
A Additional Details for D2C

A.1 Training diffusion models

We use the notations in [84] to denote the α values and consider the forward diffusion model in [42];
a non-Markovian version that motivates other sampling procedures can be found in [84], but the
training procedure is largely identical. We refer to the reader to these two papers for more details.

First, we define the following diffusion forward process for a series {αt}Tt=0:

q(x(α1:T )|x(α0)) :=

T∏
t=1

q(x(αt)|x(αt−1)), (7)

q(x(αt)|x(αt−1)) := N
(√

αt
αt−1

x(αt−1),

(
1− αt

αt−1

)
I

)
, (8)

and from standard derivations for Gaussian we have that:

q(x(αt−1)|x(αt),x(α0)) = N

( √
αt−1 − αt
1− αt

x(α0) +
αt(1− αt−1)

αt−1(1− αt)
x(αt)︸ ︷︷ ︸

µ̃(x(αt),x(α0);αt,αt−1)

,
1− αt−1

1− αt

(
1− αt

αt−1

)
I

)
.

(9)

As a variational approximation to the above, [42] considered a specific type of pθ(x(αt−1)|x(αt)):

pθ(x
(αt−1)|x(αt)) = N

(
µθ(x

(αt);αt, αt−1), (σ(αt))2I
)
, (10)

where µθ and σ(αt) are parameters, and we remove the superscript of pθ to indicate that there are no
additional discretization steps in between (the sampling process is explicitly defined). Then, we have
the standard variational objective as follows:

L := Eq

[
log q(x(αT )|x(α0)) +

T∑
t=2

log q(x(αt−1)|x(αt),x(α0))−
T∑
t=1

log p
(αt,αt−1)
θ (x(αt−1)|x(αt))

]

≡ Eq

 T∑
t=2

DKL(q(x(αt−1)|x(αt),x(α0)))‖pθ(x(αt−1)|x(αt)))︸ ︷︷ ︸
Lt−1

− log pθ(x
(α0)|x(α1))

 ,
where≡ denotes “equal up to a constant that does not depend on θ” and each Lt−1 is a KL divergence
between two Gaussian distributions. Let us assume that the standard deviation of pθ(x(αt−1)|x(αt))
is equal to that of q(x(αt−1)|x(αt),x(α0))), which we denote as σ(αt). And thus:

Lt−1 = Eq
[

1

2(σ(αt))2
‖µθ(x(αt);αt, αt−1)− µ̃(x(αt),x(α0);αt, αt−1)‖

2

2

]
. (11)

With a particular reparametrization from µθ to εθ (which tries to model the noise vector at αt):

µθ(x
(αt);αt, αt−1) =

√
αt−1

αt

(
x(αt) −

√
αt−1 − αt√
(1− αt)αt

· εθ(x(αt);αt)

)
, (12)

the objective function can be simplified to:

Lt−1 = Ex0,ε

[
(αt−1 − αt)

2(σ(αt))2(1− αt)αt
‖ε− εθ(x(αt);αt, αt−1)‖

2

2

]
(13)

where x(αt) =
√
αtx0 +

√
1− αtε. Intuitively, this is a weighted sum of mean-square errors between

the noise model εθ and the actual noise ε. Other weights can also be derived with different forward
processes that are non-Markovian [84], and in practice, setting the weights to 1 is observed to achieve
decent performance for image generation.
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A.2 DDIM sampling procedure

In this section, we discuss the detailed sampling procedure from x(0) ∼ N (0, I) (which is the
distribution with “all noise”8) to x(1) (which is the model distribution with “no noise”). More
specifically, we discuss a deterministic sampling procedure, which casts the generation procedure as
an implicit model [84]. Compared to other procedures (such as the one in DDPM [42]), this has the
advantage of better sample quality when few steps are allowed to produce each sample, as well as a
near-invertible mapping between x(0) and x(1). We describe this procedure in Algorithm 2, where
we can choose different series of α to control how many steps (and through which steps) we wish to
draw a sample. The DDIM sampling procedure corresponds to a particular discretization to an ODE,
we note that it is straightforward to also define the sampling procedure between any two α values.
Similarly, given an observation x(1) we can obtain the corresponding latent code x(0) by sampling
running Algorithm 2 with the sequence of α reversed.

