 e
m✏

⇣ KX

l=0

Pr[DaRRM�(D0) = 0 | L(D0) = 0] · Pr[L(D0) = 0]
⌘
+ �

()
KX

l=0

⇣
�(l) · I{l < K

2
}+ 1

2
(1� �(l))

⌘
· Pr[L(D) = l] (48)

 e
m✏

⇣ KX

l=0

�(l) · I{l < K

2
}+ 1

2
(1� �(l))

⌘
· Pr[L(D0) = l] + �

18

Under review as a conference paper at ICLR 2024

()
K�1

2X

l=0

⇣
�(l) +

1

2
(1� �(l))

⌘
· Pr[L(D) = l] +

KX

l=K+1
2

1

2
(1� �(l)) · Pr[L(D) = l] (49)

 e
m✏

⇣ K�1
2X

l=0

⇣
�(l) +

1

2
(1� �(l))

⌘
· Pr[L(D0) = l] +

KX

l=K+1
2

1

2
(1� �(l)) · Pr[L(D0) = l]

⌘
+ �

()
K�1

2X

l=0

1

2
�(l)↵l �

KX

l=K+1
2

1

2
�(l)↵l +

1

2
(50)

 e
m✏

K�1
2X

l=0

1

2
�(l)↵0

l � e
m✏

KX

l=K+1
2

1

2
�(l)↵0

l +
1

2
e
m✏ + �

()
K�1

2X

l=0

(↵l � e
m✏

↵
0
l)�(l)�

KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (51)

Therefore,

DaRRM� is (m✏, �)-differentially private

()
KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)�

K�1
2X

l=0

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (52)

and

K�1
2X

l=0

(↵l � e
m✏

↵
0
l)�(l)�

KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (53)

where ↵l = Pr[L(D) = l] and ↵
0
l = Pr[L(D0) = l], 8l 2 {0, 1, . . . ,K} and D,D0 are any adjacent

datasets.

If � is symmetric around K
2 , i.e. �(l) = �(K � l), we show as follows satisfying either one of

Eq. 52 or Eq. 53 implies satisfying the other one. The intuition is that there is nothing special about
outputting 0 or 1.

KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)�

K�1
2X

l=0

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (54)

()
K�1

2X

l=0

(↵K�l � e
m✏

↵
0
K�l) · �(K � l)�

KX

l=K�1
2

(↵K�l � e
m✏

↵
0
K�l) · �(K � l)  e

m✏ � 1 + 2�

(55)

()
K�1

2X

l=0

(↵K�l � e
m✏

↵
0
K�l) · �(l)�

KX

l=K�1
2

(↵K�l � e
m✏

↵
0
K�l) · �(l)  e

m✏ � 1 + 2� (56)

Since �(l) = �(K � l)

()
K�1

2X

l=0

(↵l � e
m✏

↵
0
l) · �(l)�

KX

l=K�1
2

(↵l � e
m✏

↵
0
l) · �(l)  e

m✏ � 1 + 2� (57)

Since the above holds for all possible ↵l,↵
0
l, one can consider another distribution such that the pmf

of L(D) is �l = ↵K�l and the pmf of L(D0) is �0
l = ↵

0
K�l. Then, we rename �l as ↵l and �

0
l as ↵0

l.

19

Under review as a conference paper at ICLR 2024

The above implies Eq. 52 and Eq. 53 are equivalent. Therefore,

DaRRM� is (m✏, �)-differentially private

()
KX

l=K+1
2

(↵l � e
m✏

↵
0
l)�(l)�

K�1
2X

l=0

(↵l � e
m✏

↵
0
l)�(l)  e

m✏ � 1 + 2� (58)

20

Under review as a conference paper at ICLR 2024

D PROVABLE PRIVACY AMPLIFICATION IN I.I.D. SETTING UNDER PURE DP

Recall in the i.i.d. mechanisms setting, Pr[Mi(D) = 1] = p and Pr[Mi(D0) = 1] = p
0, for all

mechanisms Mi. Under pure differential privacy setting, each mechanisms Mi is ✏-differentially
private, and we want the aggregated majority voting output by DaRRM� with a certain choice of � to
be m✏-differentially private for m < K.

For analysis, we restrict our search for a � function with good utility to the class with a mild
monotonicity assumption: �(l) � �(l+1), 8l  K�1

2 and �(l)  �(l+1), 8l � K+1
2 . This matches

our intuition that as L, i.e., the number of mechanisms outputting 1, approaches 0 or K, there is a
clearer majority and so not much noise is needed to ensure privacy, which implies a larger value of �.

Figure 5: The feasible region F is plotted as the
blue area. The four boundaries are implied by p, p

0

satisfying ✏-differential privacy.

Worst case probabilities. We call (p⇤, p0⇤) =
argmaxp,p0 f(p⇤, p0⇤; �) the worst case proba-
bilities since they incur the largest privacy loss,
where f is the simplified privacy cost objec-
tive defined in Eq. 37 with � = � = 0. If
we can show f(p⇤, p0⇤; �)  e

✏ � 1 for some
�, then DaRRM� is is m✏-differentially private
by Lemma 3.3. To find the worst case prob-
abilities, first note (p⇤, p0⇤) are close to each
other and lie in a feasible region F , due to each
mechanism being ✏-differentially private in our
setting. The feasible region is illustrated in Fig-
ure 5, and the four boundaries of which, i.e.
(a) p0  e

✏
p (b) p  e

✏
p
0 (c) 1�p

0  e
✏(1�p),

and (d) 1� p  e
✏(1� p

0), are derived from the
definition of differential privacy.

D.1 CHARACTERIZING
WORST CASE PROBABILITIES

We first show a key lemma, later used in the
proof of our main privacy amplification result, that allows us to further refine the search region for
(p⇤, p0⇤) under �: {0, 1, . . . ,K}! [0, 1] functions that are symmetric around K

2 and that satisfy the
above mild monotonicity assumption. We call such � functions well-behaved.
Lemma D.1 (Characteristics of worst case probabilities). Consider well-behaved � functions such

that �(K�1
2) > 0 and �(K+1

2) > 0, the worst case probabilities (p⇤, p0⇤) = argmaxp,p0 f(p, p0; �)
must satisfy exactly one of the following:

p
⇤ = e

✏
p
0⇤
, 8p 2 [0,

1

e�✏ + 1
], p0 2 [0,

1

1 + e✏
] (59)

1� p
0⇤ = e

✏(1� p
⇤), 8p 2 [

1

1 + e�✏
, 1], p0 2 [

1

1 + e✏
, 1] (60)

See the blue line and the orange line in Figure 5, respectively.

To show the above Lemma D.1, we show Lemma D.2 and Lemma D.3 as follows, each of which
gives partial characteristics of the worst case probabilities. Lemma D.1 directly follows by combining
the two lemmas.
Lemma D.2. Consider a �: {0, 1, . . . ,K}! [0, 1] function that is symmetric around

K
2 . If � further

satisfies: 1) �(l+1)  �(l), 8l  K
2 , 2) �(l+1) � �(l), 8l � K

2 , and 3) �(K�1
2) > 0, �(K+1

2) > 0,

then the worst case probabilities (p⇤, p0⇤) = argmaxp,p0 f(p, p0; �) must satisfy one of the following

four equalities:

p
0⇤ = e

✏
p
⇤
, 8p 2 [0,

1

1 + e✏
], p0 2 [0,

1

1 + e�✏
] (61)

p
⇤ = e

✏
p
0⇤
, 8p 2 [0,

1

e�✏ + 1
], p0 2 [0,

1

1 + e✏
] (62)

1� p
⇤ = e

✏(1� p
0⇤), 8p 2 [

1

1 + e✏
, 1], p0 2 [

1

1 + e�✏
, 1] (63)

21

Under review as a conference paper at ICLR 2024

1� p
0⇤ = e

✏(1� p
⇤), 8p 2 [

1

1 + e�✏
, 1], p0 2 [

1

1 + e✏
, 1] (64)

Proof of Lemma D.2. Consider the privacy cost objective f(p, p0; �) as in Lemma 3.3, when the
mechanisms are i.i.d. The gradients w.r.t. p and p

0 are

rpf(p, p
0; �) =

K�1
2X

l=0

�
✓
K

l

◆
�(l) · (lpl�1(1� p)K�l � p

l(K � l)(1� p)K�l�1) (65)

+
KX

l=K+1
2

✓
K

l

◆
�(l) · (lpl�1(1� p)K�l � p

l(K � l)(1� p)K�l�1)

and

rp0f(p, p0; �) =

K�1
2X

l=0

e
m✏

✓
K

l

◆
�(l) · (lp0l�1(1� p

0)K�l � p
0l(K � l)(1� p

0)K�l�1) (66)

+
KX

l=K+1
2

�em✏

✓
K

l

◆
�(l) · (lp0l�1(1� p

0)K�l � p
0l(K � l)(1� p

0)K�l�1)

We show 8p 2 (0, 1), rpf(p, p0; �) > 0 and rp0f(p, p0; �) < 0. This implies there is no local
maximum inside F , and so p

⇤
, p

0⇤ = argmaxp,p0 f(p, p0; �) must be on one of the four boundaries
of F .

To show rpf(p, p0; �) > 0 for p 2 (0, 1), we first show for p 2 (0, 1)

K�1
2X

l=0

�(l)

✓
K

l

◆
· (pl(K � l)(1� p)K�l�1 � lp

l�1(1� p)K�l) > 0 (67)

,
K�1

2X

l=0

�(l)

✓
K

l

◆
· pl(K � l)(1� p)K�l�1

>

K�1
2X

l=0

�(l)

✓
K

l

◆
· lpl�1(1� p)K�l) (68)

,
K�1

2X

l=0

�(l)

✓
K � 1

l

◆
K

K � l
· pl(K � l)(1� p)K�l�1 (69)

>

K�1
2X

l=1

�(l)

✓
K � 1

l � 1

◆
K

l
· lpl�1(1� p)K�l

, K

K�1
2X

l=0

�(l)

✓
K � 1

l

◆
p
l(1� p)K�l�1

> K

K�1
2X

l=1

�(l)

✓
K � 1

l � 1

◆
p
l�1(1� p)K�l (70)

,
K�1

2X

l=0

�(l)

✓
K � 1

l

◆
p
l(1� p)K�l�1

>

K�1
2 �1X

l=0

�(l + 1)

✓
K � 1

l

◆
p
l(1� p)K�l�1 (71)

Note that for l  K�1
2 , �(l) � �(l + 1). Since p 2 (0, 1), this implies for l 2 {0, . . . , K�1

2 � 1},

�(l)

✓
K � 1

l

◆
p
l(1� p)K�l�1 � �(l + 1)

✓
K � 1

l

◆
p
l(1� p)K�l�1 (72)

Furthermore, note the L.H.S. of Eq. 71 has one additional term �(K�1
2)

�K�1
K�1

2

�
p

K�1
2 (1 � p)

K�1
2 .

