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Roadmap. We arrange the appendix as follows. In Section A, we provide several preliminary
notations. In Section B we provide details of computing the gradients. In Section C and Section D
we provide detail of computing Hessian for two cases. In Section E we show how to split the Hessian
matrix. In Section F we combine the results before and compute the Hessian for the loss function.
In Section G we bound the basic functions to be used later. In Section H we provide proof for the
Lipschitz property of the loss function. We provide our final result in Section J.

A NOTATIONS

We used R to denote real numbers. We use A ∈ Rn×d to denote an n× d size matrix where each
entry is a real number. For any positive integer n, we use [n] to denote {1, 2, · · · , n}. For a matrix
A ∈ Rn×d, we use ai,j to denote the an entry of A which is in i-th row and j-th column of A, for
each i ∈ [n], j ∈ [d]. We use Ai,j ∈ Rn×d to denote a matrix such that all of its entries equal to 0
except for ai,j . We use 1n to denote a length-n vector where all the entries are ones. For a vector
w ∈ Rn, we use diag(w) ∈ Rn×n denote a diagonal matrix where (diag(w))i,i = wi and all other
off-diagonal entries are zero. Let D ∈ Rn×n be a diagonal matrix, we use D−1 ∈ Rn×n to denote a
diagonal matrix where i-th entry on diagonal is Di,i and all the off-diagonal entries are zero. Given
two vectors a, b ∈ Rn, we use (a ◦ b) ∈ Rn to denote the length-n vector where i-th entry is aibi. For
a matrix A ∈ Rn×d, we use A⊤ ∈ Rd×n to denote the transpose of matrix A. For a vector x ∈ Rn,
we use exp(x) ∈ Rn to denote a length-n vector where exp(x)i = exp(xi) for all i ∈ [n]. For a
matrix X ∈ Rn×n, we use exp(X) ∈ Rn×n to denote matrix where exp(X)i,j = exp(Xi,j). For
any matrix A ∈ Rn×d, we define ∥A∥F := (

∑n
i=1

∑d
j=1 A

2
i,j)

1/2. For a vector a, b ∈ Rn, we use
⟨a, b⟩ to denote

∑n
i=1 aibi.

B GRADIENTS

Here in this section, we provide analysis for the gradient computation. In Section B.1 we state some
facts to be used. In Section B.2 we provide some definitions. In Sections B.3, B.4, B.5, B.6, B.7,
B.8 and B.9 we compute the gradient for the terms defined respectively. Finally in Section B.10 we
compute the gradient for L(X).

B.1 FACTS

Fact B.1 (Basic algebra). We have

• ⟨u, v⟩ = ⟨v, u⟩ = u⊤v = v⊤u.

• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩
• u⊤(v ◦ w) = u⊤ diag(v)w

Fact B.2 (Basic calculus rule). We have

• d⟨f(x),g(x)⟩
dt = ⟨df(x)dt , g(x)⟩+ ⟨f(x), dg(x)

dt ⟩ (here t can be any variable)

• dyz

dx = z · yz−1 dy
dx

• u · v = v · u
• dx

dxj
= ej where ej is a vector that only j-th entry is 1 and zero everywhere else.

• Let x ∈ Rd, let y ∈ R be independent of x, we have dx
dy = 0d.

• Let f(x), g(x) ∈ R, we have d(f(x)g(x))
dt = df(x)

dt g(x) + f(x)dg(x)dt

• Let x ∈ R, d
dx exp (x) = exp (x)

• Let f(x) ∈ Rn, we have d exp(f(x))
dt = exp(f(x)) ◦ df(x)

dt

16



Under review as a conference paper at ICLR 2024

B.2 DEFINITIONS

Definition B.3 (Simplified notations). We have following definitions

• We use u(X)i0,i1 to denote the i1-th entry of u(X)i0 .

• We use f(X)i0,i1 to denote the i1-th entry of f(X)i0 .

• We define Wj1,∗ to denote the j1-th row of W . (In the proof, we treat Wj1,∗ as a column
vector).

• We define W∗,j1 to denote the j1-th column of W .

• We define wj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of W .

• We define V∗,j1 to denote the j1-th column of V .

• We define vj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of V .

• We define X∗,i0 to denote the i0-th column of X .

• We define xi1,j1 to denote the scalar equals to the entry in i1-th column, j1-th row of X .
Definition B.4 (Exponential function u). If the following conditions hold

• Let X ∈ Rd×n

• Let W ∈ Rd×d

For each i0 ∈ [n], we define u(X)i0 ∈ Rn as follows

u(X)i0 = exp(X⊤WX∗,i0)

Definition B.5 (Sum function of softmax α). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition B.4

We define α(X)i0 ∈ R for all i0 ∈ [n] as follows

α(X)i0 = ⟨u(X)i0 ,1n⟩
Definition B.6 (Softmax probability function f ). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition B.4

• Let α(X)i0 be defined as Definition B.5

We define f(X)i0 ∈ Rn for each i0 ∈ [n] as follows

f(X)i0 := α(X)−1
i0

u(X)i0

Definition B.7 (Value function h). If the following conditions hold

• Let X ∈ Rd×n

• Let V ∈ Rd×d

We define h(X)j0 ∈ Rn for each j0 ∈ [n] as follows

h(X)j0 := X⊤V∗,j0

Definition B.8 (One-unit loss function c). If the following conditions hold

• Let f(X)i0 be defined as Definition B.6
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• Let h(X)j0 be defined as Definition B.7

We define c(X) ∈ Rn×d as follows
c(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩ − bi0,j0 ,∀i0 ∈ [n], j0 ∈ [d]

Definition B.9 (Overall function L). If the following conditions hold

• Let c(X)i0,j0 be defined as Definition B.8

We define L(X) ∈ R as follows

L(X) :=

n∑
i0=1

d∑
j0=1

(c(X)i0,j0)
2

B.3 GRADIENT FOR EACH COLUMN OF X⊤WX∗,i0

Lemma B.10. We have

• Part 1. Let i0 = i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

• Part 2 Let i0 ̸= i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

Proof. Proof of Part 1.
dX⊤WX∗,i0

dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dXi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dXi1,j1︸ ︷︷ ︸

d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

ej1︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

where the 1st step follows from Fact B.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra, the 4th step ie because i0 = i1.

Proof of Part 2
dX⊤WX∗,i0

dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dxi1,j1︸ ︷︷ ︸
d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

0d︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

where the 1st step follows from Fact B.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra.
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B.4 GRADIENT FOR u(X)i0

Lemma B.11. Under following conditions

• Let u(X)i0 be defined as Definition B.4

We have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)

• Part 2 For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩)

Proof.

