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ABSTRACT
4D facial expression synthesizing is a critical problem in the fields
of computer vision and graphics. Current methods lack flexibility
and smoothness when simulating the inter-frame motion of expres-
sion sequences. In this paper, we propose a frequency-controlled
4D facial expression synthesizing method, FC-4DFS. Specifically,
we introduce a frequency-controlled LSTM network to generate 4D
facial expression sequences frame by frame from a given neutral
landmark with a given length. Meanwhile, we propose a temporal
coherence loss to enhance the perception of temporal sequence
motion and improve the accuracy of relative displacements. Fur-
thermore, we designed a Multi-level Identity-Aware Displacement
Network based on a cross-attention mechanism to reconstruct the
4D facial expression sequences from landmark sequences. Finally,
our FC-4DFS achieves flexible and SOTA generation results of 4D
facial expression sequences with different lengths on CoMA and
Florence4D datasets. The code will be available on GitHub.

CCS CONCEPTS
• Computing methodologies→ Procedural animation; Com-
puter graphics; Machine learning.

KEYWORDS
4D face, neutral landmark, expression generation, LSTM, positional
encoding

1 INTRODUCTION
4D facial expression synthesizing is a critical problem in the fields
of computer vision and graphics and has broad applications in areas
such as 3D animations, virtual reality, and interactive gaming. The
task aims to generate a series of realistic facial mesh with diverse
expressions or speech-related movements, starting from a mesh
with a neutral expression.

Although recent advances in generative networks have propelled
the development of 2D video animation solutions[12, 25, 34], these
videos lack spatial depth, realism, and interactivity, rendering them
unsuitable for real-world applications like VR. Afterward, an in-
creasing number of researchers are beginning to explore the driving
and generation of 4D facial expression sequences with the introduc-
tion of 4D facial expression sequence datasets[8, 9, 29, 30]. Among
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GT
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LM4D-GAN

Motion3D

Figure 1: Quantity generation comparison results between
Groud-truth, Motion3D, LM-4DGAN and our FC-LSTM with
different identities.

them, some previous works have focused on generating 4D facial se-
quences from neutral meshes driven by complex video[5] or audio
signals[9, 19, 24]. However, these methods demand substantial prior
knowledge and require extensive data, lacking temporal continuity,
making direct application in scenarios like game scene develop-
ment challenging where such priors are absent. In contrast, our
research focuses on utilizing expression labels to guide a temporally
coherent animation process, enhancing the applicability of facial
expression sequence generation in scenarios with minimal priors.

Recently, some researchers introduced GAN[17] into the label-
guided 4D facial expression generation task. First, Motion3D[27]
proposed the WGAN to generate the Square Root Velocity Func-
tion (SRVF) of the 3D landmarks sequences and then they devised
an S2D decoder to convert them into mesh displacements, which
added to the neutral mesh and yielded a 4D facial expression. This
pioneering work has laid the groundwork for its application in
a variety of downstream tasks[26]. However, their generated se-
quences lacked robustness to different identities since they only
use expression labels as guides. To address this issue, some re-
cent methods[21, 36, 37] utilize the neutral landmark as inputs
to directly generate landmark sequences, thereby enhancing the
generation framework’s robustness to various identities. However,
the sequences generated by these methods exhibit issues such as

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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sequence motion lacking smoothness (Figure.1 line 1), and missing
expression details(Figure.1 line 2). Additionally, their application
in real-world scenarios is limited since they can only generate
sequences of fixed lengths.

On the other hand, it is essential to transform them into a se-
quence of 3D meshes after obtaining the sequence of landmarks.
N3DMM[3] first introduced a graph convolution method called
spiral convolution, to encode and decode entire meshes. However,
this method cannot effectively model the neutral mesh of unknown
identities. Furthermore, S2D[27] proposed decoding mesh displace-
ments from landmark displacements to reduce the modeling error
for meshes of unknown identities. They divide the expression mesh
into neutral mesh and displacement components and eliminate
the need to encode and decode the dominant neutral mesh body.
However, due to the limited information contained in landmark
displacements and the diverse identity information, their ability to
generalize the expression mesh details across different identities
still requires further enhancement.