Since �(K�1
2) > 0 and p 2 (0, 1),

�(
K � 1

2
)

✓
K � 1
K�1
2

◆
p

K�1
2 (1� p)

K�1
2 > 0 (73)

22

Under review as a conference paper at ICLR 2024

Therefore, combining Eq. 72 and Eq. 73, we conclude Eq. 71 holds.

Next, we show for p 2 (0, 1),
KX

l=K+1
2

✓
K

l

◆
�(l) · (lpl�1(1� p)K�l � p

l(K � l)(1� p)K�l�1) > 0 (74)

,
KX

l=K+1
2

✓
K

l

◆
�(l) · lpl�1(1� p)K�l

>

KX

l=K+1
2

✓
K

l

◆
p
l(K � l)(1� p)K�l�1 (75)

,
KX

l=K+1
2

�(l)

✓
K � 1

l � 1

◆
K

l
· lpl�1(1� p)K�l (76)

>

K�1X

l=K+1
2

�(l)

✓
K � 1

l

◆
K

K � l
· pl(K � l)(1� p)K�l�1

, K

KX

l=K+1
2

�(l)

✓
K � 1

l � 1

◆
· pl�1(1� p)K�l (77)

> K

K�1X

l=K+1
2

�(l)

✓
K � 1

l

◆
· pl(1� p)K�l�1

,
KX

l=K+1
2

�(l)

✓
K � 1

l � 1

◆
· pl�1(1� p)K�l

>

KX

l=K+1
2 +1

�(l � 1)

✓
K � 1

l � 1

◆
· pl�1(1� p)K�l (78)

Note that for l � K+1
2 +1, �(l) � �(l�1). Since p 2 (0, 1), this implies for l 2 {K+1

2 +1, . . . ,K},

�(l)

✓
K � 1

l � 1

◆
p
l�1(1� p)K�l � �(l � 1)

✓
K � 1

l � 1

◆
p
l�1(1� p)K�l (79)

Furthermore, note the L.H.S. of Eq. 78 has one additional term �(K+1
2)

�K�1
K�1

2

�
p

K�1
2 (1 � p)

K�1
2 .

Since �(K+1
2) > 0 and p 2 (0, 1),

�(
K + 1

2
)

✓
K � 1
K�1
2

◆
p

K�1
2 (1� p)

K�1
2 > 0 (80)

Therefore, combining Eq. 79 and Eq. 80, we conclude Eq. 78 holds. Hence, combining Eq. 67 and
Eq. 74, we have for p 2 (0, 1), if � satisfies the three conditions,

rpf(p, p
0; �) > 0 (81)

Similarly, one can show for p 2 (0, 1), if � satisfies the three conditions,
rp0f(p, p0; �) < 0 (82)

This implies there is no local minima or local maxima inside the feasible region F . Hence, the worst
case probability (p⇤, p0⇤) = argmaxp,p0 f(p, p0; �) is on one of the four boundaries of F , that is,
(p⇤, p0⇤) satisfy exactly one of the following:

p
0⇤ = e

✏
p
⇤
, 8p 2 [0,

1

1 + e✏
], p0 2 [0,

1

1 + e�✏
]

p
⇤ = e

✏
p
0⇤
, 8p 2 [0,

1

e�✏ + 1
], p0 2 [0,

1

1 + e✏
]

1� p
⇤ = e

✏(1� p
0⇤), 8p 2 [

1

1 + e✏
, 1], p0 2 [

1

1 + e�✏
, 1]

1� p
0⇤ = e

✏(1� p
⇤), 8p 2 [

1

1 + e�✏
, 1], p0 2 [

1

1 + e✏
, 1]

23

Under review as a conference paper at ICLR 2024

Lemma D.3. Consider a �: {0, 1, . . . ,K} ! [0, 1] function that is symmetric around
K
2 . If �

satisfies: �(l) � �(l + 1), 8l  K
2 and �(l + 1) � �(l), 8l � K

2 , then the privacy cost objective

f(p,p0; �) is maximized when p � p
0
.

Proof of Lemma D.3. WLOG, consider the output of DaRRM to be 1. By Eq. 41, the privacy cost
objective f(p, p0; �), defined in Lemma 3.3 when � = 0, when the mechanisms are i.i.d., is equivalent
to

f(p, p0; �) =
Pr[DaRRM�(D) = 1]

Pr[DaRRM�(D0) = 1]
� 1 (83)

Hence, f(p, p0; �) is maximized when Pr[A(D) = 1] � Pr[A(D0) = 1]. Note that

Pr[DaRRM�(D) = 1] =
1

2

KX

l=K+1
2

�(l)

✓
K

l

◆
p
l(1� p)K�l � 1

2

K�1
2X

l=0

�(l)

✓
K

l

◆
p
l(1� p)K�l�1 +

1

2

(84)

Define g(l) =

⇢
� 1

2�(l) 8l  K
2

1
2�(l) 8l � K

2

. Since �(l) � �(l + 1), 8l  K
2 and �(l + 1) � �(l), 8l � K

2 ,

there is g(l + 1) � g(l), 8l 2 {0, . . . ,K}. And replacing �(l) with g(l),

Pr[DaRRM�(D) = 1] =
KX

l=0

g(l)

✓
K

l

◆
p
l(1� p)K�l (85)

The gradient of the above probability w.r.t. p is

rp Pr[DaRRM�(D) = 1] (86)

=
KX

l=0

g(l)

✓
K

l

◆⇣
lp

l�1(1� p)K�l � (K � l)pl(1� p)K�l�1
⌘

(87)

=
KX

l=1

g(l)

✓
K � 1

l � 1

◆
K

l
lp

l�1(1� p)K�l �
K�1X

l=0

✓
K � 1

l

◆
K

K � l
(K � l)pl(1� p)K�l�1 (88)

= K

KX

l=1

✓
K � 1

l � 1

◆
p
l�1(1� p)K�l �K

K�1X

l=0

✓
K � 1

l

◆
p
l(1� p)K�l�1 (89)

= K

K�1X

l=0

g(l + 1)

✓
K � 1

l

◆
p
l(1� p)K�l�1 �K

K�1X

l=0

g(l)

✓
K � 1

l

◆
p
l(1� p)K�l�1 (90)

= K

K�1X

l=0

⇣
g(l + 1)� g(l)

⌘✓
K � 1

l

◆
p
l(1� p)K�l�1 (91)

Since g(l + 1) � g(l) and the binomial probability is always � 0, rp Pr[DaRRM�(D) = 1] � 0.
This implies whenever p � p

0, Pr[DaRRM�(D) = 1] � Pr[DaRRM�(D0) = 1]. Hence, the privacy
cost objective f(p, p0) is maximized when p � p

0.

D.2 PROOF OF MAIN RESULTS ON PRIVACY AMPLIFICATION (THEOREM 4.1)

Roadmap. To show Theorem 4.1, we show two parts separately: in section D.2.1, we show if the
privacy allowance m � K+1

2 , one can set � = 1 (see Lemma D.4), and in section D.2.2 we show
if m  K�1

2 , one can set � to be the one such that DaRRM� has the same output distribution as
outputting the majority based on 2m� 1 subsampled mechanisms and DaRRM� still satisfies the
privacy guarantee. We call this � function �Double Subsampling (see Lemma D.8).

Showing Lemma D.4 is relatively straightforward (see Section D.2.1). To show Lemma D.8, we first
introduce a class of well-behaved � functions called the “symmetric-form” family, and derive two
clean sufficient conditions for � functions from the “symmetric-form” family such that DaRRM�

24

Under review as a conference paper at ICLR 2024

is m✏-differentially private. After that, we show setting �Double Subsampling as in Lemma D.8 satisfies
the two conditions, and hence, DaRRM�Double Subsampling is m✏-differentially private. Details are in
Section D.2.2.

Finally, Theorem 4.1 follows directly from combining Lemma D.4 and Lemma D.8.

D.2.1 PRIVACY AMPLIFICATION UNDER LARGE PRIVACY ALLOWANCE

We show the following lemma by showing that if one sets �(l) = 1, 8l 2 {0, 1, . . . ,K}, then
m � K+1

2 suffices to ensure the worst case probabilities (p⇤i , pi) = argmaxpi,p0
i
f(p, p0; �) satisfy

Eq. 37 in Lemma 3.3, and hence if m � K+1
2 , DaRRM�=1 is m✏-differentially private.

Lemma D.4 (Privacy amplification under large privacy allowance m � K+1
2). Consider using

DaRRM to solve Problem 1.1 with pi = p, p
0
i = p

0
, 8i 2 [K] and � = � = 0. If the privacy

allowance is m � K+1
2 , one can set �(l) = 1, 8l 2 {0, . . . ,K} in DaRRM� and DaRRM� is m✏

differentially private.

Proof of Lemma D.4. Consider �(l) = 1, 8l 2 {0, 1, . . . ,K}. Since �(l) � �(l + 1), 8l  K�1
2 ,

�(l + 1) � �(l), 8l � K+1
2 and �(K�1

2) = �(K+1
2) = 1 > 0, by Lemma D.1, the worst case

probabilities (p⇤, p0⇤) = argmaxp,p0 f(p, p0) are on one of the two boundaries of F , that is, they
satisfy either p = e

✏
p
0 , 8p 2 [0, 1

1+e✏], p
0 2 [0, 1

1+e✏] or 1� p
0 = e

✏(1� p) , 8p 2 [1
1+e�✏ , 1], p0 2

[1
1+e✏ , 1]. We now find the local maximums on the boundary p = e

✏
p
0 and 1 � p

0 = e
✏(1 � p)

separately and then find the global maximum (p⇤, p0⇤) = argmaxp,p0 f(p, p0; �).

Part I: Finding the local worse case probabilities on the boundary p = e
✏
p
0.