Proof of Part 1
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦( ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition B.4), the 2nd
step follows from Fact B.2, the 4th step follows by Lemma B.10.

Proof of Part 2
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦( ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition B.4), the 2nd
step follows from Fact B.2, the 4th step follows by Lemma B.10.
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B.5 GRADIENT COMPUTATION FOR α(X)i0

Lemma B.12 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition B.5

Then, we have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

• Part 2. For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei0 ,1n⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 ◦ (X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

, ei0⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

where the 1st step follows from the definition of α(X)i0 (see Definition B.5), the 2nd step follows
from Fact B.2, the 3rd step follows from Lemma B.11, the 4th step is rearrangement, the 5th step is
derived by Fact B.1, the last step is by the definition of U(X)i0,i0 .

Proof of Part 2.

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei1 , 1n︸︷︷︸
n×1

⟩ · ⟨Wj1,∗, X∗,i0⟩
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= u(X)i0,i1︸ ︷︷ ︸
scalar

·⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from the definition of α(X)i0 (see Definition B.5), the 2nd step follows
from Fact B.2, the 3rd step follows from Lemma B.11, the 4th step is rearrangement, the 5th step is
derived by Fact B.1.

B.6 GRADIENT COMPUTATION FOR α(X)−1
i0

Lemma B.13 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition B.5

we have

• Part 1. For i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)⟩)

• Part 2. For i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·(u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩)

= − α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)

where the 1st step follows from Fact B.2, the 2nd step follows by Lemma B.12.

Proof of Part 2.

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

= − α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from Fact B.2, the 2nd step follows from result from Lemma B.12.
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B.7 GRADIENT FOR f(X)i0

Lemma B.14. If the following conditions hold

• Let f(X)i0 be defined as Definition B.6

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

• Part 2. For all i0 ̸= i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

Proof. Proof of Part 1.

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1))︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

where the 1st step follows from the definition of f(X)i0 (see Definition B.6), the 2nd step follows
from Fact B.2, the 3rd step follows from Lemma B.13, the 4th step follows from result from
Lemma B.11, the 5th step from the definition of f(X)i0 (see Definition B.6).
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Proof of Part 2.
df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ei1 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
scalar

where the 1st step follows from the definition of f(X)i0 (see Definition B.6), the 2nd step follows
from Fact B.2, the 3rd step follows from Lemma B.13, the 4th step follows from result from
Lemma B.11, the 5th step from the definition of f(X)i0 (see Definition B.6).

B.8 GRADIENT FOR h(X)j0

Lemma B.15. If the following conditions hold

• Let h(X)j0 be defined as Definition B.7

Then, for all i1 ∈ [n], j0, j1 ∈ [d], we have
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1 · vj1,j0

Proof.
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤V∗,j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· e⊤j1︸︷︷︸
1×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

where the first step is by definition of h(X)j0 (see Definition B.7), the 2nd and the 3rd step are by
differentiation rules, the 4th step is by simple algebra.
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B.9 GRADIENT FOR c(X)i0,j0

Lemma B.16. If the following conditions hold

• Let c(X)i0 be defined as Definition B.8

• Let s(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)j0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C4(X) := ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
– C5(X) := f(X)i0,i0 · vj1,j0

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C1(X)

– C7(X) := f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C3(X)

– C8(X) := f(X)i0,i1 · vj1,j0
* This is corresponding to C5(X)

Proof. Proof of Part 1

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩
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= − s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
− s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
+ f(X)i0,i0h(X)j0,i0⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i1vj1,j0

:= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where the first step is by definition of c(X)i0,j0 (see Definition B.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact B.2, the 4th step uses Lemma B.15, the 5th step uses
Lemma B.14, the 6th and 8th step are rearrangement of terms, the 7th step holds by the definition of
f(X)i0 (see Definition B.6).

Proof of Part 2

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− (α(X)i0)
−1︸ ︷︷ ︸

scalar

· f(X)i0︸ ︷︷ ︸
n×1

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − (α(X)i0)
−1 · ⟨f(X)i0 , h(X)j0⟩ · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ ⟨f(X)i0 ◦ ei1 , h(X)j0⟩ · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · vj1,j0

:= C6(X) + C7(X) + C8(X)

where the first step is by definition of c(X)i0,j0 (see Definition B.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact B.2, the 4th step uses Lemma B.15, the 5th step uses
Lemma B.14, the 6th and 7th step are rearrangement of terms.

B.10 GRADIENT FOR L(X)

Lemma B.17. If the following holds

• Let L(X) be defined as Definition B.9
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For i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dxi1,j1

=

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

Proof. The result directly follows by chain rule.

C HESSIAN CASE 1: i0 = i1

Here in this section, we provide Hessian analysis for the first case. In Sections C.1, C.2, C.3, C.4, C.5,
C.6 and C.8, we calculate the derivative for several important terms. In Section C.9, C.10, C.11, C.12
and C.13 we calculate derivative for C1, C2, C3, C4 and C5 respectively. Finally in Section C.14 we
calculate derivative of c(X)i0,j0

dxi1,j2
.

C.1 DERIVATIVE OF SCALAR FUNCTION w(X)i0,j1

Lemma C.1. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= 0

Proof. Proof of Part 1

dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗, ej2⟩
= wj1,j2

where the first step and the 2nd step are by Fact B.2, the 3rd step is simple algebra.

Proof of Part 2
dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗,0d⟩ = 0

where the first step is by Fact B.2, the 2nd step is because i0 ̸= i2.

C.2 DERIVATIVE OF VECTOR FUNCTION X⊤W∗,j1

Lemma C.2. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei2 · wj2,j1
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Proof. Proof of Part 1

dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

= ei0 · wj2,j1

where the first step and the 2nd step are by Fact B.2, the 3rd step is simple algebra, the 4th step holds
since i0 = i2.

Proof of Part 2
dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

where the first step and the 2nd step are by Fact B.2, the 3rd step is simple algebra.

C.3 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0

Lemma C.3. If the following holds:

• Let f(X)i0 be defined as Definition B.6

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

Proof. Proof of Part 1

df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ (f(X)i0 ◦ (ei0 · w(X)i0,j2))i0 + (f(X)i0 ◦ (X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩
where the first step uses Lemma B.14 for i0 = i2, the following steps are taking the i0-th entry of
f(X)i0 , the last step is by the definition of f(X)i0 (see Definition B.6).

