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Abstract

We study the problem of finding the Nash equilibrium in a two-player zero-sum
Markov game. Due to its formulation as a minimax optimization program, a natural
approach to solve the problem is to perform gradient descent/ascent with respect
to each player in an alternating fashion. However, due to the non-convexity/non-
concavity of the underlying objective function, theoretical understandings of this
method are limited. In our paper, we consider solving an entropy-regularized
variant of the Markov game. The regularization introduces structure into the opti-
mization landscape that make the solutions more identifiable and allow the problem
to be solved more efficiently. Our main contribution is to show that under proper
choices of the regularization parameter, the gradient descent ascent algorithm
converges to the Nash equilibrium of the original unregularized problem. We ex-
plicitly characterize the finite-time performance of the last iterate of our algorithm,
which vastly improves over the existing convergence bound of the gradient descent
ascent algorithm without regularization. Finally, we complement the analysis with
numerical simulations that illustrate the accelerated convergence of the algorithm.

1 Introduction

The two-player zero-sum Markov game is a special case of competitive multi-agent reinforcement
learning where two agents driven by opposite reward functions jointly determine the state transition
in an environment. Usually cast as a non-convex non-concave minimax optimization program, this
framework finds applications in many practical problems including game playing [Lanctot et al.,
2019, Vinyals et al., 2019], robotics [Riedmiller and Gabel, 2007, Shalev-Shwartz et al., 2016], and
robust policy optimization [Pinto et al., 2017].

A convenient class of methods frequently used to solve multi-agent reinforcement learning problems
is the independent learning approach. Independent learning algorithms proceed iteratively with each
player taking turns to optimize its own objective while pretending that the other players’ policies are
fixed to their current iterates. In the context of two-player zero-sum Markov games, the independent
learning algorithm performs gradient descent ascent (GDA), which alternates between the gradient
updates of the two agents that seek to maximize and minimize the same value function. Despite
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the popularity of such algorithms in practice, their theoretical understandings are sparse and do not
follow from those in the single-agent case as the environment is not stationary from the eye of any
agent. [Daskalakis et al., 2017] shows that iterates of GDA can possibly diverge or be trapped in limit
cycles even in the simplest single-state case when the two players learn with the same rate.

It may be tempting to analyze the two-player zero-sum Markov game by applying the existing
theoretical results on minimax optimization. However, as the objective function in a Markov game is
not convex or concave, current analytical tools in minimax optimization that require the objective
function to be convex/concave at least on one side are inapplicable. Fortunately, the Markov game
has its own structure: it exhibits a “gradient domination” condition with respect to each player,
which essentially guarantees that every stationary point of the value function is globally optimal.
Exploiting this property, Daskalakis et al. [2020] builds on the theory of Lin et al. [2020a] and shows
that a two-time-scale GDA algorithm converges to the Nash equilibrium of the Markov game with
a complexity that depends polynomially on the specified precision. However, deriving an explicit
finite-time convergence rate is still an open problem. In addition, the analysis in Daskalakis et al.
[2020] does not guarantee the convergence of the last iterate; convergence is shown on the average of
all past iterates.

In this paper, we show that introducing an entropy regularizer into the value function significantly
accelerates the convergence of GDA to the Nash equilibrium. By dynamicially adjusting the regular-
ization weight towards zero, we are able to give a finite-time last-iterate convergence guarantee to the
Nash equilibrium of the original Markov game.

Main Contributions
• We show that the entropy-regularized Markov game is highly structured; in particular, it obeys a
condition similar to the well-known Polyak-Łojasiewicz condition, which allows linear convergence
of GDA to the (unique) equilibrium point of the regularized game with fixed regularization weight.
We also show that the distance of the equilibrium point of the regularized game to the equilibrium
point of the original game can be bounded in terms of the regularizing weight.

• We show that by dynamically driving the regularization weight towards zero, we can solve the
original Markov game. We propose two approaches to reduce the regularization weight and study
their finite-time convergence. The first approach uses a piecewise constant weight that decays
geometrically fast, and its analysis follows as a straightforward consequence of our analysis for the
case of fixed regularization weight. To reach a Nash equilibrium of the Markov game up to error ϵ,
we find that this approach requires at most O(ϵ−3) gradient updates, where O only hides structural
constants. The second approach reduces the regularization weight online along with the gradient
updates. Through a multi-time-scale analysis, we optimize the regularization weight sequence along
with the step size as polynomial functions of k, where k is the iteration index. We show that the
last iterate of the GDA algorithm converges to the Nash equilibrium of the original Markov game
at a rate of O(k−1/3). Compared with the state-of-the-art analysis of the GDA algorithm without
regularization which shows that the convergence rate of the averaged iterates is polynomial in the
desired precision and all related parameters, our algorithms enjoy faster last-iterate convergence
guarantees.

1.1 Related Work

A Markov game reduces to a standard Markov Decision Process (MDP) with respect to one player if
the policy of the other player is fixed. This is an important observation that allows our work to exploit
the recent advances in the analysis of policy gradient methods for MDPs [Nachum et al., 2017, Neu
et al., 2017, Agarwal et al., 2020, Mei et al., 2020, Lan, 2022]. Various entropy-based regularizers are
introduced in these works that inspire the regularization of this paper. Our particular regularization is
also considered by Cen et al. [2021], but we discuss and leverage structure in the regularized Markov
game that was previously unknown.

As the two-player zero-sum Markov game can be formulated a minimax optimization problem,
our work relates to the vast volume of literature in this domain. Minimax optimization has been
extensively studied in the case where the objective function is convex/concave with respect to at
least one variable [Lin et al., 2020a,b, Wang and Li, 2020, Ostrovskii et al., 2021]. In the general
non-convex non-concave setting, the problem becomes much more challenging as even the notion
of stationarity is unclear [Jin et al., 2020]. In Nouiehed et al. [2019], non-convex non-concave
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objective functions obeying a one–sided PŁ condition are considered, which the authors use to show
the convergence of GDA. Yang et al. [2020] analyzes GDA under a two-sided PŁ condition and has a
tight connection to our work as the value function of our regularized Markov game also has structure
that is similar to, but weaker than, the PŁ condition on two sides.

By exploiting the gradient domination condition of a Markov game with respect to each player,
Daskalakis et al. [2020] is the first to show that the GDA algorithm provably converges to a Nash
equilibrium of a Markov game. A finite-time complexity is not derived in Daskalakis et al. [2020],
but their analysis and choice of step sizes indicate that the convergence rate is at least worse than
O(k−1/10.5). Additionally, Daskalakis et al. [2020] does not guarantee the convergence of the last
iterate, but rather analyzes the average of all iterates. In contrast, our work provides a finite-time
convergence analysis on the last iterate of the GDA algorithm.

While our work treats the Markov game purely from the optimization perspective, we would like to
point out another related line of works that consider value-based methods [Perolat et al., 2015, Bai
and Jin, 2020, Xie et al., 2020, Cen et al., 2021, Sayin et al., 2022]. In particular, Perolat et al. [2015]
is among the first works to extend value-based methods from single-agent MDP to two-player Markov
games. Since then, the basic techniques for analyzing value-based methods for Markov games are
relatively well-known. Bai and Jin [2020] considers a value iteration algorithm with confidence
bounds. In Cen et al. [2021], a nested-loop algorithm is designed where the outer loop employs value
iteration and the inner loop runs a gradient-descent-ascent-flavored algorithm to solve a regularized
bimatrix game. In comparison, pure policy optimization algorithms are much less understood for
Markov games, but this is an important subject to study due to their wide use in practice. In single-
agent MDPs, value-based methods and policy optimization methods enjoy comparable convergence
guarantees today, and our work aims to narrow the gap between the understanding of these two
classes of algorithms in two-player Markov games.

Finally, we note the recent surge of interest in solving two-player games and minimax optimization
programs with extragradient or optimistic gradient methods in the cases where vanilla gradient
algorithms often cannot be shown to converge [Chavdarova et al., 2019, Mokhtari et al., 2020, Li et al.,
2022, Wei et al., 2021, Zhao et al., 2021, Cen et al., 2021, Chen et al., 2021]. These methods typically
require multiple gradient evaluations at each iteration and are more complicated to implement. Most
related to our work, Cen et al. [2021] shows the linear convergence of an extragradient algorithm
for solving regularized bilinear matrix games. They also show that a regularized Markov game can
be decomposed into a series of regularized matrix games and present a nested-loop extragradient
algorithm which solves these games successively and eventually converges to the Nash equilibrium
of the regularized Markov game. The regularization weight can then be selected based on the desired
precision of the unregularized problem. Although our overall goal of finding the Nash equilibrium of
a general Markov game is the same, the manner in which we decompose and analyze the problem
is different. Our analysis here is based on GDA applied directly to a general regularized Markov
game. We show that for a fixed regularization parameter for a general Markov game, GDA has linear
convergence to the modified equilibrium point. We also give a scheduling scheme for adjusting the
regularization parameter as the GDA iterations proceed, making them converge to the solution to the
original problem.

2 Preliminaries

We consider a two-player Markov game characterized by M = (S,A,B,P, γ, r). Here, S is the
finite state space, A and B are the finite action spaces of the two players, γ ∈ (0, 1) is the discount
factor, and r : S × A × B → [0, 1] is the reward function. Let ∆F denote the probability simplex
over a set F , and P : S × A × B → ∆S be the transition probability kernel, with P(s′ | s, a, b)
specifying the probability of the game transitioning from state s to s′ when the first player selects
action a ∈ A and the second player selects b ∈ B. The policies of the two players are denoted by
π ∈ ∆S

A and ϕ ∈ ∆S
B, with π(a | s), ϕ(b | s) denoting the probability of selecting action a, b in state

s according to π, ϕ. Given a policy pair (π, ϕ), we measure its performance in state s ∈ S by the
value function

V π,ϕ(s) = Eak∼π(·|sk),bk∼ϕ(·|sk),sk+1∼P(·|sk,ak,bk)

[∑∞

k=0
γkr (sk, ak, bk) | s0 = s

]
.

Under a fixed initial distribution ρ ∈ ∆S , we define the discounted cumulative reward under (π, ϕ)
J(π, ϕ) ≜ Es0∼ρ[V

π,ϕ(s0)],
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where the dependence on ρ is dropped for simplicity. It is known that the Nash equilibrium always
exists in two-player zero-sum Markov games [Shapley, 1953], i.e. there exists an optimal policy pair
(π⋆, ϕ⋆) such that

max
π∈∆S

A

min
ϕ∈∆S

B

J(π, ϕ) = min
ϕ∈∆S

B

max
π∈∆S

A

J(π, ϕ) = J(π⋆, ϕ⋆). (1)

However, as J is generally non-concave with respect to the policy of the first player and non-convex
with respect to that of the second player, direct GDA updates may not find (π⋆, ϕ⋆) and usually
exhibit an oscillation behavior, which we illustrate through numerical simulations in Section 5. Our
approach to address this issue is to enhance the structure of the Markov game through regularization.

2.1 Entropy-Regularized Two-Player Zero-Sum Markov Games

In this section we define the entropy regularization and discuss structure of the regularized objective
function and its connection to the original problem. Let the regularizers be

Hπ(s, π, ϕ) ≜ Eak∼π(·|sk),bk∼ϕ(·|sk),sk+1∼P(·|sk,ak,bk)

[∑∞

k=0
−γk log π (ak | sk) | s0 = s

]
,

Hϕ(s, π, ϕ) ≜ Eak∼π(·|sk),bk∼ϕ(·|sk),sk+1∼P(·|sk,ak,bk)

[∑∞

k=0
−γk log ϕ (bk | sk) | s0 = s

]
.

We define the regularized value function

V π,ϕτ (s) ≜ V π,ϕ(s) + τHπ(s, π, ϕ)− τHϕ(s, π, ϕ)

= Eπ,ϕ,P
[∑∞

k=0
γk
(
r (sk, ak, bk)− τ log π(ak | sk) + τ log ϕ(bk | sk)

)
| s0 = s

]
,

where τ ≥ 0 is a weight parameter. Again under a fixed initial distribution ρ ∈ ∆S we denote
Jτ (π, ϕ) ≜ Es∼ρ[V π,ϕτ (s)]. The regularized advantage function is

Aπ,ϕτ (s, a, b) ≜ r(s, a, b)− τ log π(a | s) + τ log ϕ(b | s) + γEs′∼P(·|s,a,b)
[
V π,ϕτ (s′)

]
− V π,ϕτ (s),

which later helps us to express the policy gradient.

We use dπ,ϕρ ∈ ∆S to denote the discounted visitation distribution under any policy pair (π, ϕ) and
the initial state distribution ρ

dπ,ϕρ (s) ≜ (1− γ)Eπ,ϕ,P
[∑∞

k=0
γk1(sk = s) | s0 ∼ ρ

]
For sufficient state visitation, we assume that the initial state distribution is bounded away from zero.
This is a standard assumption in the entropy-regularized MDP literature [Mei et al., 2020, Ying et al.,
2022].

Assumption 1. The initial state distribution ρ is strictly positive for any state, and we denote
ρmin = mins∈S ρ(s) > 0.

When the policy of the first player is fixed to π ∈ ∆S
A, the Markov game reduces to an MDP for

the second player with state transition probability P̃ϕ(s′ | s, b) =
∑
a∈A P(s′ | s, a, b)π(a | s) and

reward function r̃ϕ(s, b) =
∑
a∈A r(s, a, b)π(a | s). A similar argument holds for the first player if

the second player’s policy is fixed. To denote the operators that map one player’s policy to the best
response of the other player and the corresponding value function, we define

πτ (ϕ) ≜ argmax
π∈∆S

A

Jτ (π, ϕ), ϕτ (π) ≜ argmin
ϕ∈∆S

B

Jτ (π, ϕ),

gτ (π) ≜ min
ϕ∈∆S

B

Jτ (π, ϕ) = Jτ (π, ϕτ (π)). (2)

For any τ > 0, the following lemma bounds the performance difference between optimal and sub-
optimal policies and establishes the uniqueness of πτ (ϕ) and ϕτ (π). When τ = 0, we use π0(ϕ) and
ϕ0(π) to denote one of the maximizers and minimizers since they may not be unique.
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Lemma 1 (Performance Difference). Under Assumption 1 and given τ > 0, πτ (ϕ) is unique for any
ϕ ∈ ∆S

B, and ϕτ (π) is unique for any π ∈ ∆S
A. Given any min player policy ϕ ∈ ∆S

B,

Jτ (πτ (ϕ), ϕ)− Jτ (π, ϕ) ≥
τρmin

2 log(2)
∥πτ (ϕ)− π∥2, ∀π ∈ ∆S

A. (3)

Given any max player policy π ∈ ∆S
A,

Jτ (π, ϕτ (π))− Jτ (π, ϕ) ≤ − τρmin

2 log(2)
∥ϕτ (π)− ϕ∥2, ∀ϕ ∈ ∆S

B. (4)

The Nash equilibrium of the regularized problem is sometimes referred to as the quantal response
equilibrium [McKelvey and Palfrey, 1995] and is known to exist under any τ . Leveraging Lemma 1,
we formally state the conditions guaranteeing its existence and affirm that it is unique.

Lemma 2 (Minimax Theorem for Entropy-Regularized Markov Game). Under Assumption 1, for any
regularization weight τ > 0, there exists a unique Nash equilibrium policy pair (π⋆τ , ϕ

⋆
τ ) such that

max
π∈∆S

A

min
ϕ∈∆S

B

Jτ (π, ϕ) = min
ϕ∈∆S

B

max
π∈∆S

A

Jτ (π, ϕ) = Jτ (π
⋆
τ , ϕ

⋆
τ ). (5)

We are only interested in the solution of the regularized Markov game if it gives us knowledge of
the original problem in (1). In the following lemma, we show that the distance between the Nash
equilibrium of the regularized game and that of the original one is bounded by the regularization
weight. This is an important condition guaranteeing that we can find an approximate solution to the
original Markov game by solving the regularized problem. In addition, this lemma also shows that the
same policy pair produces value functions with bounded distance under two regularization weights.

