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Abstract

Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk
measures in finance and insurance industries as well as in highly reliable, safety-
critical uncertain environments where often the underlying probability distributions
are heavy-tailed. We use the multi-armed bandit best-arm identification framework
and consider the problem of identifying the arm from amongst finitely many that has
the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures
the risk-return trade-off common in finance. Our main contribution is an optimal δ-
correct algorithm that acts on general arms, including heavy-tailed distributions, and
matches the lower bound on the expected number of samples needed, asymptotically
(as δ approaches 0). The algorithm requires solving a non-convex optimization
problem in the space of probability measures, that requires delicate analysis. En-
route, we develop new non-asymptotic, anytime-valid, empirical-likelihood-based
concentration inequalities for tail-risk measures.

1 Introduction

Tail risk is a common term used to quantify losses occurring due to rare events, and has been an
important topic in finance, insurance and other safety critical uncertain environments. [44] first
formalized the problem of identifying optimal investment in financial assets as a multi-criteria
optimization problem of maximizing the average return, while minimizing the risk (measured via
variance). Since then, several other risk measures have been considered. Lately, risk-measures based
on tails of the distribution, like the conditional value-at-risk (CVaR) and value-at-risk (VaR), have
gained popularity in financial regulations and risk management (see, [48, 47]), where the underlying
probability distributions are mostly heavy tailed (i.e. having infinite moment generating function for
all θ > 0). Informally, for a probability measure η, VaR at level π ∈ (0, 1) is the πth quantile for η,
i.e., the outcome below which there is exactly π mass. CVaR at level π is the conditional expectation
of η, conditioned on values beyond the VaR at level π. See Section 2 for precise definitions, and
[50, 46] for applications of these risk measures in finance and optimization. As opposed to VaR,
CVaR is a coherent risk-measure, and is a preferable metric (see, [5] for precise definition and
properties of coherence). Outside finance, these tail-risk measures are being used to control risk in
operations management, for example, in inventory management [4], supply chain management [51],
etc. Recently, coherent risk measures, especially CVaR, have also been used in connection with
fairness in machine learning [58].

The importance of these risk measures in the sequential decision making set-up has well been
acknowledged (see, [49, 42]). Typically in the stochastic multi-armed bandit (MAB) literature, the
quality of an arm is measured using its mean. Tight asymptotic and finite time guarantees exist for
different MAB problems with performance measured by the mean (see, [27, 36, 16, 13, 1, 7, 53]).
Also, see [12] for a survey of the variants of stochastic MAB problems. However, maximizing the
average reward is not always the primary desirable objective. In clinical trials, for example, the
treatment that is good on average might result in adverse outcomes for some patients. In finance, one
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is typically interested in balancing the mean return with the risk of extreme losses. Risk sensitivity
has been well studied in the online learning setting, where in each round, the player sees reward from
every arm (see, [24, 56]). However, there is very limited work which incorporates these risk-measures
into the MAB framework.

In this paper, we provide a systematic approach for identifying the distribution (or arm) from a given
finite set of distributions (or arms) with minimum tail-risk (as measured by CVaR or VaR, or by
a conic combination of mean and CVaR, which we will henceforth refer to as the “mean-CVaR”
objective). Adopting the best-arm identification (BAI) framework of the stochastic MAB problem,
we consider algorithms that generate samples from the given arms, and are δ-correct, i.e., identify
the correct answer (arm with minimum VaR, CVaR or mean-CVaR) with probability at least 1− δ,
for some pre-specified confidence level δ. While ensuring δ-correctness, the aim is to minimize the
number of samples needed by the algorithm before its termination. This is the typical fixed-confidence
setting of the BAI MAB problem (see, [37, 2]). Variants of this problem have been widely studied in
the literature, where the best-arm is the one with maximum mean (see, [43, 25, 6, 14, 26, 33, 27, 34]).

