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Abstract
Recently, dynamic convolution shows performance boost for the
CNN-related networks in medical image segmentation. The core
idea is to replace static convolutional kernel with a linear com-
bination of multiple convolutional kernels, conditioned on input-
dependent attention function. However, the existing dynamic con-
volution design suffers from two limitations: i) The convolutional
kernels are weighted by enforcing a single-dimensional attention
function upon the input maps, overlooking the synergy in multi-
dimensional information. This results in sub-optimal computations
of convolution kernels. ii) The linear kernel aggregation is ineffi-
cient, restricting the model’s capacity to learn more intricate pat-
terns. In this paper, we rethink the dynamic convolution design
to address these limitations and propose multi-dimensional aggre-
gation dynamic convolution (MAGIC). Specifically, our MAGIC
introduce a dimensional-reciprocal fusion module to capture corre-
lations among input maps across the spatial, channel, and global di-
mensions simultaneously for computing convolutional kernels. Fur-
thermore, we design kernel recalculation module, which enhances
the efficiency of aggregation through learning the interaction be-
tween kernels. As a drop-in replacement for regular convolution,
our MAGIC can be flexibly integrated into prevalent pure CNN or
hybrid CNN-Transformer backbones. The extensive experiments on
four benchmarks demonstrate that our MAGIC outperforms regular
convolution and existing dynamic convolution. Code is available
at: https://github.com/Segment82/MAGIC
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• Computing methodologies→ Image segmentation.
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1 Introduction
Automatically segmenting various data modalities (such as CT and
MRI scan) is one of the most fundamental yet challenging tasks in
medical image analysis [25, 52]. On the one hand, accurate segmen-
tation allows healthcare professionals to access reliable morpholog-
ical data, and assists in making precise and dependable diagnoses
[55]. On the other hand, medical images commonly contain the
varying scale of organs or lesions, low contrast, and blurred edges
[14, 22]. These distractors pose a formidable challenge to segment
the organs with intricate organizational structures.

Due to the scale invariance and inductive bias of convolution
operation, CNNs are widely adopted to tackle the above chal-
lenge. Accordingly, many pure CNN architectures or hybrid CNN-
Transformer architectures have been designed for medical image
segmentation [6, 15, 20, 29, 33, 38, 51]. For instance, UNet [38] pio-
neered the use of fully CNN for medical image segmentation, lever-
aging convolutions to build hierarchical feature representations. In
parallel, TransUNet [6] incorporates the strengths of both CNNs
and Transformers, which employs the capability of CNNs to capture
high-resolution, informative representations in the spatial domain.
With these representations, Transformers can further capture their
long-range dependencies for achieving better segmentation results.

These CNN-related methods usually opt for the regular convolu-
tions as their backbones. Nevertheless, since the inherent spatial
invariance and channel specificity, regular convolutions struggle to
adapt to various visual modalities across different spatial locations.
Further, the principle of weight sharing impede their effectiveness
in extracting features from varying scale targets with blurred edges.
In addition, most of them typically introduce extra convolutional
layers or enlarge the dimensions of convolutions, such as kernel
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size and channel number. Hence, these methods aiming at boost-
ing CNNs capabilities significantly increase computational costs.
In short, the above limitations hinder the models’ flexibility and
diminish their capacity to generalize effectively, especially when
dealing with the intricacies of medical imagery.

Recently, Lei et al. [28] attempt to introduce the dynamic convo-
lution [9] for medical image segmentation, in order to mitigate the
limitations of regular convolutions. The core idea of this method
is to replace static convolutional kernel with a linear combination
of multiple convolution kernels, according to the input-dependent
Squeeze-and-Excitation (SE) [19] attention mechanism. In doing
so, the weight coefficients is adaptive for the organs or lesions
with intricate organizational structures. This can increase the rep-
resentation capability without increasing the depth or width of the
network. Furthermore, each convolutional kernel only needs to
be computed once, thereby reducing extra computational cost in
comparison to regular convolutions.

Despite the encouraging progress, there are two major limita-
tions for this method. (1) The convolutional kernels is weighted
by enforcing the SE attention function upon the input features.
This operation only processes information from a single channel
dimension, which emphasizes the critical feature channels about le-
sion edges or organ textures, as illustrated in Figure 1 (a). However,
other dimensional (spatial, global) information within the input is
disregarded, where spatial structural information between pixels
contain the unique textures and edges of organs/lesions; global
information identifies key features across the entire input. (2) The
linear combination of multiple convolutional kernels restricts the
model’s capacity to learn more intricate patterns, because it mainly
relies on the additive property of kernels for combination, while
overlooking the aggregation of multiple kernels. For the above lim-
itations, we assume that (1) modeling the synergy among three
dimensions helps the convolutional kernels understand “what and
where the organ/lesion is”, thereby enhancing the model’s gener-
alization ability; (2) modeling more diverse context information
within input feature to compute the convolutional kernels, while
increasing the parameter efficient of kernel aggregation.