In this paper, we propose a frequency-controlled 4D facial expres-
sion synthesizing method, FC-4DFS, based on frequency-controlled
LSTM and multi-level identity-aware network. Specifically, we in-
troduce a frequency-controlled LSTM (FC-LSTM) to generate 4D
facial expression landmark sequences frame by frame from a given
neutral landmark. Among them, we first modified the basic struc-
ture of LSTM to produce different length sequences with controlled
frequency. Meanwhile, we integrate the positional information to
enhance the awareness of the current frame’s position within the
sequence. Furthermore, we propose a temporal coherence loss to
enhance the perception of temporal sequence motion and improve
the accuracy of relative displacements.

On the other hand, we design a multi-level identity-aware net-
work(MIADNet) based on a cross-attention mechanism to recon-
struct the 4D facial expression sequences from landmark sequences.
Our MIADNet can significantly improve the robustness of various
identities and facilitate the generation of detailed and identity-
consistent facial expressions. Finally, our FC-4DFS achieves flexible
and SOTA generation results of 4D facial expression sequences
with different lengths on both the CoMA and Florence4D datasets.
In summary, we make the following contributions:

• We introduce a frame-by-frame 4D facial expression gener-
ation framework based on the FC-LSTM network and add
temporal loss to achieve flexible control of the length of the
generated sequence and enhance the smoothness of sequence
motion.

• We design the MIADNet, which leverages the cross-attention
mechanism and fully utilizes the multi-level identity infor-
mation of the neutral mesh and neutral landmark, further
enhancing the decoding robustness across various identities.

• Our FC-4DFS enables the generation of 4D face expression
sequences with different lengths while maintaining sequence
integrity and facial details. We also achieve SOTA generation
results on both the CoMA and Florence4D datasets.

2 RELATEDWORK
Here, we review some of the latest advancements in related domains,
including 4D facial expression sequence generation and 3D face
modeling.

2.1 4D facial expression generation
Many researchers are committed to directly modeling 4D facial
expression information[6, 7, 16]. However, because mesh has dense
vertex information, it is difficult to directly drive mesh through
tags to form expression sequences, and cannot effectively simu-
late expression details[28]. Thanks to the development of neural
networks, the detection of facial landmarks is reliable and accu-
rate [11, 13, 32, 35], while landmarks and their motion provide
a feasible way to explain facial deformation by simplifying the
complexity of visual data. Researchers began to study the use of
landmarks to guide expression sequence generation. The work
of landmark-guided 2D expression generation has been widely
studied[10, 31, 33, 34]. These methods have demonstrated the po-
tential of using landmarks to simulate expression dynamics and
generate 2D videos using generative models[17, 18, 20], so re-
searchers began to focus on landmark-guided Generation of 4D
expression sequences. Motion3D[27] takes a step further based on
MotionGAN[25] and proposes WGAN to generate the square root
velocity function (SRVF) of 3D landmark sequences, and then they
design an S2D decoder to convert them into mesh displacements,
This displacement is added to the neutral mesh and generates a 4D
expression, which is applied in downstream tasks[26]. However, the
sequences they generated lacked robustness to different identities
when generalizing. In order to enhance the generalization ability of
the generated sequence to different identities, [21, 36, 37] uses neu-
tral landmark sequences as input to generate complete landmark
expression sequences. However, these models can only generate
one[36, 37] or several [21] fixed-length sequences and cannot be
effectively applied in actual game modeling scenarios.

2.2 3D Face Modeling
In order to obtain mesh information from the generated landmark
sequences, researchers use the 3D Morphable Model (3DMM) as
a bridge between landmarks and 3D facial expressions. 3DMM
was originally introduced in [1] and is widely considered the pre-
mier framework for 3D facial modeling. The original model and
its variants[2, 4, 15, 22, 23] rely on linear formulations to capture
changes in facial shape, including identity and expression, thus
limiting their modeling capabilities. Ranjan et al[30] introduced an
autoencoder architecture based on a newly defined spectral con-
volution operator, along with pooling operations to facilitate grid
down/upsampling. Brisas et al. [3] improve this approach by intro-
ducing a novel graph convolution operator that enforces consistent
local ordering on the vertices of the graph via a spiral operator.
Although their modeling accuracy is impressive across different
expressions, recent research [14] highlights their significant short-
comings in generalizing to unknown identities. This severely limits
their practical applicability in tasks such as face fitting or expression
transfer. Next, S2D[27] begins to decouple neutral meshes and dis-
placements, using landmark displacements to guide the modeling of
3D meshes. This method divides the expression mesh into neutral
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Figure 2: The overview of our FC-4DFS framework.

meshes and displacements and eliminates the need to encode and
decode the main neutral mesh volume, greatly improving the abil-
ity to model expressions of unknown identities. However, due to
the limited information contained in landmark displacements and
the lack of diverse identity information, their ability to generalize
the expressive mesh details of different identities still needs to be
further enhanced.