Lemma 3. For any τ ≥ τ ′ ≥ 0 and policy π,

−(τ − τ ′) log |B| ≤ Jτ (π
⋆
τ , ϕ

⋆
τ )− Jτ ′(π⋆τ ′ , ϕ⋆τ ′) ≤ (τ − τ ′) log |A|. (6)

−(τ − τ ′) log |B| ≤ gτ (π)− gτ ′(π) = Jτ (π, ϕτ (π))− Jτ ′(π, ϕτ ′(π)) ≤ (τ − τ ′) log |A|. (7)

−τ − τ ′

1− γ
log |B| ≤ Jτ (π, ϕ)− Jτ ′(π, ϕ) ≤ τ − τ ′

1− γ
log |A|. (8)

2.2 Softmax Parameterization

In this work we use a tabular softmax policy parameterization and maintain two tables θ ∈ RS×A,
ψ ∈ RS×B that parameterize the policies of the two players according to

πθ(a | s) = exp (θ(s, a))∑
a′∈A exp (θ(s, a′))

, and ϕψ(b | s) =
exp (ψ(s, b))∑

b′∈A exp (ψ(s, b′))
.

The gradients of the regularized value function with respect to the policy parameters admit closed-
form expressions

∂Jτ (πθ, ϕψ)

∂θ(s, a)
=

1

1− γ
d
πθ,ϕψ
ρ (s)πθ(a | s)

∑
b∈B

ϕψ(b | s)A
πθ,ϕψ
τ (s, a, b),

∂Jτ (πθ, ϕψ)

∂ψ(s, b)
=

1

1− γ
d
πθ,ϕψ
ρ (s)ϕψ(b | s)

∑
a∈A

πθ(a | s)Aπθ,ϕψτ (s, a, b),

and computing them exactly requires knowledge of the dynamics of the environment. Note that the
gradients of value function and the regularizer are Lipschitz with respect to the policy parameters
with constants LV = 8

(1−γ)3 and LH = 4+8 log |A|
(1−γ)3 . This property is more formally stated and proved

in Lemmas 5 and 6 of the appendix.

We next present an important property that we will later exploit to study the convergence of the
GDA updates to the solution of the regularized Markov game. Under the softmax parameterization,
the regularized value function enjoys a gradient domination condition with respect to the policy
parameter that resembles the PŁ condition.
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Lemma 4 (PL-Type Condition). Under Assumption 1, we have for any θ ∈ RS×A and ψ ∈ RS×B

∥∇θJτ (πθ, ϕψ)∥2 ≥ 2(1− γ)τρ2min

|S|

(
min
s,a

πθ(a | s)
)2

(Jτ (πτ (ϕψ), ϕψ)− Jτ (πθ, ϕψ)) ,

∥∇ψJτ (πθ, ϕψ)∥2 ≥ 2(1− γ)τρ2min

|S|

(
min
s,b

ϕψ(b | s)
)2

(Jτ (πθ, ϕψ)− Jτ (πθ, ϕτ (πθ))) .

The PŁ condition is a tool commonly used in the optimization community to show the linear
convergence of the gradient descent algorithm [Karimi et al., 2016, Yu and Jin, 2019, Khaled
and Richtárik, 2020, Zeng et al., 2021b]. The condition in Lemma 4 is weaker than the common
PŁ condition in two aspects. First, our PŁ coefficient is a function of the smallest policy entry. When
we seek to bound the gradient of the iterates ∥∇θJτ (πθk , ϕψk)∥2 and ∥∇ψJτ (πθk , ϕψk)∥2 later in
the analysis, the PŁ coefficients will depend on mins,a πθk(a | s) and mins,b ϕψk(b | s), which may
not be lower bounded by any positive constant. Second, the coefficients involve τ , which is not a
constant but needs to be carefully chosen to control the error between the regularized problem and
the original one.

3 Solving Regularized Markov Games

Leveraging the structure introduced in Section 2, our first aim is to establish the finite-time conver-
gence of the GDA algorithm to the Nash equilibrium of the regularized Markov game under a fixed
regularization weight τ > 0. The GDA algorithm executes the updates

θk+1 = θk + αk∇θJτ (πθk , ϕψk), ψk+1 = ψk − βk∇ψJτ (πθk+1
, ϕψk). (9)

The convergence bound we will derive reflects a trade-off for the regularization weight τ : when τ is
large, we get faster convergence to the Nash equilibrium of the regularized problem, but it is farther
away from the Nash equilibrium of the original one. The result in this section will inspire the τ
adjustment schemes designed later in the paper to achieve the best possible convergence to the Nash
equilibrium of the original unregularized Markov game.

It can be shown that the Nash equilibrium of the regularized Markov game is a pair of completely
mixed policies, i.e. ∀τ >0 there exists cτ>0 such that mins,aπ

⋆
τ (a | s)≥cτ , and mins,bϕ

⋆
τ (b | s)≥cτ

[Nachum et al., 2017]. In this work, we further assume the existence of a uniform lower bound on the
entries of (π⋆τ , ϕ

⋆
τ ) across τ . We provide more explanation of the assumption in Remark 1.

Assumption 2. There exists a positive constant c (independent of τ ) such that for any τ > 0

min
s,a

π⋆τ (a | s) ≥ c, min
s,b

ϕ⋆τ (b | s) ≥ c.

To measure the convergence of the iterates to the Nash equilibrium of the regularized Markov game,
we recall the definition of gτ in (2) and define

δπk = Jτ (π
⋆
τ , ϕ

⋆
τ )− gτ (πθk), δϕk = Jτ (πθk , ϕψk)− gτ (πθk). (10)

The convergence metric is asymmetric for two players: the first player is quantified by its performance
when the second player takes the most adversarial policy, while the second player is evaluated under
the current policy iterate of the first player. We note that δπk and δϕk are non-negative, and δπk = δϕk = 0
implies that (πθk , ϕψk) is the Nash equilibrium. Under this convergence metric, the following theorem
states that the GDA updates in (9) solve the regularized Markov game linearly fast. The proofs of the
theoretical results of this paper are presented in Section A of the appendix.

Theorem 1. We define L = 3LH max{τ, 1}, C1 = ρminc
2

64 log(2) , and C2 =
2
√

|S|√
(1−γ)ρminc

, and choose

the initial policy parameters to be θ0 = 0 ∈ R|S|×|A| and ψ0 = 0 ∈ R|S|×|B| (the initial policies πθ0
and ϕψ0

are uniform). Let the step sizes of (9) be

αk = α, βk = β,

with α, β satisfying

max{α, β} ≤ 1

L
,
α

β
≤ min{ (1− γ)ρ3minc

2τ2

152 log(2)|S|L2
, 8}, α ≤ min{(L+

C2L
2

τ
)−1,

16|S|
(1− γ)ρ2minc

2τ
}.
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If Assumption 1 holds and

3δπ0 + δϕ0 ≤ C1τ, (11)

then the iterates of (9) satisfy for all k ≥ 0

3δπk + δϕk ≤ (1− (1− γ)ατρ2minc
2

32|S|
)k(3δπ0 + δϕ0 ).

Theorem 1 establishes the linear convergence of the iterates of (9) to the Nash equilibrium of (5),
provided that the initial condition (11) is satisfied. The convergence is faster when τ is large and
slower when τ is small. Choosing τ to be large enough guarantees the initial condition (see Section C
of the appendix for more discussion) but causes the Nash equilibrium of the regularized Markov game
to be distant from that of the original Markov game. This motivates us to make the regularization
weight a decaying sequence that starts off large enough to meet the initial condition and becomes
smaller over time to narrow the gap between the regularized Markov game and the original one. We
discuss two such schemes of reducing the regularization weight in the next section.

4 Main Results - Solving the Original Markov Game

This section presents two approaches to adjust the regularization weight that allow the GDA algorithm
to converge to the Nash equilibrium of the original Markov game. The first approach uses a piecewise
constant weight and results in the nested-loop updates stated in Algorithm 1. In the inner loop
the regularization weight and step sizes are fixed, and the two players update their policy iterates
towards the Nash equilibrium of the regularized Markov game. The outer loop iteration reduces
the regularization weight to make the regularized Markov game approach the original one. The
regularization weight decays geometrically in the outer loop, i.e. τt+1 = ητt, where η ∈ (0, 1) must
be carefully balanced. On the one hand, recalling the definition of gτ in (2) and defining

δπt,k = Jτt(π
⋆
τt , ϕ

⋆
τt)− gτt(πθt,k), δϕt,k = Jτt(πθt,k , ϕψt,k)− gτt(πθt,k),

we need η to be large enough that if θt,0 and ψt,0 observe the initial condition 3δπt,0 + δϕt,0 ≤ C1τt,
then so do θt+1,0 and ψt+1,0 in the worst case. On the other hand, an η selected excessively large
makes the reduction of τt too slow to achieve the best possible convergence rate. Our next theoretical
result, as a corollary of Theorem 1, properly chooses η and Kt and establishes the convergence of
Algorithm 1 to the Nash equilibrium of the original original problem.

Algorithm 1: Nested-Loop Policy Gradient Descent Ascent Algorithm with Piecewise Constant
Regularization Weight

Initialize: Policy parameters θ0,0 = 0 ∈ RS×A and ψ0,0 = 0 ∈ RS×B, step size sequences {αt}
and {βt}, an initial regularization parameter τ0

for t = 0, 1, · · · , T do
for k = 0, 1, · · · ,Kt − 1 do

1) Max player update:

θt,k+1 = θt,k + αt∇θJτ (πθt,k , ϕψt,k)

2) Min player update:

ψt,k+1 = ψt,k − βt∇ψJτ (πθt,k+1
, ϕψt,k)

end
Set initial policies for next outer loop iteration θt+1,0 = θt,Kt , ψt+1,0 = ψt,Kt
Reduce regularization weight τt+1 = ητt and properly adjust αt, βt

end

Corollary 1. Suppose that Assumption 1-2 hold and τ0 is chosen such that 3δπ0,0 + δϕ0,0 ≤ C1τ0
1.

We choose η = C1+2Lδ
2C1+2Lδ

, where Lδ = 4 log |A|+ 3 log |B|+ log |B|
1−γ and C1 is defined in Theorem 1.

1This inequality is guaranteed to hold with a large enough τ0 if πθ0 and ϕψ0 are initialized to be uniform.
See Section C of the appendix for more discussion.
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Then, under proper choices of αt and βt, the iterates of Algorithm 1 converge to a point such that

J(π⋆, ϕ⋆)− g0(πθT,0) ≤ ϵ and J(πθT,0 , ϕψT,0)− g0(πθT,0) ≤ ϵ (12)

in at most T = O(log(ϵ−1)) outer loop iterations. The total number of gradient updates required is∑T
t=0Kt = O(ϵ−3).

Corollary 1 guarantees that (πθT , ϕψT ) converge to an ϵ-approximate Nash equilibrium of the original
Markov game in T = O(ϵ−3) gradient steps. In order to achieve this rate, Kt has to be adjusted
along with τt: we need Kt = O(τ−3

t ) when τt becomes smaller than 1. The varying number of inner
loop iterations may cause inconvenience for practical implementation. To address this issue, we next
propose another scheme of adjusting the regularization weight that is carried out online along with
the update of the policy iterates.

Algorithm 2: Policy Gradient Descent Ascent Algorithm with Diminishing Regularization Weight

Initialize: Policy parameters θ0 = 0 ∈ RS×A and ψ0 = 0 ∈ RS×B, step size sequences {αk}
and {βk}, regularization parameter sequence {τk}

for k = 0, 1, · · · ,K do
1) Max player update:

θk+1 = θk + αk∇θJτk(πθk , ϕψk)

2) Min player update:

ψk+1 = ψk − βk∇ψJτk(πθk+1
, ϕψk)

end

Presented in Algorithm 2, the second approach is a single-loop algorithm that reduces the regular-
ization weight as a polynomial function of the iteration k. We define the auxiliary convergence
metrics

δπk = Jτk(π
⋆
τk
, ϕ⋆τk)− gτk(πθk), δϕk = Jτk(πθk , ϕψk)− gτk(πθk),

which measure the convergence of (πθk , ϕψk) to the Nash equilibrium of the Markov game regularized
with weight τk. To judge the performance of the iterates in the original Markov game, we are
ultimately interested in bounding J(π⋆, ϕ⋆) − g0(πθk) and J(πθk , ϕψk) − g0(πθk). Thanks to
Lemma 3, we can quantify how fast δπk and δϕk approach these desired quantities as τk decays to 0.
Under an initial condition on δπk and δϕk , we now establish the convergence rate of Algorithm 2 to
(π⋆, ϕ⋆) of (1) through a multi-time-scale analysis.
Theorem 2. Let the step sizes and regularization parameter be

αk =
α0

(k + h)2/3
, βk = β0, τk =

τ0
(k + h)1/3

,

with α0, β0, τ0, and h ≥ 1 satisfying a system of inequalities discussed in details in the analysis.
Under Assumption 1-2, the iterates of Algorithm 2 satisfy for all k ≥ 0

J(π⋆, ϕ⋆)− g0(πθk) ≤
C1τ0 + 3(log |A|+ log |B|)τ0

3(k + h)1/3
, (13)

J(πθk , ϕψk)− g0(πθk) ≤
(1− γ)C1τ0 + (log |A|+ log |B|)τ0

(1− γ)(k + h)1/3
, (14)

where the constant C1 is defined in Theorem 1.

Theorem 2 states that the last iterate of Algorithm 2 converges to an O(k−1/3)-approximate Nash
equilibrium of the original Markov game in k iterations. This translates to the same sample complexity
as Algorithm 1 derived in Corollary 1. Compared with Algorithm 1, reducing τk online along with
the gradient updates in a single loop simplifies the algorithm and makes tracking the regularization
weight, step sizes, and policy iterates simpler and more convenient. We note that the techniques in
Daskalakis et al. [2020] may be used to analyze the finite-time performance of GDA for Markov
games and lead to a convergence rate at least worse than O(k−1/10.5), which we improve over.
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Remark 1. Assumption 2 is a restrictive assumption that does not seem necessary but rather arises
as an artifact of the current analysis. When we apply the weaker PL-type condition (Lemma 4)
in the analysis, the entries of the iterates πθk , ϕψk need to be uniformly lower bounded, which is
difficult to establish using the game structure. We come up with an innovative induction approach
to quantify the connection between mins,a πθk(a | s),mins,b ϕψk(b | s) and the optimal gap δπk , δ

ϕ
k .

This approach allows us to transform the uniform lower bound requirement on πθk , ϕψk to that on
the Nash equilibrium, leading to Assumption 2. It is a future work to remove/relax this assumption.

A Markov game is said to be completely mixed if every Nash equilibrium of the game consists of
a pair of completely mixed policies, i.e. mins,a π

⋆(a | s) > 0,mins,b ϕ
⋆(b | s) > 0 for any Nash

equilibrium (π⋆, ϕ⋆) of the Markov game (if more than one exists). Assumption 2 intuitively seems no
stronger than requiring the original Markov game to be completely mixed. If the original Markov
game has at least one completely mixed Nash equilibrium, the Nash equilibrium of the regularized
Markov game should also be completely mixed even when the regularization weight is small, since
the regularization encourages the solution to be more uniform. The reward function that results in
completely mixed Markov games is well studied in Raghavan [1978], Kaplansky [1995], Das et al.
[2017].

5 Numerical Simulations

In this section, we numerically verify the convergence of Algorithm 2 on small-scale synthetic
Markov games. Our aim is to confirm that the algorithm indeed converges rather than to visualize the
exact convergence rate, as achieving the theoretical rate derived in Theorem 2 requires very careful
selection of all involved parameters. Considering an environment with |S| = 2 and |A| = |B| = 2,
we first choose the reward and transition probability kernel such that the Markov game is completely
mixed2.

Figure 1: Convergence of GDA for a Completely Mixed Markov game

We run Algorithm 2 for 50000 iterations with αk = 10−3, βk = 10−2, τk = (k + 1)−1/3, and
measure the convergence of πk and ϕk by metrics considered in (13) and (14) of Theorem 2. As
shown in the first plot of Figure 1, the last iterate exhibits an initial oscillation behavior but converge
smoothly after 10000 iterations. In comparison, we visualize the convergence of the last iterate and
averaged iterate of the GDA algorithm without any regularization (second and third plots of Figure 1),
where the average is computed with equal weights as π̄k = 1

k+1

∑k
t=0 πθt , ϕ̄k = 1

k+1

∑k
t=0 ϕψt .

The existing theoretical results in this case guarantee the convergence of the averaged iterate but not
the last iterate [Daskalakis et al., 2020]. According to our simulations, the last iterate indeed does not
converge, while the averaged iterate does, but at a slower rate than the convergence of the last iterate
of the GDA algorithm under the decaying regularization.