The privacy cost objective f(p, p0; �) on the boundary p = e
✏
p
0 , 8p 2 [0, 1

e�✏+1], p
0 2 [0, 1

1+e✏],
can be written as the following by substituting p with p

0 (and omitting � for convenience):

f(p0) =

K�1
2X

l=0

(em✏

✓
K

l

◆
p
0l(1� p

0)K�l �
✓
K

l

◆
(e✏p0)l(1� e

✏
p
0)K�l) · �(l) (92)

+
KX

l=K+1
2

(

✓
K

l

◆
(e✏p0)l(1� e

✏
p
0)K�l � e

m✏

✓
K

l

◆
p
0l(1� p

0)K�l) · �(l)

And the gradient w.r.t. p0 is

rp0f(p0) =

K�1
2X

l=0

⇣
e
m✏

✓
K

l

◆
(lp0l�1(1� p

0)K�l � p
0l(K � l)(1� p

0)K�l�1) (93)

� e
✏

✓
K

l

◆
(l(e✏p0)l�1(1� e

✏
p
0)K�l � e

✏l
p
0l(K � l)(1� e

✏
p
0)K�l�1)

⌘
· �(l)

+
KX

l=K+1
2

⇣
e
✏

✓
K

l

◆
(l(e✏p0)l�1(1� e

✏
p
0)K�l � e

✏l
p
0l(K � l)(1� e

✏
p
0)K�l�1)

� e
m✏

✓
K

l

◆
(lp0l�1(1� p

0)K�l � p
0l(K � l)(1� p

0)K�l�1)
⌘
· �(l)

rp0f(p0) (94)

= �K
K�1

2X

l=0

e
m✏

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
�(l) +K

K�1X

l=K+1
2

e
m✏

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
�(l)

+K

K�1
2X

l=0

e
✏

✓
K � 1

l

◆
(✏p0)✏(1� e

✏
p
0)K�l�1

�(l)�K

K�1X

l=K+1
2

e
✏

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

�(l)

25

Under review as a conference paper at ICLR 2024

+K

K�1
2 �1X

l=0

e
m✏

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
�(l + 1)�K

K�1X

l=K�1
2

e
m✏

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
�(l + 1)

�K

K�1
2 �1X

l=0

e
✏

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

�(l + 1) +K

K�1X

l=K�1
2

e
✏

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

�(l + 1)

That is,
rp0f(p0)

K
(95)

= e
m✏

K�1
2 �1X

l=0

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
⇣
�(l + 1)� �(l)

⌘
� 2em✏

✓
K � 1
K�1
2

◆
p
0K�1

2 (1� p
0)

K�1
2 �(

K � 1

2
)

+ e
m✏

K�1X

l=K+1
2

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
⇣
�(l)� �(l + 1)

⌘

+ e
✏

K�1
2 �1X

l=0

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

⇣
�(l)� �(l + 1)

⌘
+ 2e✏

✓
K � 1
K�1
2

◆
(e✏p0)

K�1
2 (1� e

✏
p
0)

K�1
2 �(

K � 1

2
)

+ e
✏

K�1X

l=K+1
2

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

⇣
�(l + 1)� �(l)

⌘

When �(l) = 1, the above gradient is then
rp0f(p0)

K
= �2em✏

✓
K � 1
K�1
2

◆
p
0K�1

2 (1� p
0)

K�1
2 + 2e✏

✓
K � 1
K�1
2

◆
(e✏p0)

K�1
2 (1� e

✏
p
0)

K�1
2 (96)

If p0 = 0, then p = 0, and the original privacy cost objective is f(0, 00; � = 1) = e
m✏ � 1, which

satisfies Eq. 37 in Lemma 3.3 (i.e. DaRRM�=1 is m✏-differentially private at (p, p0) = (0, 0)).

For p0 > 0, if rp0f(p0)  0, then we know f(p0)  f(0), i.e. the worst case probabilities on the
boundary p = e

✏
p
0 is (p, p0) = (0, 0). To ensure rp0f(p0)  0,

rp0f(p0)  0 (97)

, �2em✏

✓
K � 1
K�1
2

◆
p
0K�1

2 (1� p
0)

K�1
2  �2e✏

✓
K � 1
K�1
2

◆
(e✏p0)

K�1
2 (1� e

✏
p
0)

K�1
2 (98)

, e
m✏

✓
K � 1
K�1
2

◆
p
0K�1

2 (1� p
0)

K�1
2 � e

✏

✓
K � 1
K�1
2

◆
(e✏p0)

K�1
2 (1� e

✏
p
0)

K�1
2 (99)

Let

R :=
L.H.S.
R.H.S.

=
e
m✏

�K�1
K�1

2

�
p
0K�1

2 (1� p
0)

K�1
2

e✏
�K�1

K�1
2

�
(e✏p0)

K�1
2 (1� e✏p0)

K�1
2

=
e
m✏

e
K+1

2 ✏
· (1� p

0

1� e✏p0
)

K�1
2 (100)

and R � 1, rp0f(p0)  0. Since 1�p0

1�e✏p0 � 1, R � e
(m�K+1

2)·✏.

Hence, to make sure R � 1 (and so rp0f(p0)  0), m � K+1
2 suffices.

Part II: Finding the local worst case probabilities on the boundary 1� p
0 = e

✏(1� p).
Now consider the maximum point on the other boundary 1� p

0 = e
✏(1� p) for p0 2 [1

1+e✏ , 1] and
p 2 [1

1+e�✏ , 1]. Following the privacy cost objective f(p, p0; �) and let q = 1� p and p
0 = 1� q

0,
the objective is

f(q, q0; �) =

K�1
2X

l=0

⇣
e
m✏

✓
K

l

◆
(1� q

0)lq0K�l �
✓
K

l

◆
(1� q)lqK�l

⌘
· �(l) (101)

26

Under review as a conference paper at ICLR 2024

+
KX

l=K+1
2

⇣✓
K

l

◆
(1� q)lqK�l � e

m✏

✓
K

l

◆
(1� q

0)lq0K�l
⌘
· �(l)

Substituting 1 � p
0 = e

✏(1 � p) , q
0 = e

✏
q (and omitting � for convenience), the privacy cost

objective can be written as

f(q) =

K�1
2X

l=0

⇣
e
m✏

✓
K

l

◆
(1� e

✏
q)l(e✏q)K�l �

✓
K

l

◆
(1� q)lqK�l

⌘
· �(l) (102)

+
KX

l=K+1
2

⇣✓
K

l

◆
(1� q)lqK�l � e

m✏

✓
K

l

◆
(1� e

✏
q)l(e✏q)K�l

⌘
· �(l)

And the gradient w.r.t. q is

rqf(q) =

K�1
2X

l=0

⇣
e
m✏

✓
K

l

◆⇣
(�e✏)l(1� e

✏
q)l�1(e✏q)K�l + e

✏(K � l)(1� e
✏
q)l(e✏q)K�l�1

⌘

(103)

�
✓
K

l

◆⇣
� l(1� q)l�1

q
K�l + (K � l)(1� q)lqK�l�1

⌘⌘
· �(l)

+
KX

l=K+1
2

⇣✓
K

l

◆⇣
� l(1� q)l�1

q
K�l + (K � l)(1� q)lqK�l�1

⌘

� e
m✏

✓
K

l

◆⇣
(�e✏)l(1� e

✏
q)l�1(e✏q)K�l + e

✏(K � l)(1� e
✏
q)l(e✏q)K�l�1

⌘⌘
· �(l)

rqf(q) = �
K�1

2X

l=1

e
(m+1)✏

✓
K � 1

l � 1

◆
K

l
l(1� e

✏
q)l�1(e✏q)K�l · �(l) (104)

+

K�1
2X

l=0

e
(m+1)✏

✓
K � 1

l

◆
K

K � l
(K � l)(1� e

✏
q)l(e✏q)K�l�1 · �(l)

+

K�1
2X

l=1

✓
K � 1

l � 1

◆
K

l
l(1� q)l�1

q
K�l · �(l)�

K�1
2X

l=0

✓
K � 1

l

◆
K

K � l
(K � l)(1� q)lqK�l�1 · �(l)

�
KX

l=K+1
2

✓
K � 1

l � 1

◆
K

l
l(1� q)l�1

q
K�l · �(l) +

K�1X

l=K+1
2

✓
K � 1

l

◆
K

K � l
(K � l)(1� q)lqK�l�1 · �(l)

+
KX

l=K+1
2

e
(m+1)✏

✓
K � 1

l � 1

◆
K

l
l(1� e

✏
q)l�1(e✏q)K�l · �(l)

�
K�1X

l=K+1
2

e
(m+1)✏

✓
K � 1

l

◆
K

K � l
(K � l)(1� e

✏
q)l(e✏q)K�l�1 · �(l)

rqf(q) = �K
K�1

2X

l=1

e
(m+1)✏

✓
K � 1

l � 1

◆
(1� e

✏
q)l�1(e✏q)K�l · �(l) (105)

+K

K�1
2X

l=0

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l)

27

Under review as a conference paper at ICLR 2024

+K

K�1
2X

l=1

✓
K � 1

l � 1

◆
(1� q)l�1

q
K�l · �(l)�K

K�1
2X

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l)

�K

KX

l=K+1
2

✓
K � 1

l � 1

◆
(1� q)l�1

q
K�l · �(l) +K

K�1X

l=K+1
2

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l)

+K

KX

l=K+1
2

e
(m+1)✏

✓
K � 1

l � 1

◆
(1� e

✏
q)l�1(e✏q)K�l · �(l)

�K

K�1X

l=K+1
2

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l)

The above is

rqf(q)

K

= �
K�1

2 �1X

l=0

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l + 1) (106)

+

K�1
2X

l=0

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l)

+

K�1
2 �1X

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l + 1)�

K�1
2X

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l)

�
K�1X

l=K�1
2

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l + 1) +

K�1X

l=K+1
2

✓
K � 1

l

◆
(1� q)lqK�l�1 · �(l)

+
K�1X

l=K�1
2

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l + 1)

�
K�1X

l=K+1
2

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 · �(l)

=

K�1
2 �1X

l=0

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 ·

⇣
�(l)� �(l + 1)

⌘
(107)

+
K�1X

l=K+1
2

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 ·

⇣
�(l + 1)� �(l)

⌘

+ 2e(m+1)✏

✓
K � 1
K�1
2

◆
(1� e

✏
q)

K�1
2 (e✏q)

K�1
2 · �(K � 1

2
) Since �(

K + 1

2
) = �(

K � 1

2
)

+

K�1
2 �1X

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 ·

⇣
�(l + 1)� �(l)

⌘

+
K�1X

l=K+1
2

(1� q)lqK�l�1 ·
⇣
�(l)� �(l + 1)

⌘

� 2

✓
K � 1
K�1
2

◆
(1� q)

K�1
2 q

K�1
2 · �(K � 1

2
) Since �(

K � 1

2
) = �(

K + 1

2
)

28

Under review as a conference paper at ICLR 2024

When �(l) = 1, then the above gradient is then

rqf(q)

K
= 2e(m+1)✏

✓
K � 1
K�1
2

◆
(1� e

✏
q)

K�1
2 (e✏q)

K�1
2 � 2

✓
K � 1
K�1
2

◆
(1� q)

K�1
2 q

K�1
2 (108)

Since p 2 [1
1+e�✏ , 1], and q = 1 � p 2 [0, 1

1+e✏], (1 � e
✏
q)(e✏q) � (1 � q)q. Furthermore,

since e
(m+1)✏ � 1, rqf(q) � 0. Hence, f(q) achieves the maximum at q = 1

1+e✏ — that is, at
p = 1� 1

1+e✏ = 1
1+e�✏ . Since 1�p0 = e

✏(1�p), f(q) achieves the maximum at p0 = 1�e✏(1�p) =
1� e

✏(1� 1
1+e�✏) =

1
1+e✏ . Notice that p, p0 = (1

1+e�✏ ,
1

1+e✏)= argminp,p0 f(p, p0; �) on the other
boundary p = e

✏
p
0, 8p 2 [0, 1

e�✏+1]. Hence, the global worst case probabilities (p⇤, p0⇤) are not on
the boundary 1� p

0 = e
✏(1� p).