In this paper, we tackle the above limitations by proposing
a novel Multi-dimensional AGgregation dynamIc Convolution
(MAGIC), which learns dimensional-reciprocal convolutional ker-
nels to capture varying scale of organs or lesions, while aggregating
multiple kernels to maintain parameter efficiency. As a plug-and-
play replacement, MAGIC can seamlessly substitute the regular
convolution in pure CNN or hybrid CNN-Transformer backbones
for medical image segmentation. Architecture-wise, given feature
maps from the backbones, we first design a Dimensional-Reciprocal
Fusion (DRF) to capture their correlations across the spatial, channel,
and global dimensions in parallel, which can attain a comprehen-
sive understanding for them to compute the multiple convolutional
kernels. Then, unlike traditional linear combination, we design a
Kernel Recalculation (KR), which learns the interaction among mul-
tiple kernels to generate scalar for each kernel, thus enhancing the
overall parameter utilization. Further, the aggregated convolution
kernels is used to distill the feature maps of complex organs or
lesions in medical images. Finally, these feature maps are fed into
the backbones to obtain the accurate segmentation results.

Our contributions can be summarized as follows:

• We make in-depth analysis for the limitations of regular
convolution and vanilla dynamic convolution, when using
them to extract the complex feature in the medical image
(e.g., varying scale of organs or lesions).

• A novel dynamic convolution called MAGIC is designed to
learn dimensional-reciprocal convolutional kernels, while
enhancing the parameter efficiency of kernel aggregation.

• We demonstrate the efficacy of MAGIC by comparing it
with regular convolution and existing dynamic convolution
designs on four challenging medical benchmark datasets.
Experiments show that MAGIC with a single convolutional
kernel produces superior results, and can rival or outperform
existing dynamic convolution methods based on multiple
kernels. This substantially reduces the number of parameters
required, offering an elegant and parameter-efficient design.

2 RELATEDWORK
2.1 Medical Image Segmentation
Convolutional neural networks (CNNs) have been the de-facto stan-
dard for the medical image segmentation [17, 34, 37, 40]. UNet [38]
pioneered the application of CNN for medical image segmentation
task, which introduced a U-shaped fully convolutional network.
Inspired by the simplicity and high performance of UNet, numerous
variants of U-shaped CNNs have emerged to enhance the segmenta-
tion accuracy of models [21, 23, 26, 57]. Benefiting from the robust
feature extraction capabilities of convolution, CNNs play an indis-
pensable role in medical image segmentation. Recently, motivated
by the success of Transformer architectures [12, 13, 35, 44, 45],
some works have attempted to combine CNNs with Transformers
[42, 49, 56]. For example, TransFuse [54] introduces a parallel strat-
egy that explores the balance between combining CNNs and Trans-
formers for maximizing the advantages offered by both. Given that
CNN can compensate for the limitations of Transformer structures
in attending to local information, the hybrid CNN-Transformer
networks have powerful feature learning ability.

2.2 Dynamic Convolution
Numerous prior studies have demonstrated the efficacy of dynamic
convolution in deep neural networks [11, 24, 41]. Brabandere et
al. [24] introduced dynamic filters in the convolution layer, condi-
tioned on an input. Yang et al. [50] and Chen et al. [9] replaced the
static convolutional kernels with 𝑛 convolutional kernels, which
were weighted using an attention mechanism over the input. Based
on this idea, WeightNet [36] employed grouped fully connected
layer to generate the convolutional weight directly. However, this
vanilla dynamic convolution resulted in an n-fold increase in the
number of convolutional parameters. To mitigated this limitation,
Li et al. [32] proposed a more compact model via matrix decomposi-
tion, which learnt a base kernel and a sparse residual to approximate
dynamic convolution. ODConv [31] introduced a more generalized
form of dynamic convolution, utilizing multidimensional atten-
tion to explore different dimensions of the convolutional kernel
space for generating kernel weights. Recently, Lei et al. [28] intro-
duced DDConv, a integration of deformable convolution and vanilla
dynamic convolution, designed to adaptively change the weight
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Figure 1: A comparison of (a) vanilla dynamic convolution and (b) our multi-dimensional aggregation dynamic convolution
(MAGIC). Our MAGIC employs a more comprehensive attention mechanism to compute convolutional kernels, and introduces
an innovative strategy for kernel aggregation.

coefficient and deformation offset for increasing the precision of
medical image segmentation.

2.3 Attention Mechanism
The attention mechanism plays a pivotal role in various vision tasks
[8, 19, 43, 46, 53]. For instance, Li et al. [30] utilize local informa-
tion as a guide to spatially activate the feature representation. Hu
et al. [19] introduce a novel architectural unit called the Squeeze-
and-Excitation (SE) block, which computes channel correlation to
enhance important channel feature maps. To complement the chan-
nel attention block, Chen et al. [7] suggest a spatial attention block
to refine focus on a feature map. Recently, Wang et al. [48] draw
inspiration from traditional methods [3] and extend the classical
non-local operation to deep neural networks.

