
A Method Details445

A.1 NeRF446

Volume Rendering A neural radiance field consists of two fields, ��(x), L (x,!) that encode447

the density � at every location x and the outgoing radiance L at that location in the direction !.448

In NeRFs, both of these functions are represented by parameterized differentiable functions, such449

as neural networks. Given a radiance field, we are able to march rays through an image plane450

and reconstruct a camera image from a given camera pose and intrinsic matrix using the rendering451

function:452

I(x,!) =

Z T

0
�(t) exp

✓Z t

0
�(t̂)dt̂

◆
L(t,�!)dt (A.1)

Where L(t, ·) and �(t) are shorthands for L(t! + x, ·) and �(t! + x), and I(x,!) is the intensity453

at a location x given in world space in the direction !.454

Compositing For our adversarial attacks to contain 3D semantics, it is crucial to insert the pertur-455

bation in a 3D aware manner. For this we utilize another feature of neural radiance fields, which is456

to output opacity values. Specifically, in Eqn. (A.1) we can extract the transmittance component,457

which acts as a measure of the pixel transparency ↵:458

↵(x,!) = exp

✓Z t

0
�(t̂)dt̂

◆
(A.2)

Furthermore, we can replace the radiance term with distance in (A.1) to extract the expected termi-459

nation depth of a ray z:460

z(x,!) =

Z T

0
t�(t)↵(t)dt (A.3)

We consider the case of two radiance fields, the object radiance field �o, Lo and the background461

radiance field �s, Ls. We use a transformation matrix to correspond ray coordinates between the462

scene and the object radiance field.463

By applying equations (A.1), (A.2), (A.3) to a single ray that corresponds to both the base scene464

and the object radiance field, we obtain the values co, ↵o, zo, cs, ↵s, zs respectively, where ↵⇤ is465

the opacity and z⇤ is the depth along the ray. We denote the foreground and background values at a466

pixel as467

f = argmin
o,s

(zs, zo) (A.4)

b = argmax
o,s

(zs, zo) (A.5)

The final blended color is then given by:468

c =
↵fcf + (1� ↵f)↵bcb
↵f + ↵b(1� ↵f)

(A.6)

In the case of multiple object NeRFs, we simply repeat the alpha blending for each object to com-469

posite them all into the same scene.470

A.2 Vehicle Dynamics471

The dynamics in equation (5) can take multiple forms, for the CARLA experiments, we choose the472

simplest kinematic model of a car, a Dubin’s vehicle:473

ẋ =

"
v cos ✓
v sin ✓

u

#
(A.7)

For the purposes of the CARLA deployment environment, we find that it is sufficient to consider the474

kinematic model with fixed velocity, and only angular control. Thus, our imitation learning policy in475

13

Eqn. (3) only outputs steering commands. We note that our approach is applicable to any dynamics476

model, as long as it is differentiable.477

For the real world experiments, we opted for a fixed velocity Ackerman steering model:478

ẋ =

"
v cos ✓
v sin ✓

v
l tan(✓)

#
(A.8)

where l is the robot wheelbase.479

A.3 Implicit Differentiation480

To carry out the adjoint method for obtaining gradients of the trajectory optimization problem stated481

in Equation (1), we need to perform two passes over the trajectory.482

Explicitly, the method performs a forward simulation to compute the variables xt and then subse-483

quently a backward pass to compute adjoint variables �t by solving the equations:484

@G(xt�1, xt)

@xt

>
�t = �@C(xt)

@xt

>
� @G(xt, xt+1)

@xt

>
�t+1 (A.9)

with the boundary condition:485

@G(xT�1, xT)

@xT

>
�T = �@C(xT)

@xT

>
(A.10)

Finally, the gradient of the loss can be calculated as:486

r✓J = �>
1
@G(x0, x1, ✓)

@x0

@x0

@✓
+

TX

t=1

�>
t
@G(xt�1, xt, ✓)

@✓
(A.11)

Throughout both passes we do not need to store large intermediate variables and only need to accu-487

mulate the gradient at each step.488

A.4 Optimization Details489

As described in Section 4.1, following prior work, we do not propagate gradients of camera param-490

eters through the sensor model function. Specifically, we set,491

ot = h�,✓(stop gradient(xt)) (A.12)

Thus gradients of the observation will only be taken with respect to the adversarial object parameters492