Algorithm 2 Sampling with the DDIM procedure

1: Input: non-increasing series {αt}Tt=0 with αT = 0 and α0 = 1.
2: Sample x(1) ∼ N (0, I).
3: for k ← T to 1 do
4: Update x(αt−1) from x(αt) such that√

1

αt−1
x(αt−1) =

√
1

αt
x(αt) +

(√
1− αt−1

αt−1
−
√

1− αt
αt

)
· εθ(x(αt);αt)

5: end for
6: Output x(0).

A.3 Contrastive representation learning

In contrastive representation learning, the goal is to distinguish a positive pair (y,w) ∼ p(y,w) from
(m − 1) negative pairs (y,w) ∼ p(y)p(w). In our context, the positive pairs are representations
from the same image, and negative pairs are representations from different images; these images
are pre-processed with strong data augmentations [14] to encourage rich representations. With two
random, independent data augmentation procedures defined as aug1 and aug2, we define p(y,w)
and p(y)p(w) via the following sampling procedure:

(y,w) ∼ p(y,w) : y ∼ qφ(z(1)|aug1(x)),w ∼ qφ(z(1)|aug2(x)),x ∼ pdata(x),

(y,w) ∼ p(y)p(w) : y ∼ qφ(z(1)|aug1(x1)),w ∼ qφ(z(1)|aug2(x2)),x1,x2 ∼ pdata(x).

For a batch of n positive pairs {(yi,wi)}ni=1, the contrastive predictive coding (CPC, [94]) objective
is defined as:

LCPC(g; qφ) := E

[
1

n

n∑
i=1

log
m · g(yi,wi)

g(yi,wi) +
∑m−1
j=1 g(yi,wi,j)

]
(14)

for some positive critic function g : Y×Z → R+, where the expectation is taken over n positive pairs
(yi,wi) ∼ p(y,w) and n(m− 1) negative pairs (yi,wi,j) ∼ p(y)p(w). Another interpretation to
CPC is that it performs m-way classification where the ground truth label is assigned to the positive
pair. The representation learner qφ then aims to maximize the CPC objective, or to minimize the
following objective:

−LC(qφ) := min
g
−LCPC(g; qφ), (15)

Different specific implementations, such as MoCo [37, 16, 18] and SimCLR [14] can all be treated as
specific implementations of this objective function. In this paper, we considered using MoCo-v2 [14]
as our implementation for LC objective; in principle, other implementations to CPC can also be
integrated into D2C as well.

8Technically, the maximum noise level αT should have αT → 0 but not equal to 0, but we can approximate
the distribution of x(αT ) with that of x(0) arbitrarily well in practice.

18



A.4 Training D2C

In Algorithm 3, we describe a high-level procedure that trains the D2C model; we note that this
procedure does not have any adversarial components. On the high-level, this is the integration of
three objectives: the reconstruction objective via the autoencoder, the diffusion objective over the
latent space, and the contrastive objective over the latent space. In principle, the [reconstruction],
[constrastive], and [diffusion] components can be optimized jointly or separately; we observe that
normalizing the latent z(1) with a global mean and standard deviation before applying the diffusion
objective helps learning the diffusion model with a fixed α series.

Algorithm 3 Training D2C
Input: Data distribution pdata.
while training do

[Draw samples with data augmentation]

Draw m samples x0:m−1 ∼ pdata(x).
Draw (m+ 1) data augmentations aug0, . . . augm−1 and aug0.
for i← 0 to m− 1 do

Draw z
(1)
i ∼ qφ(z(1)|augi(x)).

end for
Draw z

(1)
0 ∼ qφ(z(1)|aug0(x)).

[Reconstruction]

Reconstruct x0 ∼ pθ(x|z(1)0 )

Minimize Lrecon = − log pθ(x|z(1)0 ) over θ and φ with gradient descent.

[Contrastive]

Define a classification task: assign label 1 to (z
(1)
0 , z

(1)
0 ) and label 0 to (z

(1)
0 , z

(1)
i ) for i 6= 0.

Define LCPC(g; qφ) as the loss to minimize for the above task, with g as the classifier.
Define ĝ as a minimizer to the classifier objective LCPC(g; qφ).
Minimize LCPC(ĝ; qφ) over φ with gradient descent.

[Diffusion]

Sample ε ∼ N (0, I), t ∼ Uniform(1, . . . , T ).
Define z

(αt)
0 =

√
αtz

(0)
0 +

√
1− αtε.

