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Background and Motivation Score-based Generative Model _

Why care sparse-sampling medical imaqing? Train score-based generative model to capture prior data Unsupervised technique for inverse problem solving

distribution « Incorporate data consistency constraints into the sampling
process

» X-ray Computed Tomography (CT) imaging

» Perturbation process: Forward SDE
« Sampling process: Reverse-time SDE
Data

* Reduce radiation injury in CT: sample sparse projection views

Forward SDE

dx; = f(t)x;dt + g(t) dwy
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Patient

Detector

« Magnetic Resonance Imaging (MRI)

* Accelerate MRI scanning: under-sample k-space data

Score function

dx; = [F(£)%; — 9(t)? (V108 pe(x2)) ]dt + g(t) ¥,

Reverse-time SDE

« Optimization problem with data prior and data consistency
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Method Measurements PSNR SSIM . Closed-form solution
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* Measurement process for under-sampled MRI ad
* Fourier Transform + maskin
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