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ABSTRACT

This paper explores the characterization of equivariant linear layers for repre-
sentations of permutations and related groups. Unlike traditional approaches,
which address these problems using parameter-sharing, we consider an alternative
methodology based on irreducible representations and Schur’s lemma. Using this
methodology, we obtain an alternative derivation for existing models like DeepSets,
2-IGN graph equivariant networks, and Deep Weight Space (DWS) networks. The
derivation for DWS networks is significantly simpler than that of previous results.

Next, we extend our approach to unaligned symmetric sets, where equivariance
to the wreath product of groups is required. Previous works have addressed this
problem in a rather restrictive setting, in which almost all wreath equivariant layers
are Siamese. In contrast, we give a full characterization of layers in this case and
show that there is a vast number of additional non-Siamese layers in some settings.
We also show empirically that these additional non-Siamese layers can improve
performance in tasks like graph anomaly detection, weight space alignment, and
learning Wasserstein distances. Our code is available at GitHub.

1 INTRODUCTION

Learning with symmetries has recently attracted great attention in machine learning. In this learning
setting, a group acts on an input space, and the hypothesis mappings are restricted to be equivariant
with respect to the group action. Motivated by the structure of fully connected neural networks, group
equivariant models are often defined by a composition of parametric linear equivariant functions and
non-parametric non-linear activations functions (Cohen & Welling, 2016). Thus, characterizing all
equivariant layers for a given group action is fundamental for understanding and designing equivariant
deep neural networks. Indeed, this question has attracted a considerable amount of attention in various
scenarios (e.g., Finzi et al. (2021); Kondor & Trivedi (2018); Cohen et al. (2019); Pearce-Crump
(2023a;b)).

For permutation groups, the standard strategy for characterizing equivariant layers is through studying
parameter-sharing (Ravanbakhsh et al., 2017). Perhaps the first result in this direction was given by
Zaheer et al. (2017), who showed that only two parameters are required to characterize all permutation
equivariant layers on a set of scalars. Another famous example is Maron et al. (2018), who described
the specific parameter-sharing scheme for graph equivariant networks and other tensor representations
of the symmetric group. Recently, parameter-sharing has been applied in Navon et al. (2023); Zhou
et al. (2024b) to characterize all equivariant layers of weight space neural functionals. These neural
networks operate on weights of another neural network, a problem with a complex multi-permutation
equivariant structure.

In this paper, we revisit equivariant linear layer characterization for permutation groups from the
perspective of irreducible representations. Given a group G acting on a linear space V, we explore
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linear equivariant mappings f : ¥V — )V by decomposing V to its minimal invariant components,
which are irreducible representations of G. Once this decomposition is performed, a basic result in
representation theory called Schur’s lemma automatically provides us with a full characterization of
all equivariant mappings.

As a first step, we use our method to get an alternative derivation for known equivariant layer
characterization at the basis of the DeepSets (Zaheer et al., 2017), 2-IGN (Maron et al., 2018), and
DWSNets (Navon et al., 2023) architectures. Notably, for the Deep Weight Space problem, our
derivation is significantly simpler than the cumbersome derivations previously obtained by parameter
sharing (Navon et al., 2023; Zhou et al., 2024Db).

Next, we consider the problem of sets of unaligned symmetric elements, where equivariance to the
joint action of a group G and the permutation group Sy, is required (also known as the wreath product
G 1 Si). This setting arises naturally when considering alignment, distance prediction, or anomaly
detection of sets of unaligned symmetric elements. It was studied by Wang et al. (2020) under
the assumption that G acts transitively, in which case Siamese Networks capture an overwhelming
majority of the equivariant layers. Indeed, in practice, Siamese networks are often employed (Navon
et al., 2024; Chen & Wang, 2024). In contrast, we give a full characterization of the equivariant layers
in the general setting and show that in some settings (e.g., alignment of weights spaces), there can
be a large number of non-Siamese equivariant layers. Empirically, we show that these additional
layers improve performance on a synthetic graph anomaly detection task and the deep weight space
alignment task discussed in Navon et al. (2024). In summary, our contributions are the following:

* We give an alternative irreducible-based derivation for the DeepSets (Zaheer et al., 2017), 2-IGN
(Maron et al., 2018), and DWSNets (Navon et al., 2023) architectures. The DWSnets derivation is
significantly simpler than previous approaches.

* We provide a characterization of all equivariant functions on sets of unaligned symmetric elements.

* We empirically validate the importance of our equivariant layers for sets of unaligned symmetric
elements by showing its superiority on a synthetic graph anomaly detection task, Wasserstein set
distance computation, and deep weight space alignment task.

2 RELATED WORK

Learning Sets of Symmetric Elements. When dealing with multiple occurrences of symmetric
objects as a set, additional symmetries arise as the set elements can be permuted. In this case, the
layers are required to be equivariant under the permutation of elements in addition to the original
element group action. Maron et al. (2020) suggested a new layer called Deep Sets for Symmetric
Elements (DSS) that operates on a set of symmetric objects. They showed that incorporating DSS
layers is strictly more expressive than using Siamese networks. The DSS framework was also used in
sub-graph aggregation networks (Bevilacqua et al., 2021), where the network should be invariant to
the order of the sub-graphs. In the main setting of Maron et al. (2020), the same group element g € G
acts uniformly on all set objects. However, the more challenging setting is where we allow different
elements g; € G to act on the objects. This corresponds to the action of the restricted wreath product
G 1S}, on the set. Maron et al. (2020) deal with this setting as well, but only when G is a subgroup of
S, and the action of G is transitive. Later, Wang et al. (2020) characterized all linear mappings for
general wreath products, however they also assumed that the group actions are transitive.

Equivariant Characterization Via Irreducibles. Using irreducible representations to characterize
equivariant layers is a popular approach for rotation-equivariant networks (Thomas et al., 2018;
Anderson et al., 2019; Dym & Maron). For permutation groups, the primary work which considered
this approach, to the best of our knowledge, is Henning Thiede et al. (2020). They suggest using
the known characterization of permutation irreducible representations with Young diagrams (Fulton
& Harris, 2013) to characterize permutation-equivariant layers and explain how to reconstruct the
results from DeepSets and 2-IGN. Our approach for these results is similar but gives a more explicit
derivation of the DeepSet and 2-IGN layers. More importantly, our analysis covers deep weight
spaces and sets of unaligned symmetric elements, not discussed in this paper.
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3 PRELIMINARIES

Let V be a finite-dimensional vector space over the field F = C or R. Let G be a finite group acting
linearly on V. We will sometimes say that ) is a representation of G. We will say V is a trivial
representation of G if the action of G on V is the trivial action gv = v forall g € Gand v € V.

A subspace if C Vis invariantto G if g- v € U forall g € G and v € Y. We say an invariant
subspace U is irreducible if it does not strictly contain an invariant subspace except the zero space.
By Maschke’s theorem, each finite-dimensional space V can be decomposed into a direct sum of
irreducible invariant spaces (Fulton & Harris, 2013).

A mapping T : V — V is equivariant if T(g - v) = g - T(v) for every v € V,g € G. Two
representations V, U of G are isomorphic if there is an equivariant linear bijection Ly : V — U,
which we notate by V = U.

The following lemma, named Schur’s lemma, is a key component of our work. Schur’s lemma
describes equivariant mappings between irreducible representations:

Schur’s lemma. Let V, )V be finite-dimensional irreducible representations of G over IF, and let
T :V — W be a G-equivariant linear map *. Then:

e Either 7' is an isomorphism or 7" = 0.
e If L:V — Wis an isomorphism, and F = C, then T" = AL for A € C.