✓ and not the state of the car. The gradient with respect to xt corresponds to exploiting higher order493

effects of how the observation would change if the car was looking in a slightly different direction494

due to previous steps of the attacks, and leads to a very non-smooth loss objective that is not useful495

for finding practical attacks.496

For experiments in the real world, we found the attacks were sometimes very sensitive to the robot’s497

pose. To alleviate this issue, we chose to optimize multiple randomly sampled initial poses simul-498

taneously. The samples were normally distributed around the nominal car starting location, with a499

standard deviation of 0.1.500

A.4.1 Optimization parameters501

In all our experiments, our optimization parameters ✓ correspond to values on the NGP voxel grid.502

Since we have removed the decoder, the grid values directly correspond to the color for a given503

position in the volume. Due to this, the parametrization even for small models can get quite large,504

in the order of a 5 million for the hydrant.505

14

B Experimental Details506

B.1 NeRF Models507

When training the surrogate NeRF models of the background scene and objects, we use the default508

Instant-NGP hyperparameters and optimize over 50 epochs using the Adam optimizer.509

The source 3D assets for our objects were obtained from the Objaverse dataset [45] and posed510

images produced by rendering with Blender[46]. For our object models, we choose to use Instant-511

NGP without a decoder, instead directly encoding the colour values in the feature grid. Furthermore,512

we remove view dependence for better multi-view consistency. Finally, we use lower resolutions for513

the object feature grids as compared to the scene feature grids. The object feature grids contain514

resolutions up to 1283 and 643 features for the car and hydrant, respectively. Since our adversarial515

objective does not have any smoothness constraint, we found it critical to use lower resolution grids516

and remove the positionally encoded feature decoders to avoid aliasing effects.517

B.2 Driving Policy.518

We train our own policy on which the attack will be performed. Our policy is an end-to-end RGB519

image neural network policy and the architecture is taken from [47]. We make a slight addition to520

goal condition the policy by adding a goal input to the linear component and increasing the capacity521

of the linear layers. The policy is trained via imitation learning, specifically DAgger [48], [49].522

Expert actions are given by a lane following controller tuned for the simulator that gets access to523

the ground truth state, unlike the policy. The expert queried from various states random distances524

from the center of the road to recover from. Furthermore, random noise augmentation is used on the525

images during training to make the policy more robust to noisy observations.526

B.3 CARLA527

We fit the background scene model using a dataset of 1800 images and their corresponding camera528

poses, which provide a dense covering of the CARLA scene.529

When transferring our attacks back to the deployment scene, opacity values are usually not available.530

In order to evaluate our attacks, we assume that objects are opaque (↵ = 1), and thus our method of531

blending in Equation A.3 can be calculated using just the depth and color values. We observe from532

experiments on the CARLA simulator that this type of composition is sufficient for the evaluation533

in the deployment environment.534

Driving Policy. For our driving policy the initial training dataset of images is collected from the535

intersection in CARLA. We further fine-tuned the policy with some additional data collected from536

our surrogate simulator to ensure that our policy is not trivially failing due to slight visual differ-537

ences. We use a total dataset of 120000 images in CARLA and 60000 images in the surrogate538

simulator in order to train the policy. We validated our policy on a hold out validation set consisting539

of 12000 images captured purely from the surrogate simulator. All data were collected by running540

the expert on the 3 reference trajectories. The policy was trained using behaviour cloning, where we541

gave examples of recovery from deviation by collecting data from random start locations around the542

nominal trajectory.543

B.4 Real World544

We fit the background to a room in the real world using a dataset of 2161 images captured from an545

iPhone camera at 4K resolution. We collect data covering the room by walking around, then attach546

the iPhone to the robot to collect further data from the driving view points. The captured videos are547

processed using COLMAP [50, 51] for both camera intrinsic and the poses.548

Driving Policy. We train a driving policy to track a square track in the room marked by green549

tape, this policy was trained using an expert PID controller with global positioning supplied by the550

15

Figure B.1: Picture of driving area for the real world scenario experiments.