Minimize ‖ε− εθ(z(αt)
0 ;αt)‖

2

2 over θ with gradient descent.

end while

A.5 Few-shot conditional generation

In order to perform few-shot conditional generation, we need to implement line 4 in Algorithm 1,
where an unnormalized (energy-based) model is defined over the representations. After we have
defined the energy-based model, we implement a procedure to draw samples from this unnormalized
model. We note that our approach (marked in teal boxes) is only one way of drawing valid samples,
and not necessarily the optimal one. Furthermore, these implementations can also be done over the
image space (which is the case for DDIM-I), which may costs more to compute than over the latent
space since more layers are needed in a neural network to process it.

For generation from labels, we would define the energy-based model over latents as the product of
two components: the first is the “prior” over z(1) as defined by the diffusion model and the second
is the “likliehood” of the label c being true given the latent variable z(1). This places high energy
values to the latent variables that are likely to occur under the diffusion prior (so generated images
are likely to have high quality) as well as latent variables that have the label c. To sample from this
energy-based model, we perform a rejection sampling procedure, where we reject latent samples from
the diffusion model that have low discrminator values. This procedure is describe in Algorithm 4.
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Algorithm 4 Generate from labels

Input model rψ(c|z(1)), target label c.

Define latent energy-based model

E(ẑ(1)) = rψ(c|ẑ(1)) · p(1)θ (ẑ(1))

Sample from E(ẑ(1))

while True do
Sample ẑ(1) ∼ p(1)θ (ẑ(1));
Sample u ∼ Uniform(0, 1);
If u < rψ(c|ẑ(1)) then break.

end while

Output x̂ ∼ pθ(x|ẑ(1)).

For generation from manipulation constraints, we need to further define a prior that favors closeness to
the given latent variable so that the manipulated generation is close to the given image except for the
label z. If the latent variable for the original image is z(1) ∼ qφ(z(1)|x), then we define the closeness
via the L2 distance between the it and the manipulated latent. We obtain the energy-based model by
multiplying this with the diffusion “prior” and the classifier “likelihood”. Then, we approximately
draw samples from this energy by taking a gradient step from the original latent value z(1) and then
regularizing it with the diffusion prior; this is described in Algorithm 5. A step size η, diffusion noise
magnitude α, and the diffusion steps from α to 1 are chosen as hyperparameters. We choose one η
for each attribute, α ≈ 0.9, and number of discretization steps to be 59; we tried α ∈ [0.65, 0.9] and
found that our results are not very sensitive to values within this range. We list the η values for each
attribute (details in Appendix C).

We note that a more principled approach is to take gradient with respect to the entire energy function
(e.g., for Langevin dynamics), where the gradient over the DDIM can be computed with instantaneous
change-of-variables formula [13]; we observe that our current version is computationally efficient
enough to perform well.

Algorithm 5 Generate from manipulation constraints

Input model rψ(c|z(1)), target label c, original image x.
Acquire latent z(1) ∼ qφ(z(1)|x);
Fit a model rψ(c|z(1)) over {(z(1)i , ci)}ni=1

Define latent energy-based model

E(ẑ(1)) = rψ(c|ẑ(1)) · p(1)θ (ẑ(1)) · ‖z(1) − ẑ(1)‖
2

2

Sample from E(ẑ(1)) (approximate)

Choose hyperparameters η > 0, α ∈ (0, 1).
Take a gradient step z̄(1) ← z(1) + η∇zrψ(c|z)|z=z(1) .
Add noise z̃(α) ←

√
αz̄(1) +

√
1− αε.

Sample ẑ(1) ∼ p
(α,1)
θ (z(1)|z̃(α)) with DDIM, i.e., use the diffusion prior to “de-

noise”.

Output x̂ ∼ pθ(x|ẑ(1)).

9The results are not particularly sensitive to how the discretization steps are chosen. For example, one can
take 0.9→ 0.92→ 0.96→ 0.98→ 0.99→ 1.
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B Formal Statements and Proofs

B.1 Relationship to maximum likelihood

Theorem 1. (informal) For any valid {αi}Ti=0, there exists some weights ŵ : {αi}Ti=1 → R+ for the
diffusion objective such that −LD2 is a variational lower bound to the log-likelihood, i.e.,

−LD2(θ, φ; ŵ) ≤ Epdata [log pθ(x)], (6)

where pθ(x) := Ez0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.