In this paper, we will only consider representations over R, which are the common setting in applica-
tions. In all cases, we will discuss, our real irreducible representations are absolutely irreducible. This
means that their natural extension to complex vector spaces is irreducible. In this case, if L : V — W
is an isomorphism, F = R, and V is absolutely irreducible, then T = AL for A € R (Boardman).
In Appendix B we elaborate more on this topic. We note that when V' is not absolutely irreducible,
the space of isomorphisms from V to W is either 2 or 4 dimensional (Poonen, 2016). In this setting,
using an automatic computational method to find all 2-4 equivariant layers may be beneficial (Finzi
etal., 2021).

Layer characterization using Schur’s Lemma Equivariant layers from a representation V to itself
can be characterized using Schur’s lemma via two steps. The first step is decomposition, where we
identify the decomposition of V into irreducible representations V = @®5_;)V;. Any € V can be
written uniquely as a sum z = Z‘;l x; where each x; is in V;. The decomposition step also requires
an algorithm to compute this decomposition. Next, we will need to identify which of the space pairs
V; and V; are isomorphic, and if they are, specify an isomorphism L;;. Finally, since we are working
over the reals, we will need to verify that all irreducible representations are absolutely irreducible.

Once the decomposition step is carried out, the second step uses Schur’s lemma. Equivariant mappings
T :V — YV can be written as T' = Zf =1 T;;, where T;; : V; — V; are equivariant. By Schur’s
lemma if V; and V; are isomorphic then T;; = A;; L;; for some A;; € R, and otherwise T;; = 0. All
in all, we obtain that T’ is equivariant if and only if for some choice of the scalar A;; we have

T(xy+...+z)= > AjLij(x). (1
(i,j),Vi%Vj

The number of parameters in the expression above depends on the isomorphism relations between
the irreducibles. We can assume without loss of generality that the first 1 < ¢ < s irreducible spaces
are not isomorphic, and by identifying isomorphic irreducibles, we can rewrite the decomposition

above as V = EB§:1 V;-B % (Where V;B % is defined to be the direct sum of o copies of V;) where
a1 +...+a¢ = s. The number of parameters \;; in the decomposition is then Zle o?. This process

can easily be generalized to compute mappings between representations ) and VW by decomposing
both spaces into irreducibles.

We note that the cornerstones of this methodology: decomposition into irreducibles and Schur’s
Lemma, are applicable for all finite dimensional representations of finite groups (and also for compact

“The equivariant map is often referenced as a G-module.
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infinite groups like SO(d)). The main challenge in this approach is characterizing and computing
the decomposition into irreducibles. This needs to be done on a case to case basis. Much of the
remainder of the paper will be devoted to computing these decompositions for important equivariant
learning scenarios.

4 COMPUTING LINEAR EQUIVARIANT LAYERS

‘We now demonstrate how to derive the results in Zaheer et al. (2017); Maron et al. (2018); Navon
et al. (2023) via decomposition into irreducibles.

4.1 DEEP SETS

We begin with the simple case of the action of the permutation group .S,, on V = R" by permutation
of elements (we assume n > 2). Here, there are two non-trivial invariant spaces:

S ={a-1,|a € R}, V(n):{xER”:Zmi:O}. (2)
i=1

As the first space is one-dimensional, it’s irreducible. By Hinton et al. (2006), the second one is also
irreducible. These two spaces are not isomorphic since the action of .S, on S is trivial, but the action
of S, on V(n) is not (also they do not have the same dimension when n > 3).

The decomposition of € R™ to a sum of elements from the irreducible spaces can be computed as
r=7zl, + (x — Z1,)

where Z is the average of x, and 1,, is the all one vector. By Equation (1), Schur’s lemma, and the
fact that all irreducibles of the permutation group are absolutely irreducible (see Appendix B), the
linear equivariant mappings 7" : )V — V are characterized by two parameters a, b € R, that is:

Tz = azl, + bz — z1,).
This is exactly the result described in DeepSets (Zaheer et al., 2017).

4.2 EQUIVARIANT GRAPH LAYERS

We next consider the setting where V = R"*™ G = S,, and the group action is defined by (7 -
X)ij = Xr-1(3),7—1(;)- This setting is natural for graph neural networks, as two adjacency matrices
A, B € R™ "™ represent isomorphic graphs if and only if A = 7 - B for some permutation 7. This
setting was considered in Maron et al. (2018) using a parameter sharing scheme, and we show how
to obtain similar results using irreducibles (note that Maron et al. (2018) also discussed general
mappings between k-order and ¢-order tensors. In contrast, we only discuss the k = ¢ = 2 case).

We claim that, when n > 4, the space R™*" can be written as a sum of seven irreducible permutation
invariant sub-spaces. The behavior for n < 4 is discussed in Appendix C.3.

The first two spaces are one-dimensional representations on which the action of .S, is trivial: diagonal
matrices with identical diagonal entries and matrices with zero diagonal and identical off-diagonal
entries:

Vo={a-I,Jae R}, Vi={a (1nxn—In)la € R}. 3)

Next, we have three spaces of dimension n — 1 which are isomorphic to V(n) from equation 2. The
first space is the space V, of diagonal matrices whose diagonal sums to zero and the next twon — 1
dimensional spaces are the space of matrices whose rows (respectively columns) are constant, and
columns (respectively rows) sum to zero:

Vs = {rly] Z’“z‘ =0}, Vi={l.c"| ZCi =0}
i=1 1=1

Finally, there are two larger irreducible spaces:

Vs={A] A=-AT A1,=0,}, Ve={A] A=AT A1,=0,,4;=0Vi=1,...,n}
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The dimension of Vs is (") = ”2%3” + 1, and the dimension of Vg is (";') — 1 = "2’73” So,

we have the following decomposition:
V=YV Ve @ V30V, 0 Vs Vs X VP2 VPP Vs @ Vs

Accordingly, using Schur’s lemma, each linear mapping can be characterized by 32 +22 +1+1 = 15
parameters, the same result from Maron et al. (2018), so we have the expected number of parameters.
In appendix C, we give a formal proof of these arguments and present an algorithm to decompose an
input matrix X into its seven irreducible spaces with linear complexity in the matrix size n2. These
results are summarized in the following theorem.

Theorem 4.1. For all n > 4, the space R™*"™ can be written as a direct sum of the spaces Vg, . . ., Vg.
These spaces are invariant and irreducible, and the isomorphism relations between them are given by
Vo Z V1, Vo = V3 2V,

4.3 DEEP WEIGHT SPACES

Recently, there has been growing interest in devising neural operators: neural networks that operate
on an input, which is itself a neural network. This type of problem is of interest for various tasks
involving post-processing and synthesis of multiple trained neural networks, as well as for processing
Implicit Neural Representations (INRs), which are a popular alternative for representing certain
standard data structures. (see e.g. Kalogeropoulos et al. (2024) for further discussion).

A key concept in the design of "neural operators’ has been the requirement that they are equivariant
to the input neural data (Kalogeropoulos et al., 2024; Kofinas et al., 2024; Zhou et al., 2024a; 2023;
Lim et al., 2024) In this section we consider the setting discussed in Navon et al. (2023); Zhou et al.
(2024b), where the neural data is a collection of weights and biases (W,,,, bm)ﬁ\,f:1 representing an
MLP of depth M, and a neural operator is constructed by composing standard activation with linear
mappings which are equivariant with respect to the multi-permutation action we will now describe:

The output of an MLP architecture is invariant to the permutation of its hidden neurons. For example,
the MLP defined by W5 - Re LU - (W1 z) will remain the same function if we replace weights W, W1
with the weights W, P, PTW/.