Proof of Part 2
df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2
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+ f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

+ (f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

where the first step uses Lemma B.14 for i0 ̸= i2, the 2nd step is taking the i0-th entry of f(X)i0 ,
the 3rd step is because i0 ̸= i2, the last step is by the definition of f(X)i0 (see Definition B.6).

C.4 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i0

Lemma C.4. If the following holds:

• Let h(X)j0 be defined as Definition B.7

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= vj2,j0

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= 0

Proof. Proof of Part 1

dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= vj2,j0

where the first step is by Lemma B.15, the 2nd step is because i0 = i2.

Proof of Part 2
dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= 0

where the first step is by Lemma B.15, the 2nd step is because i0 ̸= i2.

C.5 DERIVATIVE OF SCALAR FUNCTION z(X)i0,j1

Lemma C.5. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• Let z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dz(X)i0,j1
dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
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− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1

Proof. Proof of Part 1

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei0 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact B.2, the 2nd step uses Lemma C.2, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma B.14, the 5th step is by the definition of f(X)i0 (see
Definition B.6).

Proof of Part 2

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei2 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i2 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · f(X)i0,i0 · w(X)i0,j2
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+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact B.2, the 2nd step uses Lemma C.2, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma B.14, the last step is by the definition of f(X)i0 (see
Definition B.6).

C.6 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · h(X)j0,i0

Lemma C.6. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• Let h(X)j0 be defined as Definition B.7

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

Proof. Proof of Part 1
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0
where the fist step is by Fact B.2, the 2nd step calls Lemma C.4, the 3rd step uses Lemma C.3, the
last step is by the definition of f(X)i0 (see Definition B.6).

Proof of Part 2
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

where the fist step is by Fact B.2, the 2nd step calls Lemma C.4, the 3rd step uses Lemma C.3, the
last step is by the definition of f(X)i0 (see Definition B.6).
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C.7 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · w(X)i0,j1

Lemma C.7. If the following holds:

• Let f(X)i0 be defined as Definition B.6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= (f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

where step 1 is by Fact B.2, the 2nd step calls Lemma C.1, the 3rd step uses Lemma C.3, the last step
is by the definition of f(X)i0 (see Definition B.6).

Proof of Part 2
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where step 1 is by Fact B.2, the 2nd step calls Lemma C.1, the 3rd step uses Lemma C.3, the last step
is by the definition of f(X)i0 (see Definition B.6).

C.8 DERIVATIVE OF VECTOR FUNCTION f(X)i0 ◦ (X⊤W∗,j1)

Lemma C.8. If the following holds:

• Let f(X)i0 be defined as Definition B.6

We have
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• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

Proof. Proof of Part 1

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

where the 1st step is by Fact B.2, the 2nd step uses Lemma C.2, the 3rd step uses Lemma B.14, the
last step is by the definition of f(X)i0 (see Definition B.6).

Proof of Part 2

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= − ((α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

where the 1st step is by Fact B.2, the 2nd step uses Lemma C.2, the 3rd step uses Lemma B.14, the
last step is by the definition of f(X)i0 (see Definition B.6).

C.9 DERIVATIVE OF C1(X)

Lemma C.9. If the following holds:

• Let C1(X) ∈ R be defined as in Lemma B.16

• Let z(X)i0,j1 = ⟨f(X)i0 , X
⊤W∗,j1⟩
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Table 1: C1 Part 1 Summary

ID Term Symmetric? Table Name
1 +2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j1 · w(X)i0,j2 Yes N/A
2 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1 No Table 4: 1
4 −f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 No Table 5: 1
5 −s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
6 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1 No Table 2: 7
7 −s(X)i0,j0 · f(X)i0,i0 · wj1,j2 No Table 2: 9
8 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1 No Table 2: 1

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1
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− s(X)i0,j0 · ((−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= − (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 · ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2s(X)i0,j0 · Z(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

where the first step is by definition of C1(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.7, the 4th step is because Lemma B.16, the 5th step is a rearrangement.

Proof of Part 2

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
= − (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2

+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where the first step is by definition of C1(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.7, the 4th step is because Lemma B.16, the 5th step is a rearrangement.

C.10 DERIVATIVE OF C2(X)

Lemma C.10. If the following holds:

• Let C2(X) be defined as in Lemma B.16

• We define z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩.

We have
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Table 2: C2 Part 1 Summary

ID Term Symmetric Terms Table Name
1 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 1: 9
2 s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 3: 3
4 −⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1 No Table 4: 2
5 −f(X)i0,i0 · vj2,j0 · z(X)i0,j1 No Table 5: 2
6 +s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2 Yes N/A
7 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 1: 6
8 −s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X

⊤W∗,j1⟩ Yes N/A
9 −s(X)i0,j0 · f(X)i0,i0 · wj2,j1 No Table 1: 7

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
− f(X)i0,i0 · vj2,j0 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

− s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · vj2,j0 · z(X)i0,j1

+ s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

Proof. Proof of Part 1

d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · z(X)i0,j1

dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
dz(X)i0,j1
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)
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= (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
− s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩
+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.5, the 4th step is because Lemma B.16, the 5th step is a rearrangement.

Proof of Part 2
d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
d⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2
+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.5, the 4th step is because Lemma B.16, the 5th step is a rearrangement.

C.11 DERIVATIVE OF C3(X)

Lemma C.11. If the following holds:

• Let C3(X) be defined as in Lemma B.16
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Table 3: C3 Part 1 Summary

ID Term Symmetric Terms Table Name
1 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
2 f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 No Table 2: 3
4 f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1 No Table 4: 3
5 f(X)i0,i0 · vj2,j0 · w(X)i0,j1 No Table 5: 3
6 f(X)i0,i0 · h(X)i0,i0 · wj1,j2 No Table 4: 5

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

Proof. Proof of Part 1

dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0) · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · Z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

where the first step is by definition of C3(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.1, the 4th step is because Lemma C.6, the 5th step is a rearrangement.
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Table 4: C4 Part 1 Summary

ID Term Symmetric? Table Name
1 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2 No Table 1: 3
2 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2 No Table 2: 4
3 f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 3: 4
4 ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩ Yes N/A
5 f(X)i0,i0 · h(X)j0,i0 · wj2,j1 No Table 3: 6
6 f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0 No Table 5:4

Proof of Part 2
dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

where the first step is by definition of C3(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.1, the 4th step is because Lemma C.6, the 5th step is a rearrangement.