3 METHOD
3.1 Overview
As shown in Figure.2, our FC-4DFS framework consists of a frequency-
controlled LSTM that generates a landmark expression sequence
and a MIADNet that transfers the landmark displacements into
mesh vertex displacements. Specifically, the frequency-controlled
LSTM uses the landmark 𝑙𝑚𝑡−1 of frame 𝑡 − 1 and the expression
label as input and generates the landmark 𝑙𝑚𝑡 of frame t as output,
where the neutral landmark 𝑙𝑚0 is given as the initial landmark at
the first frame (See Section 3.2). Then, we subtract the initial neutral
landmark 𝑙𝑚0 from the obtained landmark sequence {𝑙𝑚𝑡 }𝑛𝑡=1to
obtain the displacement sequence for the subsequent network. Next,
the MIADNet extracts multi-level latent features from the neutral
mesh and predicts mesh displacement sequence with the input
of landmark displacement sequence (See Section 3.3). Finally, we
combine the mesh displacement sequence and the neutral mesh to
obtain an expressional mesh sequence. Besides, in order to enhance
the perception of temporal sequence motion and improve the accu-
racy of relative displacements, we also design a time consistency
loss function (See Section 3.4).

3.2 Frequency-controlled LSTM
In this section, we propose a frequency-controlled LSTM, as shown
in Figure. 3, to realize timing and frame rate perception of ex-
pression actions, realizing flexible frame-by-frame generation of
variable-length sequences. Specifically, we first integrate frequency
features into the LSTM for controlled long short-term memory
updates, after which we introduce relative positional encoding
embedding for free-framerate perception.
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Figure 3: The structure of our frequency-controlled LSTM.

Frequency Integration in LSTMGiven the input 𝑥𝑡 of the current
frame 𝑡 extracted by the feature network and the output 𝑦𝑡−1 of the
last frame 𝑡 − 1, the LSTM needs to obtain the output 𝑦𝑡 and update
the hidden state ℎ𝑡 in the model. In general, it first calculates the
forget gate 𝑓𝑡 and the input gate 𝑖𝑡 as follows:

𝑓𝑡 = 𝜎

(
𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓

)
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 )

(1)

where𝑊 and 𝑏 are the weight matrices and bias coefficients, 𝜎 is
the sigmoid function.

Through the hidden state and the controls of input gate and for-
get gate, the LSTM achieves stable and efficient timing-dependent
modeling. However, LSTM implicitly sorts the input sequence by
index, and the interval between two adjacent frame inputs is always
1 when entering a sequence of different lengths. This is appropriate
for inputs that only consider precedence, such as the position of
each word in a sentence. However, it cannot perceive the similarity
difference between the two frames at different frame rates in the
input with frame rate attributes, such as an image sequence in a
video.

To do this, we integrate frequency information 𝑓 𝑟𝑒𝑞𝑡 into the
LSTM to control the current frame forget gate and input gate as
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follows:
𝑓𝑡 = 𝜎

(
𝑊𝑓 ·

[
ℎ𝑡−1, 𝑥𝑡 , 𝑓 𝑟𝑒𝑞𝑡

]
+ 𝑏 𝑓

)
𝑖𝑡 = 𝜎

(
𝑊𝑖 ·

[
ℎ𝑡−1, 𝑥𝑡 , 𝑓 𝑟𝑒𝑞𝑡

]
+ 𝑏𝑖

) (2)

After that, we obtain the candidate output 𝑦𝑡 and the output gate
𝑜𝑡 as:

𝑦𝑡 = tanh (𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐 )
𝑜𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 )

(3)

Finally, we update the last hidden state fromℎ𝑡−1 toℎ𝑡 and calculate
the output 𝑦𝑡 as follows:

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑦𝑡 )
𝑦𝑡 = 𝑓𝑡 ∗ 𝑦𝑡−1 + 𝑖𝑡 ∗ 𝑦𝑡

(4)

Framerate-aware Positional Encoding Take the expression label
and initial neutral landmark as inputs, to generate a landmark
sequence under free-framerate control, it is necessary to obtain
the current position in the complete sequence and its time change
relative to the previous frame. Thus, we employ relative positional
encoding to code the entire sequence. In particular, we first calculate
the relative position of the current frame in the full sequence as:

𝑝𝑡 =
𝑝𝑡

𝐿
(5)

where 𝑝𝑡 is the time point of the current frame in the complete
sequence, and 𝐿 is the duration of the complete sequence. Then, we
encode the relative positional encoding of the current frame 𝑃𝐸 as:

𝑃𝐸 (𝑝𝑡 )2𝑗 = sin
(

𝑝𝑡

100002𝑗/𝑑

)
𝑃𝐸 (𝑝𝑡 )2𝑗+1 = cos

(
𝑝𝑡

100002𝑗/𝑑

) (6)

where 𝑗 represents the dimension within the encoding vector, and
𝑑 is the total number of dimensions in the model.

Finally, we embed the positional encoding of adjacent frames
into the network as:

𝑓 𝑟𝑒𝑞𝑡 = 𝐸𝑚𝑏 (𝑃𝐸 (𝑝𝑡−1), 𝑃𝐸 (𝑝𝑡 ), 𝑃𝐸 (𝑝𝑡+1)) (7)

which captures the temporal changes between the current frame
and the previous frame, and realizes the free-framerate control for
sequence generating.

3.3 MIADNet
The FC-LSTM previously generated realistic sequences of facial
expression landmarks. However, our ultimate objective is to ani-
mate the neutral mesh𝑀0 to produce novel 3D facial animation se-
quences {𝑀𝑡 }𝑛𝑡=1. In this section, we propose a multi-level identity-
aware displacement network (MIADNet) to make full use of the
identity information from the generated landmark sequence and
the neutral mesh, thus further enhancing the robustness to identity
when reconstructing 4D facial expression sequence from landmark
sequence. Specifically, the proposed MIADNet model, as shown in
Figure. 4, includes a landmark decomposition embedding module,
an identity extractor, and an identity-aware mesh generator.
Landmark Decomposition Embedding The generated landmark
sequence after FC-LSTM contains identity and expression change
information, where the identity information is shared throughout
the action cycle, and provides a facial datum shape reference for
the generation of the expressional mesh. We first decompose the

M0

… …

lm0

Δlmt

Cross-attention

Add

Spiral conv

Δ𝑀t 𝑀t

𝐹𝑖𝑒𝑛 𝐹𝑖de

MLP

zt

Figure 4: The structure of our Multi-level Identity-Aware
Displacement Net.

generated landmark sequence {𝑙𝑚𝑡 }𝑛𝑡=1 to the neutral landmark
𝑙𝑚0 and a landmark displacement sequence {Δ𝑙𝑚𝑡 }𝑛𝑡=1. For each
frame 𝑡 , we embed 𝑙𝑚0 and Δ𝑙𝑚𝑡 to vectors in the latent code space
with MLPs as the input to subsequent mesh generators, which is
expressed as:

𝑧𝑡 = 𝑀𝐿𝑃𝑚 (Δ𝑙𝑚𝑡 ) + 𝜆𝑀𝐿𝑃𝑛 (𝑙𝑚0) (8)

where 𝜆 is a learnable parameter.
Identity Extractor The neutral landmark 𝑙𝑚0 provides global
identity information at low resolutions, however, it doesn’t have
the ability to provide facial details for high-resolution expression
animation meshes. In addition, it is difficult to maintain stability
throughout the sequence for mesh generation using a single-frame
landmark. For this purpose, we introduce neutral mesh𝑀0 as input,
and we use multiple spiral convolutions to extract multi-resolution
identity features from 𝑀0. The multi-resolution feature constructs
the intermediate bridge between low-resolution landmarks and
high-resolution meshes, effectively improving the consistency of
the generation process from landmarks to meshes and the stability
in different frames.
Identity-aware Mesh Generator Given the latent landmark code
𝑧𝑡 and the multi-resolution identity features 𝐹𝑒𝑛 of the current
frame 𝑡 , the mesh generator upsamples 𝑧𝑡 and combines it with the
identity features 𝐹𝑒𝑛 by skip connections to obtain the mesh output.
To utilize the neutral mesh information as a reference mesh in the
generation to reconstruct a continuous and consistent sequence, we
use the cross-attentionmechanism tomodel the context dependence
between the generated expression mesh and the reference neutral
mesh. Specifically, the input features of the i-level decoder can be
expressed as:

𝐹 𝑖𝑖𝑛 = softmax

(
𝐹 𝑖−1
𝑑𝑒

· 𝐹 𝑖𝑒𝑛√
𝑑

)
𝐹 𝑖𝑒𝑛 (9)

where 𝐹𝑑𝑒 are the decoder features, and 𝑑 is the feature dimension.
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3.4 Training loss
For the generation of facial expression animations, it is crucial to
ensure the high quality of each frame and maintain continuity and
smoothness throughout the sequence. This requires designing a
loss function that takes into account the generation quality of each
frame and the relationship between frames to solve these problems.
Previous methods that directly generate complete sequences often
directly measure the quality of the generated sequence to ensure
accuracy and perceived fidelity. But this method tends to ignore mo-
tion in sequences. To this end, we propose a hybrid reconstruction
and temporal coherence loss function to evaluate the generation
quality of each frame and inter-frame motion respectively, while
maintaining the generation quality while strengthening the model’s
modeling of sequence motion. The training loss of our model can
be formulated as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒 + 𝛼 ∗ 𝐿𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (10)

where 𝐿𝑟𝑒 represents the single-frame reconstruction loss based on
L1 distance, i.e.,

𝐿𝑟𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

∥𝑥𝑡 − 𝑥𝑡 ∥1 (11)

and we set the hyperparameters 𝛼 = 0.3 in the loss function during
training. Then, we use landmark motion between adjacent frames
to enhance control over the smoothness of the sequence, and the
temporal coherence loss 𝐿𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 is described as:

𝐿𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

∥𝑚𝑡 −𝑚𝑡 ∥1 (12)

4 EXPERIMENTS AND RESULTS
4.1 Experimental details
Datasets We carry out experiments on the CoMA[30] dataset and
Florence4D [29] dataset. CoMA dataset comprises 144 facial ex-
pression sequences with 20,466 facial meshes collected from 12
unique subjects showcasing 12 different expressions, highlighting
a vast spectrum of extreme expressions and the diversity in facial
movements.

The CoMA dataset faces challenges due to data schema when
applied to the task of generating label-driven facial expression an-
imations. This is mainly because such tasks require a complete
sequence from neutral expression to peak expression, and expres-
sion patterns(some are from neutral to peak while others are from
neutral to peak and back to neutral) and the sequence lengths in
the CoMA dataset are not uniform, and most of the frames of the
sequence are concentrated in neutral and peak.

Existing methods, such as Motion3D, utilize sampling and in-
terpolation to produce GT sequences, which struggle to smooth
transitions and ignore motion changes of neutral and peak expres-
sions. Therefore, we conduct a thorough refinement for the CoMA
dataset to obtain the Aligned CoMA dataset. We first normalized
sequence lengths, then emphasized significant expression changes,
and curated the sequence to ensure the generation of animations
that authentically and smoothly capture the nuances of facial ex-
pressions.

Florence4D dataset provides an extensive collection of 6,650
facial sequences with 399,000 face meshes from 95 distinct identities,
encompassing 43 females and 52 males, and capturing a broad array
of 70 unique facial expressions. Each sequence transitions from
a neutral expression to an apex expression and then returns to
neutral, demonstrating a rich diversity of facial movements and
expressions. Both datasets are aligned in FLAME topology and have
N = 5, 023 vertices.
Implement Details To maintain the independence of FC-LSTM
and MIADNet, we train them separately on these datasets. For the
landmark sequence generation of FC-LSTM, we first allocated the
first three-quarters of the aligned datasets from CoMA and Flo-
rence4D for training, reserving the final quarter for testing. Mean-
while, we utilize the Adam optimizer and set the learning rate at
1e-5. Finally, we train 1,200 epochs for CoMA and 600 epochs for
Florence4D. To rigorously evaluate the generalization capability of
the MIADNet, we first implement a 4-fold cross-validation proto-
col for both the CoMA and Florence4D datasets, same as S2D[27].
Meanwhile, we utilize the Adam optimizer for training with a learn-
ing rate of 1e-3 and a decay rate of 0.99. Then, we train 300 epochs
for the CoMA dataset and 150 epochs for the Florence4D dataset
with a batch size of 128.

These experiments were meticulously designed to thoroughly
examine the proposed framework’s effectiveness and adaptability
in capturing the complexities of facial expressions. Both tasks are
trained on a device with 8 NVIDIA 4090 GPUs and Intel(R) Xeon(R)
Platinum 8368 CPU @ 2.40GHz.