To define the symmetries of learning on MLPs in full generality, we will adapt the notation from
Navon et al. (2023). We consider the space of MLP parameters with a given fixed depth M and layer
dimensions do, . . ., dpr4+1 (M and all d; are assumed to be larger than one). These are parameterized
by the vector space V = @%21 (W @ B,,,) where W, := R¥m>dm-1 and B,,, := R represent
the weights and biases of the m-th layer. The symmetry group of the weight space is the direct

product of symmetric groups G = Sy, X -+ X Sq,,_,. Anelement g = (71,...,7p—1) in the group
acts on an element v = [W,, by ] me(ar) from V as follows:

plg)v = Wy, b lmernys (4a)

Wi =PIwy, vy = PXb, (4b)

W), = Pr Wy, Py, ., b =P by, me[2,M—1] (4c)

Wi =W Pr,, s b = b (4d)

where P, € R%m*dm is the permutation matrix of 7,,, € Sy, .

Previous work (Navon et al., 2023; Zhou et al., 2024b) has already characterized all linear equivariant
functions from V to itself. However, this characterization requires tedious bookkeeping and division
into a large number of different cases. Here we show how to decompose V into irreducibles in a
rather straightforward way, and as a result obtain a (arguably) simpler characterization of all linear
equivariant layers.

We claim that V is a direct sum of multiple copies of 2/ — 3 irreducible representations of G:

1. The first irreducible representation is the trivial scalar representation S = R with the trivial
action gr = .

2. The next M — 1 representations are the vector representations V,,,m = 1,..., M — 1 of
vectors in R which sum to zero (the spaces V(d,,,) from equation 2), with the action of g being
permutation of the vector by the m-th permutation 7,,,.
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3. The last M — 2 representations are representations M,,,, m=2,...,M —1ofd,, X dp—1
matrices whose rows and columns sum to zero, where the action of g on a matrix W in this space is
given by PT WP,

Tm—1"

The linear equivariant layers from V to itself can be inferred from the following theorem:

Theorem 4.2. The spaces S, V1,...,Vy—_1,Mas, ... My;_1 are absolutely irreducible, and are
not isomorphic to each other. V is isomorphic to S®* & (EB%;%V%&W) @ (@%;;Mm), where

a=do+2dy+2M -3, pr=do+2, Bu-1=du+2, Bn=3Vm=2,...,M—2(5)

In particular, the space of equivariant linear mappings from V to itself is thus of dimension o +

Sy B2+ (M - 2).

Proof. The spaces S, V1,..., V1, Ms, ..., Mj;_; are not isomorphic (even when they have the
same dimension). The action of G on S is trivial while the action on the other spaces is not. The other
spaces aren’t isomorphic to each other since different components of the multi-permutation g € G
acts on each space. The spaces S and V,,, are absolutely irreducible, as we discussed in Subsection
4.1. We will explain why M,,, are absolutely irreducible in Appendix D.

Obtaining the decomposition of V is rather straightforward. First, following Navon et al. (2023),
we identify the weight spaces W, and bias spaces B,,, with subspaces Wi, and B, of V by zero
padding, and note that each one of these subspaces is G-invariant and that their direct sum gives us
the full parameter space . We can then decompose each one of these spaces into irreducibles to
obtain

Bn=2S®V,,, m=1,...,M—1 (6a)
By & S®dm (6b)
Wy 22 8§80 gy v o (6¢)
Wi 2S®V, 16V, ,&M,,, m=2,...,M—1 (6d)
Wiy = 8% g Vi (6¢)

The multiplicities of each irreducible in V), specified in equation 5, can now be found by simply
counting how many times each irreducible appears in the decomposition above.

The decomposition in equation 6 can actually be easily obtained from the *deepsets’ decomposition
of the S;, on R" described previously: the action of G on B, with m < M is isomorphic to the
action of Sy, on R™ and hence we get the exact ’DeepSets’ decomposition from Section 4.1. The
action of G on B s 18 trivial and hence can be written as a direct sum of d s trivial one dimensional S
spaces. The action on W (and W) multiplies a matrix by a permutation from the left (right), and
hence can be seen as a direct sum of ‘deep-sets’ actions on the columns (rows) of the matrix. Finally,
the action of G on W), form = 2,..., M — 1 is a tensor product of the natural action of Sd,,_, on
R?m-1 and the action of Sy, on R%m, and therefore its irreducible decomposition can be obtained by
taking tensor products of the irreducible representations of R4 and R%m-1, as explained in more
detail in the full proof. O

We note that equation 6 includes almost all information required to compute linear equivariant maps
from V to itself. Allis left is the decomposition algorithm to write each (W,,, by )me(as as a direct
sum of elements in the irreducible decomposition. This can be done independently for each subspace

Wi, and B,,. The decomposition for Wm in equation 6d is not immediate and we will explain it in
Appendix D.1.

The decomposition in equation 6 and equation 5 also provides substantial additional information.
For example, we can immediately see that there are « invariant maps from V to R = S, which
correspond to the number of copies of the trivial representation S in V. Moreover, if we are 1nterested

in the equlvarlant maps from a bias space B; (or weight space W;) to another bias space B (or
weight space W ), we can easily infer the equivariant mappings from the decomposition in equation 6.
For example, when i = j = M there will be d3, mappings since B, consists of d isomorphic
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representations, and when 7 < j = M there will be d; mappings since S appears a single time in
[;’i and d); times in B - Continuing in this way we can reconstruct all the different bias-to-bias,
bias-to-weight, weight-to-bias, and weight-to-weight cases analyzed in Tables 5-8 of Navon et al.
(2023), and Tables 8-11 in Zhou et al. (2024b). More importantly, these tables which were necessary
for implementing weight space layers in previous work, are not necessary when implementing these
layers using Schur’s lemma as we suggest.

5 SETS OF UNALIGNED SYMMETRIC ELEMENTS

Next, we consider the setting where our data is a k-tuple of "unaligned objects’ (v1,. .., vx), each
coming from a representation V of G, and we want to learn functions which are equivariant with re-
spect to the joint action of a k-tuple of group elements (g1, . . ., gx) on each coordinate independently,
and to a permutation 7 € Sy, of the k-tuple.

We define G Sk, := G X+ “k_times X G X Sk, and the action is given by

(Tvgh "7gk) : (U17 “’ka) = (g‘r(l) CUr@)s - 9r(k) - U‘r(k)) (7)

The group for which this action is defined is also called the restricted wreath product of G and S.
For more details, see Wang et al. (2020).

This type of *wreath-equivariant-structure’ arises in several settings. One is *alignment problems’,
where our goal is, given a pair of elements (vy,v2) € V¥ k = 2, to find the group element
g* = g*(v1, v2) which makes v; ’as similar as possible’ to vo. This task is equivariant to application
of G elements to each coordinate because if g*v; ~ vy then g2g* g7 1(91 v1) & govo. Similarly, this
task is equivariant to permuting v; and v, because if g*v; ~ vy then (¢*)~1vy &~ v;. For a more
detailed derivation, see Chen & Wang (2024); Navon et al. (2024), which discussed these problems
for sets and weight spaces, respectively. Additional examples of *wreath-equivariant-problems’ are
the anomaly detection problem discussed in the experimental section, and problems with hierarchical
structures as discussed in Wang et al. (2020).