VICON system providing 9584 images. We further augment this again with 12000 images from551

driving data in the NeRF scene. An overview of our working area is given in Figure B.1.552

For all real world attacks we optimize the color of a cube in the surrogate NeRF scene, placed at one553

of the corners such that the camera will encounter this cube as the car takes the turn.554

B.4.1 Robot555

We carry out experiments using the RACECAR/J2 platform. The robot is equipped with a ZED556

stereo camera, of which we only utilize the RGB data from the left sensor, which has been configured557

to a resolution of 366x188 at 10 frames per second. We operate the robot inside a VICON system558

that positions the robot at a rate of 50Hz streaming through a remotely connected computer that runs559

policy as well as the image processing for some of the attacks.560

B.4.2 Green Screen Attack561

For the green screen attack, we utilized a VICON system to accurately position both our robot and562

the green screen target. Using the green screen target position, as well as the camera parameters,563

we project one face of the cube on the input image to the policy. We opt to overlay the cube in564

such a manner to keep the policy driving in real time and to ensure that there is no penalty on565

control frequency. The image compositions is done at the remote computer where the controls are566

computed, which are then sent wirelessly to the robot to execute.567

B.4.3 Monitor Attack568

To replace the green screen with a physical object, we place a monitor and display the same attack569

as above on the monitor. We place the monitor in a location such that it is visually consistent with570

the NeRF and green screen attacks. For the monitor attack, we utilize a 27-inch monitor with a 16:9571

aspect ratio. Since the adversarial objects optimized in earlier examples are cubes we only use the572

center of the monitor to display the attack.573

C Additional Experimental Results574

C.1 Incorporating Discovered Adversarial Scenarios in the Training Set575

Our primary focus in this paper was to discover adversarial attacks for the evaluation of pretrained576

self-driving policy. Here we perform some preliminary investigations on fine-tuning our self-driving577

policies, on the old data and the adversarial attacks we found. Specifically, we take the attacks578

discovered by the gradient-based optimization and use them to collect additional imitation learning579

data. The collection is performed in the CARLA simulator using the depth compositing approach580

2https://racecarj.com/

16

Figure C.1: The performance of the driving policy before (left) and after (right) retraining on the
discovered adversarial scenarios.

CARLA Attack Transfer in CARLA CARLA Attack After Retraining
Scenario Unperturbed Random Gradient Gradient

Straight 1166 1193± 19 1702.± 160 1250
Right 1315 1476± 12 2101.± 75 1307
Left 1448 1158± 163 2240.± 574 1419

Table 2: Comparison of the total cross-track error for the retraining experiment over the 3 different
trajectories. Results are extending the results from the main paper Table1 shown for the following
cases: (1) no attack in CARLA (unperturbed), (2) an attack in the CARLA scene, (3) an attack in
the CARLA scene after the driving policy is retrained using adversarial data.

to insert the adversarial objects, as was done for the evaluation in the main paper. Apart from581

the object compositing, the data is collected in the same way as the original CARLA data used582

to train the base policy. We collect 24000 total frames over three trajectories with two different583

starting points. After fine-tuning our policy on the combination of the original dataset and the new584

adversarially augmented dataset, we evaluate the fine-tuned agent in the same scenario. We visualize585

the trajectories of the fine-tuned policy in Figure C.1 and report on the total deviation compared to586

before fine-tuning in Table 2. We find that the policy is no longer susceptible to the adversarial587

attacks, even though the initial starting position for evaluation was unseen during training.588

C.2 CARLA Visualizations589

We show first person visualizations of our discoverered adversarial attacks inserted back into the590

CARLA deployment simulator in Figure C.2. We note the smoothness of the texture discovered591

by our method. Purely perceptual single-frame attacks typically exhibit a much higher frequency592

texture.593

17

Figure C.2: Sample renderings of the left turn trajectory with the adversarial perturbations in
CARLA from the ego vehicle’s point of view. Four different snapshots from the evolution of the
trajectory are shown.

(a) Unperturbed (b) Attacks in NERF (c) Transferred
Figure C.3: Overhead views of three distinct trajectories driven by the policy. (a) shows the policy
driving behavior in CARLA when no adversarial perturbation is introduced. (b) shows the policy
driving behavior in the surrogate simulator with the discovered adversarial perturbation. (c) shows
the same perturbation transferred to the deployment scene.

18

(a) Surrogate Simulator (b) First person view (c) Third person view
Figure C.4: Real-world adversarial monitor attack visualizations.

We show additional overhead trajectory views of adversarially attacked trajectories from one594

CARLA scene in Figure C.3.595

C.3 Real-world Visualizations596

We show aligned visualizations of the same adversarial real-world monitor attack in Figure C.4.597

19