The theoretical results derived in this paper rely on Assumption 2. To investigate whether this
assumption is truly necessary, we also apply Algorithm 2 to a Markov game that has a deterministic

2To create a completely mixed game with |A| = |B| = 2, we simply need to choose the reward function
such that r(s, ·, ·) as a 2x2 matrix is diagonal dominant or sub-diagonal dominant for any state s ∈ S, and we
can use an arbitrary transition probability kernel. The exact choice of the reward function and transition kernel
as well as the Nash equilibrium of this Markov game are presented in Section D of the appendix.
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Nash equilibrium and does not observe Assumption 23. As illustrated in Figure 2, the experiment
shows that Algorithm 2 still converges correctly to (π⋆, ϕ⋆) of (1). This observation suggests
that Assumption 2 may be an artifact of the current analysis and motivates for us to investigate
ways to remove/relax this assumption in the future. We note that the pure GDA approach without
regularization also has a last-iterate convergence and does not exhibit the oscillation behavior observed
in Figure 1, since the gradients of both players never change signs regardless of the policy of the
opponent in this Markov game.

Figure 2: Convergence of GDA for a Deterministic Markov game

6 Conclusion & Future Work

In this paper, we present the finite-time analysis of two GDA algorithms that provably find the Nash
equilibrium of a Markov game with the help of a structured entropy regularization. Future directions
of this work include formalizing the link between Assumption 2 and completely mixed Markov
games, investigating the possibility of relaxing this assumption, and characterizing the convergence of
the stochastic GDA algorithm where the players do not have knowledge of the environment dynamics
and can only take samples to estimate the gradients.

Acknowledgement

The work of Thinh T. Doan is supported in part by the Commonwealth Cyber Initiative.

References
Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation

with policy gradient methods in markov decision processes. In Conference on Learning Theory,
pages 64–66. PMLR, 2020.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In
International Conference on Machine Learning, pages 551–560. PMLR, 2020.

Pierre Bernhard and Alain Rapaport. On a theorem of danskin with an application to a theorem of
von neumann-sion. Nonlinear Analysis: Theory, Methods & Applications, 24(8):1163–1181, 1995.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy extragradient methods for competitive games
with entropy regularization. Advances in Neural Information Processing Systems, 34, 2021.

Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise
in gan training with variance reduced extragradient. Advances in Neural Information Processing
Systems, 32, 2019.

Ziyi Chen, Shaocong Ma, and Yi Zhou. Sample efficient stochastic policy extragradient algorithm
for zero-sum markov game. In International Conference on Learning Representations, 2021.

3The detailed description of the game is again deferred to Section D of the appendix.

10



Purba Das, T Parthasarathy, and G Ravindran. On completely mixed stochastic games. arXiv preprint
arXiv:1703.04619, 2017.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with
optimism. arXiv preprint arXiv:1711.00141, 2017.

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in Neural Information Processing systems, 33:
5527–5540, 2020.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International Conference on Machine Learning, pages 4880–4889.
PMLR, 2020.

Irving Kaplansky. A contribution to von neumann’s theory of games. ii. Linear algebra and its
applications, 226:371–373, 1995.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, pages 1–48, 2022.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien
Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. Openspiel:
A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453, 2019.

Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas Le Roux, and Michael
Jordan. On the convergence of stochastic extragradient for bilinear games using restarted iteration
averaging. In International Conference on Artificial Intelligence and Statistics, pages 9793–9826.
PMLR, 2022.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093. PMLR, 2020a.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pages 2738–2779. PMLR, 2020b.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6–38, 1995.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In International Conference on Machine Learning, pages
6820–6829. PMLR, 2020.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. In International
Conference on Artificial Intelligence and Statistics, pages 1497–1507. PMLR, 2020.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing systems,
30, 2017.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving
a class of non-convex min-max games using iterative first order methods. Advances in Neural
Information Processing Systems, 32, 2019.

11



Dmitrii M Ostrovskii, Andrew Lowy, and Meisam Razaviyayn. Efficient search of first-order nash
equilibria in nonconvex-concave smooth min-max problems. SIAM Journal on Optimization, 31
(4):2508–2538, 2021.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming
for two-player zero-sum markov games. In International Conference on Machine Learning, pages
1321–1329. PMLR, 2015.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International Conference on Machine Learning, pages 2817–2826. PMLR,
2017.

TES Raghavan. Completely mixed games and M-matrices. Linear Algebra and its Applications, 21
(1):35–45, 1978.

Martin Riedmiller and Thomas Gabel. On experiences in a complex and competitive gaming domain:
Reinforcement learning meets RoboCup. In 2007 IEEE Symposium on Computational Intelligence
and Games, pages 17–23. IEEE, 2007.

Muhammed O Sayin, Francesca Parise, and Asuman Ozdaglar. Fictitious play in zero-sum stochastic
games. SIAM Journal on Control and Optimization, 60(4):2095–2114, 2022.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095–1100, 1953.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization. Ad-
vances in Neural Information Processing Systems, 33:4800–4810, 2020.

Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of
decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games. In
Conference on Learning Theory, pages 4259–4299. PMLR, 2021.

Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous-
move markov games using function approximation and correlated equilibrium. In Conference on
Learning Theory, pages 3674–3682. PMLR, 2020.

Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance-reduced optimization
for a class of nonconvex-nonconcave minimax problems. arXiv preprint arXiv:2002.09621, 2020.

Donghao Ying, Yuhao Ding, and Javad Lavaei. A dual approach to constrained markov decision
processes with entropy regularization. In International Conference on Artificial Intelligence and
Statistics, pages 1887–1909. PMLR, 2022.

Hao Yu and Rong Jin. On the computation and communication complexity of parallel sgd with
dynamic batch sizes for stochastic non-convex optimization. In International Conference on
Machine Learning, pages 7174–7183. PMLR, 2019.

Sihan Zeng, Malik Aqeel Anwar, Thinh T Doan, Arijit Raychowdhury, and Justin Romberg. A
decentralized policy gradient approach to multi-task reinforcement learning. In Uncertainty in
Artificial Intelligence, pages 1002–1012. PMLR, 2021a.

Sihan Zeng, Thinh T Doan, and Justin Romberg. A two-time-scale stochastic optimization framework
with applications in control and reinforcement learning. arXiv preprint arXiv:2109.14756, 2021b.

Yulai Zhao, Yuandong Tian, Jason D Lee, and Simon S Du. Provably efficient policy gradient
methods for two-player zero-sum markov games. arXiv preprint arXiv:2102.08903, 2021.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Remark 1 and Section 5, we

discuss the assumption on the completely mixed Nash equilibrium that we currently
have to make and how that may be an artifact in the analysis that can be relaxed in the
future.

(c) Did you discuss any potential negative societal impacts of your work? [No] The work
is most of a theoretical nature and does not have any direct societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In the supplementary

material we present the proof of all theorems and supporting lemmas.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code is in
the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] Not applicable. No training is involved in this work.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiment is very small-scale
and the computational resource used is negligible.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use

existing assets.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We do not create new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We have not used crowdsourcing or conducted research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



Regularized Gradient Descent Ascent for Two-Player
Zero-Sum Markov Games

Supplementary Material - NeurIPS 2022

For convenience, we include a table of contents for the supplementary material below.

Table of Contents
A Proof of Theorems and Corollaries 1

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B Proof of Lemmas 13
B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.5 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.6 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.7 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.8 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.9 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.10 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.11 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C Discussion on the Initial Condition for Corollary 1 and Theorem 2 28

D Experiment Details 28

A Proof of Theorems and Corollaries

We frequently use the following inequalities which hold for all τ ≥ 0, π ∈ ∆A
S , and ϕ ∈ ∆B

S ,

Jτ (π, ϕτ (π)) ≤ Jτ (π, ϕ), Jτ (πτ (ϕ), ϕ) ≥ Jτ (π, ϕ).

We use H(·) to denote the entropy of a distribution. For example,

H(π(· | s)) = −
∑
a

π(a | s) log π(a | s), H(ϕ(· | s)) = −
∑
b

ϕ(b | s) log ϕ(b | s). (15)

Due to the uniqueness of ϕτ (·), Danskin’s Theorem guarantees that gτ (πθ) defined in (2) is differen-
tiable with respect to θ [Bernhard and Rapaport, 1995]

∇θgτ (πθ) = ∇θJτ (πθ, ϕ), ϕ = ϕτ (πθ), ∀θ ∈ R|S|×|A|. (16)

We also introduce a few lemmas that will be applied regularly in the rest of the paper.
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Lemma 5. Let LV = 8
(1−γ)3 . The value function J is LV -Lipschitz continuous and has LV -Lipschitz

gradients, i.e. we have for all θ1, θ2 ∈ R|S|×|A| and ψ1, ψ2 ∈ R|S|×|B|

∥∇θJ(πθ1 , ϕψ1)−∇θJ(πθ2 , ϕψ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥ψ1 − ψ2∥),
∥∇ψJ(πθ1 , ϕψ1)−∇ψJ(πθ2 , ϕψ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥ψ1 − ψ2∥),
∥J(πθ1 , ϕψ1

)− J(πθ2 , ϕψ2
)∥ ≤ LV (∥θ1 − θ2∥+ ∥ψ1 − ψ2∥).

Lemma 6. Let LH = 4+8 log |A|
(1−γ)3 . The regularization functions Hπ and Hϕ are LH-Lipschitz

continuous and has LH-Lipschitz gradients.

Lemmas 5 and 6 imply that ∀τ ≥ 0, ∇θJτ is Lipschitz continuous, i.e. for any θ1, θ2 ∈ R|S|×|A|,
ψ1, ψ2 ∈ R|S|×|B|

∥∇θJτ (πθ1 , ϕψ1
)−∇θJτ (πθ2 , ϕψ2

)∥ ≤ ∥∇θJ(πθ1 , ϕψ1
)−∇θJ(πθ2 , ϕψ2

)∥
+ τ∥∇θHπ(s, πθ1 , ϕψ1

)−∇θHπ(s, πθ2 , ϕψ2
)∥

+ τ∥∇θHϕ(s, πθ1 , ϕψ1)−∇θHϕ(s, πθ2 , ϕψ2)∥
≤ (LV + 2τLH)(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥). (17)

Lemma 7. For any 0 ≤ a ≤ 1 and integer k > 0, we have

1

(k + h)a
− 1

(k + 1 + h)a
≤ 8

3(k + h)a+1
.

A.1 Proof of Theorem 1

The definition of the constant L and Eq.(17) imply for any θ1, θ2 ∈ R|S|×|A|, ψ1, ψ2 ∈ R|S|×|B|

∥∇θJτ (πθ1 , ϕψ1
)−∇θJτ (πθ2 , ϕψ2

)∥ ≤ L(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥). (18)

We will use an induction argument to prove the convergence of 3δπk +δ
ϕ
k . The base case is 3δπ0 +δ

ϕ
0 ≤

3δπ0 + δϕ0 , which obviously holds. Now, suppose

3δπk + δϕk ≤ (1− α(1− γ)τρ2minc
2

32|S|
)k(3δπ0 + δϕ0 ) (19)

holds. We aim to show

3δπk+1 + δϕk+1 ≤ (1− α(1− γ)τρ2minc
2

32|S|
)k+1(3δπ0 + δϕ0 ).

We introduce the following technical lemmas.
Lemma 8. Suppose (19) holds. Then, we have

−
(
min
s,a

πθk(a | s)
)2

≤ −3c2

8
, (20)

−
(
min
s,b

ϕψk(b | s)
)2

≤ −3c2

8
. (21)

Lemma 9. Suppose (19) holds. Under Assumption 1 and the step size αk ≤ (L+
2
√

|S|L2

√
(1−γ)ρminτc

)−1,

we have

gτ (θk)− gτ (θk+1)

= Jτ (πθk , ϕτ (πθk))− Jτ (πθk+1
, ϕτ (πθk+1

))

=
αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 − ∥∇θJτ (πθk , ϕτ (πθk))∥2

)
.

By the lemma above, we have

δπk+1 − δπk
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= Jτ (πθk , ϕτ (πθk))− Jτ (πθk+1
, ϕτ (πθk+1

))

≤ αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 − ∥∇θJτ (πθk , ϕτ (πθk))∥2

)
. (22)

Similarly, we consider the decay of δϕk .

δϕk+1 − δϕk = Jτ (πθk+1
, ϕψk+1

)− gτ (πθk+1
)− Jτ (πθk , ϕψk) + gτ (πθk)

=
(
Jτ (πθk+1

, ϕψk+1
)− Jτ (πθk+1

, ϕψk)
)

+
(
Jτ (πθk+1

, ϕψk)− Jτ (πθk , ϕψk)
)
+
(
gτ (πθk)− gτ (πθk+1

)
)
. (23)

Using the L-smoothness of the value function derived in (18)

Jτ (πθk+1
, ϕψk+1

)− Jτ (πθk+1
, ϕψk)

≤ ⟨∇ψJτ (πθk+1
, ϕψk), ψk+1 − ψk⟩+

L

2
∥ψk+1 − ψk∥2

= −βk∥∇ψJτ (πθk+1
, ϕψk)∥2 +

Lβ2
k

2
∥∇ψJτ (πθk+1

, ϕψk)∥2

≤ −βk
2
∥∇ψJτ (πθk+1

, ϕψk)∥2

≤ − (1− γ)βkτρ
2
min

|S|

(
min
s,b

ϕψk(b | s)
)2

(Jτ (πθk , ϕψk)− Jτ (πθk , ϕτ (πθk)))

= − (1− γ)βkτρ
2
min

|S|

(
min
s,b

ϕψk(b | s)
)2

δϕk ,

where the second inequality uses βk ≤ 1
L and the third inequality follows from Lemma 4 and the fact

that dπ,ϕρ (s) ≤ 1 for all s ∈ S and policies π, ϕ.

Using Eq. (21) of Lemma 8 to further simplify this inequality,

Jτ (πθk+1
, ϕψk+1

)− Jτ (πθk+1
, ϕψk) ≤ −3(1− γ)βkτρ

2
minc

2

8|S|
δϕk . (24)

For the second term of (23), we have from the L-smoothness of the value function derived in (18)

Jτ (πθk+1
, ϕψk)− Jτ (πθk , ϕψk) ≤ ⟨∇θJτ (πθk , ϕψk), θk+1 − θk⟩+

L

2
∥θk+1 − θk∥2

= αk∥∇θJτ (πθk , ϕψk)∥2 +
Lα2

k

2
∥∇θJτ (πθk , ϕψk)∥2

≤ 3αk
2

∥∇θJτ (πθk , ϕψk)∥2, (25)

where in the last inequality we use αkL ≤ 1.

Similarly to (22), the last term of (23) is bounded as

gτ (πθk)−gτ (πθk+1
) = gτ (πθk)− gτ (πθk+1

) + gτ (πθk+1
)− gτ (πθk+1

)

≤ αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2−∥∇θJτ (πθk , ϕτ (πθk))∥2

)
(26)

Using (24)-(26) in (23), we have

δϕk+1 =
(
Jτ (πθk+1

, ϕψk+1
)− Jτ (πθk+1

, ϕψk)
)

+
(
Jτ (πθk+1

, ϕψk)− Jτ (πθk , ϕψk)
)
+
(
gτ (πθk)− gτ (πθk+1

)
)

≤ (1− 3(1− γ)βkτρ
2
minc

2

8|S|
)δϕk +

3αk
2

∥∇θJτ (πθk , ϕψk)∥2

+
αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 − ∥∇θJτ (πθk , ϕτ (πθk))∥2

)
. (27)
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Combining (22) and (27),

3δπk+1+δ
ϕ
k+1≤ 3δπk+

3αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2−∥∇θJτ (πθk , ϕτ (πθk))∥2

)
+ (1− 3(1− γ)βkτρ

2
minc

2

8|S|
)δϕk + 2δϕk )δ

ϕ
k +

3αk
2

∥∇θJτ (πθk , ϕψk)∥2

+
αk
2

(
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 − ∥∇θJτ (πθk , ϕτ (πθk))∥2

)
≤ 3δπk + (1− 3(1− γ)βkτρ

2
minc

2

8|S|
)δϕk +

3αk
2

∥∇θJτ (πθk , ϕψk)∥2

+ 2αk∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2−2αk∥∇θJτ (πθk , ϕτ (πθk))∥2.