Wreath-equivariant layers. Our aim is to characterize all G ¢ S), equivariant mappings from V¥

to itself. We note that any linear G-equivariant mapping L :V — V induces a ’Siamese’ G ! S},
equivariant mapping defined by

L(vl, .. ';vk) = (z’(vl)a . a‘i’(vk))

The interesting question is how many additional mappings are present. This problem was previously
studied in Maron et al. (2020); Wang et al. (2020) when G is a finite group acting on R" transitively by
permutations (this means that the action of G on [n] has a single orbit). In this setting, the equivariant
mappings are composed of the Siamese mappings and a single additional non-Siamese mapping.
However, the transitivity assumption does not hold in many examples of interest, such as the graph
and weight space examples discussed in this paper. In our analysis, we will release the transitivity
assumption, and allow G to be a general finite group. In some cases, this will lead to a substantial
number of non-Siamese networks.

To characterize G ! Sy equivariant functions, we first aim to characterize all invariant irreducible
sub-spaces of V¥, assuming we know all irreducible sub-spaces of V. An important role will be
played by trivial representations: representations S of G such that gy = v forall g € Gand v € S.

Theorem 5.1. Let V be a real representation of G, with irreducible decomposition
V= (9718 ® (S5 V) ®)

where S; are trivial representations and Vy are not. Then an irreducible decomposition for V¥ with
respect to the action of G Sy, is given by

VP = (@i_1S80) @ (9i-1581) @ (8- V7)

k
where Sf,oz{(sh...,sk)GSf,Zsi:O}, Si—‘il: (s,...,s) € Sk}
i=1
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Proof. The fact that V; is G invariant implies easily that V¥ is G 1 Sy, also invariant. In the appendix
E.1, we will show that if the action of G on V is not trivial then V* is irreducible representation of
G U Sk. In contrast, for the spaces Sf the action of G is trivial, so this representation can be identified
with the standard representation R* of .. The decomposition to Sﬁ o and Sf,l then follows from the
’DeepSets decomposition’ discussed in Section 4.1. O

To count the number of linear equivariant mappings L : V¥ — V¥ we note that

Skoshy shi=sk  skiost vi<i<j<k

Thus, the number of linear equivariant mappings from the ’trivial part’ of V¥, that is ( lesﬁ 0) D
(@le Sf) 1), to istelf, is 252, while the number of linear equivariant mappings from the ’trivial part’

of V to itself (which is equal to the number of Siamese layers), is s2. As a result, we obtain s2
non-Siamese G ! Sj, equivariant maps.

Examples. We found that the number of non-Siamese layers is s2, where s is the number of trivial
representations in V. Let us consider the implications for the three examples we have discussed
earlier:

1. Deep-sets. In the DeepSets setting where V = R™, G = S,, there is a single trivial representation
of constant vectors, and therefore in this setting there is a unique non-Siamese layer for V*. Indeed,
this is the case for any group acting transitively by permutations on R", and thus we obtain the results
for transitive actions from Maron et al. (2020); Wang et al. (2020).

2. Graphs. In the graph setting where V = R"*" G = S, there are s = 2 trivial representations
(see equation 3), and therefore s2 = 4 non-Siamese layers.

3. Weight Spaces. In the weight space examples the number s of trivial representations is rather
large, o = dgy + 2dp; + 2M — 3 from equation 5, and there are > non-Siamese mappings.

In the next theorem we give an explicit characterization of the non-Siamese layers of V*. For this
characterization, we note that the direct sum of all trivial representations of V (as in equation 8)
is the vector space Vyizea = {v € V|gv = v,¥g € G}. Alternatively, every basis e1, ..., es of
Vtizeq defines a decomposition of Vy;zeq into one-dimensional irreducible invariant sub-spaces
S; = {ce;|c € R}. Accordingly, our characterization of non-Siamese layers is based on such bases:

Theorem 5.2. Let V be a real representation of a finite group G. and let eq, . . . , e be a basis to the
subspace Vyigeq. Let (-, ) be a G invariant inner product on V. Then every linear equivariant map
L : V¥ = V¥ is of the form

s k k
L(vy,...,v) = Z a;j <Z<W’ €i)€j, .-, Z<W’ ei>ej> + (f/(vl), cee ﬁ(vk)) ©)

ij=1 (=1 =1

where L : V — Vis a linear equivariant map, and a;; are real numbers. Conversely, every linear
mapping of the form defined in equation 9 is equivariant.

The theorem is proven in Appendix E. We note that an invariant inner product on V is an inner product
satisfying (gv, gu) = (v, u) forall g € G and u,v € V. When G is finite, an invariant inner product
always exists: it can be obtained by starting from an arbitrary inner product and then averaging over
the group (Fulton & Harris, 2013). In the examples we consider in this paper, the group G acts by
permutations. In this case, the standard /5 inner product is invariant. Implementing the non-Siamese
layers defined in equation 5.2 only requires finding a basis for V¢;zcq. In particular, if V is one of the
spaces discussed previously, the basis e; is just a choice of an element from each of the trivial spaces
S; in the decomposition of V.

Beyond Si. So far, we have considered the action of G1.S), where G is finite. We can also generalize
these results to the setting G ! H, where H is a subgroup of Si which acts transitively on {1, ... k}.
By doing this, we are generalizing the results in Wang et al. (2020), which assumes that both G and
‘H act transitively.
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The full generalization is described in Appendix E.1. The general idea is this: Since G acts trivially
on Vfized, the action of G ¢ H on V}’fimd can be identified with the action of H on V}?ned. In turn,

V}Cize 4 1s a direct sum of s different copies of RE. Accordingly, the number of H equivariant maps

from V]fme ;4 toitself is s - h, where h is the number of H equivariant maps from R¥ to itself. One
of these i maps is the identity map, which is Siamese; therefore, the total number of non-Siamese
equivariant maps is (h — 1) - s2. In the case where H = S}, we have that h = 2, and therefore, in
our analysis above, we have found s? non-Siamese maps.

6 EXPERIMENTS

In this section, we consider problems with a wreath-equivariant structure. We compare networks
implementing the complete basis of equivariant layers that we have found, with networks that only
use Siamese layers or combine a partial list of non-Siamese layers suggested in previous works.
Implementation details of all experiments are described in Appendix A.

Graph Anomaly Detection. We begin with a synthetic wreath-equivariant task in which Siamese
networks will fail by design: we consider a graph anomaly detection problem, where the input is &k
graphs with n nodes, (G, ..., Gy), where most graphs are similar, and one is an "anomaly.” The
output is a k£ dimensional probability vector, where the i-th entry denotes the probability that G; is an
anomaly. This task is G ! Sk equivariant (where G = S,,), where the action on the input space is as in
equation 7, and the action on the output space is just permuting the entries of the probability vector.
We generate data for this problem as follows: We randomly generate two graphs G and G using
the Erdos-Reyni distribution. We take k& — 1 copies of the graphs (G, ...,Gg_1) to be permuted

copies of G, and one of them to be G and insert it in a random location. We also add some noise with
variance 7 to all graphs.

We consider equivariant models for this task, composed of several linear wreath-equivariant layers
and point-wise ReLU activations. The final layer is a point-wise summation of each of the k£ graphs to
obtain a final vector in R¥, followed by a softmax layer to obtain a probability vector. For the linear
wreath-equivariant layers, we consider several alternatives: Siamese layers only, adding the single
additional non-Siamese layer suggested in Wang et al. (2020); Maron et al. (2020) denoted by DSS,
and the full model we suggest, which has four non-Siamese layers (we name our model SchurNet).
The Siamese layers are implemented using the decomposition computed in Subsection 4.2.

