
Appendix

A Pseudocode of DRE-MARL

The pseudocode for DRE-MARL training is shown in Algorithm 20, which takes the following steps.
1) We perform several interactions with the environment and collect experiences in advance. 2) As
shown in lines 4 − 9 (Algorithm 20), we collect transitions and deposit them in replay buffer D.
3) During the training process, i.e., lines 10− 17 (Algorithm 20), we update the centralized critic,
decentralized actors, and reward estimators every 100 time steps following previous methods [13, 22]
when the episode ends. 4) We will evaluate our model and refresh the replay buffer periodically.
Source code is available at https://github.com/JF-Hu/DRE-MARL.git.

Algorithm 1: Multi-agent Distributional Reward Estimation (DRE-MARL)

Input: N policies {πi}i∈N and target policies {π̃i}i∈N parameterized by θ = {θi}i∈N and
θ̃ = {θ̃i}i∈N , respectively; Centralized critic and target centralized critic parameterized
by ψ and ψ̃, respectively; N reward estimators parameterized by φ = {φi}i∈N ; The
environment with reward uncertainty

Output: ψ, θ, φ
1 Initialize:ψ, ψ̃, θ, θ̃, φ, reply buffer D
2 Pre-interact with environment
3 for each iteration do
4 for each time step t do
5 Sample action aik,t ∼ πi(·|oit) for each agent i
6 Execute joint action at in the environment
7 Observe next observation oit+1 and reward rik,t of each agent i

8 Store
(
{oit}, {πi(·|oit)}, {aik,t}, {rik}, {oit+1}

)
in replay buffer D

9 end
10 if it’s time to update then
11 Sample a batch of transitions B from D
12 Update distributional reward estimators with Equation 1
13 Sampling rewards r̂i from multi-action-branch reward distributions R̂i
14 Perform reward aggregation with Equation 2 and Equation 5
15 Update centralized critic and decentralized actors
16 Update target networks {πθ̃i}i∈N , Vγ,ψ̃: θ̃i ← τθi + (1− τ)θ̃i,ψ̃ ← τψ + (1− τ)ψ̃
17 end
18 Evaluate individual policies periodically
19 Refresh replay buffer periodically
20 end

B Additional Experiments

B.1 Environmental description

Cooperation Navigation. In this environment, three agents must collaborate to cover all landmarks
and avoid colliding with each other simultaneously. The property of the received reward in this
environment is set to be collaborative. For more complex environmental settings, we increase the
number of agents and landmarks (i.e., Evaluation on 7 and 10 agents). We use the abbreviation CN to
denote this environment.

Reference. It is a scenario with two agents and three landmarks. The difference between Cooperative
Navigation and Reference is that the target landmark of each agent is only known to its partner. Thus
every agent must convey correct information to each other to accomplish the task. To evaluate the
capacity of our method in complicated environments, likewise the Cooperative Navigation, we also
select 7 and 10 agents for evaluation. We use the abbreviation REF to denote this environment.

15

Figure 4: Comparison of the performance on different aggregated schemes while training with the
rac−dist setting and evaluating without the rac−dist setting.

Figure 5: Comparison of DRE-MARL and different baselines while training with the rac−dist setting
and evaluating without the rac−dist setting.

Treasure Collection. In this scenario, a successful process of treasure collection contains two stages:
the first stage is that collectors cover the correct landmarks (i.e., collecting treasure), and the second
is that the bank agents successfully receive the treasure. In this scenario, the per episode length is
set to 25 because fewer steps bring more challenges to accomplish the two-stage task. The number
of collectors and banks is the same, so the collectors should find their unique bank from all banks.
Analogously, we choose 3c3b, 7c7b, 10c10b as measurements.

16

Table 2: Performance comparison of DRE-MARL, DRE-MARL variants, and several SOTA MARL
algorithms while training with the individual rewards under the rac−dist setting. The values represent
mean episodic rewards.