3 Method
In this section, we first revisit the foundational concepts of vanilla
dynamic convolution via a general formulation. Subsequent sec-
tions will elaborate on the formulations of our MAGIC.

3.1 Revisiting Vanilla Dynamic Convolution
Definition: Vanilla dynamic convolution, such as DYConv [9] and
CondConv [50], replaces static convolutional kernel with a linear
combination of 𝑛 convolutional kernels {𝑊1,𝑊2 ...𝑊𝑛} weighted by
an attention mechanism, as follows:

𝛼𝑖 = 𝜋𝑖 (𝑥) (1)

𝑦 = (𝛼1𝑊1 + 𝛼2𝑊2 + ... + 𝛼𝑛𝑊𝑛) ∗ 𝑥 (2)

where {𝛼1, 𝛼2 ...𝛼𝑛} denote attention scalars learned by the attention
function 𝜋 (·);𝑥 ∈ R𝐻×𝑊 ×𝐶 and𝑦 ∈ R𝐻×𝑊 ×𝐶 are input and output
features, where 𝐻 ,𝑊 , and 𝐶 denote the height, width, and number
of channels respectively. For brevity, we omit the bias term in this
paper.

Limitation Discussions. As described in Equation 2, the dy-
namic property of vanilla dynamic convolution arises from the
aggregation of multiple convolutional kernels, which are computed

based on the exploration of the input space via an attention mecha-
nism 𝜋 (·). Consequently, exploring the input space and aggregating
kernels are two key components of dynamic convolution. How-
ever, both DYConv [9] and CondConv [50] employ a modified SE
[19] structure as the function 𝜋 (·) to capture the channel-wise
correlation of the input, thereby generating the attention scalars
{𝛼1, 𝛼2 ...𝛼𝑛}. In other words, these methods overlook the explo-
ration of other dimensional contexts within the input features, such
as spatial information and long-range dependencies, which are
crucial for understanding the medical dissection of structure and
tissue. Furthermore, capturing such relationships is inherently chal-
lenging for regular convolution. Such a rudimentary exploration of
the input space might be one of the reasons why vanilla dynamic
convolution only marginally outperforms traditional convolution
in medical image segmentation tasks, as explored in Section 4. Addi-
tionally, each convolutional kernel is weighted by attention scalars
{𝛼1, 𝛼2 ...𝛼𝑛 }, which are outcomes of the attention mechanism 𝜋 (·).
This indicates that the weights of convolutional kernel are exclu-
sively dependent on the input features, treating each kernel with
identical importance. As a result, the importance across different
kernels are not properly reflected.

3.2 Dimensional-Reciprocal Fusion
Building upon the above analysis, we introduce the Dimensional-
Reciprocal Fusion (DRF) module to harness synergies from three
distinct perspectives: spatial, channel-wise, and global dimensions,
as illustrated in Figure 1 (b).

Firstly, we also employ the SE type approach to explore both
spatial and channel-wise correlations. Unlike DYConv and Cond-
Conv, which focus solely on squeezing the channel-wise dimen-
sion, our method compresses both channel and spatial dimensions
concurrently. Specifically, for an input maps 𝑥 , we apply average
pooling operation along the spatial dimension to obtain the feature
maps 𝛽𝑐 ∈ R𝐶×1×1. Simultaneously, we utilize both average and
max pooling operations on the input along the channel dimension.
These pooled features are then concatenated, resulting in a feature
maps 𝑥 ′ ∈ R2×𝐻×𝑊 . Subsequently, we replicate these concatenated
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Figure 2: Our MAGIC comprises two main components: i) Dimensional-Reciprocal Fusion, which models multi-dimensional
information to compute convolutional kernels; ii) Kernel Recalculation, which learns the correlation among kernels for
aggregation. ⊗ denotes matrix multiplication; ⊕ is element-wise addition; 𝐿𝑖 denotes linear transformation matrices.

feature maps along the channel dimension 𝐶/2 times. Finally, we
apply average pooling along the spatial dimensions, yielding the
condensed feature maps 𝛽𝑠 ∈ R𝐶×1×1. The process is formulated
as:

𝛽𝑐 = AvgPooling𝑐 (𝑥) (3)

𝛽𝑠 = F𝑟 ∗𝐶𝑎𝑡 [AvgPooling𝑠 (𝑥),MaxPooling𝑠 (𝑥)] (4)

where 𝐶𝑎𝑡 [·, ·] represents the concatenation operation along the
channel dimension; Pooling𝑐/𝑠 represents the pooling operations
along channel-wise and spatial dimensions; F𝑟 ∗ denotes reshape
operation.