Part III: Global maximum point (p, p0)
The above implies the global maximum points (aka. global worst case probabilities) (p⇤, p0⇤) =
argmaxp,p0 f(p, p0) = (0, 0) if m � K+1

2 , and f(0, 0) = e
m✏ � 1.

Therefore, by Lemma 3.3, if m � K+1
2 , setting �(l) = 1, 8l 2 {0, . . . ,K} ensures DaRRM� is

m✏-differentially private.

D.2.2 PRIVACY AMPLIFICATION UNDER SMALL PRIVACY ALLOWANCE

Roadmap. To show the privacy amplification under a small privacy allowance m  K�1
2 in

Lemma D.8, we first observe that the � function corresponding to natural subsampling as shown in
Lemma 3.1 falls into a special family of � functions, which we call the “symmetric form family”,
that are a combination of two functions of a specific form on support {0, . . . , K

2 } and {K
2 , . . . ,K}

and are symmetric around K
2 — that is, �(l) =

⇢
1� 2h(l) l  K

2

2h(l)� 1 l � K
2

and h(l) + h(K � 1) = 1,

where h(l) is monotonically increasing on the support. It is not hard to see these functions are
well-behaved, and so we can apply Lemma D.1 in such cases to limit the region to search for the
worst case probabilities. For a � function that falls under this “symmetric form family”, we show two
clean sufficient conditions for DaRRM� to be m✏-differentially private in terms of the expectation of
the � function applied to some Binomial random variables, as in Lemma D.5.

To show the privacy amplification results under a small privacy allowance m, we further need
two building blocks on recurrence relationships in expectation of Binomial random variables and
Hypergeometric random variables in Lemma D.6 and Lemma D.7.

Finally, based on Lemma D.6 and Lemma D.7, we show in Lemma D.8 that �Double Subsampling , i.e.,
the � function that enables DaRRM to have the same distribution as outputting the majority of
2m� 1 subsampled mechanisms, belongs to the “symmetric form family”, and satisfies the sufficient
conditions as stated in Lemma D.5. Hence DaRRM�Double Subsampling is m✏-differentially private.

Lemma D.5 (Privacy conditions of “symmetric form family”). Consider a � : {0, 1, . . . ,K}! [0, 1]
function that is of the form

�(l) =

⇢
1� 2h(l) l 2 {0, 1, . . . , K�1

2 }
2h(l)� 1 l 2 {K+1

2 , . . . ,K} (109)

where h(l) is a monotonically increasing function on l 2 {0, . . . ,K} and h(l) + h(K � l) = 1.

Let random variables X ⇠ Binom(K � 1, p) and Y ⇠ Binom(K � 1, e✏p). Let random variables

X̂ ⇠ Binom(K � 1, 1 � e
✏(1 � p)) and Ŷ ⇠ Binom(K � 1, p). If this � function further satisfies

the following two conditions:

e
m✏EX [h(X + 1)� h(X)] � e

✏EY [h(Y + 1)� h(Y)], 8p 2 [0,
1

1 + e✏
] (110)

e
(m+1)✏EX̂ [h(X̂ + 1)� h(X̂)] � EŶ [h(Ŷ + 1)� h(Ŷ)], 8p 2 [

1

1 + e�✏
, 1] (111)

then Algorithm DaRRM� is m✏-differentially private.

29

Under review as a conference paper at ICLR 2024

Proof of Lemma D.5. Since h(l + 1) � h(l) on l 2 {0, . . . ,K}, there is �(l) � �(l + 1), 8l  K
2

and �(l+1) � �(l), 8l � K
2 . Furthermore, since h(l)+h(K � l) = 1, �(K�1

2) = 1� 2h(K�1
2) =

1� 2(1�h(K+1
2)) = 2h(K+1

2)� 1. And so by Lemma D.1, the worst case probabilities (p⇤, p0⇤) =
argmaxp,p0 f(p, p0; �) satisfy one of the two following: p = e

✏
p
0 , 8p 2 [0, 1

1+e�✏], p0 2 [0, 1
1+e✏],

or 1� p
0 = e

✏(1� p), 8p 2 [1
1+e�✏ , 1], p0 2 [1

1+e✏ , 1].

On the boundary p = e
✏
p
0, where p

0 2 [0, 1
1+e✏], the privacy cost objective can be re-written as

f(p, p0) = f(p0) =

K�1
2X

l=0

(em✏

✓
K

l

◆
p
0l(1� p

0)K�l �
✓
K

l

◆
(e✏p0)l(1� e

✏
p
0)K�l) · �(l) (112)

+
KX

l=K+1
2

(

✓
K

l

◆
(e✏p0)l(1� e

✏
p
0)K�l � e

m✏

✓
K

l

◆
p
0l(1� p

0)K�l) · �(l)

as in Eq. 92, and as in Eq. 95, the gradient w.r.t. p0 is

rp0f(p0)

K
= e

m✏

K�1
2 �1X

l=0

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
⇣
�(l + 1)� �(l)

⌘
� 2em✏

✓
K � 1
K�1
2

◆
p
0K�1

2 (1� p
0)

K�1
2 �(

K � 1

2
)

(113)

+ e
m✏

K�1X

l=K+1
2

✓
K � 1

l

◆
p
0l(1� p

0)K�l�1
⇣
�(l)� �(l + 1)

⌘

+ e
✏

K�1
2 �1X

l=0

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

⇣
�(l)� �(l + 1)

⌘
+ 2e✏

✓
K � 1
K�1
2

◆
(e✏p0)

K�1
2 (1� e

✏
p
0)

K�1
2 �(

K � 1

2
)

+ e
✏

K�1X

l=K+1
2

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

⇣
�(l + 1)� �(l)

⌘

With this family of � function,

1. When l  K
2 , �(l)� �(l + 1) = (1� 2h(l))� (1� 2h(l + 1)) = 2h(l + 1)� 2h(l)

2. When l � K
2 , �(l + 1)� �(l) = (2h(l + 1)� 1)� (2h(l)� 1) = 2h(l + 1)� 2h(l)

3. Since �(K�1
2) = �(K+1

2),

2�(
K � 1

2
) =

⇣
�(

K � 1

2
) + �(

K + 1

2
)
⌘

(114)

=
⇣
1� 2h(

K � 1

2
) + 2h(

K + 1

2
)� 1

⌘
(115)

= 2h(
K + 1

2
)� 2h(

K � 1

2
) (116)

and so the gradient is equivalent to

rp0f(p0)

K
= �em✏

K�1X

l=0

✓
K � 1

l

◆
p
0l(1� p

0)K�l
⇣
2h(l + 1)� 2h(l)

⌘
(117)

+ e
✏
K�1X

l=0

✓
K � 1

l

◆
(e✏p0)l(1� e

✏
p
0)K�l�1

⇣
2h(l + 1)� 2h(l)

⌘

= �2em✏EX [h(X + 1)� h(X)] + 2e✏EY [h(Y + 1)� h(Y)] (118)

where X ⇠ Binom(K � 1, p0) and Y ⇠ Binom(K � 1, e✏p0). Hence,

rp0f(p0)  0, e
✏EY [h(Y + 1)� h(Y)]  e

m✏EX [h(X + 1)� h(X)] (119)

30

Under review as a conference paper at ICLR 2024

On the boundary 1 � p
0 = e

✏(1 � p), where p 2 [1
1+e�✏ , 1]. Let q = 1 � p and q

0 = 1 � p
0 for

q 2 [0, 1
1+e✏], the privacy cost objective can be re-written as

f(q) =

K�1
2X

l=0

⇣
e
m✏

✓
K

l

◆
(1� e

✏
q)l(e✏q)K�l �

✓
K

l

◆
(1� q)lqK�l

⌘
· �(l) (120)

+
KX

l=K+1
2

⇣✓
K

l

◆
(1� q)lqK�l � e

m✏

✓
K

l

◆
(1� e

✏
q)l(e✏q)K�l

⌘
· �(l)

as in Eq. 102, and as in Eq. 103, the gradient w.r.t. q is

rqf(q)

K
=

K�1
2 �1X

l=0

e
(m+1)✏

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 ·

⇣
�(l)� �(l + 1)

⌘
(121)

+
K�1X

l=K+1
2

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 ·

⇣
�(l + 1)� �(l)

⌘

+ 2e(m+1)✏

✓
K � 1
K�1
2

◆
(1� e

✏
q)

K�1
2 (e✏q)

K�1
2 · �(K � 1

2
)

+

K�1
2 �1X

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 ·

⇣
�(l + 1)� �(l)

⌘

+
K�1X

l=K+1
2

(1� q)lqK�l�1 ·
⇣
�(l)� �(l + 1)

⌘

� 2

✓
K � 1
K�1
2

◆
(1� q)

K�1
2 q

K�1
2 · �(K � 1

2
)

With this family of � function, the gradient above is equivalent to

rqf(q)

K
= e

(m+1)✏
K�1X

l=0

✓
K � 1

l

◆
(1� e

✏
q)l(e✏q)K�l�1 ·

⇣
2h(l + 1)� 2h(l)

⌘
(122)

�
KX

l=0

✓
K � 1

l

◆
(1� q)lqK�l�1 ·

⇣
2h(l + 1)� 2h(l)

⌘

= 2e(m+1)✏EX̂ [h(X̂ + 1)� h(X̂)]� 2EŶ [h(Ŷ + 1)� h(Ŷ)] (123)

where X̂ ⇠ Binom(K � 1, 1� e
✏(1� p)) and Ŷ ⇠ Binom(K � 1, p).

rqf(q) � 0, e
(m+1)✏EX̂ [h(X̂ + 1)� h(X̂)] � EŶ [h(Ŷ + 1)� h(Ŷ)] (124)

Recall q 2 [0, 1
1+e✏]. The above implies the maximum on this boundary is at point q = 1

1+e✏ —
that is, at point (p, p0) = (1

1+e�✏ ,
1

1+e✏). Notice this is the minimum on the first boundary p = e
✏
p
0.