Simplifying this inequality with

∥∇θJτ (πθk , ϕψk)∥2 = ∥∇θJτ (πθk , ϕτ (πθk))− (∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)) ∥2

≤ ∥∇θJτ (πθk , ϕτ (πθk))∥2 + ∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2

+ 2⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)⟩

≤ 5

4
∥∇θJτ (πθk , ϕτ (πθk))∥2 + 5∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2,

we have

3δπk+1 + δϕk+1 ≤ 3δπk + (1− 3(1− γ)βkτρ
2
minc

2

8|S|
)δϕk − αk

8
∥∇θJτ (πθk , ϕτ (πθk))∥2

+
19αk
2

∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2. (28)

Using Lemma 4 to bound −∥∇θJτ (πθk , ϕτ (πθk))∥2,

− ∥∇θJτ (πθk , ϕτ (πθk))∥2

≤ −2(1− γ)τρ2min

|S|

(
min
s,a

πθk(a | s)
)2

(Jτ (πτ (ϕτ (πθk)), ϕτ (πθk))− Jτ (πθk , ϕτ (πθk)))

≤ −2(1− γ)τρ2min

|S|

(
min
s,a

πθk(a | s)
)2

(Jτ (π
⋆
τ , ϕ

⋆
τ )− Jτ (πθk , ϕτ (πθk))) , (29)

where the second inequality follows from

Jτ (πτ (ϕτ (πθk)), ϕτ (πθk)) = max
π

Jτ (π, ϕτ (πθk)) ≥ max
π

min
ϕ
Jτ (π, ϕ) = Jτ (π

⋆
τ , ϕ

⋆
τ ).

From Lemma 8 Eq. (20), − (mins,a πθk(a | s))2 ≤ − 3c2

8 , which further simplifies (29)

−∥∇θJτ (πθk , ϕτ (πθk))∥2 ≤ −2(1− γ)τρ2min

|S|

(
min
s,a

πθk(a | s)
)2

(Jτ (π
⋆
τ , ϕ

⋆
τ )−Jτ (πθk , ϕτ (πθk)))

= −2(1− γ)τρ2min

|S|

(
min
s,a

πθk(a | s)
)2

δπk ≤ −3(1− γ)τρ2minc
2

4|S|
δπk .

For ∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2, we have from theL-smoothness of the value function
derived in (18)

∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 ≤ L2∥ϕτ (πθk)− ϕψk∥2

≤ 2 log(2)L2

τρmin
(Jτ (πθk , ϕψk)− Jτ (πθk , ϕτ (πθk)))

=
2 log(2)L2

τρmin
δϕk

4



Using the bound on −∥∇θJτ (πθk , ϕτ (πθk))∥2 and ∥∇θJτ (πθk , ϕτ (πθk)) − ∇θJτ (πθk , ϕψk)∥2 in
(28),

3δπk+1 + δϕk+1 ≤ 3δπk + (1− 3(1− γ)βkτρ
2
minc

2

8|S|
)δϕk − αk

8
∥∇θJτ (πθk , ϕτ (πθk))∥2

+
19αk
2

∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2

≤ 3δπk + (1− 3(1− γ)βkτρ
2
minc

2

8|S|
)δϕk −

3αk(1− γ)τρ2minc
2

32|S|
δπk +

19 log(2)L2αk
τρmin

δϕk

= 3(1− αk(1− γ)τρ2minc
2

32|S|
)δπk + (1− 3(1− γ)βkτρ

2
minc

2

8|S|
+

19 log(2)L2αk
τρmin

)δϕk .

With the step sizes αk = α, βk = β such that αβ ≤ min{ (1−γ)τ2ρ3minc
2

152|S| log(2)L2 , 8}, we can simplify the
inequality above

3δπk+1 + δϕk+1 ≤ 3(1− αk(1− γ)τρ2minc
2

32|S|
)δπk + (1− 3(1− γ)βkτρ

2
minc

2

8|S|
+

19 log(2)L2αk
τρmin

)δϕk

≤ 3(1− α(1− γ)τρ2minc
2

32|S|
)δπk + (1− (1− γ)βτρ2minc

2

4|S|
)δϕk

≤ (1− α(1− γ)τρ2minc
2

32|S|
)(3δπk + δϕk )

≤ (1− α(1− γ)τρ2minc
2

32|S|
)k+1(3δπ0 + δϕ0 ).

A.2 Proof of Corollary 1

As a result of Lemma 3, it is easy to verify

(3δπt+1,0 + δϕt+1,0)− (3δπt,Kt + δϕt,Kt)

= (3Jτt+1
(π⋆τt+1

, ϕ⋆τt+1
)− 3Jτt+1

(πθt+1,0
, ϕτt+1

(πθt+1,0
))

+ Jτt+1
(πθt+1,0

, ϕψt+1,0
)− Jτt+1

(πθt+1,0
, ϕτt+1

(πθt+1,0
)))

− (3Jτt(π
⋆
τt , ϕ

⋆
τt)− 3Jτt(πθt,Kt , ϕτt(πθt,Kt ))

+ Jτt(πθt,Kt , ϕψt,Kt )− Jτt(πθt,Kt , ϕτt(πθt,Kt ))

= (3Jτt+1
(π⋆τt+1

, ϕ⋆τt+1
)− 3Jτt+1

(πθt+1,0
, ϕτt+1

(πθt+1,0
))

+ Jτt+1
(πθt+1,0

, ϕψt+1,0
)− Jτt+1

(πθt+1,0
, ϕτt+1

(πθt+1,0
)))

− (3Jτt(π
⋆
τt , ϕ

⋆
τt)− 3Jτt(πθt+1,0

, ϕτt(πθt+1,0
))

+ Jτt(πθt+1,0 , ϕψt+1,0)− Jτt(πθt+1,0 , ϕτt(πθt+1,0)))

= 3(Jτt+1
(π⋆τt+1

, ϕ⋆τt+1
)− Jτt(π

⋆
τt , ϕ

⋆
τt))

− 4(Jτt+1
(πθt+1,0

, ϕτt+1
(πθt+1,0

))− Jτt(πθt+1,0
, ϕτt(πθt+1,0

)))

+ (Jτt+1(πθt+1,0 , ϕψt+1,0)− Jτt(πθt+1,0 , ϕψt+1,0))

≤ Lδ(τt − τt+1). (30)

We can choose τ0 large enough that

3δπ0,0 + δϕ0,0 ≤ C1τ0

holds. For any t ≥ 0, if we run the inner loop for Kt iterations such that

3δπt,Kt + δϕt,Kt ≤
1

2
(3δπt,0 + δϕt,0) ≤

C1τt
2

,
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then we have

3δπt+1,0 + δϕt+1,0 ≤ 3δπt,Kt + δϕt,Kt + Lδ(τt − τt+1) ≤
C1τt
2

+ Lδ(τt − τt+1)

=
(C1 + Lδ)C1

C1 + 2Lδ
τt+1 +

C1Lδ
C1 + 2Lδ

τt+1 = C1τt+1,

where the first equality plugs in τt = 2C1+2Lδ
C1+2Lδ

τt+1. This means that the initial condition (11) is
observed at the beginning of the every outer loop iteration.

Applying the inequality recursively,

3δπT,0 + δϕT,0 ≤ C1τT .

With an argument similar to the one in (30), we can show

(3(J(π⋆, ϕ⋆)− J(πθT,0 , ϕ0(πθT,0)))

+ (J(πθT,0 , ϕψT,0)− J(πθT,0 , ϕ0(πθT,0))))− (3δπT,0 + δϕT,0) ≤ LδτT .

In order to achieve (12), it suffices to guarantee 3δπT,0 + δϕT,0 +LδτT ≤ ϵ, or (C1 +Lδ)τT ≤ ϵ. This

implies that we need τT = O(ϵ), or equivalently, T = O(log(ϵ−1)) since τT =
(
C1+2Lδ
2C1+2Lδ

)T
τ0.

Ultimately we are interested in bounding
∑T
t=0Kt. Note that Kt needs to be at most

Kt ≤ ⌈
log( 12 )

log(1− αt(1−γ)τtρ2minc
2

32|S| )
⌉.

To apply Theorem 1, we need to select the step sizes that satisfy the required condition. Since {τt} is
a decaying sequence, the smoothness constant L = 3LH max{τ0, 1} is valid across all outer loop
iterations t.

We use Lt = 3LH max{τt, 1} to denote the smoothness constant of the regularized value function in
outer loop iteration t and use T1 to denote the index of the outer loop iteration such that τT1

≥ 1 and
τT1+1 < 1. Note that T1 is an absolute constant that only depends on the structure of the Markov
game. From iterations t = 0 to t = T1, the smoothness constant is proportional to regularization
weight Lt = 3LH max{τt, 1} = 3LHτt. We need to choose αt, βt such that

βt ≤
1

Lt
=

1

3LHτt
,

αt
βt

≤ min{ (1− γ)ρ3minc
2τ2t

152 log(2)|S|L2
t

, 8} = min{ (1− γ)ρ3minc
2

1368 log(2)|S|L2
H
, 8},

αt ≤ min{(Lt +
2
√

|S|L2
t√

(1− γ)ρminτtc
)−1,

16|S|
(1− γ)ρ2minc

2τt
}

= min{(3LHτt +
18
√
|S|L2

Hτt√
(1− γ)ρminc

)−1,
16|S|

(1− γ)ρ2minc
2τt

}.

Then it is obvious that we can choose αt = O(τ−1
t ), implying αtτt = O(1). Therefore, for all

0 ≤ t ≤ T1,

Kt ≤ ⌈
log( 12 )

log(1− αt(1−γ)τtρ2minc
2

32|S| )
⌉ = O(1). (31)

From iterations t = T1 until t = T , the smoothness constant is Lt = 3LH max{τt, 1} = 3LH. Note
that there is an upper and lower bound on βt. In order for the upper bound to be no smaller than the
lower bound, we need

152 log(2)|S|L2αt
(1− γ)ρ3minc

2τ2t
≤ 1

L
.
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This means that we should choose αt = O(τ2t ), implying αtτt = O(τ3t ). Plugging it in (31),

Kt = ⌈
log( 12 )

log(1− αt(1−γ)τtρ2minc
2

32|S| )
⌉ = O(

1

log(1− τ3t )
) ≤ O(τ−3

t ),

where the last inequality follows from the fact that 1 + x ≤ exp(x) for any scalar x.

Since τt = τT (
2C1+2Lδ
C1+2Lδ

)T−t,

T∑
t=0

Kt =

T1∑
t=0

Kt +

T∑
t=T1

Kt ≤
T∑
t=0

O(τ−3
t ) = O(1) +

T∑
t=T1

O(τ−3
T (

2C1 + 2Lδ
C1 + 2Lδ

)−3(T−t))

≤ O(τ−3
T

T∑
t=0

(
C1 + 2Lδ
2C1 + 2Lδ

)3(T−t)) = O(τ−3
T

T∑
t=0

(
C1 + 2Lδ
2C1 + 2Lδ

)3t)

≤ O(τ−3
T

1

1− ( C1+2Lδ
2C1+2Lδ

)3
) = O(τ−3

T ).

Since τT = O(ϵ),

T∑
t=0

Kt ≤ O(τ−3
T ) = O(ϵ−3).

A.3 Proof of Theorem 2

Define L0 = LH(2τ0 + 1). The exact conditions on the initial step sizes, regularization weight, and
h are

δπ0 + δϕ0 ≤ C1τ0

h
1
3

, (32)

α0 =
65536 log(2)(log |A|+ log |B|) + 96(1− γ)ρminc

2

3(1− γ)2ρ3minc
4τ0

, (33)

α0

h
2
3

≤ (2LH + 4L2
HC2)

τ0

h
1
3

+ (LH + 4L2
HC2) +

L2
HC2h

1
3

τ0
, (34)

β0 ≤ 1

L0
,

α0

β0
≤ min{ (1− γ)τ20 ρ

3
minc

2

152 log(2)|S|L2
0

, 1}. (35)

In Remark 2 at the end of this section, we show that there always exist α0, β0, τ0, and h that observe
the conditions.

(17) implies that for any θ1, θ2 ∈ R|S|×|A|, ψ1, ψ2 ∈ R|S|×|B|, and k ≥ 0,

∥∇θJτk(πθ1 , ϕψ1
)−∇θJτk(πθ2 , ϕψ2

)∥ ≤ (LV + 2τkLH)(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥)
≤ L0(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥), (36)

where the last inequality follows from τk ≤ τ0.

Convergence of 3δπk + δϕk :

We will first use an induction argument to prove

3δπk + δϕk ≤ ρminτ0c
2

64 log(2)(k + h)1/3
, ∀k ≥ 0.

The base case is 3δπ0 + δϕ0 ≤ ρminc
2τ0

64 log(2)h
1
3

, which holds by the initial condition. Now, suppose

3δπk + δϕk ≤ ρminτ0c
2

64 log(2)(k + h)1/3
(37)
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holds. We aim to show

3δπk+1 + δϕk+1 ≤ ρminτ0c
2

64 log(2)(k + 1 + h)1/3
.

We introduce the following technical lemmas.
Lemma 10. Suppose (37) holds. Then, we have

−
(
min
s,a

πθk(a | s)
)2

≤ −3c2

8
, (38)

−
(
min
s,b

ϕψk(b | s)
)2

≤ −3c2

8
. (39)

Lemma 11. Suppose (37) holds. Under Assumption 1 and 2 and the step sizes of Theorem 2, we have

gτk(θk)− gτk(θk+1)

= Jτk(πθk , ϕτk(πθk))− Jτk(πθk+1
, ϕτk(πθk+1

))

≤ αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
.

We perform the following decomposition

δπk+1 − δπk
= Jτk(πθk , ϕτk(πθk))− Jτk+1

(πθk+1
, ϕτk+1

(πθk+1
)) + Jτk+1

(π⋆τk+1
, ϕ⋆τk+1

)− Jτk(π
⋆
τk
, ϕ⋆τk)

= Jτk(πθk , ϕτk(πθk))− Jτk(πθk+1
, ϕτk(πθk+1

))

+ Jτk(πθk+1
, ϕτk(πθk+1

))− Jτk(πθk+1
, ϕτk+1

(πθk+1
))

+ Jτk(πθk+1
, ϕτk+1

(πθk+1
))− Jτk+1

(πθk+1
, ϕτk+1

(πθk+1
))

+ Jτk+1
(π⋆τk+1

, ϕ⋆τk+1
)− Jτk(π

⋆
τk
, ϕ⋆τk)

≤ Jτk(πθk , ϕτk(πθk))− Jτk(πθk+1
, ϕτk(πθk+1

)) +
τk − τk+1

1− γ
log |A|+ (τk − τk+1) log |B|

≤ αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+
τk − τk+1

1− γ
(log |A|+ log |B|) (40)

where the first inequality comes from Jτk(πθk+1
, ϕτk(πθk+1

)) − Jτk(πθk+1
, ϕτk+1

(πθk+1
)) ≤ 0 by

the definition of ϕτ (·) and the bound on Jτk(πθk+1
, ϕτk+1

(πθk+1
)) − Jτk+1

(πθk+1
, ϕτk+1

(πθk+1
))

and Jτk+1
(π⋆τk+1

, ϕ⋆τk+1
) − Jτk(π

⋆
τk
, ϕ⋆τk) from Lemma 3 Eqs. (8) and (6). The second inequality

uses Lemma 11.

Similarly, we consider the decay of δϕk .

δϕk+1 − δϕk = Jτk+1
(πθk+1

, ϕψk+1
)− gτk+1

(πθk+1
)− Jτk(πθk , ϕψk) + gτk(πθk)

=
(
Jτk+1

(πθk+1
, ϕψk+1

)−Jτk(πθk+1
, ϕψk+1

)
)
+
(
Jτk(πθk+1

, ϕψk+1
)−Jτk(πθk+1

, ϕψk)
)

+
(
Jτk(πθk+1

, ϕψk)− Jτk(πθk , ϕψk)
)
+
(
gτk(πθk)− gτk+1

(πθk+1
)
)
. (41)

By Lemma 3 Eq. (8),

Jτk+1
(πθk+1

, ϕψk+1
)− Jτk(πθk+1

, ϕψk+1
) ≤ τk − τk+1

1− γ
log |B|. (42)

Using the L0-smoothness of the value function derived in (36)

Jτk(πθk+1
, ϕψk+1

)− Jτk(πθk+1
, ϕψk)

≤ ⟨∇ψJτk(πθk+1
, ϕψk), ψk+1 − ψk⟩+

L0

2
∥ψk+1 − ψk∥2

= −βk∥∇ψJτk(πθk+1
, ϕψk)∥2 +

L0β
2
k

2
∥∇ψJτk(πθk+1

, ϕψk)∥2

8



≤ −βk
2
∥∇ψJτk(πθk+1

, ϕψk)∥2

≤ − (1− γ)βkτkρ
2
min

|S|

(
min
s,b

ϕψk(b | s)
)2

(Jτk(πθk , ϕψk)− Jτk(πθk , ϕτk(πθk)))

= − (1− γ)βkτkρ
2
min

|S|

(
min
s,b

ϕψk(b | s)
)2

δϕk ,

where the second inequality uses βk ≤ 1
L0

and the third inequality follows from Lemma 4.