Then, to capture unaltered long-range dependencies within an
input 𝑥 , we incorporate a non-local operation [3, 48] alongside
pooling operations. This operation computes the correlations of a
position with all positions in the input map, thereby obtaining the
global context. Mathematically, given a input maps 𝑥 , the response
𝜔𝑖 at position 𝑖 with all positions in the input maps is defined as:

𝜔𝑖 =

𝑁𝑝∑︁
𝑗=1

F (𝑥𝑖 , 𝑥 𝑗 )
𝐶 (𝑥) (𝐿𝑣 ∗ 𝑥 𝑗 ) (5)

where 𝑁𝑝 = 𝐻 ×𝑊 is the number of positions in the feature
map 𝑥 ; 𝐿𝑣∗ is linear transformation matrices; F (𝑥𝑖 , 𝑥 𝑗 ) denotes
the relationship between position i and j; 𝐶 (𝑥) is a normalization
factor. For practical applications, the Embedded Gaussian function,
an advanced version of the Gaussian function F (𝑥𝑖 , 𝑥 𝑗 ) = 𝑒𝑥

𝑇
𝑖
𝑥 𝑗 , is

utilized to calculate similarity in an embedding space, and 𝐶 (𝑥) is
softmax function:

𝜔𝑖 =

𝑁𝑝∑︁
𝑗=1

exp(< 𝐿𝑞 ∗ 𝑥𝑖 , 𝐿𝑘 ∗ 𝑥 𝑗 >)∑𝑁𝑝

𝑚=1 exp(< 𝐿𝑞 ∗ 𝑥𝑖 , 𝐿𝑘 ∗ 𝑥𝑚 >)
(𝐿𝑣 ∗ 𝑥 𝑗 ) (6)

where 𝐿𝑘/𝑞∗ is linear transformation matrices. Inspired by the dis-
coveries in [4] that showed attention maps for different query po-
sitions to be nearly identical, we employ a simplified non-local
operation which use a query-independent attention map for all

query positions, to further minimize computational demands:

𝛽𝑔 =

𝑁𝑝∑︁
𝑗=1

exp(𝐿𝑘 ∗ 𝑥 𝑗 )∑𝑁𝑝

𝑚=1 exp(𝐿𝑘 ∗ 𝑥𝑚)
(𝐿𝑣 ∗ 𝑥 𝑗 ) (7)

where 𝛽𝑔 ∈ R𝐶×1×1 is a global attention map. The process as
illustrated in Figure 2.

Finally, we combine the feature maps { 𝛽𝑠 , 𝛽𝑐 , 𝛽𝑔 }, which encap-
sulate diverse types of information, to compute the attention scalars
𝛼 :

𝛽 = 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝛽𝑠 + 𝛽𝑐 + 𝛽𝑔))) (8)

𝛼 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛽) (9)

where 𝐹𝐶 (·) is fully connected layer. Essentially, these three types
of information are synergistic, providing a robust performance foun-
dation for discerning complex contextual cues. We will validate these
advantages with experimental evidence in Section 4.

3.3 Kernel Recalculation
Instead of the traditional linear combination, we introduce Kernel
Recalculation (KR) for kernel aggregation to facilitate the interac-
tion among kernels. Specifically, we employ an KR module 𝜙 (·) to
calculate correlation scalars {𝑘1, 𝑘2 . . . 𝑘𝑛} from feature vector 𝛽 in
DRF for weighting convolutional kernels:

𝑊 = (𝜙1 (𝛽)𝛼1)𝑊1 + (𝜙2 (𝛽)𝛼2)𝑊2 + . . . + (𝜙𝑛 (𝛽)𝛼𝑛)𝑊𝑛

= (𝑘1𝛼1)𝑊1 + (𝑘2𝛼2)𝑊2 + ... + (𝑘𝑛𝛼𝑛)𝑊𝑛
(10)

where the KR 𝜙 (·) computes the importance of each convolutional
kernel. Specifically, it first projects the feature vectors into a com-
pact space, reducing computational costs and identifying essential
relationships through a linear matrix mapping. Subsequently, it
computes attentions over the number of convolutional kernels. Fi-
nally, it generates the weight of kernels by a sigmoid activation
function, as shown in Figure 2 (b). The operation of the KR 𝜙 (·)
can be formally represented as:

𝜙𝑖 (𝛽) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐿2 ∗ 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐿1 ∗ 𝛽))) (11)
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Table 1: Results on Synapse multi-organ dataset. DICE scores are reported for individual organs. ↑ denotes higher the better, ↓
denotes lower the better. The best results are in bold.

Backbone
Average

Aorta GB KL KR Liver PC SP SM
DICE↑ HD95↓ mIoU↑ ASD↓

UNet [38] 76.02 33.46 65.56 6.30 86.42 59.51 78.62 71.85 92.15 59.70 86.51 73.37
+DYConv [9] (4×) 77.73 30.21 67.14 4.98 88.75 62.77 83.98 75.02 92.88 60.42 85.77 71.29

+CondConv [50] (8×) 77.71 33.90 67.47 5.96 87.18 65.01 83.43 78.85 92.87 59.35 87.10 68.01
+DCD [32] 76.87 30.29 67.84 5.97 87.52 62.42 84.14 78.65 92.83 57.06 85.67 66.63