Hence, the global maximum of the cost objective is at (p, p0) = (0, 0), and since the maximum
f(0, 0) = e

m✏ � 1  e
m✏ � 1, this further implies the algorithm is m✏ differentially private.

Lemma D.6 (Binomial Expectation Recurrence Relationship (Theorem 2.1 of Zhang et al. (2019))).
Let X(K�1) ⇠ Binom(K � 1, p) and X(K) ⇠ Binom(K, p). Let g(x) be a function with �1 <

E[g(X(K�1))] <1 and �1 < g(�1) <1, then

KpEX(K�1)
[g(X(K�1))] = EX(K)

[X(K)g(X(K) � 1)] (125)

Lemma D.7. Given i,m,K 2 Z, K � 1, 0  i  m  K, let X(K) ⇠ Binom(K, p) for some

p 2 [0, 1], there is

1�K
m

�EX(K)

✓
X

i

◆✓
K �X

m� i

◆�
=

✓
m

i

◆
p
i(1� p)m�i (126)

31

Under review as a conference paper at ICLR 2024

Proof of Lemma D.7. We show the above statement by induction on K and m.

Base Case: K = 1.

1. If m = 0, then i = 0. 1

(10)
EX(1)

[
�X
0

��1�X
0

�
] = EX(1)

[1] = 1, and
�0
0

�
p
0(1� p)0 = 1.

2. If m = 1,

(a) i = 0, 1

(11)
EX(1)

[
�X
0

��1�X
1

�
] = EX(1)

[1�X] = 1� p, and
�1
0

�
p
0(1� p)1 = 1� p

(b) i = 1, 1

(11)
EX(1)

[
�X
1

��1�X
0

�
] = EX(1)

[X] = p, and
�1
1

�
p
1(1� p)0 = p.

Hence, the statement holds for the base case.

Induction Hypothesis: Suppose the statement holds for some K � 1 and 0  i  m  K. Consider
1  i  m  K + 1,

1�K+1
m

�EX(K+1)

✓
X

i

◆✓
K + 1�X

m� i

◆�
(127)

=
1�K+1
m

�EX(K+1)
[

X!

i!(X � i)!

(K + 1�X)!

(m� i)!(K + 1�X � (m� i))!
] (128)

=
1�K+1

m

�
i!(m� i)!

EX(K+1)
[X

(X � 1)!

((X � 1)� (i� 1))!

(K � (X � 1))!

(K � (X � 1)� ((m� 1)� (i� 1)))!
]

(129)

=
1�K+1

m

�
i!(m� i)!

EX(K)
[

X!

(X � (i� 1))!

(K �X)!

(K �X � ((m� 1)� (i� 1)))!
] (130)

(By Lemma D.6)

=
(i� 1)!(m� i)!�K+1

m

�
i!(m� i)!

EX(K)
[

✓
X

i� 1

◆✓
K �X

(m� 1)� (i� 1)

◆
] (131)

=
(i� 1)!�K+1

m

�
i!
(K + 1)p

✓
K

m� 1

◆✓
m� 1

i� 1

◆
p
i�1(1� p)m�i (132)

(By Induction Hypothesis)

=
m!(K + 1�m)!

(K + 1)!i

K!

(m� 1)!(K �m+ 1)!

(m� 1)!

(i� 1)!(m� i)!
(K + 1)pi(1� p)m�i (133)

=
m!

i!(m� i)!
p
i(1� p)m�i =

✓
m

i

◆
p
i(1� p)m�i (134)

Now we consider the edge cases when 0 = i  m.

If i = 0 and m = 0,

1�K+1
0

�EX(K+1)
[

✓
X

0

◆✓
K + 1�X

0

◆
] = 1 · EX(K+1)

[1] = 1 =

✓
0

0

◆
p
0(1� p)0 (135)

If i = 0 and m > 0,

1�K+1
m

�EX(K+1)
[

✓
K + 1�X

m

◆
] (136)

=
1�K+1
m

�
K+1X

x=0

✓
K + 1� x

m

◆✓
K + 1

x

◆
p
x(1� p)K+1�x (137)

=
1�K+1
m

�
K+1X

x=0

✓
K + 1� x

m

◆⇣✓
K

x

◆
+

✓
K

x� 1

◆
I{x � 1}

⌘
p
x(1� p)K+1�x (138)

32

Under review as a conference paper at ICLR 2024

=
1�K+1
m

�
KX

x=0

✓
K + 1� x

m

◆✓
K

x

◆
p
x(1� p)K+1�x +

1�K+1
m

�
K+1X

x=1

✓
K + 1� x

m

◆✓
K

x� 1

◆
p
x(1� p)K+1�x

(139)

(Since when x = K + 1 and m > 0,
✓
K + 1� x

m

◆
= 0)

=
1�K+1
m

�
⇣ KX

x=0

✓
K � x

m

◆✓
K

x

◆
p
x(1� p)K+1�x +

KX

x=0

✓
K � x

m� 1

◆✓
K

x

◆
p
x(1� p)K+1�x

⌘

(140)

+
1�K+1
m

�
KX

x=0

✓
K � x

m

◆✓
K

x

◆
p
x+1(1� p)K�x

(Since
✓
K + 1� x

m

◆
=

✓
K � x

m

◆
+

✓
K � x

m� 1

◆
)

=
1�K+1
m

�
⇣
(1� p)EX(K)

[

✓
K �X

m

◆
] + (1� p)EX(k)

[

✓
K �X

m� 1

◆
]
⌘
+

1�K+1
m

�pEX(K)
[

✓
K �X

m

◆
]

(141)

=
1�K+1
m

�
⇣
EX(K)

[

✓
K �X

m

◆
] + (1� p)EX(K)

[

✓
K �X

m� 1

◆
]
⌘

(142)

=
1�K+1
m

�
⇣✓

K

m

◆
(1� p)m + (1� p)

✓
K

m� 1

◆
(1� p)m�1

⌘
(143)

(By Induction Hypothesis) (144)

=
1�K+1
m

�
✓
K + 1

m

◆
(1� p)m (145)

= (1� p)m (146)

Based on Lemma D.6 and Lemma D.7 and using the sufficient conditions in Lemma D.5, we are now
ready to present the privacy amplification results under a small privacy allowance m as follows.

Lemma D.8 (Privacy amplification under small privacy allowance m  K�1
2). Consider using

DaRRM to solve Problem 1.1 with pi = p, p
0
i = p

0
, 8i 2 [K] and � = � = 0. If the pri-

vacy allowance is m  K�1
2 , one can set �(l) =

⇢
1� 2h(l) 8l2 {0, 1, . . . , K�1

2 }
2h(l)� 1 8l2 {K+1

2 , . . . ,K} , where

h : {0, 1, . . . ,K} ! [0, 1] and h(l) =
P2m�1

i=m
(li)(

K�l
2m�1�i)

(K
2m�1)

, and Algorithm DaRRM� is m✏-

differentially private.

Proof of Lemma D.8. Let X(K�1) ⇠ Binom(K � 1, p) and Y(K�1) ⇠ Binom(K � 1, e✏p).

EX(K�1)
[h(X + 1)] =

1� K
2m�1

�
2m�1X

i=m

EX(K�1)
[

✓
X + 1

i

◆✓
K �X � 1

2m� 1� i

◆
] (147)

=
1� K

2m�1

�
2m�1X

i=m

EX(K�1)
[

✓
X

i

◆✓
K �X � 1

2m� 1� i

◆
+

✓
X

i� 1

◆✓
K �X � 1

2m� 1� i

◆
]

(148)

(Since
✓
X + 1

i

◆
=

✓
X

i

◆
+

✓
X

i� 1

◆
I{i � 1})

33

Under review as a conference paper at ICLR 2024

=
1� K

2m�1

�
2m�1X

i=m

⇣
EX(K�1)

[

✓
X

i

◆✓
K � 1�X

2m� 1� i

◆
] + EX(K�1)

[

✓
X

i� 1

◆✓
K � 1�X

(2m� 2)� (i� 1)

◆
]
⌘

(149)

=
1� K

2m�1

�
2m�1X

i=m

⇣✓
K � 1

2m� 1

◆✓
2m� 1

i

◆
p
i(1� p)2m�1�i (150)

+

✓
K � 1

2m� 2

◆✓
2m� 2

i� 1

◆
p
i�1(1� p)2m�1�i

⌘

(By Lemma D.7)

EX(K�1)
[h(X)] =

1� K
2m�1

�
2m�1X

i=m

EX(K�1)
[

✓
X

i

◆✓
K �X

2m� 1� i

◆
] (151)

(Since
✓

K �X

2m� 1� i

◆
=

✓
K � 1�X

2m� 1� i

◆
+

✓
K � 1�X

2m� 2� i

◆
)

=
1� K

2m�1

�
2m�1X

i=m

⇣
EX(K�1)

[

✓
X

i

◆✓
K � 1�X

2m� 1� i

◆
] + EX(K�1)

[

✓
X

i

◆✓
K � 1�X

2m� 2� i

◆
]I{i  2m� 2}

⌘

(152)

=
1� K

2m�1

�
2m�1X

i=m

⇣✓
K � 1

2m� 1

◆✓
2m� 1

i

◆
p
i(1� p)2m�1�i (153)

+

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
p
i(1� p)2m�2�iI{i  2m� 2}

⌘

(By Lemma D.7)

Hence,

EX(K�1)
[h(X + 1)� h(X)] (154)

=
1� K

2m�1

�
⇣ 2m�1X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i� 1

◆
p
i�1(1� p)2m�1�i �

2m�2X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
p
i(1� p)2m�2�i

⌘

(155)

=
1� K

2m�1

�
⇣ 2m�2X

i=m�1

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
p
i(1� p)2m�2�i �

2m�2X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
p
i(1� p)2m�2�i

⌘

(156)