Theorem 3. (formal) Suppose that x ∈ Rd. For any valid {αi}Ti=0, let ŵ satisfy:

∀t ∈ [2, . . . , T ], ŵ(αt) =
(1− αt)αt−1

2(1− αt−1)2αt
(16)

ŵ(α1) =
1− α1

2(2π)dα1
(17)

then:

−LD2(θ, φ; ŵ) +H(qφ(z(1)|x)) ≤ Epdata [log pθ(x)] (18)

where pθ(x) := Ex0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.

Proof. First, we have that:

Epdata(x)[log pθ(x)] = Epdata(x)

[
log
∑
z(1)

pθ(x|z(1))pθ(z
(1))

]
(19)

≥ Epdata(x),qφ(z(1))[log pθ(x|z(1)) + log pθ(z
(1))− log qφ(z(1)|x)] (20)

= Epdata(x),qφ(z(1)|x)[log pθ(x|z(1))−DKL(qφ(z(1)|x)‖pθ(z(1)))]. (21)

where we use Jensen’s inequality here. Compared with the objective for D2:

−LD2(θ, φ;w) := Ex∼pdata,z(1)∼qφ(z(1)|x)[log p(x|z(1))− `diff(z
(1);w, θ)], (22)

and it is clear the proof is complete if we show that:

H(qφ(z(1)|x))− Ez(1)∼qφ(z(1)|x)[`diff(z
(1); ŵ, θ)] (23)

≤−DKL(qφ(z(1)|x)‖pθ(z(1))) (24)

=H(qφ(z(1)|x)) + Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] (25)

or equivalently:

Ez(1)∼qφ(z(1)|x)[`diff(z
(1); ŵ, θ)] ≤ Ez(1)∼qφ(z(1)|x)[log pθ(z

(1))] (26)

Let us apply variational inference with an inference model q(z(α1:T )|z(1)) where α0 = 1 and αT = 0:

Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] = Ez(1)∼qφ(z(1)|x)[log

∑
z

(
pθ(z

(αT ))

T∏
t=1

pθ(z
(αt−1)|z(αt))

)
]

≥ Ez(α0:T ) [log pθ(z
(αT )) +

T∑
t=1

log pθ(z
(αt−1)|z(αt))− log q(z(α1:T )|z(α0))] (27)

≥ Ez(α0:T )

[
log pθ(z

(αT ))− log q(z(αT )|z(α0)) (28)

−
T∑
t=2

DKL(q(z(αt−1)|z(αt), z(α0))‖pθ(z(αt−1)|z(αt)))︸ ︷︷ ︸
Lt−1

+ log pθ(z
(α0)|z(α1))

]
where we remove the superscript of pθ to indicate that there are no intermediate discretization steps
between αt−1 and αt. Now, for t ≥ 2, let us consider pθ and qφ with the form in Equations 9
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and 10 respectively, which are both Gaussian distributions (restrictions to pθ will still give lower
bounds). Then we can model the standard deviation of pθ(x(αt−1)|x(αt)) to be equal to that of
q(x(αt−1)|x(αt),x(α0))). Under this formulation, the KL divergence for Lt−1 is just one between
two Gaussians with the same standard deviations and is a weighted Euclidean distance between the
means. Using the derivation from Equation (11) to Equation (13), we have that:

Lt−1 = Ez0,ε

[
(1− αt)αt−1

2(1− αt−1)2αt
‖ε− εθ(z(αt);αt, αt−1)‖

2

2

]
(29)

which gives us the weights for ŵ for α2:T . For pθ(z(α0)|z(α1)) let us model it to be a Gaussian with
mean

µθ(z
(α1);α1, α0) =

z(α1) −
√

1− αtεθ(z(α1);α1, α0)
√
α1

and standard deviation 1/
√

2π (chosen such that normalization constant is 1). Thus, with

z(0) =
z(α1) −

√
1− αtε√
α1

we have that:

log pθ(z
(α0)|z(α1)) =

1− α1

2(2π)dα1
‖ε− εθ(z(α1);α1, α0)‖

2

2 (30)

which gives us the weight of ŵ for α1. Furthermore:

Ez(α0:T ) [log pθ(z
(αT ))− q(z(αT )|z(α0))] = 0 (31)

because z(αT ) ∼ N (0, I) for both pθ and q. Therefore, we have that:

Ez(1)∼qφ(z(1)|x)[`diff(z
(1); ŵ, θ)] ≤ Ez(1)∼qφ(z(1)|x)[log pθ(z

(1))] (32)

which completes the proof.