4.2 Comparisons
Generating sequences of 4D facial expressions In this section,
we compare our FC-4DFS with the state-of-the-art methods in-
cluding Motion3D[27] and LM-4DGAN[21]. Motion3D uses SRVF
to encode landmark displacement and their open-source code is
prone to crashing during the training stage. Therefore, we use
their public model on the CoMA dataset for a 30-frame sequence
comparison. Furthermore, we retrained the LM-4DGAN model on
two datasets for comparison. Then, we generated the landmark
sequence and reconstructed the mesh sequence from them, and
used the mean square error (MSE) to compare the vertex recon-
struction errors in landmark and mesh, 𝐸𝑙𝑚(mm) and 𝐸𝑚𝑒𝑠ℎ(mm)
respectively. Finally, to characterize the perceptual accuracy of the
reconstructed expression sequences relative to expression labels,
we trained expression-labeled classifiers on various datasets and
used classification accuracy(CA) to test the generated result by
various methods.

Table 1: Quantitative results of the end-to-end comparison
study.

Method CoMA Florence4D
𝐸𝑙𝑚 𝐸𝑚𝑒𝑠ℎ CA(%)↑ 𝐸𝑙𝑚 𝐸𝑚𝑒𝑠ℎ CA(%)↑

gt - - 86.84 - - 81.07
Motion3D 11.25 5.288 78.28 - - -
LM-4DGAN 10.02 4.724 75.30 9.349 8.414 69.37

FC-LSTM+S2D 8.308 4.392 83.79 7.496 6.642 76.45
ours 8.308 4.131 84.17 7.496 6.215 78.93
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Figure 5: The qualitative results of sequences generated byMotion3D, LM-4DGAN, our method and the ground-truth of different
subjects.

The quantitative comparison results are shown in Tab. 1. For
30 frame comparisons, the landmark per-vertex reconstruction er-
ror (𝐸𝑙𝑚) using our FC-LSTM is 26% higher than Motion3D and
17% higher than LM-4DGAN. At the same time, when using the
same S2D decoder for end-to-end reconstruction, the mesh recon-
struction error (𝐸𝑚𝑒𝑠ℎ) per vertex is 18% higher than Motion3D
and 7.6% higher than LM-4DGAN. In addition, when using our
MIADNet to reconstruct the 4D facial expression from the gener-
ated landmark, it is improved by 21.8% compared to Motion3D and
12.5% compared to LM-4DGAN. The classification accuracy of the
data generated by our method is presented in the third column of
the table, demonstrating that the sequences produced, with each
frame’s mesh passing through a classification network, achieve re-
sults closer to the specified expressions. LM-4DGAN enhances the
modeling of different identity movements due to the direct genera-
tion of landmark sequences, and its results are better thanMotion3D.
On the basis of utilizing neutral landmarks, our FC-LSTM generates
sequences frame by frame and further considers the smoothness
of inter-frame motion. Furthermore, our MIADNet introduces a
neutral mesh with the cross-attention mechanism guided, which
also improves the decoding result. Therefore, our method achieves

the SOTA performance in all indicators and is good at generating
label-driven 4D facial expression sequences with enhanced fidelity.

In addition, we qualitatively compared the generation results of
our method with Motion3D and LM-4DGAN on multiple subjects
at 30 frames. As illustrated in Figure5, the Motion3D sequence
lacks continuity between frames, and detailed information about
the mouth is missing in the sequence. LM-4DGAN uses a step-by-
step generation method to enhance the continuity of the sequence
and directly models the complete sequence from the landmark
sequence, while it is more difficult to model motion patterns. In
contrast, methods using FC-LSTM to generate the next frame based
on the previous frame and expression labels, can achieve smooth
and effective motion pattern modeling. Moreover, our final results
with MIADNet achieve closer to GT than using the S2D decoder.

We mainly compared our MIADNet with several 3DMM-based
methods, including the basic PCA-3DMM[2], the Neural 3DMM
(N3DMM)[3] that specifically designed to learn the nonlinear latent
space of mesh changes and reconstruct the input 3D mesh and the
basic S2D[27] decoder without neutral identity information for the
input displacement.
Landmark Decoder MIADNet is another important part of our
FC-4DFS. In order to verify the robustness of the reconstruction
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Table 2: Quantitative results of the comparison study and
ablation study for MIADNet.