=
2m� 1

K

✓
2m� 2

m� 1

◆
p
m�1(1� p)m�1 (157)

Similarly,

EY(K�1)
[h(Y + 1)� h(Y)] =

2m� 1

K

✓
2m� 2

m� 1

◆
(e✏p)m�1(1� e

✏
p)m�1 (158)

Since p(1� p) � e
�✏

e
✏
p(1� e

✏
p) for p 2 [0, 1

1+e✏],

e
(m�1)✏EX(K�1)

[h(X + 1)� h(X)] =
2m� 1

K

✓
2m� 2

m� 1

◆
e
(m�1)✏

p
m�1(1� p)m�1 (159)

� 2m� 1

K

✓
2m� 2

m� 1

◆
e
(m�1)✏(e�✏

e
✏
p(1� e

✏
p))m�1 (160)

=
2m� 1

K

✓
2m� 2

m� 1

◆
(e✏p)m�1(1� e

✏
p)m�1 (161)

34

Under review as a conference paper at ICLR 2024

= EY(K�1)
[h(Y + 1)� h(Y)] (162)

and so
e
m✏EX(K�1)

[h(X + 1)� h(X)] � e
✏EY(K�1)

[h(Y + 1)� h(Y)] (163)

The above shows �(l) =
⇢
1� 2h(l) l2 {0, 1, . . . , K�1

2 }
2h(l)� 1 l2 {K+1

2 , . . . ,K} , where h =
P2m�1

i=m
(li)(

K�1
2m�1�i)

(K
2m�1)

, satis-

fies the first condition in Eq. 110 of Lemma D.5. To ensure the Algorithm is m✏ differentially private,
we next show this � also satisfies the second condition in Eq. 111 of Lemma D.5.

Let X̂(K�1) ⇠ Binom(K�1, 1�e
✏(1�p)) and Ŷ(K�1) ⇠ Binom(K�1, p). By Eq. 149, we know

EX̂(K�1)
[h(X + 1)] =

1� K
2m�1

�
2m�1X

i=m

⇣
EX̂(K�1)

[

✓
X̂

i

◆✓
K � 1� X̂

2m� 1� i

◆
] + EX̂(K�1)

[

✓
X̂

i� 1

◆✓
K � 1� X̂

(2m� 2)� (i� 1)

◆
]
⌘

(164)

=
1� K

2m�1

�
2m�1X

i=m

⇣✓
K � 1

2m� 1

◆✓
2m� 1

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�1�i

(165)

+

✓
K � 1

2m� 2

◆✓
2m� 2

i� 1

◆
(1� e

✏(1� p))i�1(e✏(1� p))2m�1�i
⌘

By Lemma D.7
and by Eq. 152, we know

EX̂(K�1)
[h(X̂)] =

1� K
2m�1

�
2m�1X

i=m

⇣
EX̂(K�1)

[

✓
X̂

i

◆✓
K � 1� X̂

2m� 1� i

◆
] + EX̂(K�1)

[

✓
X̂

i

◆✓
K � 1� X̂

2m� 2� i

◆
]I{i  2m� 2}

⌘

(166)

=
1� K

2m�1

�
2m�1X

i=m

⇣✓
K � 1

2m� 1

◆✓
2m� 1

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�1�i

(167)

+

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�2�iI{i  2m� 2}
⌘

By Lemma D.7

Hence,
EX̂(K�1)

[h(X̂ + 1)� h(X̂)] (168)

=
1� K

2m�1

�
⇣ 2m�1X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i� 1

◆
(1� e

✏(1� p))i�1(e✏(1� p))2m�1�i (169)

�
2m�2X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�2�i
⌘

=
1� K

2m�1

�
⇣ 2m�2X

i=m�1

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�2�i (170)

�
2m�2X

i=m

✓
K � 1

2m� 2

◆✓
2m� 2

i

◆
(1� e

✏(1� p))i(e✏(1� p))2m�2�i
⌘

=
2m� 1

K

✓
2m� 2

m� 1

◆
(1� e

✏(1� p))m�1(e✏(1� p))m�1 (171)

Similarly,

EŶ(K�1)
[h(Ŷ + 1)� h(Ŷ)] =

2m� 1

K

✓
2m� 2

m� 1

◆
p
m�1(1� p)m�1 (172)

35

Under review as a conference paper at ICLR 2024

Hence,

e
(m+1)✏EX̂(K�1)

[h(X̂ + 1)� h(X̂)] = e
(m+1)✏ 2m� 1

K

✓
2m� 2

m� 1

◆
(1� e

✏(1� p))m�1(e✏(1� p))m�1

(173)

� 2m� 1

K

✓
2m� 2

m� 1

◆
(1� e

✏(1� p))m�1
e
(m�1)✏(1� p)m�1

(174)

=
2m� 1

K

✓
2m� 2

m� 1

◆
(e✏ � e

2✏(1� p))m�1(1� p)m�1

(175)

Note that

e
✏ � e

2✏(1� p) = e
✏ � e

2✏ + e
2✏
p � p (176)

, (e✏ + 1)(e✏ � 1)p � e
✏(e✏ � 1) (177)

, p � e
✏

e✏ + 1
=

1

1 + e�✏
(178)

and the second condition in Eq. 111 of Lemma D.5 is on p 2 [1
1+e�✏ , 1].

Therefore, following Eq. 175,

e
(m+1)✏EX̂(K�1)

[h(X̂ + 1)� h(X̂)] � 2m� 1

K

✓
2m� 2

m� 1

◆
p
m�1(1� p)m�1 (179)

= EŶ(K�1)
[h(Ŷ + 1)� h(Ŷ)] (180)

which means the second condition in Eq. 111 of Lemma D.5 is also satisfied.

Therefore, by Lemma D.5, DaRRM� with this specific choice of � is m✏-differentially private.

Now, Theorem 4.1 follows from combining Lemma D.4 and Lemma D.8.

36

Under review as a conference paper at ICLR 2024

E DETAILS OF OPTIMIZING � IN DARRM

E.1 DERIVING THE OPTIMIZATION OBJECTIVE

For � that is symmetric around K
2 , we can write the objective as

Ep1,p2,...,pK⇠T [E(DaRRM�)] (181)
= Ep1,p2,...,pK⇠T [DTV (DaRRM�(S) k f(S))] (182)
= Ep1,p2,...,pK⇠T [|Pr[DaRRM�(S) = 1]� Pr[f(S) = 1]|] (183)

= Ep1,p2,...,pK⇠T

2

4|
KX

l=K+1
2

⇣
↵l · (�(l) +

1

2
(1� �(l)))� ↵l

⌘
+

K�1
2X

l=0

↵l ·
1

2
(1� �(l))|

3

5 (184)

= Ep1,p2,...,pK⇠T

2

4
���

K�1
2X

l=0

↵l(
1

2
�(l)� 1

2
) +

KX

l=K+1
2

↵l(
1

2
� 1

2
�(l))

���

3

5 (185)

The above follows by conditioning on L = {0, 1, . . . ,K}, i.e. the sum of observed outcomes in S

= Ep1,p2,...,pK⇠T

2

4
���
1

2

KX

l=K+1
2

(↵l � ↵K�l) (1� �(l))
���

3

5 (186)

The above follows by symmetry of �

Furthermore, notice the objective is symmetric around 0, and can be written as

Ep1,p2,...,pK⇠T

2

41

2

KX

l=K+1
2

(↵l � ↵K�l) (1� �(l))

3

5 (187)

=
1

2
Ep1,p2,...,pK⇠T

2

4
KX

l=K+1
2

⇣
(↵l � ↵K�l)� (↵l � ↵K�l)�(l)

⌘
3

5 (188)

=
1

2
Ep1,p2,...,pK⇠T

2

4
KX

l=K+1
2

(↵l � ↵K�l)

3

5� 1

2
Ep1,p2,...,pK⇠T

2

4
KX

l=K+1
2

(↵l � ↵K�l)�(l)

3

5 (189)

and this is the same as optimizing

�1

2
Ep1,p2,...,pK⇠T

2

4
KX

l=K+1
2

(↵l � ↵K�l)�(l)

3

5 = �1

2

KX

l=K+1
2

Ep1,p2,...,pK⇠T [(↵l � ↵K�l)] �(l)

(190)

which is linear in �.

E.2 PRACTICAL APPROXIMATION OF THE OBJECTIVE

Since the optimization objective in Eq. 190 requires taking an expectation over p1, . . . , pK , and
this invovles integrating over K variables, which can be slow in practice, we propose the following
approximation to efficiently compute the objective. We start with a simple idea to compute the
objective, by sampling pi’s from [0, 1] and take an empirical average of the objective value over all
subsampled sets of p1, . . . , pK as the approximation of the expectation in Section E.2.1. However, we
found this approach is less numerically stable. We then propose the second approach to approximate
the objective in Section E.2.2, which approximates the integration over pi’s instead of directly
approximating the objective value. We use the second approximation approach in our experiments
and empirically demonstrates its effectiveness. Note approximation the optimization objective has no
affect on the privacy guarantee.

37

Under review as a conference paper at ICLR 2024

E.2.1 APPROXIMATION VIA DIRECT SAMPLING OF pi’S

We start with a straightforward way of approximating the objective:

1. Step 1: Sample p1, p2, . . . , pK ⇠ T
2. Step 2: Compute the sampled objective value g = � 1

2

PK
l=K+1

2
(↵l � ↵K�l)�(l)) based on

the sampled pi’s.
3. Repeat Step 1 and Step 2 for T = 10000 times. Let gt denotes the objective value in t-th

trial. Use 1
T

PT
t=1 gt as an unbiased estimation of the true objective.

However, we found this approximation is less numerically stable in the experiments and so we
propose and adpot the second approach as follows.

E.2.2 APPROXIMATING THE INTEGRATION OVER pi’S

Consider the following surrogate objective:

�1

2

KX

l=K+1
2

Z 1

0.5

Z 1

0.5
· · ·

Z 1

0.5
(↵l � ↵K�l)dp1dp2 . . . dpK · �(l) (191)

where we approximate the integration instead of directly approximating the objective value. The
approximation of the integration is based on the rectangular rule and that the Poison Binomial (PB)
distribution is invariant to the order of its probability parameters.