The results of this experiment are shown in Ta- Model/Noise n=00]n=01
ble 1. As we can see, Siamese networks attain Siamese 10% 10%
10% accuracy without noise (and even lower DSS 975% 9%
accuracy with noise). This is to be expected SchurNet (Ours) | 100% 97.0%

since Siamese features can be useful to differen-
tiate between G and G, but not to determine how Table 1: Performance comparison of models at
many times each one of them occurs in a k-tuple. different noise levels (7).

In contrast, networks with non-Siamese layers attain significantly better performance, whereas our
method, which contains the maximal number of non-Siamese layers, attains the best performance.

Wasserstein Distance Computation Dataset Input SchurNet | NProductNet
We next consider the task of learn- noisy-sphere-3 %88 288% g?ggg %
ing the Wasserstein distance, as dis- X [100: 300] Oj0217 m
cussed in Amir & Dym (2024); Chen noisy-sphere-6 [300, 500] 0.0795 0.049
& Wang (2024); Haviv et al. (2024). uniform 256 0.0974 0.097
The Wasserstein distance between [200, 300] | 0.1043 0.1089
two unordered multisets of vectors ModelNet-small [[32(% 250(%] 88%3 8(1)%
in R?, denoted by {x1,...,7,} and 2043 0.0468 0140
{y1,.-.,Yn}, is defined to be the min- ModelNet-large (1800, 2000] | 0.0551 0.162
imal distance between the sets, under RNAse [20, 200] 0.0123 0.012
the optimal permutation giving the q [300,500] | 0.0334 0.292

best alignment between them (as in
the alignment problem discussed in
the beginning of Section 5). Comput-

Table 2: Comparison of SchurNet and NProductNet.
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ing Wasserstein distances can be computationally intensive, so this task aims to devise a neural
network to learn the distance instead. Learning Wasserstein distances is a S, ! Sy invariant task.
In Chen & Wang (2024), a Siamese approach named NProductNet is suggested to address this
problem. We compare SchurNet to Chen & Wang (2024) to demonstrate that adding our non-siamese
layers enhances the performance of standard Siamese layers. We note that Amir & Dym (2024)
achieved state-of-the-art results for this task with a very different method, which does not follow
the conventional paradigm of a stack of linear layers and non-linear activation functions. Therefore,
we have no direct way of adding our non-siamese layers to their method for comparison. In our
experiments, we add the additional d> non-Siamese layers to their implementation and compare
performance on the datasets addressed in their paper. The results, reported in Table 2, show that
adding non-Siamese layers improves performance in most cases. We note that each dataset has two
options: the top option in each table row depicts the case where training and test distributions had the
same dimension, while the bottom option checks the generalization to test distribution of different
sizes.

Weight Space Alignment. We consider the alignment task discussed above in the setting where
v1, Vo are elements in weight spaces, and the task is to find the group element that optimally aligns
v1 and v9. One interesting application of this problem is model merging: in Ainsworth et al., it was
shown that linear interpolation of vy, vo gives a new network whose performance is considerably
worse, but interpolation after alignment leads to much better results.

The weight space alignment problem was considered in Ainsworth et al.; Tatro et al. (2020); Pefia
et al. (2023). Recently, Navon et al. (2024) outperformed these methods using a learning approach
based on the DWS layers from Navon et al. (2023), applied to vy, v5 in a Siamese fashion. This
experiment aims to check whether adding non-Siamese layers improves their results. We take only
part of the described layers in Theorem 5.2 layers: the mappings from each weight/bias space to
itself, excluding, for example, non-Siamese weight to other weight or weight to bias. This added
fewer parameters and generalized better than taking all mappings.

Model MNIST CIFAR10
Acc(]) Loss(]) Ace(l) Loss(])

SchurNet (Ours) 1.5¢-5 0.251346 0.0 1.7822
Siamese 1.25e-5 0.262913 1.0e-4 1.7876

Table 3: Comparison of SchurNet and Siamese models on MNIST and CIFARI10.

We run two sets of experiments from Navon et al. (2024): one on MLPs trained on MNIST (LeCun
et al., 1998) and one on MLPs trained on the CIFAR10 (Krizhevsky et al., 2009) dataset. We trained
both models for 100 epochs and reported the test accuracy and the reconstruction loss. We ran several
hyper-parameter configurations for both methods to ensure a fair comparison and reported the results
with the best reconstruction loss. As we can see, our model with non-Siamese layers outperforms the
Siamese network from Navon et al. (2024) in all settings.

Conclusion. In this paper, we revisited the idea of using irreducible representations instead of
parameter-sharing to characterize equivariant linear layers for representations of permutations and
related groups. Using this approach, we obtained alternative derivations for the characterizations of
equivariant layers from DeepSets and 2-IGN, and a significantly simplified derivation of deep weight
spaces equivariant layers. We have also obtained a previously unknown characterization for the linear
equivariant layers of wreath products G?.S,,, and showed the benefits of using the full characterization
for several wreath-equivariant tasks. In general, looking forward to other yet unknown applications,
what could be the benefit of using the irreducible approach? One answer is reduced book-keeping, as
exemplified in the deep weight space example. In general, the number of equivariant layers can be, in
the worst case, quadratic in the number of irreducibles. When this happens, the irreducible approach
is expected to lead to simpler characterizations that are easier to implement. Additionally, networks
like k-IGN (Maron et al., 2018), which are based on tensor representations, use intermediate features
in n*, and using irreducibles could lead to new equivariant models with intermediate irreducible
features of lower dimensions. Finding the irreducible decompositions of k-IGN when k& > 2 and the
potential applications of this decomposition is an interesting avenue for future work.
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A IMPLEMENTATION DETAILS

In this section, we detail the hyper-parameters used through learning. In all our models we used
Adam or AdamW optimizers.

Graph Anomaly Detection In this set of experiments we run each model with 27 different hyper-
parameters and reported the best for each model. We run through different learning rates, weight
decays and learning rate decay. In our model, we used four layers, each with a hidden dimension of
256 and ReLU activation.

Deep weight space alignment In this section we took the model of Navon et al. (2024) and added
our non-Siamese common layers. We searched for each model and dataset over four hyper-parameters
and for each reported the best performance. We trained for 100 epochs and reported the reconstruction
loss.

Wasserstein Distance computation In this set we took the model of Chen & Wang (2024) and
added the non-Siamese layers. We trained for 200 epochs and reported the relative absolute mean
error. In most of the experiments we used learning rate of 1e~* and weight decay of 1le~°.
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B ABSOLUTELY IRREDUCIBLE REAL REPRESENTATIONS

Here we give some more details on the concept of absolutely irreducible real representations.

As discussed in the main text, a real irreducible representation V is called absolutely irreducible if its
complexification is irreducible over C. The complexification is denoted by ¢V . It can be defined by
choosing a basis v, . .., v, to V and then defining

cy = {Z civ;, ¢ €C}
i=1

Let7 : V — V be an equivariant non-zero mapping, and assume V is absolutely irreducible. Then
Tv = v for some real A. This is because 1" can be linearly extended to a non-zero linear mapping
T : ¢V — c¢V. Similarly, the group action of G which is linear can also be extended to ¢). The
extension of T" to ¢} will be equivariant, and therefore, since cV is irreducible by assumption, Schur’s
Lemma for complex representations implies that 7 = AI for A € C. Since TV = V), we know A
must be real.

Real irreducible permutation representations are absolutely irreducible. Classical represen-
tation theory results (see e.g., Fulton & Harris (2013)) characterize all complex irreducible repre-
sentation of the permutation group, up to isomorphism. In this process, they show that all these
representations can be defined over the rational numbers. This means that, for any complex irreducible
representation U/ of the permutation group .S,,, there exists a basis in which for every g € G,,, the
matrix representing the linear mapping defined by g will be rational.