Method CoMA Florence4D
PCA-220 1.280 ± 1.061 2.389 ± 1.660
Neural3DMM 3.873 ± 3.169 5.180 ± 6.635
S2D 0.550 ± 0.636 1.493 ± 1.607
S2D+lm-n 0.547 ± 0.637 1.405 ± 1.541
S2D+mesh-n 0.548 ± 0.635 1.421 ± 1.461
Ours 0.528 ± 0.634 1.338 ± 1.499

network to unseen identities, Refers to the experiment of S2D[27],
we performed 4-fold cross-validation on the identities on the CoMA
and Florence4D datasets and used per-vertex Euclidean error (mm)
to measure the reconstruction performance. We compared our MI-
ADNet with the basic S2D decoder and 3DMM-based methods,
including the basic PCA-3DMM[2], the Neural 3DMM(N3DMM)[3].

The quantitative results of these comparisons are detailed in
Table. 2. First, the spiral convolution-based N3DMM, which is pro-
posed to learn the nonlinear latent space of facial changes for
the 3DMM mesh with FLAME topology, performs poorly on both
datasets. This is because N3DMM encodes and decodes the entire
mesh, while it demonstrates some generalization capabilities across
different expressions, its overall performance in handling new iden-
tities is still poor[27]. Furthermore, S2D decomposes the mesh into
a neutral mesh that represents the identity and displacement, then
uses the spiral convolution method to decode the displacement
from the landmark into the displacement of the mesh. This method
avoids encoding and decoding of neutral mesh to reduce errors
but misses the use of identity information while its robustness
to different identities needs to be further enhanced. Finally, our
MIADNet adds the multi-level identity information for the S2D
decoder, strengthening the reconstruction network’s modeling ca-
pabilities for unknown identities. Therefore, our MIADNet achieve
a 5% improvement on the CoMA dataset and 10.3% improvement
on the Florence4D dataset compared to S2D. This shows that multi-
level identity information can enhance the robustness of different
identities.

On the other hand, we visualize the error heatmaps of the meshes
reconstructed by these methods to compare their performance. Fig-
ure.6 provides qualitative examples of error heatmaps for identity-
independent splitting by comparing them with PCA, N3DMM, and
S2D. First, PCA-3DMM and N3DMM show high errors even for
neutral meshes, demonstrating their inability to recover the iden-
tity of unseen meshes. Meanwhile, the high error of N3DMM is
mainly concentrated in the lower half of the mesh, while the high
error area of PCA is scattered throughout the mesh. This is because
N3DMM takes advantage of the geometric topological relationship
of 3DMM and uses spiral convolution to encode neutral meshes in
the latent space, which can better reconstruct the topological struc-
ture of the mesh. Then, the S2D method and our method achieve
lower reconstruction errors, which indicates that learning per-point
displacements is better than directly learning point coordinates.
Finally, our method shows significant improvement over the S2D
method in handling highly varying expressions (see the neck and
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Figure 6: Mesh reconstruction error (red=high, blue=low) of
our model and other methods.

eyes in Figure.6), which are consistent with the results shown in
Table.2.

4.3 Ablation Study
The Impact of Our Frequency-Controlled LSTM To validate
the role of LSTM in our proposed framework and the effectiveness
of our novel frequency-controlled LSTM, we first use a basic MLP
as the baseline for sequence regression and compare it with stan-
dard LSTM and our FC-LSTM. Due to the issues with the CoMA
dataset mentioned in Section 4.1, to better compare the generated
results, we trained on the aligned CoMA dataset(containing multi-
ple sequence lengths) and the Florance4D dataset, and tested on 3
different lengths, as detailed in Table. 3. Furthermore, we use the
first 3/4 identities as training data and the last 1/4 identities as test
data and use per-vertex reconstruction error for evaluation.

It is observed that the framework utilizing LSTM for regression
consistently achieves lower per-vertex reconstruction errors across
all test lengths compared toMLP. Moreover, our FC-LSTM improves
performance by 14% over the baseline in the aligned CoMA dataset
and by 13.8% over the baseline in the Florence4D dataset. Compared
with the basic LSTM, the improvement is 4.3% in the aligned CoMA
dataset and 4.1% in the Florence4D dataset.