First, we discretize the integration over pi’s: pick ⌧ = 50 points representing probabilities between
[0.5, 1) with equal distance ✓. Denote this set of points as W . We pick only ⌧ = 50 samples to ensure
the distance between each sample, i.e., ✓, is not too small; or this can cause numerical instability.
For each l 2 {K+1

2 ,
K+1
2 + 1, . . . ,K}, we want to compute an approximated coefficient for �(l) as

follows:Z 1

0.5

Z 1

0.5
· · ·

Z 1

0.5
(↵l � ↵K�l)dp1dp2 . . . dpK ⇡

X

p12W

X

p22W
· · ·

X

pK2W
(↵l � ↵K�l) (192)

which approximates integration over a K-dimensional grid WK .

The idea is then to sample points from this K-dimensional grid WK and compute an empirical mean
of the integration based on the sample probabilities for p1, . . . , pK from WK as the approximation
of the integration in the objective.

Let (s1, s2, . . . , sK) be randomly sampled probability values from WK and we want to compute
(↵l � ↵K�l) for all l based on (p1, . . . , pK) = (s1, . . . , sK). To apply the rectangular rule, since the
grid of probabilities is K-dimensional, the weight of (↵l � ↵K�l) in the approximate integration
is ✓

K . Furthermore, observe that ↵l is the pmf at l from a Poison Binomial (PB) distribution in
our case, and PB(p1, . . . , pK) ⇠ PB(⇡(p1, . . . , pK)), where ⇡ denotes a permutation of p1, . . . , pK
and ⇠ denotes “the same distribution”. Hence, with a single probability sample (s1, . . . , sK), we
can indeed compute ↵l � ↵K�l for each l at K! points from the grid WK , since they all have the
same value. Therefore, we should set the weight of ↵l � ↵K�l in the approximate integration as
w = ✓

K ·K!. Furthermore, since the order of (p1, . . . , pK) does not affect the objective value, there
is a total of (⌧ choose K with replacement) =

�⌧+K�1
K

�
:= P different points in the grid WK .

In summary, our approximation of the integration proceeds as follows: let w = ✓
K · K! and

P =
�⌧+K�1

K

�
.

1. Step 1: Generate a set W with 50 values of equal distance between 0.5 and 1.
2. Step 2: Randomly sample (s1, s2, . . . , sK) ⇠ WK . Compute w · (↵l � ↵K�l) based on

(p1, p2, . . . , pK) = (s1, s2, . . . , sK).
3. Step 3: repeat Step 2 for N = 10000 times.

4. Step 4: Let gt =
PK

l=K+1
2

w · (↵l � ↵K�l) denotes the approximate integration value in
t-th trial.
Form an unbiased estimation of the integration as P

N

PN
t=1 gt.

38

Under review as a conference paper at ICLR 2024

E.3 REDUCING # CONSTRAINTS FROM1 TO A POLYNOMIAL SET

Lemma 5.1. Consider using DaRRM to solve Problem 1.1. Given an arbitrary �, let the global worst

case probabilities be (p⇤1, . . . , p
⇤
K , p

0⇤
1 , . . . , p

0⇤
K) = argmax{(pi,p0

i)}K
i=1

f(p1, . . . , pK , p
0
1, . . . , p

0
K ; �),

where f is the privacy cost objective defined in Lemma 3.3. Each pair (p⇤i , p
0⇤
i) satisfies

(p⇤i , p
0⇤
i) 2 {(0, 0), (1, 1), (0,�), (�, 0), (1 � �, 1), (1, 1 � �), (e

✏+�
e✏+1 ,

1��
e✏+1), (

1��
e✏+1 ,

e✏+�
e✏+1)},

8i 2 [K]. Furthermore, there exists a set P of size O(K7) such that (p⇤1, . . . , p
⇤
K , p

0⇤
1 , . . . , p

0⇤
K) =

argmax{(pi,p0
i)}K

i=12P f(p1, . . . , pK , p
0
1, . . . , p

0
K ; �) if � > 0 and a set P of size O(K3) if � = 0.

Figure 6: An illustration of the feasible region Fi.

Proof. Part I: Reducing # privacy constraints from1 to exponential. Consider (pi, p0i) for an ar-
bitrary i 2 [K] and fixing (pj , p0j), 8j 6= i. The privacy cost objective f(p1, . . . , pK , p

0
1, . . . , p

0
K ; �),

as defined in Lemma 3.3, is then linear in (pi, p0i). To ensure DaRRM� is differentially private with a
target privacy loss m✏, we need to consider the worst case probabilities (p⇤i , p0⇤i)= argmax(pi,p0

i)
f ,

given(pj , p0j), 8j 6= i. Since mechanism Mi is (✏,�)-differentially private, by definition, the follow-
ing constraints on (pi, p0i) apply simultaneously,

pi  e
✏
p
0
i +�, p

0
i  e

✏
p+�

1� pi  e
✏(1� p

0
i) +�, 1� p

0
i  e

✏(1� pi) +�

This implies (pi, p0i) lies in a feasible region Fi (see Figure 6). Notice the constraints on (pi, p0i), that
is, the boundaries of Fi, are linear in pi and p

0
i, max(pi,p0

i)
f(p1, . . . , pK , p

0
1, . . . , p

0
K ; �) is hence

a Linear Programming (LP) problem in (pi, p0i) for i 2 [K]. Hence, the (p⇤i , p
0⇤
i) has to be on one

of the eight corners of Fi — that is (p⇤i , p
0⇤
i) 2 {(0, 0), (1, 1), (0,�), (�, 0), (1 � �, 1), (1, 1 �

�), (e
✏+�
e✏+1 ,

1��
e✏+1), (

1��
e✏+1 ,

e✏+�
e✏+1)} := C. Therefore, the infinitely many privacy constraints are now

reduced to only 8K in optimizing for the best � function in DaRRM.

Part II: Reducing # privacy constraints from exponential to polynomial. To further reduce the
number of privacy constraints in optimization, recall by Lemma 3.3 we need � such that

f(p1, . . . , pK , p
0
1, . . . , p

0
K ; �) =

K�1
2X

l=0

(em✏
↵
0
l � ↵l) · �(l) +

KX

l=K+1
2

(↵l � e
m✏

↵
0
l) · �(l)  e

m✏ � 1 + 2�

(193)

where ↵l = Pr[L =
PK

i=1 Mi(D) = l] and ↵
0
l = Pr[L0 =

PK
i=1 Mi(D0) = l]. Note L follows a

Poisson Binomial (PB) distribution parameterized by p1, . . . , pK , and L0 follows a PB distribution

39

Under review as a conference paper at ICLR 2024

parameterized by p
0
1, . . . , p

0
K . Observe that PB distribution9 is invariant under the permutation

of parameters. That is, PB(p1, . . . , pK) has the same distribution as PB(⇡(p1, . . . , pK)), where ⇡

denotes permutation; and similarly, PB(p01, . . . , p0K) has the same distribution as PB(⇡(p01, . . . , p0K)).

Consider a set P of privacy constraints as Eq. 193, where each constraint in P is constructed
by setting (p1, p01), (p2, p

0
2), . . . , (pK , p

0
K) = (v1, v2, . . . , vK), where vi 2 C, 8i 2 [K], such

that constraints constructed by (p1, p01), (p2, p
0
2), . . . , (pK , p

0
K) = ⇡(v1, v2, . . . , vK) is not in P

— that is, P has size (8 chooses K with replacement) =
�K+8�1

K

�
= O(K7). Then, the global

worst case probabilities (p⇤1, . . . , p
⇤
K , p

0⇤
1 , . . . , p

0⇤
K) must satisfy one of the constraints in P , i.e.

(p⇤1, . . . , p
⇤
K , p

0⇤
1 , . . . , p

0⇤
K) = max{(pi,p0

i)}K
i=12P f(p1, . . . , pK , p

0
1, . . . , p

0
K ; �). This implies we only

need O(K7) privacy constraints in optimizing for the best noise function � in DaRRM.

Note when � = 0, i.e., under pure differential privacy setting, the feasible region Fi has only 4
corners instead of 8, that is, (p⇤i , p0⇤i) 2 C = {(0, 0), (1, 1), (e✏

e✏+1 ,
1

e✏+1), (
1

e✏+1 ,
e✏

e✏+1)}. Hence,
when � = 0, P has size (4 choose K with replacement) =

�K+4�1
K

�
= O(K3), implying we only

need O(K3) privacy constrants in optimizing for the best noise function �.

F FULL EXPERIMENT RESULTS

F.1 OPTIMAL � IN SIMULATIONS

F.1.1 COMPARISON AGAINST ADVANCED COMPOSITION

Advanced composition indiates less privacy loss than simple composition when the number of
compositions, m, is large, or when the failure probability � is large. To enable meaningful comparison
against advanced composition, we consider a larger K and a larger failure probability.

Consider K = 35, ✏ = 0.1,� = 10�5. By advanced composition, if one outputs the majority of M
subsampled mechanisms for some M < K, the majority output is (

p
2M log(1/�0)✏ +M✏(e✏ �

1),M�+�
0)-differentially private for some �0 > 0. We set this as the privacy guarantee of all majority

ensembling algorithms. That is, if we want the majority output to be (m✏, �)-differentially private, we
set m =

p
2M log(1/�0)+M(e✏�1) and � = M�+�

0 accordingly. The parameters ⌧ and � for the
constant � in randomized response (see Lemma C.1) are set to be ⌧ =

p
2K log(1/�0) +K(e✏ � 1)

and � = K�+ �
0.

In the experiments, we consider M = {10, 13, 15, 20} and �
0 = 0.1.

All values of the parameters of the private ensembling algorithms are computed and listed in the
table:

Subsampled mechanisms M 10 13 15 20
Privacy allowance m 7.8378 9.1046 9.8888 11.7005

Parameter of constant � ⌧ 16.3766 16.3767 16.3767 16.3767
Parameter of constant � � 0.10035 0.10035 0.10035 0.10035

Overall privacy loss m✏ 0.7837 0.9104 0.9889 1.1700
Overall failure probability � 0.10010 0.10013 0.10015 0.1002

Table 2: Parameters of all algorithms. Note all the private ensembling algorithms for comparison
in the experiment is required to be (m✏, �)-differentially private. K = 35, ✏ = 0.1, � = 10�5 and
�
0 = 0.1.

9See, e.g. https://en.wikipedia.org/wiki/Poisson_binomial_distribution, for the
pmf of Poisson Binomial (PB) distribution.

40

https://en.wikipedia.org/wiki/Poisson_binomial_distribution

Under review as a conference paper at ICLR 2024

Figure 7: Plots of � functions corresponding to optimized, subsampling (whose privacy guarantee is
reasoned through advanced composition), the data-independent � in randomized response and the
error in TV distance of the majority ensembling output of DaRRM with different � functions, when
K = 35, the number of subsamples M 2 {10, 20, 30, 40}, � = 10�5, and �

0 = 0.1.

