Under review as a conference paper at ICLR 2023

A APPENDIX

This appendix includes the following:

. An extended discussion of related work in Section A.1.

. An extended description of robust residual block in Section A.2.
. Additional results of topology in Section A.3

. An extended discussion of Squeeze-n-Excitation in Section A.4
. Additional results of convolution kernel size in Section A.5

. Impact of normalization in Section A.6

~N O L BN

. An extended description of RobustResNet in Section A.7.

A.1 EXTENDED RELATED WORK

This section provides a general review of the related concepts and existing work.

Adversarial white-box attacks. Since the first demonstration that high performant DNNs are vul-
nerable to small perturbation in inputs (a.k.a. adversarial examples) (Szegedy et al., 2014), there
is a plethora of efforts devoted to crafting more delicate adversarial examples (AEs) — fast gradient
sign method (FGSM) (Goodfellow et al., 2015) is one of the earliest methods that applies a single
gradient step to generate AEs; projected gradient descent (PGD) (Madry et al., 2018) is a widely
studied method that is considered to perform well in most cases while being computationally effi-
cient; Carlini & Wagner (CW) (Carlini & Wagner, 2017) introduces an alternative loss that is shown
to exhibit stronger attack performance; AutoAttack (AA) (Croce & Hein, 2020) is an aggregated
attack that forms an ensemble of four complementary attacks.

Adversarial Training as a Defense. Among many defense strategies proposed in the literature, ad-
versarial training (AT) has emerged as one of the most effective ways to guard against adversarial
attacks. The basic idea of AT is to leverage AEs during the training process of a DNN model. Since
the primary work that feeds inputs perturbed by PGD back into the training data (Madry et al., 2018),
the procedure of applying AT has been extended in various directions — sophisticated loss functions
to balance the trade-off between natural and robust accuracy (Zhang et al., 2019) or make use of
misclassified natural examples (Wang et al., 2020); advanced training procedures such as early stop-
ping to prevent robust overfitting (Rice et al., 2020) and weight ensembling (Chen et al., 2021; Wang
& Wang, 2022); more diverse data for training by generative modeling (Gowal et al., 2021; Sehwag
et al., 2022) or data augmentation (Rebuffi et al., 2021).

Robust Architecture. Adversarial robustness has also been studied from an architecture perspective.
On the one hand, several recent works attempt to find more robust DNN architectures via neural ar-
chitecture search (NAS) — Guo et al. (2020) applies a one-shot NAS algorithm to design the topology
of a cell structure (i.e., operations and connections among them) while leaving the network skeleton
(i.e., width and depth) to human designs; Mok et al. (2021) incorporates the smoothness of a DNN
model’s input loss landscape as an additional regularizer for NAS, among others (Ning et al., 2020;
Chen et al., 2020; Liu & Jin, 2021). On the other hand, there are also recent works that aim to gain
understandings of adversarial robustness from an architectural perspective — Huang et al. (2021a)
investigates the impact of network width and depth on the adversarial robustness of adversarially
trained DNN models.

A.2 EXTENDED DESCRIPTION OF ADVERSARIALLY ROBUST RESIDUAL BLOCK

We provide the visual comparison between post- and pre-activation in Figure 11, where the post-
activation He et al. (2016a) places activation function posterior to the weights while the pre-
activation proposed by He et al. (2016b) places activation function a-priori to the weights.

Besides, PyTorch-like implementation of our proposed RobustResBlock is summarized in Algo-
rithm 1.

13

Under review as a conference paper at ICLR 2023

L—{weightl—)l norm |—> —Dlweight |—)| norm }—»é)—i act | (L—'{ norm I—’l act |—> —'l norm |—'| act HweightPé

(a) Post-activation (b) Pre-activation

Figure 11: A pictorial illustration of (a) the standard post-activation and (b) pre-activation arrange-
ments.