A relaxation of the pure exploration setting described above is the (ε, δ)-PAC setting, where the aim
is to output an ε-optimal arm (for an appropriate notion of ε-optimality), with probability at least
1− δ, while minimizing the number of samples generated. [59, 18, 32] consider the pure exploration
problem of identifying the arm with minimum risk in the (ε, δ)-PAC setting. While [59] consider
both VaR and CVaR as measures of risk, [18, 32] focus on the VaR-problem. Recently, [39] and
[35] have studied the BAI MAB problem with CVaR and mean-CVaR objectives, respectively, in
the closely related “fixed-budget” framework, in which the total number of samples the algorithm is
allowed to take is fixed, and the aim of the algorithm is to minimize the error-probability.

1.1 Outline of the approach and main assumption

As a warm-up, we first solve our minimum tail risk identification problems in the simple commonplace
setting of arm-distributions belonging to a canonical single parameter exponential family (SPEF) of
distributions. Each distribution in this family is uniquely identified with its parameter. We show that
both CVaR and VaR are monotonic functions of this parameter, as is the mean. Hence, finding the
best-(CVaR/VaR/mean-CVaR) arm reduces to finding the arm with the minimum mean.

Since risk-sensitive objectives are particularly important when there is a non-trivial probability of
occurrence of extreme outcomes, it is important to consider arm-distributions beyond canonical SPEF,
for which the above-mentioned equivalence breaks. We solve the VaR problem for arbitrary arm
distributions.

In contrast the CVaR problem is unlearnable in full generality: on the class of all arm distributions,
any δ-correct algorithm requires an infinite number of samples in expectation to identify the best arm
amongst any finite collection of arms (Remark 3.1). To avoid this, we impose a mild and standard
raw (1 + ε)-moment restriction on the arm-distributions. Let P(<) denote the collection of all the
probability distributions on the reals <, and let B and ε be positive constants. For risk measure CVaR
and for the mean-CVaR objective, we restrict the class of allowed arm distributions to

L =
{
η ∈ P(<) : Eη

(
|X|1+ε

)
≤ B

}
.

We discuss the choice of parameters in Section 1.3 below. For each tail measure, we prove information-
theoretic lower bounds on the sample complexity of any δ-correct algorithm, and use these to develop
a δ-correct algorithm whose sample complexity exactly matches the lower bound as δ → 0, for CVaR,
mean-CVaR, and VaR problems. The mean-CVaR problem is conceptually and technically similar to
the CVaR problem. Hence, for simplicity of presentation, we primarily focus on the CVaR setting
in the main text and give details of the mean-CVaR setting in Appendix I. We also spell out the
somewhat analogous analysis for the VaR setting towards the end (Section 4.2), with details deferred
Appendix to H.

1.2 Technical contributions

As is well known in the BAI MAB literature, the lower bound problem takes the underlying arm
distributions as inputs and solves for optimal weights that determine the proportion of samples that
should ideally be allocated to each arm. The proposed algorithm uses a plugin strategy that at each
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sequential stage, modulo mild forced exploration, uses the generated empirical distributions as a
proxy for the true distributions and arrives at weights that guide the sequential sampling strategy.

In order to highlight the technical challenges arising in our non-parametric case, we will need to
introduce two functionals next that are central to our lower bounds, algorithms, confidence intervals
etc.

Information distance for CVaR problem: Given η1, η2 in P(<), let KL(η1, η2) denote the KL-
divergence between them, i.e., KL(η1, η2) :=

∫
log dη1

dη2
(y)dη1(y). Furthermore, for the probability

measure η let cπ(η) denote its CVaR at the given confidence level π ∈ (0, 1) (see Section 2 for the
exact definition). Then, given η ∈ P(<) and x ∈ <, we define functionals KLU

inf : P(<)×< −→ <+,
and KLL

inf : P(<)×< −→ <+, where <+ denotes the non-negative reals, as

KLU
inf(η, x) := min

κ∈L: cπ(κ)≥x
KL(η, κ) and KLL

inf(η, x) := min
κ∈L: cπ(κ)≤x

KL(η, κ). (1)

See [2, 30, 15] for related quantities. These projection functionals appear in the lower bound (Section
3), and are central to our plugin algorithm.