As explained, e.g., in Webster, this fact implies that every irreducible s dimensional real representation
V is absolutely irreducible. Indeed, if ¢} were not irreducible over C, then ¢V = V; & V, where V)
is an invariant (complex) irreducible subspace, and the dimension ¢ of V; satisfies 0 < ¢ < s. In an
appropriate bases uq, . . ., u; of V1 we will have that the matrix representing each g € .59, is rational.
We can write each u; as

n

uj; = Z(ajk + ibjk)vk.
k=1

One can then verify that the ¢ dimensional real space Vi defined by
n
aj = Z kUL
k=1

is a (real) G invariant subspace of V and has dimension ¢ < s, which contradicts the fact that V) is
irreducible.
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C GRAPH NETWORKS IRREDUCIBLE DECOMPOSITION

In the main text, we claim that, for n > 4, the representation R™*" of the permutation group .S,, can
be decomposed into a direct sum of seven irreducible representations:

V() = {CL . In‘a c R}
Vi ={a - (lpxn —In)la € R}

Vo = {Diag(a, .., an)| Zai =0}
i=1
Vs ={r1}|> ri =0}
i=1

n
Vi = {1ncT| Zci =0}
i=1

Vs = {A|A = —AT A1, =0}
Ve = {A|A= AT A1, =0,A;; =0,Vi=1,...,n}.

We begin by giving an algorithm describing how every n by n matrix can be decomposed into a sum
of matrices from these spaces, with a computational complexity of O(n?). This is necessary for a
2-IGN implementation which is based on irreducibles, and is also a first step towards a full proof of
Theorem 4.1. This full proof will be presented after the algorithm.

C.1 DECOMPOSITION ALGORITHM

We will give an algorithm to decompose a matrix A € R™*™ into a sum of matrices from these seven
sub-spaces. We assume n > 4 (actually, when n = 3 the algorithm works as well, but in this case Vg
is zero dimensional as discussed in the main text).

The first step of the algorithm is to write

0 a ... a b

a 0 ... a b
A=B+|. +

& a ... 0 . ... b

where the two matrices from the right are in V) and Vi, and a and b are the average of off-diagonal
and diagonal elements of A, respectively, so that the diagonal and off-diagonal elements of B both
sum to zero. It remains to find a decomposition for B. The crucial part of this is the following lemma

Lemma C.1. Let n > 2 be a natural number, and let B € R™*"™ be a matrix whose diagonal
elements sum to zero, and off-diagonal elements sum to zero. Then there exists a matrix C' in

V={CeR"™"| ,01,=0,C"1,=0andC;; =0,Yi=1,...,n} (10)
and vectors r, c,d € R™ which all sum to zero, such that
C =B +r1l +1,c" + diag(d). (11)

Moreover, this decomposition of B is unique.

Stated differently, the matrix B will be a linear combination of matrices 1%, 1,,c” and diag(d)
which are in Vs, V4 and Vs, repsectively, and the matrix C which is in V. Once we prove the lemma,

we will conclude by showing that a matrix in V can be written as a sum of matrices in V5 and Vg,
which will conclude the argument.

Proof of the Lemma. Let us denote the sum of the i-th row and column of B by 7 and c? respec-

tively. Denote d” = B;;. Note that the vectors 2, ¢, and d® all sum to zero by our assumption on
B.
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We need to show there exists vectors r, d, ¢ € R™ satisfying equation 11 for an appropriate C' € V.
This will occur if and only if the following equations are satisfied

zn:’l“i =0
i=1
Zci =0
i=1
Zdi =0
=1

rite+di=—dP, Vi=1,...,n

n
nri—l—ch—&—di:—rf, Vi=1,...,n

j=1

nci-&-er—&-di:—cf, Vi=1,...,n.

Here the first three constraints are the requirements that the vectors 7, ¢, d all sum to zero, and the
last three constraints (each of which are actually n constraints) follow from our requirement that the
diagonal elements of C' will be zero and that the rows and columns of C' sum to zero.

Next, we note that since the vectors 7, ¢, d,7?, c¢P dP all sum to zero, if the last three equations

above are satisfied for i = 1,...,n — 1, they will automatically be satisfied for ¢ = n. That is, these
equations are equivalent to

i:?"i =0
i=1

n

ZCZ‘ZO

i=1

=1

Ti+Ci+di:—dF, \V/izl,...,’ﬂ—l
nri—l—di:—rlB, Vi=1,....n—1
nci—i—di:—cf}, Vi=1,...,n—1

This gives us a 3n linear equations system in 3n variables. We will show this equation has a unique
solution and compute it explicitly. First, we eliminate the variables r,,, ¢, and dy, .. ., d,, by setting

di=—dB —ri—ci, i=1,...n—1 (12)

and . ) )
rn:—er, cnz—ch, dn:—Zdj (13)
j=1 j=1 j=1

This ensures that the first four equations above are satisfied, and we are left with the task of choosing
T1,.-+3Tn—1,Cl,...,Cn—1 satisfying the last two equations (which are actually 2n — 2 equations).
By replacing the eliminated variables d; we obtain the equations

n—1r—c¢=—-rP4+d?, Vi=1,....n—1
1 1) ) I’

(n—1)c;—ri=—c?+dB, Vi=1,...,n—1
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For every ¢, there are two equations in r; and ¢;. Since we assume n > 4, this equation has a unique
solution
r;\ _(n—1 -1 - —rP 4+ dB,
)\ -1 mn-1 —cB +dP,
i 1 n—1 1 —rP 4+ dB,
¢ n? —2n 1 n—1 _CiB"'dti

ri\ _ (ndB —(n—1)rf —cB,

ci)  \ndP—(n—1)cB —rB,
We can then reconstruct dy,...,d,_1 from equation 12 and ¢,,, ,, d, from equation 13. This
concludes the proof. O

And we can derive

Given the proof, it remains to decompose a matrix C' € V into a sum of two matrices in Vs, V. This
can be simply done by writing

1 1
C=5(C+ o7y + 5(C - c?)
and noting that the matrices £(C — CT) and 1(C + C7') are in V5 and V.

C.2 ISOMORPHISM TYPES

We now restate and prove the theorem on 2-IGN stated in the main text

Theorem 4.1. For all n > 4, the space R™*"™ can be written as a direct sum of the spaces Vg, . . ., Vg.
These spaces are invariant and irreducible, and the isomorphism relations between them are given by
Vo 2V, Vo 2 V3 2V,

Proof. The decomposition given in Subsection C.1 is unique when n > 4, and thus we see that

R =V @...0 Vs

It is also clear that all the spaces V; are invariant, that 1, }; are isomorphic to the irreducible trivial
space, and Vs, V3,V are isomorphic to the irreducible space V(n). It remains to show: (a) That
Vs, Vg are not zero-dimensional, (b) that they are irreducible, and (c) that both V5 and Vg are not
isomorphic to any of the other spaces.

We handle (a) by computing the dimension of V5 and Vs. We note that a matrix A € V5 can be
parameterized by freely choosing all upper diagonal elements A;; with j —4 > 1. The elements
Aj; with j — ¢ > 1 are then determined by the constraint A;; = —A;;, and then the coordinates
Ao = — Aoy, Aoz = —Aga, . .. are determined recursively by the constraint that the first n — 1 rows
of A will sum to zero. The obtained matrix A satisfies A = — AT and its first n — 1 rows sum to zero.
It follows from A = — A7 that the sum of all elements of A is zero and hence the last row of A must
also sum to zero and A is indeed in Vs.