+ODConv [31] (4×) 76.56 40.73 66.67 5.12 85.51 61.11 82.13 76.45 90.43 55.10 85.48 73.27
+DDConv [28] 77.16 28.24 65.85 5.18 87.93 64.80 80.78 77.56 94.03 53.79 85.84 73.55
+Our (1×) 78.31 28.65 67.92 5.78 87.79 68.46 82.95 75.09 92.74 59.87 86.32 73.24
+Our (2×) 78.56 29.76 68.36 6.09 88.39 63.56 83.28 78.57 93.18 62.99 85.69 72.80
+Our (4×) 78.66 24.91 68.69 4.37 87.45 70.14 84.16 78.03 93.38 57.01 86.28 72.81

ResNet 18 [18] 72.94 30.42 61.92 5.28 83.68 62.60 79.41 69.19 92.50 43.96 84.40 67.99
+DYConv [9] (4×) 73.45 33.42 62.27 5.66 80.14 64.57 81.24 71.11 91.96 46.70 84.18 67.72

+CondConv [50] (8×) 74.02 23.91 63.41 5.55 84.07 63.03 81.68 71.94 93.52 48.68 80.42 68.82
+DCD [32] 73.19 24.16 62.23 4.74 82.16 65.67 78.56 71.84 91.71 47.09 83.79 64.73

+ODConv [31] (4×) 73.00 25.87 61.46 5.50 82.89 59.22 74.58 74.57 92.70 45.16 85.88 69.91
+DDConv [28] 74.33 25.88 63.49 5.08 84.93 62.94 75.57 70.31 92.16 54.06 85.86 68.81
+Our (1×) 74.01 24.81 63.18 4.90 81.85 63.54 82.67 75.15 92.56 45.09 81.43 69.79
+Our (2×) 74.39 22.68 63.12 4.35 82.03 64.35 79.93 71.30 92.76 46.24 86.82 71.61
+Our (4×) 75.29 22.38 64.45 3.51 84.96 62.94 82.36 71.16 93.07 49.89 86.50 70.90

TransUNet [6] 77.48 31.69 64.78 8.46 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
+DYConv [9] (4×) 79.24 31.37 68.22 5.21 88.91 67.57 82.32 79.65 95.58 60.06 87.86 72.99

+CondConv [50] (8×) 78.98 27.24 67.95 5.29 87.55 67.54 85.31 78.64 95.55 58.17 89.85 71.20
+DCD [32] 78.18 30.82 68.88 6.51 87.20 66.13 81.83 78.90 94.35 58.32 87.57 70.12

+ODConv [31] (4×) 77.76 32.98 66.91 5.41 87.88 64.06 83.00 77.02 94.25 57.16 87.28 71.77
+DDConv [28] 78.32 22.32 68.02 4.38 87.26 67.71 82.71 77.87 93.11 63.37 86.69 67.82
+Our (1×) 81.42 18.84 72.29 3.11 88.27 68.18 86.09 84.44 95.27 64.74 91.18 73.23
+Our (2×) 80.42 19.34 70.98 3.29 87.28 66.79 86.36 82.91 94.85 58.62 90.86 75.67
+Our (4×) 79.02 28.04 69.04 4.56 88.49 66.02 83.54 77.93 94.29 59.36 89.02 73.50

where BN(·) represents batch normalization, and 𝐿1/2∗ are the
learnable linear matrices. The core of aggregation is that the calcu-
lation of the convolutional kernel is no longer oriented towards a
single input feature, and the interactions between the kernels also
affect the calculation of the convolutional kernel. Moreover, the
utilization of a non-linear combination facilitated by the attention
function allows for a more nuanced and flexible adaptation to the
complexities inherent in feature representation.

4 Experiment
4.1 Dataset
Synapse Dataset. The Synapse multi-organ dataset [27] comprises
30 abdominal CT scans, totaling 3779 axial contrast-enhanced ab-
dominal CT images. Each CT scan consists of 85-198 slices of
512×512 pixels, with a voxel spatial resolution of ([0:54-0:54]×[0:98-
0:98]×[2:5-5:0])𝑚𝑚3. Following TransUNet [6], we split the dataset
into 18 scans (2211 axial slices) for training, and 12 for validation.

ACDC Dataset. The Automatic Cardiac Diagnosis Challenge
(ACDC) [2] dataset contains MRI images of 100 patients. The task is
to segment the cavity of the right ventricle (RV), the myocardium
of the left ventricle (Myo), and the cavity of the left ventricle (LV).

Following [47], we split the dataset into 70 (1304 axial slices), 10
(182 axial slices), and 20 cases for training, validation, and testing.

GlaS Dataset. GLAnd segmentation (GlaS) datatset [39] com-
prises microscopic images of slides stained with Hematoxylin and
Eosin (H&E). The dataset includes 165 images: 85 images designated
for training purposes and 80 images allocated for testing.

Skin Lesion Segmentation. We utilize the ISIC 2017 dataset
[10] for skin lesion segmentation, consisting of 2000 dermoscopic
images for training, 150 for validation, and 600 for testing. Following
the setting in [1], we resize all images to 192×256.