Unlike their analogues in the mean case, KLU
inf and KLL

inf in (1) are not symmetric, and need to be
studied separately. In particular, KLU

inf is a convex optimization problem, while KLL
inf is not. This

is because cπ(·) is a concave function, whence, the CVaR constraint in the KLL
inf problem in (1)

renders the feasible region non-convex (see Section 2). CVaR can be expressed as the optimal value
of a minimization problem. This helped in re-expressing KLL

inf as minimization over 2 variables,
fixing one of which resulted in convex optimization over the other (see Section 3).

For proving δ-correctness, we develop a new concentration inequality for weighted sums of these
functionals (Proposition 4.2). Dual representations of these suggest natural candidates for super-
martingales, whose mixtures help us in proving the concentration result. Similar inequalities were
developed in [38, 20, 54] in different settings. See [40, Chapter 20] for an overview of the method of
mixtures. We also propose KLU

inf - and KLL
inf -based tight anytime-valid confidence intervals for CVaR

for heavy-tailed distributions, and show that classical confidence intervals derived using popular
truncation-based estimators can be recovered using our method, with only a minor overhead (see
Section 4.3).

Since distributions in L are not characterized by parameters, we work in the space of probability
measures instead of in the Euclidean space. A key and non-trivial requirement for the proof of
asymptotic optimality of the algorithm is the joint continuity of KLL

inf and KLU
inf in a well-chosen

metric, which should generate a topology that is sufficiently fine to ensure this continuity, but coarse
to ensure fast convergence of the empirical distributions to the true-arm distributions. We endow
P(<) with the topology of weak convergence, or equivalently, with the Lévy metric (see Section 2
for definitions). Another nuance in our analysis is that the empirical distributions may not lie in L.
This is handled by projecting these on to L under a suitable metric.

Our proposed algorithm is a plugin strategy that involves solving the lower bound problem using
the empirical distributions as a proxy for the actual arm distributions. This can be computationally
demanding especially as the underlying samples in the empirical distribution become large. To ease
the numerical burden we propose modifications that require solving the lower bound only order
log(n) many times till stage n of the algorithm (where n samples are generated). This modification
substantially reduces the computation burden. We show that it is optimal up to a constant (Appendix
K).

VaR problem: Our algorithm for CVaR, with KLL
inf and KLU

inf replaced by the corresponding
functionals with the VaR constraints instead, is asymptotically optimal for this problem in complete
generality (Section 4.2). Here, KLU

inf and KLL
inf have closed form representations. However, they are

no longer jointly-continuous in the Lévy metric, which introduces new technical challenges in the
analysis of the algorithm.

1.3 Regarding the choice of ε and B in our assumption

Firstly, BAI problems are important in simulation where the best model may need to be identified
amongst many intricate models in terms of a performance measure such as CVaR or VaR, using
minimal computational effort (see, [31]). Input distributions in simulation are known and may often
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involve heavy tails. In some cases, by the use of Lyapunov-function-based techniques, bounds on
moments of output random variables, B, can be determined. (see, e.g., [28] and references therein).
Secondly, consider rewards (returns) from a number of hedge funds. Each time some amount of
money is invested into a fund, a random return may be revealed from that fund but not from others.
To assume that these returns come from a class of parametric distributions or have known bounded
support can be a substantially inaccurate simplification. Typically, from historical analysis, it is
known that the distribution of securities have a particular tail index, say, (1 + ε). For stock returns,
extensive research suggests that (1 + ε) ∈ [2, 5]. For daily exchange rates and income and wealth
distributions we may have (1 + ε) ∈ (1, 2]. Extreme value theory, under reasonable dependence
structure amongst underlying securities, shows that a portfolio (a weighted sum) will also have the
same tail index of (1 + ε) (see, [19]). So the key approximation needed is in arriving at B. It is easy
to arrive at distributions η and κ whose (1 + ε)th moments are arbitrarily far while the KL distance
between them is arbitrarily close to zero. This makes it difficult to infer B from a given sample
of data without further restriction on the two distributions. One may take a pragmatic view and
approximate B by estimating the (1 + ε)th moment from observed samples and padding it up with a
reasonably large factor. A further set of distributional assumptions would be needed to justify the
above procedure to arrive at B. Again, verifying those assumptions will entail similar problems. In
practice, one may live with the above approximation even though in rare settings it may be inaccurate
and lead to sub-optimal allocations in our algorithm. One accepts this risk as one often accepts the
assumption that the distributions of the random samples from each arm are time stationary or are
independent, even though these may only be approximately correct.