Using Eq. (39) of Lemma 10 to further simplify this inequality,

Jτk(πθk+1
, ϕψk+1

)− Jτk(πθk+1
, ϕψk) ≤ −3(1− γ)βkτkρ

2
minc

2

8|S|
δϕk . (43)

For the third term of (41), we have from the L0-smoothness of the value function derived in (36)

Jτk(πθk+1
, ϕψk)− Jτk(πθk , ϕψk) ≤ ⟨∇θJτk(πθk , ϕψk), θk+1 − θk⟩+

L0

2
∥θk+1 − θk∥2

= αk∥∇θJτk(πθk , ϕψk)∥2 +
L0α

2
k

2
∥∇θJτk(πθk , ϕψk)∥2

≤ 3αk
2

∥∇θJτk(πθk , ϕψk)∥2, (44)

where in the last inequality we use αkL0 ≤ 1.

Using Lemma 11 and Lemma 3 (7), we bound the last term of (41)

gτk(πθk)− gτk+1
(πθk+1

)

= gτk(πθk)− gτk(πθk+1
) + gτk(πθk+1

)− gτk+1
(πθk+1

)

≤ αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+ (τk − τk+1) log |A| (45)

Using (42)-(45) in (41), we have

δϕk+1 = δϕk +
(
Jτk+1

(πθk+1
, ϕψk+1

)−Jτk(πθk+1
, ϕψk+1

)
)
+
(
Jτk(πθk+1

, ϕψk+1
)−Jτk(πθk+1

, ϕψk)
)

+
(
Jτk(πθk+1

, ϕψk)− Jτk(πθk , ϕψk)
)
+
(
gτk(πθk)− gτk+1

(πθk+1
)
)

≤ δϕk +
τk − τk+1

1− γ
log |B| − 3(1− γ)βkτkρ

2
minc

2

8|S|
δϕk +

3αk
2

∥∇θJτk(πθk , ϕψk)∥2

+
αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+ (τk − τk+1) log |A|

≤ (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
)δϕk +

3αk
2

∥∇θJτk(πθk , ϕψk)∥2

+
αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+
τk − τk+1

1− γ
(log |A|+ log |B|). (46)

Combining (40) and (46),

3δπk+1 + δϕk+1

≤ 3δπk +
3αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+

3(τk − τk+1)

1− γ
(log |A|+ log |B|) + (1− 3(1− γ)βkτkρ

2
minc

2

8|S|
)δϕk

9



+
αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
+

3αk
2

∥∇θJτk(πθk , ϕψk)∥2 +
τk − τk+1

1− γ
(log |A|+ log |B|)

≤ 3δπk + (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
)δϕk +

3αk
2

∥∇θJτk(πθk , ϕψk)∥2

+ 2αk∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − 2αk∥∇θJτk(πθk , ϕτk(πθk))∥2

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|).

Simplifying this inequality with

∥∇θJτk(πθk , ϕψk)∥2=∥∇θJτk(πθk , ϕτk(πθk))− (∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)) ∥2

≤∥∇θJτk(πθk , ϕτk(πθk))∥2 + ∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2

+ 2⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)⟩

≤ 5

4
∥∇θJτk(πθk , ϕτk(πθk))∥2+5∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2

we have

3δπk+1 + δϕk+1 ≤ 3δπk + (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
)δϕk − αk

8
∥∇θJτk(πθk , ϕτk(πθk))∥2

+
19αk
2

∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|) (47)

Using Lemma 4 to bound −∥∇θJτk(πθk , ϕτk(πθk))∥2,

− ∥∇θJτk(πθk , ϕτk(πθk))∥2

≤ −2(1− γ)τkρ
2
min

|S|

(
min
s,a

πθk(a | s)
)2

(Jτk(πτk(ϕτk(πθk)), ϕτk(πθk))− Jτk(πθk , ϕτk(πθk)))

≤ −2(1− γ)τkρ
2
min

|S|

(
min
s,a

πθk(a | s)
)2 (

Jτk(π
⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk))

)
, (48)

where the second inequality follows from

Jτk(πτk(ϕτk(πθk)), ϕτk(πθk)) = max
π

Jτk(π, ϕτk(πθk)) ≥ max
π

min
ϕ
Jτk(π, ϕ) = Jτk(π

⋆
τk
, ϕ⋆τk).

From Lemma 10 Eq. (38), − (mins,a πθk(a | s))2 ≤ − 3c2

8 , which further simplifies (48)

− ∥∇θJτk(πθk , ϕτk(πθk))∥2

≤ −2(1− γ)τkρ
2
min

|S|

(
min
s,a

πθk(a | s)
)2 (

Jτk(π
⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk))

)
= −2(1− γ)τkρ

2
min

|S|

(
min
s,a

πθk(a | s)
)2

δπk ≤ −3(1− γ)τkρ
2
minc

2

4|S|
δπk . (49)

For ∥∇θJτk(πθk , ϕτk(πθk)) − ∇θJτk(πθk , ϕψk)∥2, we have from the L0-smoothness of the value
function derived in (36)

∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 ≤ L2
0∥ϕτk(πθk)− ϕψk∥2

≤ 2 log(2)L2
0

τkρmin
(Jτk(πθk , ϕψk)−Jτk(πθk , ϕτk(πθk)))

=
2 log(2)L2

0

τkρmin
δϕk , (50)
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where the second inequality follows from Lemma 1 Eq. (4).

Using (49) and (50) in (47),

3δπk+1 + δϕk+1

≤ 3δπk + (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
)δϕk − αk

8
∥∇θJτk(πθk , ϕτk(πθk))∥2

+
19αk
2

∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 +
4(τk − τk+1)

1− γ
(log |A|+ log |B|)

≤ 3δπk + (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
)δϕk − 3αk(1− γ)τkρ

2
minc

2

32|S|
δπk

+
19 log(2)L2

0αk
τkρmin

δϕk +
4(τk − τk+1))

1− γ
(log |A|+ log |B|)

= 3(1− (1− γ)αkτkρ
2
minc

2

32|S|
)δπk + (1− 3(1− γ)βkτkρ

2
minc

2

8|S|
+

19 log(2)L2
0αk

τkρmin
)δϕk

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|). (51)

With the step size rule α0

β0
≤ min{ (1−γ)τ2

0 ρ
3
minc

2

152 log(2)L2
0|S| , 1}, we can simplify (51),

3δπk+1 + δϕk+1 ≤ 3(1− (1− γ)αkτkρ
2
minc

2

32|S|
)δπk + (1−3(1− γ)βkτkρ

2
minc

2

8|S|
+

19 log(2)L2
0αk

τkρmin
)δϕk

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|)

≤ 3(1− (1− γ)αkτkρ
2
minc

2

32|S|
)δπk

+ (1− 3(1− γ)βkτkρ
2
minc

2

8|S|
+

19 log(2)L2
0

τkρmin

(1− γ)ρ3minc
2τ2kβk

152 log(2)L2
0|S|

)δϕk

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|)

≤ 3(1− (1− γ)αkτkρ
2
minc

2

32|S|
)δπk + (1− (1− γ)βkτkρ

2
minc

2

4|S|
)δϕk

+
4(τk − τk+1)

1− γ
(log |A|+ log |B|)

≤ (1− (1− γ)αkτkρ
2
minc

2

32|S|
)(3δπk + δϕk ) +

4(τk − τk+1)

1− γ
(log |A|+ log |B|)

≤ (1− (1− γ)ρ2minc
2α0τ0

32|S|(k + h)
)

C1

(k + h)1/3
+

32τ0
3(1− γ)(k + h)4/3

(log |A|+ log |B|),

where the last inequality follows from (37) and Lemma 7.

Letting D1 =
(1−γ)ρ2minc

2

32|S| and D2 = 32
3(1−γ) (log |A|+ log |B|),

3δπk+1 + δϕk+1 ≤
(
1− D1α0τ0

k + h

)
C1τ0

(k + h)1/3
+

D2τ0
(k + 1)4/3

=

(
k + h−D1α0τ0 +

D2

C1

)
C1τ0

(k + h)4/3
.

By requiring

τ0 =
65536 log(2)(log |A|+ log |B|) + 96(1− γ)ρminc

2

3(1− γ)2ρ3minc
4α0

=
1

D1α0
(1 +

D2

C1
),

11



we have

3δπk+1 + δϕk+1 ≤
(
k + h−D1α0τ0 +

D2

C1

)
· C1τ0
(k + h)4/3

=

(
k + h− (1 +

D2

C1
) +

D2

C1

)
· C1τ0
(k + h)4/3

=
C1τ0(k − 1 + h)

(k + h)4/3
,

Since (k − 1 + h)3(k + 1 + h) ≤ (k + h)4 for all k ≥ 0 and h ≥ 1, we have

k − 1 + h

(k + h)4/3
=

(k − 1 + h)(k + 1 + h)1/3

(k + 1)4/3(k + 1 + h)1/3
≤ (k + h)4/3

(k + h)4/3(k + 1 + h)1/3
=

1

(k + 1 + h)1/3
,

which leads to

3δπk+1 + δϕk+1 ≤ C1τ0(k − 1 + h)

(k + h)4/3
≤ C1τ0

(k + 1 + h)1/3
=

ρminτ0c
2

64 log(2)(k + 1 + h)1/3
.

This finishes our induction and implies that for all k ≥ 0

Jτk(π
⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk)) ≤

C1τ0
3(k + h)1/3

,

Jτk(πθk , ϕψk)− Jτk(πθk , ϕτk(πθk)) ≤
C1τ0

(k + h)1/3
.

Bounding the difference between value functions with and without the regularization:

Ultimately, we are interested in J(π⋆, ϕ⋆)− J(πθk , ϕ0(πθk)) and J(πθk , ϕψk)− J(πθk , ϕ0(πθk)),
which measure the performance of πθk and ϕψk in the original un-regularized Markov game.

By Lemma 3 Eq. (6), (7), and (8),

Jτk(π
⋆
τk
, ϕ⋆τk)− J(π⋆, ϕ⋆) ≥ −τk log |B|

Jτk(πθk , ϕτk(πθk))− J(πθk , ϕ0(πθk)) ≤ τk log |A|

Jτk(πθk , ϕψk)− J(πθk , ϕψk) ≥ − τk
1− γ

log |B|.

Therefore,

J(π⋆, ϕ⋆)− J(πθk , ϕ0(πθk)) = J(π⋆, ϕ⋆)− Jτk(π
⋆
τk
, ϕ⋆τk) + Jτk(π

⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk))

+ Jτk(πθk , ϕτk(πθk))− J(πθk , ϕ0(πθk))

≤ τk log |B|+
C1τ0

3(k + h)1/3
+ τk log |A|

=
C1τ0 + 3(log |A|+ log |B|)τ0

3(k + h)1/3
,

and

J(πθk , ϕψk)− J(πθk , ϕ0(πθk)) = J(πθk , ϕψk)− Jτk(πθk , ϕψk)

+ Jτk(πθk , ϕψk)− Jτk(πθk , ϕτk(πθk))

+ Jτk(πθk , ϕτk(πθk))− J(πθk , ϕ0(πθk))

≤ τk
1− γ

log |B|+ C1τ0
(k + h)1/3

+ τk log |A|

≤ (1− γ)C1τ0 + (log |A|+ log |B|)τ0
(1− γ)(k + h)1/3

.
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Remark 2. To select α0, β0, τ0, and h, we first make τ0 = λh1/3 for some λ > 0 large enough. This
choice guarantees the validity of (32) (we just need δπ0 + δϕ0 ≤ C1λ). Viewing (33), it means

α0 =
65536 log(2)(log |A|+ log |B|) + 96(1− γ)ρminc

2

3(1− γ)2ρ3minc
4λh

1
3

.

Now that λ is fixed, to ensure (34), we choose h large enough to observe

65536 log(2)(log |A|+ log |B|) + 96(1− γ)ρminc
2

3(1− γ)2ρ3minc
4λh

=
α0

h
2
3

≤ (2LH + 4L2
HC2)λ+ (LH + 4L2

HC2) +
L2
HC2

λ
.

Once λ and h are chosen, α0, τ0, and h are determined. Finally, since (1−γ)τ2
0 ρ

3
minc

2

152 log(2)|S|L2
0
≤ 1, we just

need to select β0 ∈ [
152 log(2)|S|L2

0α0

(1−γ)τ2
0 ρ

3
minc

2 , 1
L0

]. Recall that L0 = LH(2τ0 + 1), it can be easily seen

that the lower bound 152 log(2)|S|L2
0α0

(1−γ)τ2
0 ρ

3
minc

2 = O( 1
λ3h1/3 ), which is much smaller than the upper bound

1
L0

= O( 1
τ0
) = O( 1

λh1/3 ) since λ was large enough.

B Proof of Lemmas

B.1 Proof of Lemma 1

For a given ϕ, let π̂ ∈ πτ (ϕ) (which is a possibly non-unique maximizer).

According to Mei et al. [2020][Lemma 26],

Jτ (π̂, ϕ)− Jτ (π, ϕ) =
τ

1− γ

∑
s∈S

dπ,ϕρ (s)DKL(π(· | s)||π̂(· | s)).

The Pinsker’s inequality states that for any two probability distributions p1 and p2

DKL(p1||p2) ≥
1

2 log(2)
∥p1 − p2∥21.

Using this inequality,

Jτ (π̂, ϕ)− Jτ (π, ϕ) =
τ

1− γ

∑
s∈S

dπ,ϕρ (s)DKL(π(· | s)||π̂(· | s))

≥ τ

2 log(2)(1− γ)

∑
s∈S

dπ,ϕρ (s)∥π(· | s)− π̂(· | s)∥21

≥ τ

2 log(2)(1− γ)

∑
s∈S

(1− γ)ρ(s)∥π(· | s)− π̂(· | s)∥21

≥ τ mins∈S ρ(s)

2 log(2)

∑
s∈S

∥π(· | s)− π̂(· | s)∥21

≥ τ mins∈S ρ(s)

2 log(2)
∥π − π̂∥2,

where the second inequality follows from the fact that dπ,ϕ̂ρ (s) ≥ (1 − γ)ρ(s) entry-wise. This
inequality means that π̂ ∈ πτ (ϕ) has to be unique, as no other policy can achieve the same value
function.

The same argument can be used to show Eq. (4).
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B.2 Proof of Lemma 2

Let (π1, ϕ1), (π2, ϕ2) be optimal solution pairs to the maximin and minimax problem, respectively,

(π1, ϕ1) ∈ argmax
π∈∆S

A

argmin
ϕ∈∆S

B

Jτ (π, ϕ) and (π2, ϕ2) ∈ argmin
ϕ∈∆S

B

argmax
π∈∆S

A

Jτ (π, ϕ). (52)

Since the policy simplex is a compact set, (π1, ϕ1) and (π2, ϕ2) exist and are well-defined. The
following minimax inequality always holds

Jτ (π1, ϕ1) = max
π∈∆S

A

min
ϕ∈∆S

B

Jτ (π, ϕ) ≤ min
ϕ∈∆S

B

max
π∈∆S

A

Jτ (π, ϕ) = Jτ (π2, ϕ2). (53)

We first want to show that π1 = πτ (ϕ1) and ϕ1 = ϕτ (π1). Since

Jτ (π1, ϕ1) = max
π∈∆S

A

min
ϕ∈∆S

B

Jτ (π, ϕ) = min
ϕ∈∆S

B

Jτ (π1, ϕ) = Jτ (π1, ϕτ (π1)),

we have ϕ1 ∈ ϕτ (π1), and Lemma 1 further implies ϕ1 = ϕτ (π1) is unique. In addition, we
know that π1 is the optimizer of gτ defined in (2). Let θ1 be an softmax parameter for π1 (e.g.
θ1(s, a) = log π(a | s) for all s, a). Since π1 is an optimizer of gτ in policy space, θ1 must also be
an (not necessarily unique) optimizer of g̃τ (θ) = minϕ Jτ (πθ, ϕ) in the parameter space. Therefore,
we have ∀θ ∈ RS×A

0 ≥ ⟨∇θgτ (πθ1), θ − θ1⟩ = ⟨∇θJτ (πθ1 , ϕ1), θ − θ1⟩, (54)

where the first equality follows from Danskin’s Theorem in (16). Since θ is not constrained, (54)
means that

∇θJτ (πθ1 , ϕ1) = 0,

implying that θ1 is a stationary point of

max
θ
Jτ (πθ, ϕ1).