Algorithm 1 RobustResBlock: PyTorch-like Pseudocode

f C_in, C_out: number of input / output channels

f s, ¢, w: scales, cardinality, and hidden size

NormAct: Batch normalization followed by a ReLU activation
class RobustResBlock (nn.Module) :

expansion = 4
def __init__ (self, C_in, C_out, S, G, W, stride, xxkwargs):
width = math.floor (C_out » (W / 160)) * G # True width
convl = Convlxl(C_in, width * S)
conv2 = [Conv3x3(width, width, groups=G) for i in range(S - 1)
conv3 = Convlxl(width % S, C_out x expansion)

se = SE(C_out * expansion, reduction=64) # Squeeze-and-Excitation
if stride > 1 or (C_in != C_out % expansion):

shortcut = Convlxl(C_in, C_out % expansion)

pool = AvgPool3x3(stride)

def forward(self, x):

out = NormAct (x) # Pre-Ac Input firstly goes through a Norn

shortcut = shortcut (out) f shortcut else x

inputs = torch.chunk (out, S, dim=1) # Split input into number of scales chunks

outs = [pool (inputs[-1]) if stride > 1 else inputs[-1]]

for i in range(S - 1):
x = inputs[i] 1if (1 == 0 or stride > 1) else inputs[i] + outs[-1]
outs.append (NormAct (conv2[i] (x))

out = conv3(torch.cat (outs, 1))

return out + shortcut + se(out)

-t

A.3 ADDITIONAL RESULTS OF TOPOLOGY

In this subsection, we present extra results of topology over CIFAR10 in Figure 12. Detailed com-
parison for the non-residual block with post- and pre-activation is shown in (a). Both activation
arrangements have similar performance and can not alleviate the lack of residual connection. Be-
sides, we also studied two more model capacities for aggregated and hierarchical convolutions.
Furthermore, (g, h) comparing aggregated (cardinality = 4) and hierarchical (scales = 8) bottlenecks
to other blocks under PGD?°,

g
5

K
5

66 PGD®
5551|551 cww
2

%
5550 —

. [e
Bottleneck (pre-ac Sais
-0 Inverted (post-act)
No residual (pre-act) 53.0 .

8 40 1

z
5

g
5

Post-act PGD? Post-act CW*
37.5 Pre-act PGD Pre-act CW*

t Ac
5
2
% PGD?° Robust Accuracy
3 &
S
% Robust Accuracy

8

50 100 150 200 250 50 100 150 200 250 1

2 4 4
No. of Parameters (M) No. of Parameters (M) Cardinality Cardinality

(@) Non-residual block (b) Comparison under PGD?° (C)D=5W =12 dbD=7,Ww=14

Y = 0.
980166 Bottleneck PGD 55.0{[G-0 Bottlencck PGD® 290
57.0/|29 Bottleneck cw® 581 Bottleneck CW*
56.0 o

g o=

By

g
s

-4 Basic
-4 Bottleneck
oo mverted
Hierarchical
5+ Bottleneck

Robust Accuracy

%
5 g
% Robust Accuracy

% £ 8

g £ g

% PGD? Robust Accuracy

% PGD2° Robust Accuracy

52.0

1 2 4 8 1 2 3 8 50 100 150 200 250 : 50 100 150 200 250
Scales Scales No. of Parameters (M) No. of Parameters (M)

()D=5W=12 D=7, Ww=14 (2) (h)

Figure 12: Extra results for comparing (a) non-residual block with post- and pre-activation, (b)
four blocks with best settings. (c, d) and (e, f) show the robustness of aggregated and hierarchical
bottleneck in two kinds of models, respectively. (g, h) Comparing aggregated (cardinality = 4) and
hierarchical (scales = 8) bottleneck to other blocks under PGD?°.

14

Under review as a conference paper at ICLR 2023

A.4 EXTENDED DESCRIPTION OF SQUEEZE-N-EXCITATION

Squeeze-n-Excitation is a well-recognized operator on standard tasks. We have tried five variants of
SE for adversarial robustness in this work and provide more details of those variants in Figure 13.
Specifically, (a - e) show their structures, and (f) explains each variant. Besides, additional results
are found in (g, h). Our proposed residual SE is simple as standard SE Hu et al. (2018) and improves
the robustness while others fail. Furthermore, we studied different reduction ratios for residual SE
and identified that a higher reduction ratio (i.e., r = 64) provides a good trade-off between parameters
and robustness.