B.2 D2 models address latent posterior mismatch in VAEs

Theorem 2. (informal) Let pθ(z) = N (0, 1). For any ε > 0, there exists a qφ(z) with an (ε, 0.49)-
prior hole, such that DKL(qφ‖pθ) ≤ log 210and W2(qφ, pθ) < γ for any γ > 0, where W2 is the
2-Wasserstein distance.
Theorem 4. (formal) Let pθ(z) = N (0, I) where z ∈ Rd. For any ε > 0, δ < 0.5, there exists a
distribution qφ(z) with an (ε, δ)-prior hole, such that DKL(qφ‖pθ) ≤ log 2 and W2(qφ, pθ) < γ for
any γ > 0, where W2 is the 2-Wasserstein distance.

Proof. Let us define a function f : R≥0 → [0, 1] such that for any Euclidean ball B(0, R) centered
at 0 with radius R:

f(R) :=

∫
B(0,R)

pθ(z)dz, (33)

i.e., f(R) measures the probability mass of the Gaussian distribution pθ(z) within B(0, R). As
df/dR > 0 for R > 0, f is invertible.

Now we shall construct qφ(z). First, let qφ(z) = pθ(z) whenever ‖z‖2 ≥ f−1(2δ); then for any n,
we can find a sequence {r0, r1, . . . , r2n} such that:

r0 = 0, r2n = f−1(2δ), f(ri)− f(ri−1) = f−1(2δ)δ/n for all k ∈ {1, . . . , 2n}, (34)

Intuitively, we find 2n circles with radii {r0, . . . , r2n} whose masses measured by pθ(z) is an
arithmetic progression {0, δ/2n, . . . , 2δ}. We then define qφ(z) for ‖z‖ < f−1(2δ) as follows:

qφ(z) =

{
2 · pθ(z) if ‖z‖ ∈

⋃n−1
k=0 [r2k, r2k+1)

0 otherwise
(35)

10This is reasonably low for realistic VAE models (NVAE [91] reports a KL divergence of around 2810 nats).
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Figure 7: Illustration of the construction in 2d. When we use more rings, the prior hole and upper
bound of KL divergence are constant but the upper bound of Wasserstein distance decreases.

Intuitively, qφ is defined by moving all the mass from ring (2k + 1) to ring 2k. Note that this qφ(z)
is a valid probability distribution because:∫

Rd
qφ(z)dz =

∫
B(0,f−1(2δ))

qφ(z)dz +

∫
Bc(0,f−1(2δ))

qφ(z)dz (36)

= 2

∫
B(0,f−1(2δ))

pθ(z)I

(
‖z‖ ∈

n−1⋃
i=0

[r2k, r2k+1)

)
dz +

∫
Bc(0,f−1(2δ))

pθ(z)dz

(37)

=

∫
B(0,f−1(2δ))

pθ(z)dz +

∫
Bc(0,f−1(2δ))

pθ(z)dz = 1 (38)

Next, we validate that qφ satisfies our constraints in the statement.

Prior hole Apparently, if we choose S =
⋃n−1
k=0 [r2k+1, r2k+2), then

∫
S pθ(z)dz = δ and∫

S qφ(z)dz = 0; so S instantiates a (ε, δ)-prior hole.

KL divergence We note that qφ(z) ≤ 2pθ(z) is true for all z, so
DKL(qφ(z)‖pθ(z)) = Ez∼qφ(z)[log qφ(z)− log pθ(z)] ≤ log 2.

2 Wasserstein Distance We use the Monge formulation:

W2(qφ(z), 2pθ(z)) = min
T :qφ=T]pθ

∫
Rd
‖z− T (z)‖22pθ(z)dz (39)

where T is any transport map from pθ to qφ. Consider the transport map T̂ such that:

T̂ (z) =

{
z if qφ(z) ≥ 0

z · f−1(f(‖z‖)− f(r2k+1) + kδ/n) otherwise, for k such that ‖z‖2 ≤ [r2k+1, r2k+2)

(40)
which moves the mass in [r2k+1, r2k+2) to [r2k, r2k+1). From this definition, we have that
‖T̂ (z)− z‖2 ≤ maxk∈{0,...,n−1}(r2k+2 − r2k). Moreover, since by definition,

2δ/n =

∫
B(0,r2k+2)

pθ(z)dz−
∫
B(0,r2k)

pθ(z)dz (41)