C.12 DERIVATIVE OF C4(X)

Lemma C.12. If the following holds:

• Let C4(X) be defined as in Lemma B.16

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2
+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0
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Proof. Proof of Part 1

dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨(−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1), h(X)j0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei0 · vj2,j0⟩

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma B.15, the 4th step is because Lemma C.8, the 5th step is a rearrangement.

Proof of Part 2
dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨−(f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1), h(X)j0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma B.15, the 4th step is because Lemma C.8, the 5th step is a rearrangement.

C.13 DERIVATIVE OF C5(X)

Lemma C.13. If the following holds:

• Let C5(X) be defined as in Lemma B.16
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Table 5: C5 Part 1 Summary

Term Symmetric Terms Table Name
−f(X)2i0,i0 · w(X)i0,j2 · vj1,j0 No C1(X) : 4
−f(X)i0,i0 · z(X)i0,j2 · vj1,j0 No Table 2: 5
f(X)i0,i0 · w(X)i0,j2 · vj1,j0 No Table 3:5
f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 No Table 4: 6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0
− f(X)i0,i0 · z(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · w(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

Proof. Proof of Part 1

dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · vj1,j0
= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0
− f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩ · vj1,j0
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · vj1,j0

where the first step is by definition of C5(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.3, the 4th step is a rearrangement.

Proof of Part 2

dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0
= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

where the first step is by definition of C5(X) (see Lemma B.16), the 2nd step is by Fact B.2, the 3rd
step is by Lemma C.3.
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C.14 DERIVATIVE OF
c(X)i0,j0

dxi1,j1

Lemma C.14. If the following holds:

• Let c(X)i0,j0 be defined as in Definition B.8

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

where we have following definitions

D1(X) := 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

D2(X) := 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1
+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j1 · w(X)i0,j2

D3(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D4(X) := − f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · w(X)i0,j2

D5(X) := − f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i0 · vj1,j0 · w(X)i0,j2

D6(X) := − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
D7(X) := − s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
D8(X) := − s(X)i0,j0 · f(X)i0,i0 · wj1,j2 − s(X)i0,j0 · f(X)i0,i0 · wj2,j1

D9(X) := s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
D10(X) := − f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j1 · z(X)i0,j2

D11(X) := − ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · z(X)i0,j2
D12(X) := − f(X)i0,i0 · vj2,j0 · z(X)i0,j1 − f(X)i0,i0 · vj1,j0 · z(X)i0,j2
D13(X) := s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2

D14(X) := − s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

D15(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D16(X) := f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
D17(X) := f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j2
D18(X) := f(X)i0,i0 · vj2,j0 · w(X)i0,j1 + f(X)i0,i0 · vj1,j0 · w(X)i0,j2
D19(X) := f(X)i0,i0 · h(X)i0,i0 · wj1,j2 + f(X)i0,i0 · h(X)i0,i0 · wj2,j1

D20(X) := + ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
D21(X) := + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 + f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

Proof. The proof is a combination of derivatives of Ci(X) in this section.

Notice that the symmetricity for Part 1 is verified by tables in this section.
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D HESSIAN CASE 2: i0 ̸= i1

In this section, we focus on the second case of Hessian. In Sections D.1, D.2, D.3, D.4 and D.5, we
calculated derivative of some important terms. In Sections D.6, D.7 and D.8 we calculate derivative
of C6, C7 and C8 respectively. And in Section D.9 we calculate the derivative of dc(X)i0,j1

dxi1,j1
.

D.1 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1

Lemma D.1. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

df(X)i0,i1
dxi2,j2

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0,i1 · w(X)i0,j2

Proof.

df(X)i0,i1
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩))i1
= − (α(X)i0)

−1 · f(X)i0,i1 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i1 · w(X)i0,j2

where the first step follows from Part 1 of Lemma B.14, the second step follows from simple algebra,
the first step follows from Definition B.6.

D.2 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i1

Lemma D.2. If the following holds:

• Let h(X)j0 be defined as Definition B.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= vj2,j0

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= 0

Proof. Proof of Part 1.

dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= vj2,j0
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where the first step follows from Lemma B.7, the second step follows from i1 = i2.

Proof of Part 1.

dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= 0

where the first step follows from Lemma B.7, the second step follows from simple algebra.

D.3 DERIVATIVE OF SCALAR FUNCTION ⟨f(X)i0 , h(X)j0⟩

Lemma D.3. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• Let h(X)j0 be defined as Definition B.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

•

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

Proof.

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨df(X)i0
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 , ei2 · vj2,j0⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

where the first step follows from simple differential rule, the second step follows from Lemma B.14,
the third step follows from simple algebra and Definition B.6, the fourth step follows from
Lemma B.15, the last step follows from simple algebra.

D.4 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Lemma D.4. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have
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•

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof.

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· ⟨Wj1,∗, X∗,i0⟩+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩+ 0d ∗ f(X)i0,i1
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from simple differential rule, the second step follows from Lemma D.1,
the third step follows from i0 ̸= i2, the last step follows from simple algebra.

D.5 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · h(X)j0,i1

Lemma D.5. If the following holds:

• Let f(X)i0 be defined as Definition B.6

• Let h(X)j0 be defined as Definition B.7

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

Proof. Proof of Part 1.

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

where the first step follows from simple differential rule, the second step follows from Lemma D.1,
the third step follows from Part 1 of Lemma D.2, the last step follows from simple algebra.
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Proof of Part 2.

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

where the first step follows from simple differential rule, the second step follows from Lemma D.1,
the third step follows from Part 2 of Lemma D.2.

D.6 DERIVATIVE OF C6(X)

• C6(X) := −⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
• C7(X) := f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
• C8(X) := f(X)i0,i1 · vj1,j0

Lemma D.6. If the following holds:

• Let C6(X) ∈ R be defined as in Lemma B.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

•

dC6(X)

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof.

dC6(X)

dxi2,j2

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) ·
d

dxi2,j2

(f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma B.16, the second step follows from simple differential rule,
the third step follows from Lemma D.4, last step follows from Lemma D.3.
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D.7 DERIVATIVE OF C7(X)

Lemma D.7. If the following holds:

• Let C7(X) ∈ R be defined as in Lemma B.16

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.
dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · 0d

= (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩
where the first step follows from Lemma B.16, the second step follows from differential rule, the third
step follows from Part 1 of Lemma D.3, the fourth step follows from i0 ̸= i2, the last step follows
from simple algebra.