.
Residual
(SE)

(a) Standard SE (b) Pre-SE (c) Identity-SE (d) Conv3x3-SE (€) Residual SE (ours)
Design | Explanation
(a) Standard SE Place the SE module posterior to the main components of the residual block as proposed in (Hu et al., 2020).
(b) Pre-SE Place the SE module a priori, i.e. before the main components of the residual block, also tried by Hu et al. (2020).
(c) Identity-SE Place the SE module in the skip-connection branch, also tried by Hu et al. (2020).
(d) Conv3x3-SE Place the SE module right after the 3 x 3 convolution, as done in MobileNetV3 (Howard et al., 2019).

Add an extra skip connection around the SE module to the standard SE integration design,

(€) Residual SE (ours) similarly to the FSM module from Huang et al. (2021b).
. Reduction Robust Acc. (% 2 -0
Design ratio #P (M) #F(G) Clean Acc. (%) PGD2 (Cc\ng § 57.5
w/o SE - 265 39.0 85.47 57.49 55.07 EET0T e ———
Standard SE 296 39.1 84.56 (-0.91) 56.87 (-0.62) 5452(-0.55) B 65
Conv3x3-SE r=16 273 39.1 85.26 (-0.21) 57.10 (-0.39) 54.77 (-0.40) §
Identity-SE r= 293 39.1 8520 (-:0.27) 57.04 (-0.45) 5494(-0.13) & 560 =5 B
Pre-SE 293 39.1 85.81 (+0.34) 57.31 (-0.18) 55.32 (+0.25) 5 A-A Basic + our SE
r=16 296 39.1 8575(:028) 57.86(+0.37) 55.95(+0.88) =" 56 otk + ohrsn
Residual SE (ours) r=32 281 39.1 85.22 (-0.25) 57.98 (+0.49) 55.54 (+0.47) - 0 % 200 %0
=64 273 390 85.61 (+0.14) 57.77(+0.28) 56.05 (+0.98) % e, of Parameters (M)
(€] (h)

Figure 13: (a) - (e) An overview of SE integration designs studied in this work. (f) Description and
(g) ablation results of the SE integration designs shown in (a) - (e).

A.5 ADDITIONAL RESULTS OF CONVOLUTION KERNEL SIZE

We provide more experimental results of convolution kernel size in Figure 14. The observations
from CW4° in the main paper are consistent under different attackers, i.e., FGSM and AutoAttack.

A.6 IMPACT OF NORMALIZATION

In this section, we investigate the relationship between normalization methods and adversarial ro-
bustness. In addition to baseline of Batch Normalization (BN), we consider three other normaliza-
tion methods, i.e., Group Normalization (GN) (Wu & He, 2018), Layer Normalization (LN) (Ba
et al., 2016), and Instance Normalization (IN) (Ulyanov et al., 2016). We also confine all blocks in
a DNN model to use a single choice of normalization method and repeat the experiment for each
method three times. The experimental results are summarized in Table 3. Evidently, the baseline
normalization method (i.e., BN) outperforms all other alternative normalization methods, particu-
larly on Tiny-ImageNet. It is worth noting that LN fails to converge on all three datasets.

15

Under review as a conference paper at ICLR 2023

g o9 9 v @ g
8 2 g8 8 3

g

S
9
g
5
8

<
k7
]