> π(r2
2k+2 − r2

2k) min
z:‖z‖∈[r2k,r2k+2)

pθ(z) (42)

> π(r2k+2 − r2k)2 min
z:‖z‖∈[r2k,r2k+2)

pθ(z) (43)

We have that

W2(qφ(z), 2pθ(z)) ≤ max
k∈{0,...,n−1}

(r2k+2 − r2k)2 <
2δ

πnminz:‖z‖2≤r2n pθ(z)
(44)

<
2δ

πnminz:‖z‖2≤r2n pθ(f
−1(2δ)n)

(45)

for any vector n with norm 1. Note that the above inequality is inversely proportional to n, which
can be any integer. Therefore, for a fixed δ, W2(qφ(z), 2pθ(z)) = O(1/n); so for any γ, there exists
n such that W2(qφ(z), 2pθ(z)) < γ, completing the proof.
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Table 5: Hyperparameters across different datasets

Hyperparameter CIFAR-10
32x32

CIFAR-100
32x32

CelebA-64
64x64

fMoW
64x64

CelebA-HQ-256
256x256

FFHQ-256
256x256

# of epochs 1000 1000 300 300 200 100

batch size per GPU 32 32 16 16 3 3

# initial channels in enc, 128 128 64 64 24 24

spatial dims of z 16*16 16*16 32*32 32*32 64*64 64*64

# channel in z 8 8 5 5 8 8

MoCo-v2 queue size 65536 65536 65536 65536 15000 15000

Diffusion feature map res. 16,8,4,2 16,8,4,2 32,16,8,4,1 32,16,8,4,1 64,32,16,8,2 64,32,16,8,2

λ−1 17500 17500 17500 17500 17500 17500

learning rate 0.001 0.001 0.001 0.001 0.001 0.001

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

# GPUs 8 8 4 4 8 8

GPU Type 16 GB V100 16 GB V100 12 GB Titan X 12 GB Titan X 16 GB V100 16 GB V100

Total training time (h) 24 24 120 120 96 96

Note on DDIM prior preventing the prior hole For a noise level α, we have that:

q(α)(z(α)) = Ez(1)∼q(1)(z(1) [N (
√
αz(1), (1− α)I)] (46)

as α → 0, DKL(q(α)(z(α))‖N (0, I)) → 0. From Pinsker’s inequality and the definition of (ε, δ)-
prior hole:

δ − ε ≤ DTV(q(α)(z(α)),N (0, I))) ≤
√

1

2
DKL(q(α)(z(α))‖N (0, I)), (47)

we should not expect to see any (ε, δ)-prior hole where the difference between δ and ε is large.

C Experimental details

C.1 Architecture details and hyperparameters used for training

We modify the NVAE [91] architecture by removing the “Combiner Cells” in both encoder and
decoder. For the diffusion model, we use the same architecture with different number of channel
multiplications, as used in [42, 84]. For Contrastive learning, we use the MoCo-v2 [16] algorithm with
augmentations such as RandomResizedCrop, ColorJitter, RandomGrayscale, RandomHorizontalFlip.

Additional details about the hyperparameters used are provided in Table 5.

C.2 Additional details for conditional generation

For rψ(c|z(1)) we consider training a linear model over the latent space, which has the advantage
of being computationally efficient. For conditional generation on labels, we reject samples if their
classifier return are lower than a certain threshold (we used 0.5 for all our experiments). For
conditional image manipulation, we consider the same step size η for each attribute: η = 10 for red
lipstick and η = 15 for blond. We note that these values are not necessarily the optimal ones, as the
intensity of the change can grow with a choice of larger η values.

C.3 Amazon Mechanical Turk procedure

The mechanical turk evaluation is done for different attributes to find out how evaluators evaluate the
different approaches. The evaluators are asked to compare a pair of images, and find the best image,
which retains the identity as well as contains the desired attribute. Figure 8 a) shows the instructions
that was given to the evaluators before starting the test and Figure 8 b) contains the UI shown to the
evaluators when doing comparison. Each evaluation task contains 10 pairwise comparisons, and we
perform 15 such evaluation tasks for each attribute. The reward per task is kept as 0.25$. Since each
task takes around 2.5 mins, so the hourly wage comes to be 6$ per hour.
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Figure 8: a) Instructions shown to human evaluators for Amazon Mechanical Turk for blond hair
before starting the evaluation and b) UI shown to the evaluators when doing comparison.