Reward Setting rac−dist

Normalized
Performance

Scenario CN-q REF-q

q 3 7 10 2 7 10

DRE-MARL (lSS + gSS) 129±26.93 36±77.89 -122±113.8 23±64.11 -13±201.3 402±108.3 7.893

DRE-MARL (lSMO + gMO) 126±26.54 11±75.25 -172±116.4 82±40.48 258±68.25 278±83.82 8.467

DRE-MARL (lMO + gMO) 144±22.80 43±66.72 -163±78.67 113±17.16 310±55.84 454±72.59 9.360

DRE-MARL (lSMO + gSS) 133±22.79 39±70.88 -86±113.8 11±61.19 177±120.8 74±133.6 7.904

DRE-MARL (lSMO) 99±24.99 1±69.99 -186±120.6 44±45.23 171±87.49 300±89.35 7.737

p2p-MARL 92±25.27 -15±72.02 -171±116.9 35±50.32 192±101.8 227±87.09 7.517

GRE-MARL 113±26.66 -18±60.79 -249±98.28 116±16.30 244±67.66 231±98.08 8.171

MADDPG 138±30.59 47±84.41 -217±125.42 -108±102.8 -371±166.0 -609±196.7 4.608

MAPPO 10±43.89 -313±168.2 -686±299.0 -50±89.86 -103±243.2 -61±312.4 2.457

MAAC 132±17.02 34±47.49 -146±70.89 11±25.14 26±53.52 31±66.36 7.324

QMIX -4±70.57 -209±170.6 -715±195.83 125±15.78 380±42.38 577±45.12 5.970

IQL -66±42.65 -309±115.3 -705±151.5 -62±76.95 -210±137.1 -271±173.8 1.204

Figure 6: The normalized performance while training with the individual rewards and evaluating with
the rac−dist setting.

B.2 Additional aggregation analysis

There are two choices when evaluating the proposed method. 1) Evaluating in the environment with
the reward uncertainty setting as same as training. 2) Evaluating the environment without the setting
of reward uncertainty. We usually select the first choice in practice because the training and testing
environments are the same. The second choice is also important because it can show whether our
model is stuck in the setting of reward uncertainty. We have report the results of first choice in Table 1,
Figure 2, and Figure 3. In the next parts, we report the performance of different reward aggregation
schemes and other baselines based on the second choice.

We evaluate the performance under the team reward setting in the environments where the rac−dist is
not added. As shown in Figure 4, in most environments, the proposed reward aggregation schemes
achieve better performance than p2p-MARL. The aggregation scheme lSMO + gSS is better than
lSS + gSS while Figure 3 (right) shows that lSS + gSS is the best. This enlightens us different
aggregation schemes are suitable for various purposes. In other words, if we want to train a model in
precise environments designed by humans, we should choose lSMO + gSS rather than lSS + gSS .

17

Table 3: Performance comparison of DRE-MARL, DRE-MARL variants, and several SOTA MARL
algorithms while training with the individual rewards and evaluating without the rac−dist setting.
The values represent mean episodic rewards.

Reward Setting rac−dist

Normalized
Performance

Scenario CN-q REF-q

q 3 7 10 2 7 10

DRE-MARL (lSS + gSS) -403±33.82 -4148±416.8 -9283±442.9 -358±112.2 -5663±2102. -4711±996.3 7.016

DRE-MARL (lSMO + gMO) -320±32.84 -3904±204.1 -9775±396.8 -166±81.60 -2183±300.2 -5744±668.7 8.457

DRE-MARL (lMO + gMO) -230±15.54 -3260±126.8 -8491±223.9 -70±13.92 -1361±175.7 -2882±384.3 9.797

DRE-MARL (lSMO + gSS) -283±23.55 -3587±158.7 -8791±388.5 -310±113.5 -2825±800.7 -7847±1756. 7.920

DRE-MARL (lSMO) -350±22.56 -3672±161.9 -9543±428.2 -195±49.99 -2161±382.7 -4421±536.6 8.574

p2p-MARL -367±23.72 -3717±160.7 -9241±397.3 -212±51.14 -2213±452.2 -4315±489.4 8.591

GRE-MARL -467±29.11 -4522±165.5 -11408±351.5 -103±16.75 -2604±435.7 -6964±773.8 7.715

MADDPG -429±6.242 -3589±42.26 -8693±66.01 -133±3.568 -1635±21.71 -3348±35.76 8.986

MAPPO -1074±240.4 -9349±2315. -21475±5276. -603±216.0 -6357±2021. -11532±3721. 1.007

MAAC -441±5.511 -3732±35.19 -9076±77.81 -140±2.933 -1712±23.21 -3504±40.08 8.817

QMIX -671±234.8 -4870±1128. -14964±3096. -66±10.64 -1128±100.0 -2327±145.4 7.790

IQL -973±38.33 -6053±918.8 -13836±1331. -631±75.07 -7905±381.7 -16048±744.0 2.081

Figure 7: The normalized performance while training with the individual rewards and evaluating
without the rac−dist setting.