On the other hand, Figure.7 highlights the effectiveness of our
FC-LSTM, demonstrating that our model can generate complete
sequences of any given length and maintain fine detail across dif-
ferent lengths. Furthermore, the LSTM method without frequency
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Table 3: Ablation Study of FC-LSTM and temporal loss.

base freq-info loss-temp Aligned CoMA Florence4D

20 25 30 20 25 30

mlp 9.631 ± 4.919 9.533 ± 4.837 9.591 ± 4.815 8.796 ± 4.820 8.783 ± 4.727 8.790 ± 4.193
lstm 8.663 ± 3.641 8.577 ± 3.510 8.611 ± 3.580 7.920 ± 4.244 7.896 ± 4.244 7.894 ± 4.692

lstm ✓ 8.341 ± 3.676 8.222 ± 3.495 8.232 ± 3.500 7.686 ± 4.175 7.572 ±4.138 7.529 ± 4.124
lstm ✓ 8.291 ± 3.485 8.238 ± 3.485 8.255 ± 3.541 7.699 ± 4.167 7.603 ± 4.127 7.569 ± 4.102
lstm ✓ ✓ 8.152 ± 3.515 8.064 ± 3.446 8.058 ± 3.459 7.496 ± 4.082 7.411 ± 4.050 7.381 ± 4.031

Len_30

Len_20
Wo_freq_info

Len_25

Len_20

GT

Figure 7: Qualitative comparison results between sequences
of various lengths generated using our FC-LSTM, sequences
of 20 frames generated without frequency control, and the
ground truth.

control cannot effectively generate a complete expression sequence
such as the mouth cannot be fully opened in the first row.

Impact of temporal loss Sequence continuity is of paramount
importance for the task of 4D facial expression generation. The
displacement between adjacent frames in a sequence represents the
motion of landmarks throughout the sequence, and to smooth this
motion, we incorporated a temporal loss into our training process.
As shown in Table.3, the LSTM with added temporal loss exhibited
a performance increase of 4.5% on the Align CoMA dataset. Further-
more, it has an improvement of 2.3% after adding the temporal loss
for our FC-LSTM. On the Florence4D dataset, the implementation
of temporal loss resulted in an enhancement of 4.6% for the LSTM
framework and 2.5% for our FC-LSTM.

To further discuss the impact of hyperparameter 𝛼 , we compared
the per-vertex reconstruction error at different frame rates when
training with different 𝛼 values. The experimental results are shown

in the Table.4 shows that the lowest reconstruction error is obtained
when 𝛼 is 0.3.

Impact of MIAD In the MIADNet part, based on S2D, we intro-
duced Landmark Decomposition Embedding and Identity-aware
Mesh Generator to extract multi-level identity information carried
in neutral landmarks and neutral meshes respectively. To illustrate
the role of multi-level identity information, we performed abla-
tion experiments, and the results are shown in Table.2. It can be
seen that adding Landmark Decomposition Embedding(S2D+lm-n)
or Identity-aware Mesh Generator(S2D+mesh-n) alone does not
significantly improve the reconstruction error. However, after in-
troducing these two modules at the same time, we achieved a 5%
improvement on the CoMA dataset and a 10.3% improvement on
the Florence4D dataset compared to S2D.

Table 4: Quantitative results of the ablation study for hyper-
parameters 𝛼 .

𝛼 20 25 30
0 8.291 ± 3.485 8.238 ± 3.485 8.255 ± 3.541
0.1 8.198 ± 3.700 8.125 ± 3.484 8.157 ± 3.547
0.2 8.282 ± 3.545 8.181 ± 3.489 8.173 ± 3.538
0.3 8.152 ± 3.515 8.064 ± 3.446 8.058 ± 3.459
0.5 8.276 ± 3.626 8.126 ± 3.444 8.081 ± 3.411
1 8.334 ± 3.596 8.240 ± 3.530 8.234 ± 3.561

5 CONCLUSION
In this paper, we propose a label-guided 4D facial expression syn-
thesis method, FC-4DFS, by using frequency-controlled LSTM net-
works (called FC-LSTM) to form a flexible generation framework.
This method not only overcomes the limitation that traditional
methods can only generate fixed sequences but also further en-
hances the smoothness of generated sequence motion. The intro-
duction of MIADNet further enhances our framework’s ability to
accurately reconstruct facial expression sequences with complex
identity information from facial landmarks. Experiments conducted
on the CoMA and Florence4D datasets demonstrate that our model
achieves state-of-the-art performance.

It is worth noting that our method still needs to generate a
landmark sequence first and then expand it to a mesh sequence
according to the displacement. In future work, we will further study
the end-to-end generation of 4D facial expression sequences.
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