4.2 Implementation Details
Backbones. We employ UNet [38] and ResNet [18] as CNNs back-
bone to assess dynamic convolution. Following DYConv [9] and
CondConv [50], we apply dynamic convolution for all convolu-
tion layers except the first layer. Besides, we use TransUNet [6]
and TransFuse [54] as hybrid CNN-Transformer backbones for a
comprehensive evaluation.

Experimental Setup. We utilize UNet, ResNet, and TransUNet
architectures with dynamic convolutions on the Synapse and ACDC
datasets. For the GlaS dataset, we apply both TransUNet and UNet
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Table 2: Results on the ACDC dataset. DICE scores are re-
ported for individual organs. The best results are in bold.

Backbone mDice HD95 RV Myo LV

UNet 88.89 3.31 84.70 86.97 95.02
+DYConv (4×) 89.48 4.40 86.30 87.00 95.13
+CondConv (8×) 90.03 3.98 86.86 88.04 95.19

+DCD 88.98 3.92 85.80 86.88 94.26
+ODConv (4×) 89.36 1.95 85.68 87.28 95.13
+DDConv 90.82 2.16 87.24 89.34 95.88
+Our (1×) 90.42 2.96 87.73 88.07 95.47
+Our (2×) 91.87 1.92 89.69 90.01 95.90
+Our (4×) 91.67 2.18 89.19 89.83 95.83

ResNet 18 87.19 3.26 83.56 84.25 93.78
+DYConv (4×) 88.39 2.26 85.41 85.56 94.20
+CondConv (8×) 88.45 1.98 85.46 85.76 94.13

+DCD 87.78 2.72 83.98 85.33 94.03
+ODConv (4×) 88.08 2.32 84.71 85.72 94.12
+DDConv 88.43 2.37 85.39 85.61 94.32
+Our (1×) 89.05 1.67 86.60 85.97 94.58
+Our (2×) 90.34 1.43 88.12 87.86 95.06
+Our (4×) 90.54 1.20 88.47 87.91 95.27

TransUNet 89.71 3.01 88.86 84.53 95.73
+DYConv (4×) 90.54 1.30 87.23 88.83 95.55
+CondConv (8×) 90.49 1.95 87.80 88.17 95.51

+DCD 90.74 2.03 87.89 88.78 95.56
+ODConv (4×) 90.18 1.25 88.58 87.22 94.76
+DDConv[28] 90.48 1.28 88.35 87.82 95.26
+Our (1×) 91.76 1.15 89.64 89.45 95.73
+Our (2×) 91.25 1.26 88.61 89.24 95.91
+Our (4×) 91.63 1.08 89.57 89.47 95.87

for assessments. Additionally, TransFuse with dynamic convolution
is evaluated on the ISIC 2017 dataset. Within the ResNet frame-
work, we integrate a lightweight Hamburger module [16] as the
segmentation head. For the UNet and TransUNet frameworks, dy-
namic convolution is implemented in the CNN encoder. All models
were trained for 150 epochs on the Synapse dataset. For the ACDC
dataset, training was extended to 200 epochs. Following the Trans-
Fuse, all models were trained for 30 epochs on the ISIC 2017 dataset.
For the GlaS dataset, the models were trained for 100 epochs. For
fair-comparison, we use publicly available codes and adhere to pop-
ular training and testing configurations used by the community.
All models are trained under same settings without any pre-trained
models.

4.3 Evaluation Metrics
In the Synapse dataset, we employ mean Dice coefficient (mDICE),
Hausdorff Distance at 95th percentile (HD95), mean Intersection
over Union (mIoU), and Average Surface Distance (ASD) as evalua-
tion metrics, reporting DICE scores for individual organs. We utilize
mDICE and HD95 for evaluating the ACDC dataset. In the GlaS
dataset, we incorporate mDICE, mIoU and HD95 as the metrics.
For the ISIC 2017 dataset, we employ four metrics for assessment:
mDice, Sensitivity (SE), Accuracy (ACC), and Specificity (SP).

Table 3: Results on the GlaS dataset. The best results are in
bold.

Backbone mDice mIoU HD95

UNet 84.48 74.02 28.69
+DYConv (4×) 85.08 74.97 25.40
+CondConv (8×) 84.86 74.42 27.00

+DCD 84.60 72.30 30.92
+ODConv (4×) 85.00 75.49 25.63
+DDConv 85.46 75.01 25.34
+Our (1×) 85.26 75.10 25.43
+Our (2×) 86.02 74.48 24.32
+Our (4×) 86.71 76.11 22.54

Transunet 86.34 77.34 24.68
+DYConv (4×) 86.99 78.40 26.61
+CondConv (8×) 86.45 77.71 23.25

+DCD 85.71 76.31 29.44
+ODConv (4×) 86.64 77.78 22.24
+DDConv 85.37 75.94 26.72
+Our (1×) 86.72 78.00 23.07
+Our (2×) 87.67 79.20 24.95
+Our (4×) 87.27 78.37 25.17

Table 4: Results on the ISIC 2017 skin lesion segmentation
benchmarks. The best results are in bold.