By Lemma 4, every stationary point is also globally optimal. Therefore, we have π1 = πθ1 = πτ (ϕ1).

A consequence of π1 = πτ (ϕ1) and ϕ1 = ϕτ (π1) is that (π1, ϕ1) is the unique optimal solution
pair to the maximin problem, i.e. there does not exist (π̂1, ϕ̂1) ̸= (π1, ϕ1) such that (π̂1, ϕ̂1) ∈
argmaxπ∈∆S

A
argminϕ∈∆S

B
Jτ (π, ϕ). To see this, let us suppose that such a pair (π̂1, ϕ̂1) does

exist. Then, the only possibility is π̂1 ̸= π1 and ϕ̂1 ̸= ϕ1 by Lemma 1. Since π̂1 ̸= πτ (ϕ1) and
ϕ1 ̸= ϕτ (π̂1), we have

Jτ (π̂1, ϕ1) < Jτ (π1, ϕ1) = Jτ (π̂1, ϕ̂1) < Jτ (π̂1, ϕ1),

which creates a contradiction.

Similarly, it can be shown that

π2 = ϕτ (ϕ2), and ϕ2 = ϕτ (π2),

and that (π2, ϕ2) is the unique optimal solution pair to the minimax problem.

We now aim prove that (π1, ϕ1) = (π2, ϕ2), i.e. the minimax and maximin problem have the same
solution. Suppose (π1, ϕ1) ̸= (π2, ϕ2), which means that π1 ̸= π2 and ϕ1 ̸= ϕ2 have to hold due to
Lemma 1. Since π2 ̸= πτ (ϕ1) and ϕ1 ̸= ϕτ (π2), we have from (53)

Jτ (π2, ϕ1) < Jτ (π1, ϕ1) ≤ Jτ (π2, ϕ2) < Jτ (π2, ϕ1).

This is again a contradiction. Therefore, (π1, ϕ1) = (π2, ϕ2) has to be true. Then, (53) leads to

max
π∈∆S

A

min
ϕ∈∆S

B

Jτ (π, ϕ) = max
π∈∆S

A

min
ϕ∈∆S

B

Jτ (π, ϕ).

We also know that the Nash equilibrium has to be unique in this case, as the maximin and minimax
problems both have a unique solution pair that agrees with each other.
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B.3 Proof of Lemma 3

By the definition of the value function,

Jτ (π, ϕ)− Jτ ′(π, ϕ)

= E

[ ∞∑
k=0

γk
(
r (sk, ak, bk)− τ log π(ak | sk) + τ log ϕ(bk | sk)

)
| s0 ∼ ρ

]

− E

[ ∞∑
k=0

γk
(
r (sk, ak, bk)− τ ′ log π(ak | sk) + τ ′ log ϕ(bk | sk)

)
| s0 ∼ ρ

]

= E

[ ∞∑
k=0

γk
(
(τ − τ ′) log π(ak | sk) + (τ − τ ′) log ϕ(bk | sk)

)
| s0 ∼ ρ

]

=
τ − τ ′

1− γ
Es′∼dπ,ϕρ ,a∼π(·|s′),b∼ϕ(·|s′) [− log π(a | s′) + log ϕ(b | s′)]

=
τ − τ ′

1− γ
Es′∼dπ,ϕρ [H(π(· | s′))−H(ϕ(· | s′))],

where H denotes the entropy and is defined in (15).

We have the following upper and lower bound on the entropy

0 ≤ H(π(· | s′)) ≤ log |A|, 0 ≤ H(ϕ(· | s′)) ≤ log |B|.

Therefore, if τ ≥ τ ′ ≥ 0,

−τ − τ ′

1− γ
log |B| ≤ Jτ (π, ϕ)− Jτ ′(π, ϕ) ≤ τ − τ ′

1− γ
log |A|.

For any τ ≥ τ ′ ≥ 0,

Jτ (π
⋆
τ , ϕ

⋆
τ )− Jτ ′(π⋆τ ′ , ϕ⋆τ ′)

= max
π

min
ϕ
Jτ (π, ϕ)−min

ϕ
Jτ ′(π⋆τ ′ , ϕ)

≥ min
ϕ
Jτ (π

⋆
τ ′ , ϕ)−min

ϕ
Jτ ′(π⋆τ ′ , ϕ)

= min
ϕ

(
Jτ ′(π⋆τ ′ , ϕ) + (τ − τ ′)Hπ(ρ, π

⋆
τ ′ , ϕ)− (τ − τ ′)Hϕ(ρ, π

⋆
τ ′ , ϕ)

)
−min

ϕ
Jτ ′(π⋆τ ′ , ϕ)

≥ min
ϕ
Jτ ′(π⋆τ ′ , ϕ) + (τ−τ ′)min

ϕ
Hπ(ρ, π

⋆
τ ′ , ϕ) + (τ − τ ′)min

ϕ
−Hϕ(ρ, π

⋆
τ ′ , ϕ)−min

ϕ
Jτ ′(π⋆τ ′ , ϕ)

= (τ − τ ′)

(
min
ϕ

Hπ(ρ, π
⋆
τ ′ , ϕ)−max

ϕ
Hϕ(ρ, π

⋆
τ ′ , ϕ)

)
≥ (τ − τ ′)(0− log |B|)
= −(τ − τ ′) log |B|,

where the second inequality comes from the fact that minx f1(x)+f2(x) ≥ minx f1(x)+minx f2(x)
for any functions f1, f2 of the same domain.

It can be shown by a similar argument

Jτ (π
⋆
τ , ϕ

⋆
τ )− Jτ ′(π⋆τ ′ , ϕ⋆τ ′) ≤ (τ − τ ′) log |A|.

In addition, for any τ ≥ τ ′ ≥ 0 and any policy π,

Jτ (π, ϕτ (π))− Jτ ′(π, ϕ0(π))

= min
ϕ
Jτ (π, ϕ)−min

ϕ
Jτ ′(π, ϕ)

= min
ϕ

(Jτ ′(π, ϕ) + (τ − τ ′)Hπ(ρ, π, ϕ)− (τ − τ ′)Hϕ(ρ, π, ϕ))−min
ϕ
Jτ ′(π, ϕ)

≤
(
min
ϕ
Jτ ′(π, ϕ) + (τ − τ ′)max

ϕ
Hπ(ρ, π, ϕ) + (τ − τ ′)max

ϕ
(−Hϕ(ρ, π, ϕ))

)
−min

ϕ
Jτ ′(π, ϕ)
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= (τ − τ ′)

(
max
ϕ

Hπ(ρ, π, ϕ)−min
ϕ

Hϕ(ρ, π, ϕ)

)
≤ (τ − τ ′) log |A|.

It can be shown by a similar argument

Jτ (π, ϕτ (π))− Jτ ′(π, ϕ0(π)) ≥ −(τ − τ ′) log |B|.

B.4 Proof of Lemma 4

Adapting Mei et al. [2020][Lemma 15], we have for any θ ∈ RS×A and ψ ∈ RS×B

∥∇θJτ (πθ, ϕψ)∥2 ≥ 2τρmin

|S|

(
min
s,a

πθ(a | s)
)2
∥∥∥∥∥d

πτ (ϕψ),ϕψ
ρ

d
πθ,ϕψ
ρ

∥∥∥∥∥
−1

∞

(Jτ (πτ (ϕψ), ϕψ)−Jτ (πθ, ϕψ)) ,

∥∇ψJτ (πθ, ϕψ)∥2 ≥ 2τρmin

|S|

(
min
s,b

ϕψ(b | s)
)2
∥∥∥∥∥dπθ,ϕτ (πθ)ρ

d
πθ,ϕψ
ρ

∥∥∥∥∥
−1

∞

(Jτ (πθ, ϕψ)− Jτ (πθ, ϕτ (πθ))) .

Then, the first inequality follows from d
πτ (ϕψ),ϕψ
ρ (s) ≤ 1 and dπθ,ϕψρ (s) ≥ (1−γ)ρ(s) ≥ (1−γ)ρmin

for all s ∈ S , and the second inequality from d
πθ,ϕτ (πθ)
ρ ≤ 1 and dπθ,ϕψρ ≥ (1− γ)ρmin for all s ∈ S .

B.5 Proof of Lemma 5

Mei et al. [2020][Lemma 7, Lemma 14] establishes the smoothness condition of the value function
and the regularization entropy with respect to one player’s policy, i.e.

∥∇θJ(πθ1 , ϕψ1)−∇θJ(πθ2 , ϕψ1)∥ ≤ LV ∥θ1 − θ2∥,
∥∇ψJ(πθ1 , ϕψ1)−∇ψJ(πθ1 , ϕψ2)∥ ≤ LV ∥ψ1 − ψ2∥.

Therefore, we only need to show

∥∇θJ(πθ1 , ϕψ1
)−∇θJ(πθ1 , ϕψ2

)∥ ≤ LV ∥ψ1 − ψ2∥,
∥∇ψJ(πθ1 , ϕψ)−∇ψJ(πθ2 , ϕψ)∥ ≤ LV ∥θ1 − θ2∥.

Given a fixed θ and ψ, with arbitrary vectors u and v such that ∥u∥2 = ∥v∥2 = 1, we define the
shorthand notation

πα,u = πθ+αu, ϕβ,v = πψ+βv.

According to Zeng et al. [2021a][Lemma B.5],∑
a

∣∣∣∣dπα,u(a | s)
dα

∣∣∣∣ ≤ 2,
∑
b

∣∣∣∣dϕβ,v(b | s)dβ

∣∣∣∣ ≤ 2,

∑
a,b

∣∣∣∣dπα(a | s)
dα

dϕβ,v(b | s)
dβ

∣∣∣∣ ≤
(∑

a

∣∣∣∣dπα(a | s)
dα

∣∣∣∣
)(∑

b

∣∣∣∣dϕβ(b | s)dβ

∣∣∣∣
)

≤ 4.

Let P (α, β, u, v) ∈ R|S||A||B|×|S||A||B| denote the state-action transition matrix induced by the policy
pair (πα,u, ϕβ,v)

P (α, β, u, v)(s,a,b)→(s′,a′,b′) = P(s′ | s, a, b)πα,u(a′ | s′)ϕβ,v(b′ | s′).

Differentiating with respect to α and β,[
d2P (α, β, u, v)

dαdβ

]
(s,a,b)→(s′,a′,b′)

=
dπα,u(a

′ | s′)
dα

dϕβ,v(b
′ | s′)

dβ
P(s′ | s, a, b),
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which implies for any vector x[
d2P (α, β, u, v)

dαdβ
x

]
s,a,b

=
∑
s′,a′,b′

dπα(a
′ | s′)

dα

dϕβ,v(b
′ | s′)

dβ
P(s′ | s, a, b)xs′,a′,b′ .

The ℓ∞ norm of this quantity can be upper bounded

max
∥u∥2=∥v∥2=1

∥∥∥∥d2P (α, β, u, v)dαdβ
x

∥∥∥∥
∞

= max
s,a,b

max
∥u∥2=∥v∥2=1

∣∣∣∣∣
[
d2P (α, β, u, v)

dαdβ
x

]
s,a,b

∣∣∣∣∣
= max

s,a,b
max

∥u∥2=∥v∥2=1

∣∣∣∣∣∣
∑
s′,a′,b′

dπα(a
′ | s′)

dα

dϕβ,v(b
′ | s′)

dβ
P(s′ | s, a, b)xs′,a′,b′

∣∣∣∣∣∣
≤ max

s,a,b

∑
s′

P(s′ | s, a, b)∥x∥∞ max
∥u∥2=∥v∥2=1

∑
a′,b′

∣∣∣∣dπα(a′ | s′)dα

dϕβ,v(b
′ | s′)

dβ

∣∣∣∣
≤ 4∥x∥∞. (55)

Using an identical argument, we can show that

max
∥u∥2=∥v∥2=1

∥∥∥∥dP (α, β, u, v)dα
x

∥∥∥∥
∞

≤
∑
a

∣∣∣∣dπα,u(a | s)
dα

∣∣∣∣ ∥x∥∞ ≤ 2∥x∥∞, (56)

max
∥u∥2=∥v∥2=1

∥∥∥∥dP (α, β, u, v)dβ
x

∥∥∥∥
∞

≤
∑
b

∣∣∣∣dπβ,v(b | s)dβ

∣∣∣∣ ∥x∥∞ ≤ 2∥x∥∞. (57)

With M(α, β, u, v) = (I − γP (α, β, u, v))−1 and r = [r(s0, a0, b0), · · · , r(s|S|, a|A|, b|B|)],

Qπα,u,ϕβ,v (s, a, b) = e⊤s,a,bM(α, β, u, v)r.

Taking the derivatives,

dQπα,u,ϕβ,v (s, a, b)

dα
= γe⊤s,a,bM(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)r,

dQπα,u,ϕβ,v (s, a, b)

dβ
= γe⊤s,a,bM(α, β, u, v)

dP (α, β, u, v)

dβ
M(α, β, u, v)r.

Taking the second-order derivative,

d2Qπα,u,ϕβ,v (s, a, b)

dαdβ

= γ2e⊤s,a,bM(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)

dP (α, β, u, v)

dβ
M(α, β, u, v)r

+ γ2e⊤s,a,bM(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)r

+ γe⊤s,a,bM(α, β, u, v)
d2P (α, β, u, v)

dαdβ
M(α, β, u, v)r

Using M(α, β, u, v)1 = (I − γP (α, β, u, v))−11 = 1
1−γ1 and inequalities (55) and (57), we have

max
∥u∥2=∥v∥2=1

∣∣∣∣dQπα,u,ϕβ,v (s, a, b)dα

∣∣∣∣≤∥γM(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)r∥∞≤ 2γ

(1− γ)2
,

max
∥u∥2=∥v∥2=1

∣∣∣∣dQπα,u,ϕβ,v (s, a, b)dβ

∣∣∣∣≤∥γM(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)r∥∞≤ 2γ

(1− γ)2
,
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and

max
∥u∥2=∥v∥2=1

∣∣∣∣d2Qπα,u,ϕβ,v (s, a, b)dαdβ

∣∣∣∣
≤ ∥γ2M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)

dP (α, β, u, v)

dβ
M(α, β, u, v)r∥∞

+ ∥γ2M(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)r∥∞

+ ∥γM(α, β, u, v)
d2P (α, β, u, v)

dαdβ
M(α, β, u, v)r∥∞

≤ 2γ2

(1− γ)3
+

4γ

(1− γ)2
.

Since V πα,u,ϕβ,v (s) =
∑
a,b πα,u(a | s)ϕβ,v(b | s)Qπα,u,ϕβ,v (s, a, b),

d2V πα,u,ϕβ,v (s)

dαdβ
=
∑
a,b

dπα,u(a | s)
dα

dϕβ,v(b | s)
dβ

Qπα,u,ϕβ,v (s, a, b)

+
∑
a,b

πα,u(a | s)ϕβ,v(b | s)
d2Qπα,u,ϕβ,v (s, a, b)

dαdβ

+
∑
a,b

dπα,u(a | s)
dα

ϕβ,v(b | s)
dQπα,u,ϕβ,v (s, a, b)

dβ

+
∑
a,b

πα,u(a | s)dϕβ,v(b | s)
dβ

dQπα,u,ϕβ,v (s, a, b)

dα
.

Therefore,

max
∥u∥2=∥v∥2=1

∣∣∣∣dV πα,u,ϕβ,v (s)dαdβ

∣∣∣∣ ≤ 4

1− γ
+

(
2γ2

(1− γ)3
+

4γ

(1− γ)2

)
+ 2

4γ

(1− γ)2
≤ 8

(1− γ)3
,

which implies

∥∇θJ(πθ, ϕψ1
)−∇θJ(πθ, ϕψ2

)∥ ≤ 8

(1− γ)3
∥ψ1 − ψ2∥.

Similarly, it follows by the same argument that

∥∇ψJ(πθ1 , ϕψ)−∇ψJ(πθ2 , ϕψ)∥ ≤ 8

(1− γ)3
∥θ1 − θ2∥.

Zeng et al. [2021a][Lemma B.5] implies

∥J(πθ1 , ϕψ1)− J(πθ2 , ϕψ2)∥ ≤ 2

(1− γ)2
(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥), (58)

and we simply use 2
(1−γ)2 ≤ LV .