Proof of Part 2.
dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · 0d

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
where the first step follows from Lemma B.16, the second step follows from differential rule, the third
step follows from Part 2 of Lemma D.3, the fourth step follows from i0 ̸= i2, the last step follows
from simple algebra.
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D.8 DERIVATIVE OF C8(X)

Lemma D.8. If the following holds:

• Let C8(X) ∈ R be defined as in Lemma B.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

•

dC8(X)

dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

Proof.

dC8(X)

dxi2,j2

=
d

dxi2,j2

f(X)i0,i1 · vj1,j0
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma B.16, the second step follows from differential rule and
Lemma D.1.

D.9 DERIVATIVE OF
dc(X)i0,j1

dxi1,j1

Lemma D.9. If the following holds:

• Let c(X)i0,j1 ∈ R be defined as in Lemma B.16 and Definition B.8

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

Proof. Proof of Part 1.

dc(X)i0,j0
dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
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+ (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)i0,i2 + 1 + vj2,j0) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1⟩ · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma B.16, the second step follows from Lemma D.6, the third
step follows from Part 1 of Lemma D.7, the last step follows from Lemma D.8.

Proof of Part 2.
dc(X)i0,j0

dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+ (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩+
dC8

dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i2 · vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma B.16, the second step follows from Lemma D.6, the third
step follows from Part 2 of Lemma D.7, the last step follows from Lemma D.8.

E HESSIAN REFORMULATION:

In this section, we provide a reformulation of Hessian formula, which simplifies our calculation
and analysis. In Section E.1 we show the way we split the Hessian. In Section E.2 we show the
decomposition when i0 = i1 = i2.

E.1 HESSIAN SPLIT

Definition E.1 (Hessian of functions of matrix). We define the Hessian of c(X)i0,j0 by considering
its Hessian with respect to x = vec(X). This means that, ∇2c(X)i0,j0 is a nd× nd matrix with its
i1 · j1, i2 · j2-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Definition E.2 (Hessian split). We split the hessian of c(X)i0,j0 into following cases

• i0 = i1 = i2 : H(i1,i2)
1
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• i0 = i1, i0 ̸= i2 : H(i1,i2)
2

• i0 ̸= i1, i0 = i2 : H(i1,i2)
3

• i0 ̸= i1, i0 ̸= i2 : H(i1,i2)
4

In above, H(i1,i2)
i is a d× d matrix with its j1, j2-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Utilizing above definitions, we split the Hessian to a n × n partition with its i1, i2-th component
being Hi(i1, i2).
Definition E.3. We define ∇2c(X)i0,j0 to be as following

∇2c(X)i0,j0 =



H
(1,1)
4 H

(1,2)
4 H

(1,3)
4 · · · H

(1,i0)
3 · · · H

(1,n)
4

H
(2,1)
4 H

(2,2)
4 H

(2,3)
4 · · · H

(2,i0)
3 · · · H

(2,n)
4

H
(3,1)
4 H

(3,2)
4 H

(3,3)
4 · · · H

(3,i0)
3 · · · H

(3,n)
4

...
...

...
. . .

...
. . .

...
H

(i0,1)
2 H

(i0,2)
2 H

(i0,3)
2 · · · H

(i0,i0)
1 · · · H

(i0,n)
2

...
...

...
. . .

...
. . .

...
H

(n,1)
4 H

(n,2)
4 H

(n,3)
4 · · · H

(n,i0)
3 · · · H

(n,n)
4


E.2 DECOMPOSITION HESSIAN : i0 = i1 = i2

Lemma E.4. Under following conditions

• Let Di(X) be defined as Lemma C.14

• Let z(X)i0 := WX · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

D1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗ · ej2
D2(X) = e⊤j1 · (w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0

+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗) · ej2
D3(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗ · ej2
D4(X) = − e⊤j1 ·W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗ · ej2

− e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D5(X) = − e⊤j1 · (w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗) · ej2
D6(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
D7(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W · ej2
− e⊤j1 ·W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2

D8(X) = e⊤j1 · s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W ) · ej2
D9(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · z(X)⊤i0 · ej2
D10(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

+ w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0) · ej2
D11(X) = − e⊤j1 · (z(X)i0 · (h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W
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+W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0) · ej2
D12(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0) · ej2
D13(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0 · ej2
D14(X) = − e⊤j1 ·W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D15(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D16(X) = e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D17(X) = e⊤j1 · (w(X)i0,∗ · f(X)i0,i0 ·X⊤

∗,i0 · h(X)j0,i0 ·W
+W⊤ ·X∗,i0 · f(X)i0,i0 · ·h(X)j0,i0 · w(X)i0) · ej2

D18(X) = e⊤j1 · (w(X)i0,∗f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗) · ej2
D19(X) = e⊤j1 · f(X)i0,i0 · h(X)i0,i0 · (W +W⊤) · ej2
D20(X) := e⊤j1 ·W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤ ·W · ej2
D21(X) := e⊤j1(·W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W ) · ej2

Proof. This lemma is followed by linear algebra calculations.

Based on above auxiliary lemma, we have following definition.

Definition E.5. Under following conditions

• Let z(X)i0 := WX · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We define the Case 1 component of Hessian c(X)i0,j0 to be

H
(i0,i0)
1 (X) := B(X)

where we have

B(X) :=

21∑
i=1

Bi(X)

B1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗

B2(X) := w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0
+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗

B3(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

B4(X) := −W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W
B5(X) := − w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 − V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗

B6(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B7(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W

−W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B8(X) := s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W )

B9(X) := z(X)i0 · s(X)i0,j0 · z(X)⊤i0
B10(X) := − z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0
B11(X) := − z(X)i0 · (h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W
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−W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0
B12(X) := − z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0
B13(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0
B14(X) := −W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W
B15(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B16(X) := w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B17(X) := w(X)i0,∗ · f(X)i0,i0 ·X⊤
∗,i0 · h(X)j0,i0 ·W

+W⊤ ·X∗,i0 · f(X)i0,i0 · ·h(X)j0,i0 · w(X)i0

B18(X) := w(X)i0,∗ · f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗

B19(X) := f(X)i0,i0 · h(X)i0,i0 · (W +W⊤)

B20(X) :=W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤

B21(X) :=W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤
∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W

Notice that, the Hessian for other cases equals to summation of selected terms in Case 1. We do not
provide the explicit here since they are not essential for following analysis.

F HESSIAN OF LOSS FUNCTION

In this section, we provide the Hessian of our loss function.