D Additional Results

Sample quality versus speed It is known that the in diffusion models, one could achieve higher
sample qualities by employing additional intermediate steps. In Table 6, we compare generation
performance with DDPM and DDIM when we take 10, 50, and 100 steps to produce a sample.

Table 6: Sample quality as a function of diffusion steps.

CIFAR-10 CIFAR-100 CelebA-64
Steps 10 50 100 10 50 100 10 50 100

DDPM [42] 41.07 8.01 5.78 50.27 21.37 16.72 33.12 18.48 13.93
DDIM [84] 13.36 4.67 4.16 23.34 11.69 10.16 17.33 9.17 6.53
D2 (Ours) 22.3 15.8 15.1 28.35 19.81 19.85 - - -
D2C (Ours) 17.71 10.11 10.15 23.16 14.62 14.46 17.32 6.8 5.7

Table 7: CIFAR-10 image generation results.

Method FID

NVAE [91] 51.71
NCP-VAE [3] 24.08
EBM [31] 40.58
StyleGAN2 [50] 3.26
DDPM [42] 3.17
DDIM [84] 4.04
D2C 10.15

CIFAR-10 image generation We list results for
unconditional CIFAR-10 image generation for var-
ious types of generative models in Table 7. While
our results are slightly worse than state-of-the-art
diffusion models, we note that our D2C models are
trained with relatively fewer resources that some of
the baselines; for example, our D2C models is trained
on 8 GPUs for 24 hours, whereas NVAE is trained
on 8 GPUs for 100 hours and DDPM is trained on
v3-8 TPUs for 24 hours. We also note that these
comparisons are not necessarily fair in terms of the
architecture and compute used to produce the sam-
ples.

Additional image generation results We list ad-
ditional image generation results in Figure 9 (unconditional), Figures 10, 11, 12, and 13 (conditional
on manipulation constraints), and Figures 14, 15, 16, and 17 (conditional on labels).
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Figure 9: Additional image samples for the FFHQ-256 dataset.

Reconstructing contrastive features Given the success of contrastive features in self-supervised
learning, it might be possible that these representations alone can be good enough for reconstructing
images. To see if this is true, we used a pre-trained MoCo-v2 model and trained a NVAE decoder to
reconstruct the image. The reconstruction MSE per image was 58.20, significantly worse than NVAE
(0.25) and D2C (0.76). Thus, the representations from the MoCo-v2 model are not necessarily well
suited for generative modeling.

E Broader Impact

Recent approaches have trained large vision and language models for conditional generation [74].
However, training such models (e.g., text to image generation) would require vast amounts of
resources including data, compute and energy. Our work investigate ideas towards reducing the need
to provide paired data (e.g., image-text pairs) and instead focus on using unsupervised data.

Since our generative model tries to faithfully reconstruct training images, there is a potential danger
that the model will inherit or exacerbate the bias within the data collection process [83]. Our method
also has the risk of being used in unwanted scenarios such as deep fake. Nevertheless, if we are able
to monitor and control how the latent variables are used in the downstream task (which may be easier
than directly over images, as the latent variables themselves have rich structure), we can better defend
against unwanted use of our models by rejecting problematic latent variables before decoding.
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Original D2C StyleGAN2 NVAE DDIM

Figure 10: Image manipulation results for blond hair. More results can be found in https://
d2c-model.github.io/blond_png.html.
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Original D2C StyleGAN2 NVAE DDIM

Figure 11: Image manipulation results for red lipstick. More results can be found in https://
d2c-model.github.io/red_lipstick_png.html.
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Original D2C StyleGAN2 NVAE DDIM

Figure 12: Image manipulation results for beard. More results can be found in https://d2c-model.
github.io/beard_png.html.
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Original D2C StyleGAN2 NVAE DDIM

Figure 13: Image manipulation results for gender.
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(a) Conditioned on non-blond label (b) Conditioned on blond label

Figure 14: Conditional generation with D2C by learning from 100 labeled examples.

(a) Conditioned on non-blond label (b) Conditioned on blond label

Figure 15: Conditional generation with DDIM by learning from 100 labeled examples.
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(a) Conditioned on female label (b) Conditioned on male label

Figure 16: Conditional generation with D2C by learning from 100 labeled examples.

(a) Conditioned on female label (b) Conditioned on male label

Figure 17: Conditional generation with DDIM by learning from 100 labeled examples.
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