Backbone mDice mIoU ACC

TransFuse [54] 81.52 72.31 91.92
+DYConv (4×) 81.67 72.40 92.81
+CondConv (8×) 82.74 73.69 92.86

+DCD 81.08 71.42 91.10
+ODConv (4×) 81.15 72.43 92.12
+DDConv 83.05 74.40 92.49
+Our (1×) 82.95 74.99 92.35
+Our (2×) 83.11 74.44 92.72
+Our (4×) 84.02 75.50 92.92

4.4 Comparative Results
Comparative Results on Synapse Dataset. Table 1 presents a
comparison of our MAGIC against existing dynamic convolution
methods in three backbone architectures (UNet, ResNet 18, Tran-
sUNet) on the Synapse dataset. We can observe that our MAGIC
always outperforms other methods, achieving the highest perfor-
mance gains on all backbones. In contrast, other dynamic convo-
lutions, such as ODConv (4×), provides slight enhancements in
the mDice score. Furthermore, backbone models with our MAGIC
significantly reduce the HD95 score, indicating their ability to cap-
ture finer structures and generate more precise contours. This im-
provement is attributed to the proposed attention function, which
effectively harnesses the multi-dimensional information within the
input space for computing kernels.

Comparative Results on ACDC Dataset. From the results
shown in Table 2, we can observe similar performance improve-
ment trends as on the Synapse dataset. For UNet and TransUNet
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Figure 3: Visualization of class activation maps in different structures with Grad-CAM++ [5]. Result are obtained from the
TransUNet [6] and UNet [38] with different dynamic convolution on the ACDC (above) and Synapse (below) datasets.

Table 5: Comparison of performance and computation on
the Synapse dataset. FLOPs are calculated using an input size
of 256×256.

Backbone Params GFLOPs DICE

ResNet 18 12.34 9.671 72.94
+DYConv (4×) 45.60 9.676 73.45
+CondConv (8×) 89.29 9.676 74.02

+DCD 15.86 9.763 73.19
+ODConv (4×) 45.55 9.724 73.00
+DDConv 93.69 10.14 74.33
+Our (1×) 17.03 9.674 74.01
+Our (2×) 28.02 9.679 74.39
+Our (4×) 49.99 9.685 75.29

backbones, DYConv (4×) and CondConv (8×) yield mDICE improve-
ments of 0.59%/0.83% and 1.14%/0.78% over baseline models, respec-
tively. Our method, MAGIC (1×), utilizing a single convolutional
kernel, significantly outperforms these, with mDICE improvements
of 1.53%/2.05%.

Comparative Results on GlaS Dataset. In experiments con-
ducted on the GlaS dataset, our MAGIC also outperforms other
dynamic convolutions, as demonstrated in Table 3. We can see that
UNet with our MAGIC (4×) significantly enhances the segmen-
tation accuracy, whereas the use of other dynamic convolutions
results in minimal improvement.

Comparative Results on Skin Lesion SegmentationDataset.
The comparison results for the ISIC 2017 skin lesion segmentation
benchmarks against the existing dynamic convolutions are pre-
sented in Table 4. The experimental results demonstrate that our

Figure 4: Visualization of segmentation from ourMAGIC and
other dynamic convolution on GlaS and ISIC 2017 datasets.

MAGIC achieves the highest mDICE (84.02%), SE (75.50%), and
ACC (92.92%), surpassing TransFuse baseline by 2.50%, 3.19%, and
1.00%, respectively. It’s noteworthy that ODConv, despite design an
attention mechanism to capture multi-scale kernel space informa-
tion, falls short by overlooking the synergy between dependencies
within the input space, resulting in sub-optimal performance.

Analysis of Efficiency. We conduct a quantitative analysis
of different dynamic convolution parameters and computational
complexity (measured in GFLOPs) using the ResNet 18 backbone,
as shown in Table 5. Specifically, our MAGIC notably improves the
expressive power of regular convolution with negligible extra com-
putation cost. Compared to other dynamic convolution methods,
our approach stands out for its competitiveness in both parameter
quantity and computational cost. Note that our MAGIC (4×) outper-
forms DDConv (75.29% vs. 74.33%), using only about half as many
parameters (49.99M vs. 93.69M). This demonstrates that our MAGIC
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Table 6: Ablation study of Dimensional-Reciprocal Fusion (DRF) is conducted on the Synapse, ACDC, and GlaS datasets, wherein
average DICE scores are reported for each dataset. Investigating the complementarity of modeling spatial information (SP),
channel information (CH), and non-local information (NL) for computing convolutional kernels. The best result is bolded.