Lemma F.1 (A single entry). Under following conditions

• Let L(X) be defined as Definition B.9

we have

dL(X)

dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

Proof. Proof of Part 1: i1 = i2

dL(X)

dxi1,j1xi2,j2

=
d

dxi2,j2

(
n∑

i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

)

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

where the first step is given by chain rule, and the 2nd step are given by product rule.

Lemma F.2 (Matrix Representation of Hessian). Under following conditions

• Let c(X)i0,j0 be defined as Definition B.8

• Let L(X) be defined as Definition B.9

we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0

Proof. This is directly given by the single-entry representation in Lemma F.1.
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G BOUNDS FOR BASIC FUNCTIONS

In this section, we prove the upper bound for each function, with following assumption about the
domain of parameters. In Section G.1 we bound the basic terms. In Section G.2 we bound the
gradient of f(X)i0 . In Section G.3 we bound the gradient of c(X)i0,j0
Assumption G.1 (Bounded parameters). Let W,V,X,B be defined as in Section B.2,

• Let R be some fixed constant satisfies R > 1

• We have ∥W∥ ≤ R, ∥V ∥ ≤ R, ∥X∥ ≤ R where ∥ · ∥ is the matrix spectral norm

• We have bi0,j0 ≤ R2

G.1 BOUNDS FOR BASIC FUNCTIONS

Lemma G.2. Under Assumption G.1, for all i0 ∈ [n], j0 ∈ [d], we have following bounds:

• Part 1

∥f(X)i0∥2 ≤ 1

• Part 2

∥h(X)i0∥2 ≤ R2

• Part 3

|c(X)j0 | ≤ 2R2

• Part 4

∥x⊤W∗,j0∥2 ≤ R2

• Part 5

|w(X)i0,j0 | ≤ R2

• Part 6

|z(X)i0,j0 | ≤ R2

Proof. Proof of Part 1

The proof is similar to Deng et al. (2023d), and hence is omitted here.

Proof of Part 2

∥h(X)j0∥2 = ∥X⊤V∗,j0∥2
≤ ∥V ∥ · ∥X∥
≤ R2

where the first step is by Definition B.7, the 2nd step is by basic algebra, the 3rd follows by
Assumption G.1.

Proof of Part 3

|c(X)j0 | = |⟨f(X)i0 , h(X)j0⟩ − bi0,j0 |
≤ |⟨f(X)i0 , h(X)j0⟩|+ |bi0,j0 |
≤ ∥f(X)i0∥2 · ∥h(X)j0∥2 + |bi0,j0 |
≤ 2R2

where the first step is by Definition B.8, the 2nd step uses triangle inequality, the 3rd step uses
Cauchy-Schwartz inequality, the 4th step is by Assumption G.1 and Part 2.
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Proof of Part 4

∥x⊤W∗,j0∥2 ≤ ∥x∥ · ∥W∥
≤ R2

where the first step is by basic algebra, the second is by Assumption G.1.

Proof of Part 5

|w(X)i0,j0 | = |⟨Wj0,∗, X∗,i0 |
≤ ∥Wj0,∗∥2 · ∥X∗,i0∥2
≤ R2

where the first step is by the definition of w(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption G.1.

Proof of Part 6

|z(X)i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩|

≤ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j0∥
≤ R2

where the first step is by the definition of z(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption G.1.

G.2 BOUNDS FOR GRADIENT OF f(X)i0

Lemma G.3. Under Assumption G.1, for all i0, i1 ∈ [n], j1 ∈ [d], we have:

∥df(X)i0
dxi1,j1

∥2 ≤ 4R2

Proof.

df(X)i0
dxi1,j1

= ∥ − f(X)i0 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)∥2
≤ ∥f(X)i0∥22 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥22 · ∥X⊤W∗,j1∥

+ ∥f(X)i0∥2 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥2 · ∥X⊤W∗,j1)∥2
≤ 4R2

where the 1st step is by Lemma B.14, the 2nd step is by Fact B.1, the 3rd step is by Lemma G.2.

G.3 BOUNDS FOR GRADIENT OF c(X)i0,j0

Lemma G.4. Under Assumption G.1, for all i0, i1 ∈ [n], j0, j1 ∈ [d], we have:

|dc(X)i0,j0
dxi1,j1

| ≤ 5R4

Proof.

|dc(X)i0,j0
dxi1,j1

| = |C1(X) + C2(X) + C3(X) + C4(X) + C5(X)|

≤ |C1(X)|+ |C2(X)|+ |C3(X)|+ |C4(X)|+ |C5(X)|
≤ ∥f(X)i0∥22 · ∥h(X)j0∥2 · |w(X)i0,j0 |+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |z(X)i0,j1 |

+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |w(X)i0,j0 |
+ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j1∥2 · ∥h(X)j0∥2 + ∥f(X)i0∥2 · ∥V ∥
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≤ R4 +R4 +R4 +R4 +R2 ≤ 5R4

where the first step is by Lemma B.16, the 2nd step is by triangle inequality, the 3rd step is by
Fact B.1, the 4th step is by Lemma G.2, the 5th step holds by R > 1.

H LIPSCHITZ OF HESSIAN

In Section H.1 we provide tools and facts. In Sections H.2, H.3, H.4, H.6, H.6, H.7 and H.8 we
provide proof of lipschitz property of several important terms. And finally in Section H.9 we provide
proof for Lipschitz property of Hessian of L(X).

H.1 FACTS AND TOOLS

In this section, we introduce 2 tools for effectively calculate the Lipschitz for Hessian.

Fact H.1 (Mean value theorem for vector function, Fact 34 in Deng et al. (2023d)). Under following
conditions,

• Let x, y ∈ C ⊂ Rn where C is an open convex domain

• Let g(x) : C → Rn be a differentiable vector function on C

• Let ∥g′(a)∥ ≤ M for all a ∈ C, where g′(a) denotes a matrix which its (i, j)-th term is
dg(a)j
dai

then we have

∥g(y)− g(x)∥2 ≤M∥y − x∥2
Fact H.2 (Lipschitz for product of functions). Under following conditions

• Let {fi(x)}ni=1 be a sequence of function with same domain and range

• For each i ∈ [n] we have

– fi(x) is bounded: ∀x, ∥fi(x)∥ ≤Mi with Mi ≥ 1

– fi(x) is Lipschitz continuous: ∀x, y, ∥fi(x)− fi(y)∥ ≤ Li∥x− y∥

Then we have

∥
n∏

i=1

fi(x)−
n∏

i=1

fi(y)∥ ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Mi) · ∥x− y∥

Proof. We prove it by mathematical induction. The case that i = 1 obviously.