g

Z

=

1%

1<}

&

=

Stage 3

Sfage s

2 a é&a@ex

(a) C-100, FGSM

Stage 3

f
3 greg® N

(b) C-100, AA

Stage 3

5 gred® N

(c) Tiny-IN, FGSM

Stage 3

9% AutoAttack Robust Acc

s dwe® N

(d) Tiny-IN, AA

C;
s oo oo
5588

[60 32x32 AA 96x96 |
|[3£] 64x64 G-© 128x128|

2

£

~8

AutoAttack Robust Accuracy
@ 5 85 2 &

8

5
s

5

—B—

2

[6-0 32x32" _A—A"sTs?ﬁé"i
|[3£] 64x64 G-© 128x128|

% FGSM Robust Accuracy

3

(5] 64x64 G-© 128x128
LA\ 96x96

=

5

5

11

[F£] 64x64 O-© 128x128
A 96x96

3%3 9%9

5%5 77
Kernel Size

(e) C-10, FGSM

33 5%5 7x7
Kernel Size

(f) c-10, AA

3%3

©
X
&

5%5 7x7
Kernel Size

(g) Tiny-IN, FGSM

% AutoAttack Robust Accuracy

3%3 5%5 77
Kernel Size

(h) Tiny-IN, AA

Figure 14: Additional results of convolution kernel size.

Table 3: The adversarial robustness of the considered normalization methods. We highlight the best
results of each section in bold. “—” indicates that the training fails to converge.

Onti \ CIFAR-10 \ CIFAR-100 \ Tiny-ImageNet | Average
ptions Ronk
| Nat. PGD* CW" AA | Nat. PGD* CW' AA | Nat. PGD* AA |
BN | 85.11 5536 53.02 5143 | 5577 2991 2623 2535 | 42.09 20.68 16.25 1.5
GN | 8528 55.82 5276 51.23 | 56.60 29.86 26.26 25.09 | 30.99 16.87 13.01 1.7
IN | 8534 5449 50.82 4934 | 56.56 2841 2417 22.68 | 17.25 10.69 8.18 2.7
LN | - . . : : - - R : R - 40

A.7 EXTENDED DISCUSSION OF ROBUSTRESNETS

Table 4 provides the detailed settings of RobustResBlockA1-A4. Besides, we add extra compar-
isons between blocks and scalings in Figure 15. The derived compound scaling rule reduces the
parameters significantly and further improves the robustness over RobustResBlock.

Table 4: The stage wise setting is presented using [k x &, #Ch], where k& denotes the convolution
filter size, #Ch denotes the number of output channels, and [-] indicates residual connection.

| RobustResNet-Al | RobustResNet-A2 | RobustResNet-A3 | RobustResNet-A4

Stem | 3 x 3, 16, stride 1
[x 1, 1607 1x 1,224 1x 1,256 1x 1,320
Stage 1 3x3,160| x3 3x3,224| x3 3x3,256| x3 3x3,320| x3
L1 x 1, 320] 1x 1,448 1x1,512 1 x 1,640
(1 x 1,448 1x 1,576 1x 1,704 1x 1,896
Stage 2 3x3,448| x 3 3x3,576 | x3 3x3,704 | x3 3%x3,86 | x3
1% 1, 896 1x1,1152 1 x 1, 1408 1x1,1792
(1 x 1, 3847 1x1,512 1 x 1, 640 1x 1,768
Stage 3 3x3,384| x3 3x3,512| x3 3x3,640 | x 3 3x3,768 | x3
L1 x 1,768] 1x1,1024 1 x1,1280 1x1,1536
Tail | Global average pool

16

Under review as a conference paper at ICLR 2023

w
©
<)

@]
o
©
)

G-© WRNs
A-A RobustResBlock

[J-E] RobustResNets

o
N
o
v
>
o

o
o
<3
\
\
\\
o
o
IS

o
i
)
o
i
o

G—© WRNs
/-A RobustResBlock
[-E] RobustResNets

Robust Accuracy CW*°
o o
@ o
o (=]
Robust Accuracy CW#°
&
o

o
w
o

wu
N
o

wl
N
o

50 100 150 200 250 “ 5 10 15 20 25 30 35 40
No. of Parameters (M) No. of FLOPs (G)

(a) CW*° ys. #Params (b) CW*° ys. #FLOPs

Figure 15: Comparisons between blocks and scalings. Both WRN and RobustResBlock adopt stan-
dard scaling, while RobustResNets utilize the proposed compound scaling and RobustResBlock.

17