But if we are given an environment with reward uncertainty and the evaluation is also performed in it,
the aggregation scheme lSS + gSS is a better choice.

Furthermore, we also evaluate the performance while training with individual rewards, i.e., the agents
can only receive the individual rewards rather than the team rewards during the training process. This
environment setting is more complicated than the team reward setting because the agents can cause
invalid updating on the centralized critic. The reward aggregation can provide a consistent updating
direction for the centralized critic, so as illustrated in Table 2 and Table 3, our method achieves a
better performance than the other baselines. The aggregation scheme lMO + gMO reaches the best
performance because the mean operation offers a relatively consistent direction of updating.

B.3 Additional experiment results

In order to verify whether our model will be stuck in the setting of reward uncertainty, we evaluate the
proposed method and various baselines in the environments without reward uncertainty. We report the
learning curves in Figure 5. DRE-MARL performs better than different baselines, which illustrates
that DRE-MARL can reduce the impact of reward uncertainty by adopting multi-action-branch
reward estimation and policy-weighted reward aggregation during the training process.

18

Figure 8: Graphical description of reward aggregation.

Multi-action-branch reward estimation followed by reward aggregation not only provides a solution
to reduce reward uncertainty by augmenting reward from one action branch to all action branches but
also offers a good way to improve collaboration by considering the aggregated rewards of all agents.
In order to evaluate the performance just given the individual rewards, we set the environment to be
non-collaborative during the training process, i.e., the agents can only receive their individual rewards
rather than the team reward. Table 2 and Table 3 show the performance of baselines and different
aggregation schemes in several scenario variants. The comprehensive abilities of the above methods
are shown in Figure 6 and Figure 7. DRE-MARL (lMO + gMO) achieves better performance than
other aggregation schemes and baselines in most environments. The reason is that reward aggregation
provides a good solution to consider the holistic impact of individual agents when updating the
centralized critic so as to achieve the common goal. Although QMIX reaches higher performance in
REF, the difference is slight, and the overall performance of DRE-MARL (lMO + gMO) is obviously
better than QMIX. Besides, in order to train the QMIX model, we actually calculate the team reward
for QMIX during training, which violates the environment setting of training with the individual
rewards. The value decomposition adopted by QMIX can be regarded as one backward method from
the team reward to the individual rewards for solving MARL tasks. Our method provides a brand-new
forward solution from the individual rewards to the team reward by using multi-action-branch reward
estimation followed by policy-weighted reward aggregation.

C Implement Details

Details of Reward Aggregation. For each agent, we first sample rewards r̂i from estimated
reward distributions Di. Then, we construct the built-up reward vector mi by replacing the value
of r̂i on the k-th action branch with the environment reward rik. Next, we aggregate {mi}i∈N with
different operations, as shown in Figure 8. Finally, we obtain the mixed reward R̄ and the lumped
reward r̄ to train the centralized critic and the decentralized actors, respectively. The details of reward
aggregation are shown in Figure 8.

Network Architecture. The decentralized actors and distributional reward estimation networks
adopt the simple fully-connected feedforward neural network with three layers in our framework.
The two hidden layers’ units are 64. |A| and 2|A| are the number of output units in actors and
distributional reward estimation networks, respectively, where |A| represents the size of action space.
The centralized critic uses a graph attention neural network with eight attention heads, and each
head’s hidden unit is set to 8 to capture the dynamic relationship between agents. After the graph
attention neural network, a two-hidden-layer fully-connected feedforward neural network is used to
get the state value. Besides, we choose leaky relu as nonlinear activation for all networks.

19

Compute. Experiments are carried out on NVIDIA GeForce RTX 1080Ti GPUs and with fixed
hyperparameter settings, which are described in the following. Each run of the experiments spanned
about 2-12 hours, depending on the algorithm and the agents’ number in the environment.