Now assume the case holds for i = k. Consider i = k + 1, we have.

∥
k+1∏
i=1

fi(x)−
k+1∏
i=1

fi(y)∥

≤ ∥
k+1∏
i=1

fi(x)− fk+1(x) ·
k∏

i=1

fi(y)∥+ ∥fk+1(x) ·
k∏

i=1

fi(y)−
k+1∏
i=1

fi(y)∥

≤ ∥fk+1(x)∥ · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ ∥fk+1(x)− fk+1(y)∥ · ∥
k∏

i=1

fi(y)−
k∏

i=1

fi(y)∥

≤Mk+1 · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

54



Under review as a conference paper at ICLR 2024

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k+1∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k(

k+1∏
i=1

Mi) · max
i∈[k+1]

{Li}∥x− y∥

where the first step is by triangle inequality, the 2nd step is by property of norm, the 3rd step is by
upper bound of functions, the 4th step is by induction hypothesis, the 5th step is by Lipschitz of
fk+1(x), the 6th step is by Mk+1 ≥ 1, the 7th step is a rearrangement.

Since the claim holds for i = k + 1, we prove the desired result.

H.2 LIPSCHITZ FOR f(X)i0

Lemma H.3. Under following conditions

• Assumption G.1 holds

• Let f(X)i0 be defined as Definition B.6

For X,Y ∈ Rd×n, we have

∥f(X)i0 − f(Y )i0∥2 ≤ 4R2∥X − Y ∥

Proof. This lemma is directly given by Mean Value Theorem (Lemma H.1) and upper bound for
gradient of f(X)i0 (Lemma G.3).

H.3 LIPSCHITZ FOR c(X)i0,j0

Lemma H.4. Under following conditions

• Assumption G.1 holds

• Let c(X)i0,j0 be defined as Definition B.8

For X,Y ∈ Rd×n, we have

∥c(X)i0,j0 − c(Y )i0,j0∥2 ≤ 5R4∥X − Y ∥
Note that here we abuse notation, ∥X − Y ∥ denotes ∥ vec(X)− vec(Y )∥2.

Proof. This lemma is directly given by Mean Value Theorem (Lemma H.1) and upper bound for
gradient of c(X)i0,j0 (Lemma G.4).

H.4 LIPSCHITZ FOR h(X)j0

Lemma H.5. Under following conditions

• Assumption G.1 holds

• Let h(X)j0 be defined as Definition B.7

For X,Y ∈ Rd×n, we have

∥h(X)j0 − h(Y )j0∥2 ≤ R∥X − Y ∥
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Proof.

∥h(X)j0 − h(Y )j0∥ = ∥V∗,j0∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of h(X)j0 (see Definition B.7), the 2nd step is by Assump-
tion G.1.

H.5 LIPSCHITZ FOR w(X)i0,j0

Lemma H.6. Under following conditions

• Assumption G.1 holds

For X,Y ∈ Rd×n, we have

|w(X)i0,j0 − w(Y )i0,j0 | ≤ R∥X − Y ∥

Proof.

|w(X)i0,j0 − w(Y )i0,j0 | = |⟨Wj0,∗, X∗,i0 − Y∗,i0⟩|
≤ ∥Wj0,∗∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact B.1, the 3rd step holds
since Assumption G.1.

H.6 LIPSCHITZ FOR z(X)i0,j0

Lemma H.7. Under following conditions

• Assumption G.1 holds

For X,Y ∈ Rd×n, we have

|z(X)i0,j0 − z(Y )i0,j0 | ≤ 5R4 · ∥X − Y ∥

Proof.

|z(X)i0,j0 − z(Y )i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩ − ⟨f(Y )i0 , Y

⊤W∗,j0⟩|
≤ |⟨f(X)i0 , X

⊤W∗,j0⟩ − ⟨f(X)i0 , Y
⊤W∗,j0⟩|

+ |⟨f(X)i0 , Y
⊤W∗,j0⟩ − ⟨f(Y )i0 , Y

⊤W∗,j0⟩|
≤ ∥f(X)i0∥2 · ∥X − Y ∥ · ∥W∗,j0∥2 + ∥f(X)i0 − f(Y )i0∥ · ∥Y ∥ · ∥W∗,j0∥
≤ R · ∥X − Y ∥+R2∥f(X)i0 − f(Y )i0∥
≤ 5R4 · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact B.1, the 3rd step holds
since Assumption G.1, the 4th step uses Lemma H.3.

H.7 LIPSCHITZ FOR FIRST ORDER DERIVATIVE OF c(X)i0,j0

Lemma H.8. Under following conditions

• Assumption G.1 holds

• Let c(X)i0,j0 be defined as Definition B.8

For X,Y ∈ Rd×n, we have

|c(X)i0,j0
dxi1,j1

− c(Y )i0,j0
dyi1,j1

| ≤ 320R6 · ∥X − Y ∥

56



Under review as a conference paper at ICLR 2024

Proof. Notice that

• maxi∈[5]{∥Ci(X)∥} ≤ R4

• maxf∈S{Lipschitz(f)} = 4R2 where S is the set of basic functions in Ci(X)

• n = 4

The result is directly given by applying Fact H.2.

H.8 LIPSCHITZ FOR SECOND ORDER DERIVATIVE OF c(X)i0,j0

Lemma H.9. Under following conditions

• Assumption G.1 holds

• Let c(X)i0,j0 be defined as Definition B.8

For X,Y ∈ Rd×n, we have

| c(X)i0,j0
dxi1,j1xi2,j2

− c(Y )i0,j0
dyi1,j1yi2,j2

| ≤ 2688 ·R8∥X − Y ∥

Proof. Notice that

• maxi∈[21]{∥Di(X)∥} ≤ R6

• maxf∈S{Lipschitz(f)} = 4R2 where S is the set of basic functions in Di(X)

• n = 6

The result is directly given by applying Fact H.2.

