Solving Inverse Problems in Medical Imaging with **Score-based Generative Model**

Yang Song*, Liyue Shen*, Lei Xing, Stefano Ermon Stanford University

{yangsong@cs, liyues@, lei@, ermon@cs}.Stanford.edu

Background and Motivation

Why care sparse-sampling medical imaging?

- X-ray Computed Tomography (CT) imaging
- Reduce radiation injury in CT: sample sparse projection views

- Magnetic Resonance Imaging (MRI)
- Accelerate MRI scanning: under-sample k-space data

Inverse problem in medical imaging

- Measurement process for sparse-view CT
- Radon Transform + masking

- Measurement process for under-sampled MRI
- Fourier Transform + masking

Score-based Generative Model

Train score-based generative model to capture prior data distribution

- Perturbation process: Forward SDE
- Sampling process: Reverse-time SDE

Samples

Reverse-time SDE

Results

Comparable or better performance to supervised learning methods for sparse-sampling MRI/CT reconstruction

Method	Measurements	PSNR	SSIM	
Undersampled MRI on BraTS 240×240				
Cascade DenseNet	30	$28.35{\scriptstyle\pm2.30}$	$0.845{\scriptstyle\pm0.038}$	
DuDoRNet	30	$37.88{\scriptstyle\pm3.03}$	$0.985{\scriptstyle \pm 0.007}$	
Langevin	30	$36.44{\scriptstyle\pm2.28}$	$0.952{\scriptstyle \pm 0.016}$	
Ours	30	$37.63{\scriptstyle \pm 2.70}$	$0.958{\scriptstyle \pm 0.015}$	
Sparse-view CT on LIDC 320×320				
FISTA-TV	23	$20.08{\scriptstyle\pm4.89}$	$0.799{\scriptstyle\pm0.061}$	
cGAN	23	$19.83{\scriptstyle \pm 3.07}$	$0.479{\scriptstyle\pm0.103}$	
Neumann	23	$17.18{\scriptstyle\pm3.79}$	$0.454{\scriptstyle \pm 0.128}$	
SIN-4c-PRN	23	$30.48{\scriptstyle\pm3.99}$	$0.895{\scriptstyle \pm 0.047}$	
Ours	23	$35.24{\scriptstyle\pm2.71}$	$0.905{\scriptstyle\pm0.046}$	

Better generalization to unknown measurement processes

Method

Unsupervised technique for inverse problem solving

 Incorporate data consistency constraints into the sampling process

Optimization problem with data prior and data consistency

$$\hat{\mathbf{x}}_{t}' = \underset{\mathbf{z} \in \mathbb{R}^{n}}{\arg\min} \{ (1 - \lambda) \| \mathbf{z} - \hat{\mathbf{x}}_{t} \|_{\mathbf{T}}^{2} + \min_{\mathbf{u} \in \mathbb{R}^{n}} \lambda \| \mathbf{z} - \mathbf{u} \|_{\mathbf{T}}^{2} \}$$

s.t. $\mathbf{A}\mathbf{u} = \hat{\mathbf{y}}_{t},$

Closed-form solution

$$\hat{\mathbf{x}}_t' = \lambda T^{-1} \mathbf{\Lambda} \mathfrak{C}_{\mathbf{\Lambda}}^{-1} \hat{\mathbf{y}}_t + (1 - \lambda) T^{-1} \mathbf{\Lambda} T \hat{\mathbf{x}}_t + T^{-1} (I - \mathbf{\Lambda}) T \hat{\mathbf{x}}_t,$$

Convert sampler to an inverse problem solver

Algorithm 1 Unconditional sampling	Algorithm 2 Inverse problem solving		
Require: N	Require: N, \mathbf{y}, λ		
1: $\mathbf{\hat{x}}_1 \sim \pi(\mathbf{x}), \Delta t \leftarrow \frac{1}{N}$	1: $\hat{\mathbf{x}}_1 \sim \pi(\mathbf{x}), \Delta t \leftarrow \frac{1}{N}$		
2: for $i = N - 1$ to 0 do	2: for $i = N - 1$ to 0 do		
3: $t \leftarrow \frac{i+1}{N}$	3: $t \leftarrow \frac{i+1}{N}$		
1	4: $\hat{\mathbf{y}}_t \sim p_{0t}(\mathbf{y}_t \mid \mathbf{y})$		
	5: $\hat{\mathbf{x}}_t \leftarrow \lambda T^{-1} \Lambda \mathfrak{C}_{\Lambda}^{-1} \hat{\mathbf{y}}_t + (1-\lambda) T^{-1} \Lambda T \hat{\mathbf{x}}_t + (1-\lambda) T^{-1} \Lambda T \hat{\mathbf{x}}_t$		
	$oldsymbol{T}^{-1}(oldsymbol{I}-oldsymbol{\Lambda})oldsymbol{T}\hat{\mathbf{x}}_t$		
4: $\hat{\mathbf{x}}_{t-\Delta t} \leftarrow \hat{\mathbf{x}}_t + g(t)^2 \boldsymbol{s}_{\boldsymbol{\theta}} \ast (\hat{\mathbf{x}}_t, t) \Delta t$	6: $\hat{\mathbf{x}}_{t-\Delta t} \leftarrow \hat{\mathbf{x}}_t + g(t)^2 \boldsymbol{s}_{\theta} \ast (\hat{\mathbf{x}}_t, t) \Delta t$		
5: $\mathbf{z} \sim \mathcal{N}(0, \boldsymbol{I})$	7: $\mathbf{z} \sim \mathcal{N}(0, \boldsymbol{I})$		
6: $\hat{\mathbf{x}}_{t-\Delta t} \leftarrow \hat{\mathbf{x}}_{t-\Delta t} + g(t)\sqrt{\Delta t} \mathbf{z}$	8: $\hat{\mathbf{x}}_{t-\Delta t} \leftarrow \hat{\mathbf{x}}_{t-\Delta t} + g(t)\sqrt{\Delta t} \mathbf{z}$		
7: return $\hat{\mathbf{x}}_0$	9: return $\hat{\mathbf{x}}_0$		

Acknowledgement

YS is supported by the Apple PhD Fellowship in Al/ML. LS is supported by the Stanford Bio-XGraduate Student Fellowship. This research was supported by NSF (#1651565, #1522054, #1733686),ONR (N000141912145), AFOSR (FA95501910024), ARO (W911NF-21-1-0125), Sloan Fellowship, and Google TPU Research Cloud. This research was also supported by NIH/NCI (1R01 CA256890and 1R01 CA227713).