Hyperparameters. For all scenarios, the per-episode length is set to 25. The periodical replay
buffer learning rate is 0.4, the learning interval is set to 4 episodes, and the entropy scale is set to 0.3.
Detailed hyperparameters can be found in Table 4.

Table 4: The hyperparameters of DRE-MARL.

Hyperparameter Value

optimizer Adam [14]
learning rate 1 · 10−3

entropy scale 0.1/0.3
number of hidden layers (all networks) 2
nonlinearity of hidden layers (all networks) Leaky ReLU
number of hidden units per layer (all networks) 64
number of attention head 8
time difference (TD) 1
buffer clear rate 0.4
discount (γ) 0.95
batch size 1024
ε-greedy 0.7→0.9
tau (τ) 0.01
α 0.1
β 10
η 0.3

D More discussion of limitations

Continuous action space. In our method, the number of action branches matches the number of
available discrete actions, so we can set the value of K to be equal to the number of available discrete
actions such as “move forward”, “move backward”, “move left”, “move right”, and “motionless”
in MPE. But in continuous action space, for example, we want to manipulate a robot arm. The
“grasping” action needs us to assign a continuous value such as rotation angle to the robot arm. Right
now, the available action is a range, so we can not define the number of K. We discuss the following
possible solutions to solve the problem of continuous action space.

• One possible solution may be the discretization of the range of the available action value.
More sophisticated discretization will bring better manipulation, but it will consume more
computational resources at the same time. Although coarse discretization reduces the
consumption of physical time, it may hurt the performance.

• Another possible solution is learning a network with actions as inputs, just like how we
convert discrete-action DQN into continuous-action Q network in DDPG. The implicit
reward function makes it possible to perform reward aggregation by sampling several
discrete action points.

Prior Gaussian distribution. The reward distribution is indeed a bit hard to select in practice.
However, just like tanglesome signals can be factorized into the superposition of simple but elementary
sinusoidal signals, we may consider using a cluster of basic distributions as reward distribution in
future work.

20

Table 5: The comparison of the computational cost about different models based on the CN-3 scenario.
The items of the comparison contain three aspects: parameters, physical training time (min), and max
memory consumption (MB).

comparison items model

DRE-MARL MAPPO MAAC QMIX MADDPG IQL

pa
ra

-
m

et
er

s total 198440 72854 450364 307330 172884 564642
trainable 54126 72854 450364 123488 86436 141147
untrainable 144314 0 0 183842 86448 423495

physical training
time (min) 256.0±1.859 336.0±9.623 915.9±6.270 867.1±16.54 166.9±1.976 217.4±2.311

max memory
consumption (MB) 1354.±60.18 310.6±0.297 229590.1±65.69 2146.5±22.95 3754.±227.3 668.4±20.18

Table 6: Performance comparison of DRE-MARL with and without regularization term LR while
training with the team rewards and evaluating without the rac-dist setting. The values represent mean
episodic rewards.

comparison items model

DRE-MARL

lSS + gSS
with LR -272.7±25.22

without LR -274.6±19.13

lSMO + gSS
with LR -235.1±16.38

without LR -365.0±25.19

lMO + gMO
with LR -242.1±16.15

without LR -258.9±17.36

lMO + gSS
with LR -252.6±17.49

without LR -354.2±23.47

no reward estimation -258.2±20.75

Table 7: Performance comparison of DRE-MARL variants and DFAC variants. We conduct the
experiment in CN-3 with DFAC variants which is based on SC II originally, and adopt the original
hyperparameters of DFAC variants. The DFAC-diql(128) denotes the number of hidden neural is 128.

model performance

lSS + gSS -272.7±25.22

lSMO + gSS -235.1±16.38

lMO + gMO -242.1±16.15

lMO + gSS -252.6±17.49

DFAC-diql(128) -786.9±180.2

DFAC-diql(256) -1117.9±21.38

DFAC-dmix(128) -1121.6±21.51

21

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Reward Uncertainty in MARL
	Reward Estimation

	DRE-MARL
	Multi-action-branch Reward Estimation
	Training with Reward Aggregation

	Experiments
	Environment Settings
	Results and Analysis
	Ablation Study

	Conclusion, Limitations, and Broader Impact
	Pseudocode of DRE-MARL
	Additional Experiments
	Environmental description
	Additional aggregation analysis
	Additional experiment results

	Implement Details
	More discussion of limitations