B.6 Proof of Lemma 6

We will prove the first two inequalities on the Lipschitz gradient of Hπ . The next two inequalities are
completely symmetric and can be derived using an identical argument.

Mei et al. [2020][Lemma 14] implies

∥∇θHπ(s, πθ1 , ϕψ1
)−∇θHπ(s, πθ2 , ϕψ1

)∥ ≤ LH∥θ1 − θ2∥,
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so we just need to show

∥∇θHπ(s, πθ1 , ϕψ1
)−∇θHπ(s, πθ1 , ϕψ2

)∥ ≤ LH∥ψ1 − ψ2∥,
∥∇ψHπ(s, πθ1 , ϕψ1

)−∇ψHπ(s, πθ2 , ϕψ1
)∥ ≤ LH∥θ1 − θ2∥,

∥∇ψHπ(s, πθ1 , ϕψ1
)−∇ψHπ(s, πθ1 , ϕψ2

)∥ ≤ LH∥ψ1 − ψ2∥.
(59)

Given a fixed θ and ψ, with arbitrary vectors u and v such that ∥u∥2 = ∥v∥2 = 1, we define the
shorthand notation

πα,u = πθ+αu, ϕβ,v = πψ+βv.

Note that to show (59), it suffices to show for any u, v∣∣∣∣d2Hπ(s, πα,u, ϕβ,v)

dαdβ

∣∣∣∣ ≤ LH,

∣∣∣∣d2Hπ(s, πα,u, ϕβ,v)

dβ2

∣∣∣∣ ≤ LH.

We define the state transition matrix P ∈ R|S|×|S| such that

P (α, β, u, v)s→s′ =
∑
a,b

P(s′ | s, a, b)πα,u(a | s)ϕβ,v(b | s).

Let M(α, β, u, v) = (I − γP (α, β, u, v))−1. Then, we can re-write Hπ(s, π, ϕ) in the matrix form

Hπ(s, π, ϕ) = e⊤s M(α, β, u, v)hα,u,

where hα,u = [hα,u(s0), · · · , hα,u(s|S|)] ∈ R|S| is a vector with

hα,u(s) = −
∑
a

πα,u(a | s) log πα,u(a | s).

According to Mei et al. [2020][Lemma 14],∥∥∥∥dhα,udα

∥∥∥∥
∞

≤ 2 log |A|∥u∥2 = 2 log |A|.

Taking the derivatives of Hπ(s, π, ϕ),

dHπ(s, πα,u, ϕβ,v)

dα

= γe⊤s M(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)hα,u + e⊤s M(α, β, u, v)

dhα,u
dα

,

and taking second order derivative

d2Hπ(s, πα,u, ϕβ,v)

dαdβ

= γ2e⊤s M(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)

dP (α, β, u, v)

dβ
M(α, β, u, v)hα,u

+ γ2e⊤s M(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)hα,u

+ γe⊤s M(α, β, u, v)
d2P (α, β, u, v)

dαdβ
M(α, β, u, v)hα,u

+ γe⊤s M(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dhα,u
dα

.

Using a similar line of argument to Mei et al. [2020][Eq. (192)-(195)] and analysis in Lemma 5 of
our work, we can show that for any vector x∥∥∥∥dP (α, β, u, v)dα

x

∥∥∥∥
∞

≤ 2∥x∥∞,
∥∥∥∥dP (α, β, u, v)dβ

∥∥∥∥
∞

≤ 2∥x∥∞,
∥∥∥∥d2P (α, β, u, v)dαdβ

∥∥∥∥
∞

≤ 4∥x∥∞.
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From the fact that ∥M(α, β, u, v)x∥∞ ≤ 1
1−γ ∥x∥∞, we have for any vectors u, v∣∣∣∣d2Hπ(s, πα,u, ϕβ,v)

dαdβ

∣∣∣∣
≤ γ2

∥∥∥∥M(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)

dP (α, β, u, v)

dβ
M(α, β, u, v)hα,u

∥∥∥∥
+ γ2

∥∥∥∥M(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)hα,u

∥∥∥∥
+ γ

∥∥∥∥M(α, β, u, v)
d2P (α, β, u, v)

dαdβ
M(α, β, u, v)hα,u

∥∥∥∥
+ γ

∥∥∥∥M(α, β, u, v)
dP (α, β, u, v)

dβ
M(α, β, u, v)

dhα,u
dα

∥∥∥∥
≤ 4γ2 log |A|

(1− γ)3
+

4γ2 log |A|
(1− γ)3

+
4γ log |A|
(1− γ)2

+
2γ

(1− γ)2
· 2 log |A|

≤ 8 log |A|
(1− γ)3

.

Now it remains to be shown ∣∣∣∣d2Hπ(s, πα,u, ϕβ,v)

dβ2

∣∣∣∣ ≤ LH.

From the eye of the second player, Hπ(s, πθ, ϕψ) is simply the value function of a regular MDP
with itself as the only agent (the first player’s policy combines with P) with the reward function
r(s, b) = −

∑
a∈A πθ(a | s) log πθ(a | s) ∈ [0, log |A|]. Therefore, by Lemma 5 which is derived

with reward bounded between 0 and 1, we know∣∣∣∣d2Hπ(s, πα,u, ϕβ,v)

dβ2

∣∣∣∣ ≤ log |A|LV ≤ LH.

To show the Lipschitz continuity, we note that∣∣∣∣dHπ(s, πα,u, ϕβ,v)

dα

∣∣∣∣
=

∣∣∣∣γe⊤s M(α, β, u, v)
dP (α, β, u, v)

dα
M(α, β, u, v)hα,u + e⊤s M(α, β, u, v)

dhα,u
dα

∣∣∣∣
≤ γ∥M(α, β, u, v)

dP (α, β, u, v)

dα
M(α, β, u, v)hα,u∥+ ∥M(α, β, u, v)

dhα,u
dα

∥

≤ 4γ log |A|
(1− γ)2

+
2 log |A|
1− γ

≤ LH.

To show the Lipschitz continuity of Hπ with respect to ψ, we use the same argument as above and
note that from the eye of the second player, Hπ(s, πθ, ϕψ) is simply the value function of a regular
MDP with itself as the only agent (the first player’s policy combines with P) with the reward function
r(s, b) = −

∑
a∈A πθ(a | s) log πθ(a | s) ∈ [0, log |A|]. Adapting (58), we have∣∣∣∣dHπ(s, πα,u, ϕβ,v)

dβ

∣∣∣∣ ≤ 2

(1− γ)2
· log |A| ≤ LH.

B.7 Proof of Lemma 7

We first show that for any k̃ > 0, we have 1
k̃a

− 1
(k̃+1)a

≤ 8
3(k̃+1)a+1

.

Since the integer k̃ is positive, it can be lower bound by k̃+1
2 .

1

k̃a
− 1

(k̃ + 1)a
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=
(k̃ + 1)a − k̃a

k̃a(k̃ + 1)a
≤ 2((k̃ + 1)a − k̃a)

(k̃ + 1)2a
=

2((k̃ + 1)a − k̃a)
(
(k̃ + 1)1−a + k̃1−a

)
(k̃ + 1)2a

(
(k̃ + 1)1−a + k̃1−a

)
≤

2((k̃ + 1)a − k̃a)
(
(k̃ + 1)1−a + k̃1−a

)
(k̃ + 1)2a

(
(k̃ + 1)1−a + 1

2 (k̃ + 1)1−a
) =

4((k̃ + 1)a − k̃a)
(
(k̃ + 1)1−a + k̃1−a

)
3(k̃ + 1)a+1

=
4
(
(k̃ + 1)− k̃a(k̃ + 1)1−a + k̃1−a(k̃ + 1)a − k̃

)
3(k̃ + 1)a+1

=
4
(
1− k̃a(k̃ + 1)1−a + k̃1−a(k̃ + 1)a

)
3(k̃ + 1)a+1

≤ 8

3(k̃ + 1)a+1
,

where the last inequality follows from

k̃1−a(k̃ + 1)a − k̃a(k̃ + 1)1−a ≤ (k̃ + 1)1−a(k̃ + 1)a − k̃ak̃1−a = k̃ + 1− k̃ = 1.

Choosing k̃ = k + h yields

1

(k + h)a
− 1

(k + 1 + h)a
≤ 8

3(k + 1 + h)a+1
≤ 8

3(k + h)a+1
.

B.8 Proof of Lemma 8

The property of the min and max function implies that

max
s,a

(π⋆τ (a | s)− πθk(a | s)) + min
s,a

πθk(a | s) ≥ min
s,a

π⋆τ (a | s).

Since the three terms are all non-negative, the inequality holds after taking the square

(min
s,a

π⋆τ (a | s))2 ≤ (max
s,a

(π⋆τ (a | s)− πθk(a | s)) + min
s,a

πθk(a | s))2

≤ 4

3
(min
s,a

πθk(a | s))2 + 4(max
s,a

(π⋆τ (a | s)− πθk(a | s)))2.

Re-arranging the terms,

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+ 3

(
max
s,a

π⋆τ (a | s)− πϕk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+ 3∥π⋆τ − πϕk∥2

From Lemma 1,

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+ 3∥π⋆τ − πϕk∥2

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+
6 log(2)

τρmin
(Jτ (π

⋆
τ , ϕ

⋆
τ )− Jτ (πθk , ϕ

⋆
τ ))

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+
6 log(2)

τρmin
(Jτ (π

⋆
τ , ϕ

⋆
τ )− Jτ (πθk , ϕτ (πθk)))

= −3

4

(
min
s,a

π⋆τ (a | s)
)2

+
6 log(2)

τρmin
δπk (60)
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Since 3δπk + δϕk ≤ (1− α(1−γ)τρ2minc
2

32|S| )k(3δπ0 + δϕ0 ) ≤ 3δπ0 + δϕ0 ≤ ρminc
2

64 log(2) , we have δπk ≤ ρminc
2

64 log(2) .
Then, (60) implies

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τ (a | s)
)2

+
6 log(2)

τρmin
δπk ≤ −3c2

4
+

3c2

32
≤ −3c2

8
.

Similarly, the property of the min and max function implies that

max
s,b

(ϕ⋆τ (b | s)− ϕψk(b | s)) + min
s,b

ϕψk(b | s) ≥ min
s,b

ϕ⋆τ (b | s).

Again, all three terms are non-negative, which means that the inequality is preserved after taking the
square

(min
s,b

ϕ⋆τ (b | s))2 ≤ (min
s,b

ϕψk(b | s) + max
s,b

(ϕ⋆τ (b | s)− ϕψk(b | s)))2

≤ 4

3
(min
s,b

ϕψk(b | s))2 + 4(max
s,b

(ϕ⋆τ (b | s)− ϕψk(b | s)))2,

which leads to

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 + 3(max
s,b

(ϕ⋆τ (b | s)− ϕψk(b | s)))2

≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 + 3∥ϕ⋆τ − ϕψk∥2

≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 + 6∥ϕτ (πθk)− ϕψk∥2 + 6∥ϕ⋆τ − ϕτ (πθk)∥2. (61)

From Lemma 1,

∥ϕτ (πθk)− ϕψk∥2 ≤ 2 log(2)

τρmin
(Jτ (πθk , ϕψk)− Jτ (πθk , ϕτ (πθk))) =

2 log(2)

τρmin
δϕk , (62)

and

∥ϕ⋆τ − ϕτ (πθk)∥2 ≤ 2 log(2)

τρmin
(Jτ (πθk , ϕ

⋆
τ )− Jτ (πθk , ϕτ (πθk)))

≤ 2 log(2)

τρmin
(Jτ (π

⋆
τ , ϕ

⋆
τ )− Jτ (πθk , ϕτ (πθk)))

=
2 log(2)

τρmin
δπk , (63)

Using (62) and (63) in (61),

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 + 6∥ϕτ (πθk)− ϕψk∥2 + 6∥ϕ⋆τ − ϕτ (πθk)∥2

≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 +
12 log(2)

τρmin
δϕk +

12 log(2)

τρmin
δπk

= −3

4
(min
s,b

ϕ⋆τ (b | s))2 +
12 log(2)

τρmin
(δπk + δϕk ).

3δπk + δ
ϕ
k ≤ (1− α(1−γ)τρ2minc

2

32|S| )k(3δπ0 + δϕ0 ) ≤ 3δπ0 + δϕ0 ≤ ρminc
2

64 log(2) guarantees δπk + δ
ϕ
k ≤ ρminc

2

32 log(2) .
Using this in the inequality above, we have

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τ (b | s))2 +
12 log(2)

τρmin
(δπk + δϕk ) ≤ −3c2

4
+

3c2

8
≤ −3c2

8
.
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B.9 Proof of Lemma 9

From Lemma 4, for any ψ ∈ R|S|×|B|

Jτ (πθ2 , ϕψ)−Jτ (πθ2 , ϕτ (πθ2))≤
|S|

2τρmin (mins,a ϕψ(a | s))2

∥∥∥∥∥d
πθ2 ,ϕτ (πθ2 )
ρ

d
πθ2 ,ϕψ
ρ

∥∥∥∥∥
∞

∥∇ψJτ (πθ2 , ϕψ)∥2

≤ |S|
2τ(1− γ) (mins,a ϕψ(a | s))2

∥∇ψJτ (πθ2 , ϕψ)∥2,

where the second inequality follows by an argument similar to (48). Letting ψ be the parameter that
parameterizes ϕτ (πθ1), we have

Jτ (πθ2 , ϕτ (πθ1))− Jτ (πθ2 , ϕτ (πθ2))

≤ |S|
2τ(1− γ) (mins,a ϕτ (πθ1)(a | s))2

∥∇ψJτ (πθ2 , ϕτ (πθ1))∥2

=
|S|

2τ(1− γ) (mins,a ϕτ (πθ1)(a | s))2
∥∇ψJτ (πθ2 , ψ

⋆
ρ,τ (πθ1))−∇ψJτ (πθ1 , ψ

⋆
ρ,τ (πθ1))∥2

≤ L2|S|
2τ(1− γ) (mins,a ϕτ (πθ1)(a | s))2

∥θ1 − θ2∥2,

where the last inequality follows from the fact that for any θ1, θ2 ∈ R|S|×|A|, ψ1, ψ2 ∈ R|S|×|B|

∥∇ψJτ (πθ1 , ϕψ1
)−∇ψJτ (πθ2 , ϕψ2

)∥ ≤ ∥∇ψJ(πθ1 , ϕψ1
)−∇ψJ(πθ2 , ϕψ2

)∥
+ τ∥∇ψHπ(s, πθ1 , ϕψ1

)−∇ψHπ(s, πθ2 , ϕψ2
)∥

+ τ∥∇ψHϕ(s, πθ1 , ϕψ1
)−∇ψHϕ(s, πθ2 , ϕψ2

)∥
≤ L(∥θ1 − θ2∥+ ∥ψ1 − ψ2∥), (64)

which is a result of Lemmas 5 and 6.

By Lemma 1, we also have

Jτ (πθ2 , ϕτ (πθ1))− Jτ (πθ2 , ϕτ (πθ2)) ≥
τρmin

2 log(2)
∥ϕτ (πθ1)− ϕτ (πθ2)∥2.

Combining the two inequalities and re-arranging the terms, we have

∥ϕτ (πθ1)− ϕτ (πθ2)∥ ≤
√
|S| log(2)L√

(1− γ)ρminτ (mins,a ϕτ (πθ1)(a | s))
∥θ1 − θ2∥. (65)

Therefore, by (17),

∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk+1
, ϕτ (πθk+1

))∥
≤ L∥θk − θk+1∥+ L∥ϕτ (πθk)− ϕτ (πθk+1

)∥

≤ L

(
1 +

√
|S| log(2)L√

(1− γ)ρminτ (mins,a ϕτ (πθk)(a | s))

)
∥θk − θk+1∥

Due to the Danskin’s Theorem (16), this implies that we can perform the expansion

Jτ (πθk , ϕτ (πθk))− Jτ (πθk+1
, ϕτ (πθk+1

))

≤ −⟨∇θJτ (πθk , ϕτ (πθk)), θk+1 − θk⟩

+
L

2

(
1 +

√
|S| log(2)L√

(1− γ)ρminτ (mins,a ϕτ (πθk)(a | s))

)
∥θk+1 − θk∥2

≤ −αk⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕψk)⟩

+
Lα2

k

2

(
1 +

√
|S| log(2)L√

(1− γ)ρminτ (mins,a ϕτ (πθk)(a | s))

)
∥∇θJτ (πθk , ϕψk)∥2. (66)
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Note that by the property of the min function

min
s,a

ϕτ (πθk)(a | s) ≥ min
s,a

ϕ⋆τ (a | s)−max
s,a

(ϕ⋆τ (a | s)− ϕτ (πθk)(a | s))

≥ min
s,a

ϕ⋆τ (a | s)− ∥ϕ⋆τ − ϕτ (πθk)∥

≥ c−

√
2 log(2)

τρmin
(δπk + δϕk ), (67)

where the last inequality uses the same argument as in (72). Since (37) implies δπk + δϕk ≤
ρminc

2τ
64 log(2)(k+1)1/3

, we further have

min
s,a

ϕτ (πθk)(a | s) ≥ c−

√
2 log(2)

τρmin
(δπk + δϕk ) ≥ c(1−

√
1

32
) ≥

c
√

log(2)

2
.