F.1.2 COMPARISON UNDER PURE DP SETTINGS

Consider the pure differential privacy setting, where � = � = 0. Note in such pure differential
privacy case, simple composition is tight. The subsampling baseline here outputs the majority of
m out of K subsampeld mechansisms (without replacement). The majority output of different
ensembling algorithms for comparison is required to be m✏-differentially private. Furthermore, since
the number of constraints in our optimization framework is O(K3) under pure differential privacy
(see Lemma 5.1), we can optimize DaRRM� for aggregating a larger number K of mechanisms. In
this section, we present the simulation results for K 2 {11, 101} and compare the utility of three
majority ensembling algorithms: optimized DaRRM, subsampling and randomizied response, under
the same privacy loss.

Setting 1. K = 11, m 2 {1, 3, 5, 7}.

Figure 8: Plots of � functions corresponding to optimized, subsampling, the data-independent � in
randomized response and the error in TV distance of the majority ensembling output of DaRRM with
different � functions, when K = 11,m 2 {1, 3, 5, 7}, � = � = 0.

Setting 2. K = 101,m 2 {10, 20, 30, 40}.

41

Under review as a conference paper at ICLR 2024

Figure 9: Plots of � functions corresponding to optimized, subsampling, the data-independent � in
randomized response and the error in TV distance of the majority ensembling output of DaRRM with
different � functions, when K = 101,m 2 {10, 20, 30, 40}, � = � = 0.

F.1.3 COMPARISON UNDER DIFFERENT PRIOR DISTRIBUTIONS OF pi’S

Recall pi = Pr[Mi(D) = 1], 8i 2 [K]. We stress that our optimization procedure applies to any
prior distribution of pi’s. Let U denote the distribution Uniform([0, 1]). We present results when
pi ⇠ U , 8i 2 [K], in the previous sections to show the performance of optimized DaRRM� in the
most general case when we do not have any prior knowledge of the mechanisms Mi’s output, i.e., pi.
It is possible to consider a different prior distribution T of pi’s. If the true distribution of pi’s is closer
to T than U , than we get improved utility with the same privacy guarantee by optimizing � under T
than under U ; otherwise, if the true distribution of pi is very different from T , we suffer utility loss.

To illustrate this point, consider the following experiment setting. Suppose our prior belief is that
each mechanism Mi has a clear tendency towards voting 0 or 1, i.e., pi is far from 0.5. Let the new
distribution T be Uniform([0, 0.3] [[0.7, 1]).

To optimize � under T , we change the approximate objective in Eq. 191, which optimizes � assuming
pi ⇠ U , to be the following, which optimizes � assuming pi ⇠ T , 8i 2 [K],

�1

2

KX

l=K+1
2

Z 1

0.7

Z 1

0.7
· · ·

Z 1

0.7
(↵l � ↵K�l)dp1dp2 . . . dpK · �(l) (194)

Setting. K = 11,m 2 {3, 5}, � = � = 0.

We compute the error of the optimized DaRRM� in three different settings with three different actual
pi distributions:

1. “Actual: Uniform([0, 1])”, which means we take pi ⇠ U , 8i 2 [K] when computing the
error

2. “Actual: Uniform([0, 0.1])”, which means we take pi ⇠ Uniform([0, 0.1]), 8i 2 [K] when
computing the error
This setting implies the mechanisms have a clear majority (of 0)

3. “Actual: pi = 0.5”, which means we take pi = 0.5, 8i 2 [K] when computing the error
This setting implies the mechanisms have no clear majority

Note since T is closer to the distribution in the second setting, we would expect DaRRM� has a
lower error when � is optimized under T than under U in this setting. Also, since T is very different
from the distribution in the third setting, we would expect DaRRM� has a lower error when � is
optimized under U than under T .

42

Under review as a conference paper at ICLR 2024

(a) � function (m = 3) (b) Uniform pi’s (m = 3)

(c) Clear majority (m = 3) (d) No clear majority (m = 3)

(e) � function (m = 5) (f) Uniform pi’s (m = 5)

(g) Clear majority (m = 5) (h) No clear majority (m = 5)

Figure 10: Comparison of the error of DaRRM� with optimized � under two different prior distri-
butions of pi, i.e., U and T , in the setting where m 2 {3, 5},K = 11. Observe that if the prior
distribution of pi we use when optimizing � is closer to the actual distribution, we have additional
utility gain (i.e., decreased error); otherwise, we suffer utility loss (i.e., increased error), compared to
optimize � under the uniform distribution U of pi over [0, 1]. Furthermore, regardless of the choice of
the prior distribution of pi, optimized DaRRM� achieves a lower error compared to the two baselines:
Subsampling and Randomized Response.

43

Under review as a conference paper at ICLR 2024

F.2 PRIVATE DISTRIBUED SIGN-SGD

Notation. w(t) denotes the parameter of the model at the t-th communication round.

Additional Experiment Details. In our experiments, each client computes its gradient based on the
entire local dataset at each communication around. Also for simplicity, all clients are participated in
training at each round.

Algorithm 2 �-Stochastic Sign SGD (Algorithm 2 of Xiang & Su (2023b)) without client subsampling
1: Input: K clients, T communication rounds, batch size n, hyperparameters B,�,
2: Output: w(T)
3: Initialization: w(0) µ for each i 2 [K]
4: for communication round t = 1, 2, . . . , T do
5: Client:
6: for Client i 2 [K] do
7: Each client i 2 [K] computes n stochastic gradients g1

i (t), . . . ,g
(n)
i (t)

8: for coordinate j = 1, 2, . . . , d do
9: ĝi,j(t) 1 with probability

B+�+clip{ 1
n

Pn
i=1 g(i)

m,j(t)}
2B+2� ; ĝ(t)i,j �1 otherwise

10: end for
11: Report ĝi(t) to the server.
12: end for
13: Server:
14: On receiving one-bit encoded gradients ĝ1(t), . . . , ĝK(t) from the clients, compute g̃(t)

Aggregate({ĝi(t)}Ki=1)
15: Send g̃(t) to all clients
16: Upon receiving g̃(t): w(t+ 1) w(t)� ⌘g̃(t)
17: end for

Coordinate wise pure DP guarantee:

Theorem F.1 (Theorem 4 of Xiang & Su (2023b)). 0-StoSign is not differentially private. When � > 0,

�-StoSign is coordinate-wise log(2B+�
�)-differentially private. That is, �-StoSign is d · log(2B+�

�)-
differentially private.

F.3 PRIVATE SEMI-SUPERVISED KNOLWEDGE TRANSFER

Figure 11: Semi supervised knowledge transfer setting. This figure is adapted from Figure 1 of
PATE Papernot et al. (2017). Unlike PATE, we consider an untrustworthy aggregator and aggregate
private teachers through private majority ensembling.

44

Under review as a conference paper at ICLR 2024

More Details About the Baseline GNMax Papernot et al. (2018)
The GNMax aggregation mechanism proceeds as follows (Section 4.1 of Papernot et al. (2018)): on
input x,

M�(x) = argmax
i

{ni(x) +N (0,�2)} (195)

where ni(x) is # teachers who vote for class i.

Note GNMax works perfectly in aggregating non-private teachers, in our setting, it does not exploit
the fact that each teacher is (✏,�)-differentially private. Hence, GNMax can add more noise than
necessary to ensure the final aggregated output is (m✏, �)-differentially private, especially when ✏ is
small.

The privacy analysis Papernot et al. (2018) mainly focuses on computing the overall privacy loss
of multiple private majority ensembling queries, while our analysis focuses on the privacy loss of a
single-step aggregation from “prviate” teachers. Note the privacy composition analysis in Papernot
et al. (2018) also applies to our setting to reason about the privacy loss through multiple queries.

How to set � in GNMax?
Section 4.1 of Papernot et al. (2018) states the GNMax mechanism is (�,�/�2)-Renyi differentially
private (RDP), for all � � 1.

Although there is a data-dependent bound for GNMax that is tighter than the above mentioned
RDP bound in Section 4.1 and in Appendix A of Papernot et al. (2018), according to Corollary 11
of Papernot et al. (2018), this analysis applies to majority voting when the number of output classes
is � 3, which does not directly apply to our binary-output case. Hence, we use the data-independent
RDP bound for GNMax.

The following theorem shows the relationship between RDP and differential privacy (DP):
Theorem F.2 (RDP to DP (Theorem 5 of Papernot et al. (2018))). If a mechanism M guarantees

(�, ✏)-RDP, then M guarantees (✏+ log 1/�
��1 , �)-differential privacy for � 2 (0, 1).

Therefore, GNMax with parameter �2 guarantees (�
�2 +

log 1/�
��1 , �)-differential privacy, 8� � 1. Now,

if we want the aggregated output to be (m✏, �)-differentially private, the �
2 in GNMax can be set as

follows: 1) Since the above holds for all � � 1, we first pick a proper � that does not cause numerical
instability and that ensures �2

> 0 by setting � = log 1/�
✏ + 5. 2) Now set �2 = �/(✏� log 1/�

��1) by
the above theorem.

45

	Introduction
	Our Contributions

	Background
	Preliminaries

	Private Majority Algorithms
	Provable Privacy Amplification
	Optimizing blue the Function in DaRRM
	Experiments
	Optimal in Simulations
	Application 1: Private Distributed Sign-SGD
	Application 2: Private Semi-supervised Knowledge Transfer

	Conclusion
	Related Work
	Preliminaries: Differential Privacy
	Details of Section blue 3: Private Majority Algorithms
	Randomized Response with Constant
	Proof of Lemma 3.1: the Subsampling Function
	Proof of Lemma 3.2: Generality of DaRRM
	Proof of Lemma 3.3: Privacy Condition

	Provable Privacy Amplification in i.i.d. Setting under Pure DP
	Characterizing Worst Case Probabilities
	Proof of Main Results on Privacy Amplification (Theorem blue 4.1)
	Privacy Amplification under Large Privacy blue Allowance
	Privacy Amplification under Small Privacy blue Allowance

	Details of Optimizing in DaRRM
	Deriving the Optimization Objective
	Practical Approximation of the Objective
	Approximation via Direct Sampling of pi's
	Approximating the Integration Over pi's

	Reducing # Constraints From to A Polynomial Set

	Full Experiment Results
	Optimal in Simulations
	Comparison Against Advanced Composition
	Comparison Under Pure DP Settings
	Comparison Under Different Prior Distributions of pi's

	Private Distribued Sign-SGD
	Private Semi-supervised Knolwedge Transfer