To summarize, since Vs is parameterized by the upper diagonal elements A;; with j — 4 > 1 we

deduce that )
dim(Vs) = (0% —m)/2— (n—1) = 2 1

We compute the dimension of Vg by noting that V from equation 10 is a direct sum of V5 and V. The
space V can be parameterized by choosing an (n — 1) (n — 1) matrix A with zero on the diagonal,
and whose elements sum to zero. There is then a unique extension of this matrix to an n by n matrix
A which is in V and satisfies A;; = A;; forall 1 <4, j < n — 1. Accordingly, the dimension of V is
m—1)2-m-1)—1=n?>—-3n+1and

n? —3n

dim(Vs) = dim(V) — dim(Vs) = 5
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It follows that when n > 4, both V5 and Vg have positive dimension. Moreover, V5 and Vg are not
isomorphic as they do not have the same dimension. The same argument shows that and Vs is are not
isomorphic to the other V; with ¢ = 0, ..., 4 since they do not have the same dimension for any n. In
contrast V5 does have the same dimension as V, when n = 4, as we get dim(Vs) = 3 = dim(Vs).
Nonetheless, the spaces are still not isomorphic since the action of \S;, on the spaces is different. For
example, the subspace of fixed points of the permutation 7 = (1, 2) in the space Vo = V(n) is all
n = 4 dimensional vectors x which sum to zero and satisfy 1 = z». This space is two dimensional.
In contrast, one can verify that the subspace of fixed points of 7 in V5 is one dimensional. Hence they
cannot be isomorphic.

It remains to show that Vs and Vg are indeed irreducible. Let Vs C Vs and Vg C Vg be non-zero
invariant subspaces. We need to show that V; = V; for j = 5, 6. To show this, we consider the space
UZVo@VlEB...V4G§]>5EBf/6.

It is sufficient to show that /{ = R™*". Since U contains all diagonal matrices which are given by
Vo @ Vs, and since it is an invariant subspace, it is sufficient to show that the matrix E12 which is

zero in all coordinates except for a single coordinate E}S =1l,isinl4.

To show that E12 is in U, let us choose a non-zero matrix A € ]35 and B € ]}6. Both matrices have a
non-zero off diagonal matrix element, and by applying an appropriate permutation and rescaling we
can assume that A1, = 1 = Bjs. Next, let us average over the group

stab(1,2) = {1 € S,,7(1) =1,7(2) = 2}

to obtain new matrices

N 1 . 1

A= ———— A, B=———— -B

|stab(1, 2)| >, T4 |stab(1, 2)| >, T
TEstab(1,2) TEstab(1,2)
Note that A (respectively B’) isin ]}5 (respectively 176) and satisfy /112 =1= Blg and
Alj = Alkaélj = Blkvjak > 2
and A o A
Ajr = Ast, Bjk = Bst

for all j, k, s, t which are all larger than 2, and such that j # k, s # t. Defining for convenience

it follows that

0 1 —-a ... —a 0 1 —a ... —a
-1 0 a ... a 1 0 —a ... —a

A=|a —-a 0 ... 0 B=|—-a —a b ... b — diag(0,0,b,...,b)
C‘L —a 0 ... 0 —'a —-a b ... b

It is not difficult to show that any matrix which is constant along the rows isin Vo & ... V4 CU.
The same is true for any matrix which is contant along the columns. Let C'(¢) denote the matrix with
C;;(i) = 1forall j and Cy; (i) = O for all j and all k # 4. Then

A:=A+aC(1) —aC(2) —aCT(1) +aCT(2)

0 142 0 ... 0
—1-2¢ 0 0 ... 0
_ 0 0 0 ... 0
0 0 0 ... 0
B :=B + diag(0,0,b,...,b) — blyun + (a+b)(C(1) +C(2) + CT (1) + CT(2))
2a+b 1+2a+b 0 ... 0
1+2a+b 2a +b 0 ... 0
_ 0 0 0 ... 0
0 0 0 0
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where both A and B are in i{. Since a, b are positive numbers, we can take the following linear
combination which zeros out the (2, 1) entry and sets the (1, 2) entry to one:

c 1 0 0
) ) ) 0 d 0 0
L A B) = 0 0 0 0
2(1+2a Jr1+2a+b ) .

0 0 0 ... 0

for appropriate c,d. Since diagonal matrices are in U/, we can remove the diagonal matrix
diag(c,d,0,...,0) to finally obtain that the matrix E'? is in U. O

C.3 SMALLn

As discussed in Finzi et al. (2021); Pearce-Crump (2022), when n < 4 the dimension of the space of
equivariant mappings is smaller than 15: it is 14 for n = 3 and 8 for n = 2. We now explain this
according to our derivation.

For n = 3, the space Vs is zero-dimensional. In this case, there are only 22 + 32 + 1 = 14 equivariant
linear mappings. When n = 2, both V5 and Vi are zero dimensional. Additionally, we can directly
verify that in this case, we can "drop" V; as well because R?*2 = V), @V, & Vo @ V. Since Vy =V,
and V, = V3 we have 22 + 22 = 8 equivariant linear mappings.
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D PROOF FOR DEEP WEIGHT SPACE DECOMPOSITION

In this section we fill in some details on the tensor product of representations which were ommitted
from the proof of Theorem 4.2 in the main text.

At the base of this discussion is the following lemma (Serre, 1977):

Lemma D.1. Let G1,Go be finite groups, and let V1, Vs be (real or complex) finite dimensional
irreducible representations, with an action denoted by p1, ps. Then the action p1 ® ps on V1 @ Vs is
an irreducible representation of G1 X Go.

Firstly, we explain the decomposition of W, into irreducibles. We note that the representation
W, of G can be thought of as a representation of Sy, , x Sq,,, which is a tensor product of the

representation R%»-1 of S; . and the representation R%" of S; . Therefore (Serre, 1977), its
irreducible decomposition is given by the tensor product of the irreducible decomposition of its
factors, namely

Wi 2RI @R = (S V(din-1)) @ (S V(d))
= (S ® S) @ (S ® V(d’m)) EB (V(dm—l) ® S) @ (V(dm—l) ® V(dm))
=S @ V(dn) ®V(dn-1) ®Mp,.

m?

All components in the decomposition are irreducible as a tensor product of irreducibles.

We also need to show that all irreducibles in the decomposition are absolutely irreducible. For S
this is obvious. For all representations V(d,,)) this follows from the fact that these representations
can be identified with representations of the permutation group Sy, _,, which are always absolutely
irreducible. To see that M, is absolutely irreducible, we note that M,, is the set of d,;,—1 X d,
real matrices whose rows and columns all sum to zero, and its complexification cM,, is the set of
complex matrices whose rows and columns all sum to zero. cM,, is the tensor product of ¢V (d,,—1)
and ¢V (d,,), the complexification of V(d,,—1) and V(d,,), respectively. Since these spaces are
irreducible, so is their tensor product.

D.1 DECOMPOSITION OF WEIGHT SPACES

We explain here how each matrix A € W,,,, m = 2,..., M — 1 can be written as a sum of elements
from its irreducible decomposition. For convenience denote @ = d,,,, b = d,,,—1. We want to write A
as a sum of elements from the spaces

S={claxs}, Vm-12{lac"|c€R" "1, =0}, Vi ={r1{|r e R +"1, =0}
and

M,, = {C e R C1, = 0,,CT1, =0,}

As a first step, we take our given A € W,,, and write it as
A= Alnxn + (A - Alan)

where_fl is the average of all elements of A, and Al, «, is in S. Next, we need to decompose
(A — Al, ) which we denote by B. Note that Zij B;; = 0.