Index SP CH NL
UNet + Our (4×) TransUNet + Our (4×)

GFLOPs Synapse ACDC GlaS GFLOPs Synapse ACDC GlaS

A. 1 × × × 54.675 76.53 89.07 84.69 38.517 77.79 90.16 86.84
A. 2 ✓ × × 54.681 77.22 88.83 85.50 38.517 77.95 90.82 84.58
A. 3 × ✓ × 54.676 77.92 89.32 84.23 38.519 78.18 91.01 86.98
A. 4 × × ✓ 54.715 77.68 89.45 85.54 38.527 78.37 90.78 84.71
A. 5 ✓ ✓ × 54.681 78.13 90.06 85.92 38.519 78.52 91.23 86.67
A. 6 × ✓ ✓ 54.715 78.09 89.67 86.07 38.527 76.34 91.11 85.49
A. 7 ✓ × ✓ 54.720 78.39 90.14 85.81 38.529 78.33 90.85 87.01
A. 8 ✓ ✓ ✓ 54.720 78.66 90.23 86.47 38.528 79.02 91.63 87.27

Table 7: Ablation study of the Kernel Recalculation (KR) on
the ACDC and GlaS datasets, wherein average DICE scores
are reported for each datasets.

Index Backbone ACDC GlaS

B. 1 UNet+Our(2×) 91.87 86.02
B. 2 +w/o KR 91.25 85.50

B. 3 UNet+Our(4×) 91.67 86.71
B. 4 +w/o KR 91.13 85.65

B. 5 TransUNet+Our(2×) 91.25 87.67
B. 6 +w/o KR 90.83 86.53

B. 7 TransUNet+Our(4×) 91.63 87.27
B. 8 +w/o KR 90.95 86.34

achieves the best trade-off between segmentation performance and
computational complexity.

Visualization Results. Figure 3 illustrates the class activation
maps generated by UNet/TransUNet employing different dynamic
convolutions on the ACDC and Synapse datasets. Our MAGIC, in
contrast to other dynamic convolutions, showcases a more precise
focus on the segmentation area and provides a finer delineation of
the segmentation region. Impressively, we achieve enhanced seg-
mentation quality using only a single convolutional kernel. Further-
more, we present segmentation results of baselinemodels (UNet and
TransFuse) with our MAGIC and other dynamic convolutions on
the GlaS and ISIC 2017 datasets, as shown in Figure 4. Our MAGIC
significantly reduces the number of false positive segments com-
pared to other dynamic convolutions. Particularly in segmenting
complex targets on the GlaS dataset, our results align more closely
with the ground truth, leading to fewer inaccurately segmented
areas.

4.5 Ablation Study
Effectiveness of Dimensional-Reciprocal Fusion. To assess the
effectiveness of Dimensional-Reciprocal Fusion (DRF), we integrate
MAGIC (4×) into the UNet and TransUNet architectures. Table
6 clearly demonstrates the synergistic effect of incorporating dif-
ferent dimensional information for computing kernels. Compared

to UNet/TransUNet baselines, Experiment A. 1 shows marginal
improvements in mDice scores by 0.51%/0.31%, 0.18%/0.45%, and
0.21%/0.5% on the Synapse, ACDC, and GlaS datasets, respectively.
These results highlight the significance of the attention mechanism
in dynamic convolution. Analyses of Experiments A. 2, A. 3, and
A. 5 reveal that incorporating information from both the channel
and spatial dimensions significantly enhances segmentation accu-
racy. Furthermore, our observations indicate that capturing the
global information of the input is essential for enhancing segmen-
tation performance. Therefore, our study validates the assumption
that incorporating three distinct dimensional information into kernel
computation yields synergistic advantages.

Effectiveness of Kernel Recalculation. Table 7 presents the
effectiveness of Kernel Recalculation (KR), which learns the corre-
lations among kernels to enhance the aggregation. The outcomes
demonstrate that our KR surpasses the vanilla linear combination
in four experiments, achieving enhancements in the mDice score
ranging from 0.43% to 1.25%. This confirms the assumption that
improving the aggregation process aids in comprehending complex
patterns within the input features.

Effectiveness of Convolutional Kernels Number. Tables 1,
2, 3, and 4 show the effectiveness of the number of convolutional
kernels on segmentation accuracy. A clear trend emerges, showing
that increasing the number of convolutional kernels results in more
precise segmentation of the target. This effect is especially notable
in purely convolutional networks. Moreover, ourMAGIC showcases
remarkable adaptability with Transformer architectures, sustaining
strong performance despite the use of aminimal set of convolutional
kernels (such as, one or two). This affirms that our MAGIC approach
can be used to replace regular convolutions in many architectures.

5 Conclusion
In this paper, we propose MAGIC, an elegant form of dynamic
convolution for medical image segmentation. The key insight is to
utilize the rich information within the input for computing multi-
ple convolutional kernels. To further enhance segmentation perfor-
mance, we employ a non-linear aggregation strategy that effectively
leverages the power of multiple kernels. Extensive experiments
demonstrate that our MAGIC outperforms existing dynamic con-
volution methods on four popular medical datasets considerably.
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