H.9 LIPSCHITZ FOR HESSIAN OF L(X)

Lemma H.10. Under following conditions

• Assumption G.1 holds

• Let c(X)i0,j0 be defined as Definition B.8

For X,Y ∈ Rd×n, we have

∥∇2L(X)−∇2L(Y )∥ ≤ O(n3d3R10)∥X − Y ∥

Proof.

| L(X)

dxi1,j1xi2,j2

− L(Y )

dyi1,j1yi2,j2
|

= |
n∑

i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

−
n∑

i0=1

d∑
j0=1

dc(Y )i0,j0
dyi1,j1

· dc(Y )i0,j0
dyi1,j2

+ c(Y )i0,j0 ·
dc(Y )i0,j0
dyi1,j1yi2,j2

|

≤
n∑

i0=1

d∑
j0=1

(|dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

− dc(X)i0,j0
dxi1,j1

· dc(Y )i0,j0
dyi1,j2

|
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+ |dc(X)i0,j0
dxi1,j1

· dc(Y )i0,j0
dyi1,j2

− dc(Y )i0,j0
dyi1,j1

· dc(Y )i0,j0
dyi1,j2

|

+ |c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

− c(Y )i0,j0 ·
dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 ·
dc(Y )i0,j0
dyi1,j1yi2,j2

− c(Y )i0,j0 ·
dc(Y )i0,j0
dyi1,j1yi2,j2

|)

=

n∑
i0=1

d∑
j0=1

(|dc(X)i0,j0
dxi1,j1

| · |dc(X)i0,j0
dxi1,j2

− dc(Y )i0,j0
dyi1,j2

|

+ |dc(X)i0,j0
dxi1,j1

· −dc(Y )i0,j0
dyi1,j1

| · |dc(Y )i0,j0
dyi1,j2

|

+ |c(X)i0,j0 | · |
dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|)

≤
n∑

i0=1

d∑
j0=1

(10R4 · |dc(X)i0,j0
dxi1,j2

− dc(Y )i0,j0
dyi1,j2

|

+ |c(X)i0,j0 | · |
dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|)

≤
n∑

i0=1

d∑
j0=1

(3200R10 · ∥X − Y ∥

+ |c(X)i0,j0 | · |
dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|)

≤
n∑

i0=1

d∑
j0=1

(3200R10 · ∥X − Y ∥

+ 2R2 · | dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|)

≤
n∑

i0=1

d∑
j0=1

(3200R10 · ∥X − Y ∥

+ 5376R10 · ∥X − Y ∥
+ 23R6 · |c(X)i0,j0 − c(Y )i0,j0 |)

≤
n∑

i0=1

d∑
j0=1

(3200R10 · ∥X − Y ∥

+ 5376R10 · ∥X − Y ∥
+ 105R10 · ∥X − Y ∥)

= 8681ndR10 · ∥X − Y ∥
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where the first step is by Lemma F.1, the 2nd step is by triangle inequality, the 3rd step is basic
algebra, the 4th step uses Lemma G.4, the 5th step uses Lemma H.8, the 6th step uses Lemma G.2,
the 7th step uses Lemma H.9, the 8th step uses Lemma H.4.

Then, we have

∥∇2L(X)−∇2L(Y )∥ ≤ ∥∇2L(X)−∇2L(Y )∥F
≤ n2d2 · 9193ndR10∥X − Y ∥ = 9193n3d3R10 · ∥X − Y ∥

where the 1st step is by matrix calculus, the 2nd is by above result.

I STRONGLY CONVEXITY

In this section, we provide proof for PSD bounds for Hi.

I.1 PSD BOUNDS FOR Hi

Lemma I.1 (PSD bounds for Hi). Under following conditions,

• Let H(i1,i2)
i be defined as in Definition E.5

• Let Assumption G.1 be satisfied

For all i ∈ [4] (i.e., the 4 cases), we have

−21R6 · Id ⪯ H
(i1,i2)
i ⪯ 21R6 · Id

Proof. Considering H
(i0,i0)
1 , we have

−21R6 · In ⪯ H
(i0,i0)
1 ⪯ 21R6 · In

This is given by the upper bound of Bi(X) is smaller than R6 for all i ∈ [21].

Notice that in other cases, the Hessian has less terms than Case 1. Also, those terms are included in
Case 1 (equivalence by changing coordinates). Therefore, the PSD bound is suited for all cases.

Lemma I.2 (PSD bounds for∇2c(X)i0,j0 ). Under following conditions,

• Let ci0,j0 be defined as in Definition B.8

• Let Assumption G.1 be satisfied

For all i0 ∈ [n], j0 ∈ [d], we have

−21R6 · Ind ⪯ ∇2c(X)i0,j0 ⪯ 21R6 · Ind

Proof. Recall in Definition E.3, each partition component of∇2c(X)i0,j0 is H(i1,i2)
i , which has PSD

bounds as in Lemma I.1

Then by the definition of PSD,∇2c(X)i0,j0 has the same PSD bounds.

Lemma I.3 (PSD bounds for∇2L(X)). Under following conditions,

• Let L(X) be defined as in Definition B.9

• Let Assumption G.1 be satisfied

we have

∇2L(X) ⪰ −O(ndR8) · Ind
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Proof. Recall in Lemma F.2, we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0 (2)

Notice that the first term is PSD, so we omit it.

By Lemma G.2, we have

|c(X)i0,j0 | ≤ 2R2

Therefore, we have

∇2L(X) ⪰ −42ndR8 · Ind
which is given by combining Lemma I.2 and Eq. (2).

J FINAL RESULT

Theorem J.1 (Formal of Theorem 1.3, Main Result). We assume our model satisfies the following
conditions

• Bounded parameters: there exists R > 1 such that

– ∥W∥F ≤ R, ∥V ∥F ≤ R

– ∥X∥F ≤ R

– ∀i ∈ [n], j ∈ [d], |bi,j | ≤ R where bi,j denotes the i, j-th entry of B

• Regularization: we consider the following problem:

min
X∈Rn×d

∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F + γ · ∥ vec(X)∥22

• Good initial point: We choose an initial point X0 such that M · ∥X0−X∗∥F ≤ 0.1l, where
M = O(n3d3R10)

Then, for any accuracy parameter ϵ ∈ (0, 0.1) and a failure probability δ ∈ (0, 0.1), an algorithm
based on the Newton method can be employed to recover the initial data. The result of this algorithm
guarantee within T = O(log(|X0 −X∗|F /ϵ)) executions, it outputs a matrix X̃ ∈ Rd×n satisfying
∥X̃ − X∗∥F ≤ ϵ with a probability of at least 1 − δ. The execution time for each iteration is
poly(n, d).

Proof. Choosing γ ≥ O(ndR8), by Lemma I.3, we have the PD property of Hessian.

By Lemma H.10, we have the Lipschitz property of Hessian.

Since M is bounded (in the condition of Theorem), then by iterative shrinking lemma (see Lemma 6.9
in Li et al. (2023c) as an example), we prove the convergence.
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