Let r and ¢ be the vectors describing the average of the rows and columns of B, respectively:

1 1
r=-Bl,, c¢=-B"1,
b a

Note that 71, = %Zij B;; = 0 and similarly ¢T1y = 0 and thus 1,¢7 € V,,_; and rle € Vm.
Now let us define
C=DB-—14" —r1f

We can directly verify that C'1, = 0, and C”'1, = 0,. Therefore C is in M,,, and we obtained the
decomposition we wanted.
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E PROOFS FOR WREATH PRODUCTS

To conclude the proof of Theorem 5.1, we need to prove the following lemma

Lemma E.1. Let V be an irreducible representation of G, and assume the action of G on V is not
trivial. Then V¥ is an irreducible representation of G ! S.

Proof. The space V¥ is invariant. Let YW C V* be a non-zero G* invariant subspace. We need to
show that W = VF.

We first claim that there exists an element in W of the form (u, 0, ..., 0) with u # 0. Let (v, va, .., vk)
be a non-zero element in WW. By applying a permutation if necessary, we can assume without loss of
generality that the first element is non-zero. If v; = 0,V2 < ¢ < k, we are done. Otherwise, there
exists some g € G such that gv; # v; and so

(g-v1,v9,..,08) — (v1,v2,..,0%) = (gv1 — v1,0,..,0) € W

The space {v € V|(v,0, ..,0) € W} is invariant under the action of G, and we just saw it is not zero.
Since V is irreducible, this space equals to ), and thus W contains ¥V @ 0... @ 0. By Sy, invariance it
follows that JV contains all k-tuples with a single non-zero entry, and since such tuples span all of V
we deduce that W = V). O

Theorem 5.2. Let V be a real representation of a finite group G. and let e1, . . . , e, be a basis to the
subspace Vyigeq. Let (-,-) be a G invariant inner product on V. Then every linear equivariant map
L :V* = V¥ is of the form

s k k
L(vr,.ooo) = > ay <Z<w,ei>ej,...,Z<w,ei>ej> + (i(vl),...,i(vk)) )

i,j=1 =1 =1

where L : V — Vis a linear equivariant map, and a;; are real numbers. Conversely, every linear
mapping of the form defined in equation 9 is equivariant.

Proof. 1t is straightforward to checking that every mapping of the form equation 9 is equivariant. We
would like to prove the converse statement.

It is also straightforward to verify that the space spanned by the non-Siamese mappings

k k

(V1,...,05) — (Z(vg, €i)€jy .-y Z<’U¢, €i)e;

=1 =1

does not depend on the choice of the basis e1, . . ., €5 for Vyizeq. In particular, we can assume without
loss of generality that eq, .. ., e5 are an orthonormal basis for Vi eq.

Note that V can be written as a direct sum of two G invariant spaces V = Vyizeq @ V1, where V| is
the space of vectors in V which are orthogonal to Vy;,.q With respect to the given G invariant inner

product. It follows that V* = V}Cimed @® V* is a decomposition of V¥ into two G* invariant spaces.

In this situation, we know that any linear equivariant L : V¥ — V¥ can be writtenas L = L fized+ L1,
where Lyizeq : V}Cmed — V]’?ized and L : Vf — Vf are equivariant. We know that there are no

linear equivariant maps from Vy;zeq t0 Vperp Or vice versa, since Vprp cannot contain a trivial
irreducible subspace.

Let L : YV, — V) be a linear equivariant map. We want to show that it is a *Siamese mapping’.
Denote

L(vyy...yvx) = (L1(v1, .oy 0k), - oo Li(vr, - oo, k),
We define L : V|, — V), by

L(v) = Ly(v,0,...,0).

Note that L is G equivariant because

L(gv) = L1(g,0,...,0) = gL (v,0,...,0) = gL(v), Vgegq.
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Next, note that for every vy, ..., v, € V|, we have that
Ll(O,Ug,...,’Uk) :Ll(g-O,vg,...,vk) :g-Ll(O,Ug,...,Uk).

Thus, L1 (0, vy, . .., v) € V¥, and since it is also in V§;, ., we deduce that it is equal to zero. We
deduce that .
Ll(’Ul, N ,’Uk) = Ll(’Ul,O, ce ,0) = L(’Ul)

By S}, equivariance we can deduce that
Lj(’Ul,...,’Uj ) = Ll(vj,...,vl,...) = i(’Uj)
and we can also show, as we did for L1, that
Lj(’l)l,...,’l)j ) = Lj(07...,07’l)j70...).

Thus L is a Siamese mapping induced from L, that is

L(vy,...,u5) = (L(U1), ceey L(Uk))

Now, let us consider linear equivariant mappings from V]’?med to itself. Denote S; = {ce;, c € R},
and note that an irreducible decomposition of Vy;zcq is given by

Vfized = Sl EB@SSy

and V}“ixe 4 can be written as a direct sum of the invariant subspaces Sf fori=1,...,s. The action
of G¥ on Sf can be identified with the action of Sj on these spaces, which is then isomorphic to the

action of Sy, on R¥, via the isomorphism v; : S¥ — R* given by

Yi(vi, . vk) = (1, €i)s - -5 (V15 €))
Note that since we assumed without loss of generality that ey, .. ., e4 is an orthonormal basis, v; is
zero on all other components of V*. Similarly we can define an isomrphism ¢; : R¥ — SF by

1[)1-(3:1, cony ) = (164,00, TRE).

As discussed in Section 4.1, an equivariant mapping from R* to itself can be written as a linear
combination of the identity mapping = +— x (which is a Siamese mapping), and the mapping

Tx = (ix“,ixl>
i=1 i=1

Accordingly, a mapping from S¥ to S;? is a linear combination of a Siamese map and the mapping

1; o T o 1p; which is given by

k
Q;j oT o wi(vl, . ,Uk.) = (Z<’Ug, 61‘>6j, ey Z<’Ug, ei>ej).

k
/=1 (=1

This concludes the proof.

E.1 BEYOND Sj
We now generalize the results from Theorem 5.2 to the case where .S, is replaced with any subgroup
H < Sj which actson {1, ..., k} transitively:

Theorem E.2 (Generalization of Theorem 5.2). Let V be a real representation of a finite group G.
and let e, . .., es be a basis to the subspace Vy;yeq. Let (-,-) be a G invariant inner product on V.

Let H be a subgroup of Sy, which acts on {1, ..., k} transitively. Let Ty, Ts, ..., Ty be a basis for
the H-equivariant mappings from RF to itself, where T}, is the identity mapping.
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Then every G H linear equivariant map L : V¥ — V¥ is of the form

S

h—1
L(vi,...,ux) = Z Z aije (P50 To o) (viy. .., vp)

=1 1,5=1
+ (ﬁ(vl),...,ﬁ(vk))

where L : V — V is a linear equivariant map, and a;;¢ are real numbers. Conversely, every linear
mapping of the form defined in equation 9 is equivariant.

The proof is identical to the proof of Theorem 5.2.

23



	Introduction
	Related work
	preliminaries
	Computing linear equivariant layers
	Deep Sets
	Equivariant graph layers
	Deep weight spaces

	Sets of unaligned symmetric elements
	Experiments
	Acknowledgments
	Implementation details
	Absolutely Irreducible Real Representations
	graph networks irreducible decomposition
	Decomposition algorithm
	isomorphism types
	Small n

	Proof for Deep Weight Space decomposition
	Decomposition of weight spaces

	Proofs for Wreath Products
	Beyond Sk