Using this bound in (66),

Jτ (πθk , ϕτ (πθk))− Jτ (πθk+1
, ϕτ (πθk+1

))

≤ −αk⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕψk)⟩

+
Lα2

k

2

(
1 +

√
|S| log(2)L√

(1− γ)ρminτ (mins,a ϕτ (πθ1)(a | s))

)
∥∇θJτ (πθk , ϕψk)∥2

≤ −αk⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕψk)⟩

+
Lα2

k

2

(
1 +

2
√
|S|L√

(1− γ)ρminτc

)
∥∇θJτ (πθk , ϕψk)∥2, (68)

With the step size choice αk ≤
(
L+

2
√

|S|L2

√
(1−γ)ρminτc

)−1

, we get

Jτ (πθk , ϕτ (πθk))− Jτ (πθk+1
, ϕτ (πθk+1

))

≤ −αk⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕψk)⟩

+
Lα2

k

2

(
1 +

2
√
|S|L√

(1− γ)ρminτc

)
∥∇θJτ (πθk , ϕψk)∥2

≤ −αk⟨∇θJτ (πθk , ϕτ (πθk)),∇θJτ (πθk , ϕψk)⟩

+
αk
2
∥∇θJτ (πθk , ϕψk)∥2

=
αk
2
∥∇θJτ (πθk , ϕτ (πθk))−∇θJτ (πθk , ϕψk)∥2 − ∥∇θJτ (πθk , ϕτ (πθk))∥2.

B.10 Proof of Lemma 10

The property of the min and max function implies that

max
s,a

(π⋆τk(a | s)− πθk(a | s)) + min
s,a

πθk(a | s) ≥ min
s,a

π⋆τk(a | s).

Since the three terms are all non-negative, the inequality holds after taking the square

(min
s,a

π⋆τk(a | s))2 ≤ (max
s,a

(π⋆τk(a | s)− πθk(a | s)) + min
s,a

πθk(a | s))2

≤ 4

3
(min
s,a

πθk(a | s))2 + 4(max
s,a

(π⋆τk(a | s)− πθk(a | s)))2.

Re-arranging the terms,

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+ 3

(
max
s,a

π⋆τk(a | s)− πϕk(a | s)
)2
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≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+ 3∥π⋆τk − πϕk∥2

From Lemma 1,

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+ 3∥π⋆τk − πϕk∥2

≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+
6 log(2)

τkρmin
(Jτk(π

⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕ

⋆
τk
))

≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+
6 log(2)

τkρmin
(Jτk(π

⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk)))

= −3

4

(
min
s,a

π⋆τk(a | s)
)2

+
6 log(2)

τkρmin
δπk , (69)

Since 3δπk + δϕk ≤ ρτkc
2

64 log(2) , we have δπk ≤ ρτkc
2

64 log(2) , which along with (69) implies

−
(
min
s,a

πθk(a | s)
)2

≤ −3

4

(
min
s,a

π⋆τk(a | s)
)2

+
6 log(2)

τkρmin
δπk ≤ −3c2

4
+

3c2

32
≤ −3c2

8
.

Similarly, the property of the min and max function implies that

max
s,b

(ϕ⋆τk(b | s)− ϕψk(b | s)) + min
s,b

ϕψk(b | s) ≥ min
s,b

ϕ⋆τk(b | s).

Again, all three terms are non-negative, which means that the inequality is preserved after taking the
square

(min
s,b

ϕ⋆τk(b | s))
2 ≤ (min

s,b
ϕψk(b | s) + max

s,b
(ϕ⋆τk(b | s)− ϕψk(b | s)))2

≤ 4

3
(min
s,b

ϕψk(b | s))2 + 4(max
s,b

(ϕ⋆τk(b | s)− ϕψk(b | s)))2,

which leads to

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 + 3(max

s,b
(ϕ⋆τk(b | s)− ϕψk(b | s)))2

≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 + 3∥ϕ⋆τk − ϕψk∥2

≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 + 6∥ϕτk(πθk)− ϕψk∥2 + 6∥ϕ⋆τk − ϕτk(πθk)∥2.

(70)

From Lemma 1,

∥ϕτk(πθk)− ϕψk∥2 ≤ 2 log(2)

τkρmin
(Jτk(πθk , ϕψk)− Jτk(πθk , ϕτk(πθk))) =

2 log(2)

τkρmin
δϕk , (71)

and

∥ϕ⋆τk − ϕτk(πθk)∥2

≤ 2 log(2)

τkρmin

(
Jτk(πθk , ϕ

⋆
τk
)− Jτk(πθk , ϕτk(πθk))

)
≤ 2 log(2)

τkρmin

((
Jτk(πθk , ϕ

⋆
τk
)− Jτk(πθk , ϕψk)

)
+
(
Jτk(πθk , ϕψk)− Jτk(πθk , ϕτk(πθk))

)︸ ︷︷ ︸
δϕk

)

=
2 log(2)

τkρmin

((
Jτk(πθk , ϕ

⋆
τk
)−Jτk(πθk , ϕτk(πθk))

)
+ (Jτk(πθk , ϕτk(πθk))−Jτk(πθk , ϕψk)) + δϕk

)
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≤ 2 log(2)

τkρmin

(
Jτk(πθk , ϕ

⋆
τk
)− Jτk(πθk , ϕτk(πθk)) + δϕk

)
≤ 2 log(2)

τkρmin

(
Jτk(π

⋆
τk
, ϕ⋆τk)− Jτk(πθk , ϕτk(πθk)) + δϕk

)
=

2 log(2)

τkρmin

(
δπk + δϕk

)
, (72)

where the third inequality follows from Jτk(πθk , ϕτk(πθk))− Jτk(πθk , ϕψk) ≤ 0.

Using (71) and (72) in (70),

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 + 6∥ϕτk(πθk)− ϕψk∥2 + 6∥ϕ⋆τk − ϕτk(πθk)∥2

≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 +

12 log(2)

τkρmin
δϕk +

12 log(2)

τkρmin
(δπk + δϕk )

= −3

4
(min
s,b

ϕ⋆τk(b | s))
2 +

12 log(2)

τkρmin
(δπk + 2δϕk ).

3δπk + δϕk ≤ ρτkc
2

64 log(2) implies that δπk + 2δϕk ≤ ρτkc
2

32 log(2) . Using this in the inequality above,

−(min
s,b

ϕψk(b | s))2 ≤ −3

4
(min
s,b

ϕ⋆τk(b | s))
2 +

12 log(2)

τkρmin
(δπk + 2δϕk ) ≤ −3c2

4
+

12c2

32
≤ −3c2

8
.

B.11 Proof of Lemma 11

From Lemma 4, for any ψ ∈ R|S|×|B|

Jτk(πθ2 , ϕψ)− Jτk(πθ2 , ϕτk(πθ2))

≤ |S|
2τkρmin (mins,a ϕψ(a | s))2

∥∥∥∥∥d
πθ2 ,ϕτk (πθ2 )
ρ

d
πθ2 ,ϕψ
ρ

∥∥∥∥∥
∞

∥∇ψJτk(πθ2 , ϕψ)∥2

≤ |S|
2τk(1− γ) (mins,a ϕψ(a | s))2

∥∇ψJτk(πθ2 , ϕψ)∥2,

where the second inequality follows by an argument similar to (48). Letting ψ be the parameter that
parameterizes ϕτk(πθ1) and defining Lk = LH(2τk + 1), we have

Jτk(πθ2 , ϕτk(πθ1))− Jτk(πθ2 , ϕτk(πθ2))

≤ |S|
2τk(1− γ) (mins,a ϕτk(πθ1)(a | s))2

∥∇ψJτk(πθ2 , ϕτk(πθ1))∥2

=
|S|

2τk(1− γ) (mins,a ϕτk(πθ1)(a | s))2
∥∇ψJτk(πθ2 , ψ

⋆
ρ,τk

(πθ1))−∇ψJτk(πθ1 , ψ
⋆
ρ,τk

(πθ1))∥2

≤ L2
k|S|

2τk(1− γ) (mins,a ϕτk(πθ1)(a | s))2
∥θ1 − θ2∥2,

where the last inequality uses the same argument as (64).

By Lemma 1, we also have

Jτk(πθ2 , ϕτk(πθ1))− Jτk(πθ2 , ϕτk(πθ2)) ≥
τkρmin

2 log(2)
∥ϕτk(πθ1)− ϕτk(πθ2)∥2.

Combining the two inequalities and re-arranging the terms, we have

∥ϕτk(πθ1)− ϕτk(πθ2)∥ ≤
√

|S| log(2)Lk√
(1− γ)ρminτk (mins,a ϕτk(πθ1)(a | s))

∥θ1 − θ2∥. (73)
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Therefore, by (17),

∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk+1
, ϕτk(πθk+1

))∥
≤ Lk∥θk − θk+1∥+ Lk∥ϕτk(πθk)− ϕτk(πθk+1

)∥

≤ Lk

(
1 +

√
|S| log(2)Lk√

(1− γ)ρminτk (mins,a ϕτk(πθk)(a | s))

)
∥θk − θk+1∥

Due to the Danskin’s Theorem (16), this implies that we can perform the expansion

Jτk(πθk , ϕτk(πθk))− Jτk(πθk+1
, ϕτk(πθk+1

))

≤ −⟨∇θJτk(πθk , ϕτk(πθk)), θk+1 − θk⟩

+
Lk
2

(
1 +

√
|S| log(2)Lk√

(1− γ)ρminτk (mins,a ϕτk(πθk)(a | s))

)
∥θk+1 − θk∥2

≤ −αk⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕψk)⟩

+
Lkα

2
k

2

(
1 +

√
|S| log(2)Lk√

(1− γ)ρminτk (mins,a ϕτk(πθk)(a | s))

)
∥∇θJτk(πθk , ϕψk)∥2. (74)

Note that by the property of the min function

min
s,a

ϕτk(πθk)(a | s) ≥ min
s,a

ϕ⋆τk(a | s)−max
s,a

(ϕ⋆τk(a | s)− ϕτk(πθk)(a | s))

≥ min
s,a

ϕ⋆τk(a | s)− ∥ϕ⋆τk − ϕτk(πθk)∥

≥ c−

√
2 log(2)

τkρmin
(δπk + δϕk ), (75)

where the last inequality uses the same argument as in (72). Since (37) implies δπk + δϕk ≤
ρminc

2τ0
64 log(2)(k+1)1/3

, we further have

min
s,a

ϕτk(πθk)(a | s) ≥ c−

√
2 log(2)

τkρmin
(δπk + δϕk ) ≥ c(1−

√
1

32
) ≥

c
√
log(2)

2
.

Using this bound in (74),

Jτk(πθk , ϕτk(πθk))− J
πθk+1

,ϕτk (πθk+1
)

τk (ρ)

≤ −αk⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕψk)⟩

+
Lkα

2
k

2

(
1 +

√
|S| log(2)Lk√

(1− γ)ρminτk (mins,a ϕτk(πθ1)(a | s))

)
∥∇θJτk(πθk , ϕψk)∥2

≤ −αk⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕψk)⟩

+
Lkα

2
k

2

(
1 +

2
√
|S|Lk√

(1− γ)ρminτkc

)
∥∇θJτk(πθk , ϕψk)∥2

≤ −αk⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕψk)⟩+
α2
k

2

(
Lk +

C2L
2
k

τk

)
∥∇θJτk(πθk , ϕψk)∥2.

(76)

The condition on h, which is α0

h2/3 ≤ (2LH + 4L2
HC2)

τ0
h1/3 + (LH + 4L2

HC2) +
L2

HC2h
1/3

τ0
, can be

equivalently expressed as α0

(
L0 +

C2L
2
0

τ0

)
≤ 1. Since αk decays faster than τk, this guarantees for

all k ≥ 0

αk

(
Lk +

C2L
2
k

τk

)
≤ 1.
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Using this inequality in (76), we get

Jτk(πθk , ϕτk(πθk))− Jτk(πθk+1
, ϕτk(πθk+1

))

≤ −αk⟨∇θJτk(πθk , ϕτk(πθk)),∇θJτk(πθk , ϕψk)⟩+
αk
2
∥∇θJτk(πθk , ϕψk)∥2

=
αk
2

(
∥∇θJτk(πθk , ϕτk(πθk))−∇θJτk(πθk , ϕψk)∥2 − ∥∇θJτk(πθk , ϕτk(πθk))∥2

)
.

C Discussion on the Initial Condition for Corollary 1 and Theorem 2

We show that as τ0→∞, both δπ0/τ0 and δϕ0/τ0 approach 0. Decomposing δπ0/τ0, we have

δπ0
τ0

=
1

τ0

(
J(π⋆τ0 , ϕ

⋆
τ0)− J(πθ0 , ϕτ0(πθ0))

)
(77)

+
(
Hπ(ρ, π

⋆
τ0 , ϕ

⋆
τ0)−Hπ(ρ, πθ0 , ϕτ0(πθ0))

)
+
(
Hϕ(ρ, π

⋆
τ0 , ϕ

⋆
τ0)−Hϕ(ρ, πθ0 , ϕτ0(πθ0))

)
(78)

The original value functions are bounded within [0, 1
1−γ ], which implies that the term (77) decays

inversely with τ0 in the worst case. When τ0 → ∞, the Nash equilibrium policy pair π⋆τ0 and ϕ⋆τ0
both approach the uniform distribution, and so does ϕτ0(πθ0). This means that (78) approaches 0.
Therefore, as the sum of (77) and (78), δπk /τ0 decays to 0 as τ0 → ∞. A similar argument can be
used for δϕ0 /τ0.

D Experiment Details

We first discuss the design of the completely mixed Markov game. The dimension of state space is 2,
and so is the dimension of the action spaces of both players. Using s1, s2 to denote the two states, we
can essentially describe P as a 2 × 2 × 2 × 2 tensor where P(s′ | s, ·, ·) is a 2 × 2 matrix for any
s, s′ ∈ S with rows corresponding to the action of the first player and columns corresponding to the
second player

P(s1 | s1, ·, ·) =
[

0.2 0.5
0.5 0.1

]
, P(s2 | s1, ·, ·) =

[
0.8 0.5
0.5 0.9

]
,

P(s1 | s2, ·, ·) =
[

0.3 0.2
0.6 0.2

]
, P(s2 | s2, ·, ·) =

[
0.7 0.8
0.4 0.8

]
.

Similarly, the reward function can be described by a 2× 2× 2 tensor where r(s, ·, ·) is a 2× 2 matrix
for any s ∈ S with rows corresponding to the action of the first player and columns corresponding to
the second player

r(s1, ·, ·) =
[

1 2
2 1

]
, r(s2, ·, ·) =

[
6 4
3 10

]
.

Under the initial distribution ρ = [0.5, 0.5]⊤ and discount factor γ = 0.9, the (approximate) Nash
equilibrium of this Markov game is

π⋆(· | s1) = [0.812, 0.188], π⋆(· | s2) = [0.837, 0.163],

ϕ⋆(· | s1) = [0.880, 0.120], ϕ⋆(· | s2) = [0.597, 0.403].

To design the Markov game that does not observe Assumption 2, we use the same transition probability
matrices as in the completely mixed Markov game case. The reward function is

r(s1, ·, ·) =
[

1 2
3 4

]
, r(s2, ·, ·) =

[
1 2
3 4

]
.
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Under the initial distribution ρ = [0.5, 0.5]⊤ and discount factor γ = 0.9, it can be easily seen that
the Nash equilibrium of this Markov game is unique and is

π⋆(· | s1) = [0, 1], π⋆(· | s2) = [0, 1],

ϕ⋆(· | s1) = [1, 0], ϕ⋆(· | s2) = [1, 0].

Since the Nash equilibrium consists of a pair of deterministic policies, Assumption 2 is not satisfied
in this case.
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