2 Background

For K ≥ 2, letM = LK denote the collection of all K-vectors of distributions, ν = (ν1, . . . , νK),
such that for all i, νi belongs to L. Let µ ∈M be the given bandit problem, and π ∈ (0, 1) denote
the fixed confidence level. For η ∈ P(<), let Fη(y) = η((−∞, y]) denote the CDF function for η,
and let m(η) denote mean of measure η.

VaR, CVaR: With the above notation, VaR at level π for the distribution η, denoted as xπ(η),
equals min {z ∈ < : Fη(z) ≥ π} . Since Fη(·) is a non-decreasing and right-continuous function,
the minimum in the expression of VaR is always attained. Define CVaR at level π, cπ(η), as

cπ(η) =
Fη(xπ(η))− π

1− π
xπ(η) +

1

1− π

∞∫
xπ(η)

ydFη(y).
0

1

π

xπ(η)0

Fη(x)

If η has a density in a neighbourhood around xπ , then cπ(η) = Eη (X|X ≥ xπ(η)) , i.e., it measures
the average loss conditioned on the event that losses are larger than the VaR.

In the figure above, the total shaded area (green and blue regions, together) divided by 1− π denotes
the CVaR of the measure whose CDF function is displayed in red. To see this, observe that the first
term in the expression above, scaled by (1− π), equals the blue region. The integral in the second
term when simplified using integration by parts can be seen to equal the green region. There are
alternative formulations of CVaR, which we state without proofs.

cπ(η) =
1

1− π

∫
p∈[π,1]

xp(η)dp = min
x0∈<

{
x0 +

1

1− π
Eη ((X − x0)+)

}
(2)

= max
v∈M+(<)

1

1− π

∫
<

ydv(y) s.t. ∀y, dv(y) ≤ dη(y) and
∫
<

dv(y) = 1− π, (3)

where (x)+ denotes max {0, x} and M+(<) denotes collection of all non-negative measures on <.

From (2), since cπ(η) is a minimum of linear functions of η, it is a concave function of η. Thus, the
KLU

inf problem in (1) is a convex optimization problem, while the KLL
inf problem is not, since the

cπ(·) constraint makes the feasible region non-convex. See, [50] for a comprehensive tutorial on the
two tail-risk measures, and their properties.

Parametric case: Using the definition of VaR, it can be argued that xπ(ηθ) is a monotonically
increasing function of θ when ηθ belongs to a canonical SPEF with parameter θ, as is the mean. The
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first formulation in 2 then gives that cπ(ηθ) is also monotonically increasing. Thus, the problem of
identifying the best-(CVaR/VaR/mean-CVaR) arm is equivalent to identifying that with minimum
mean. See Appendix A for details.

However, the ranking in mean and in CVaR can be very different in general. To see this, fix π = 0.8,
and consider a 3-armed bandit instance, ν, with ν1 = 0.8δ0 + 0.2δ1, ν2 = 0.8δ0 + 0.2δ0.5, and
ν3 = 0.8δ−0.5 + 0.2δ2. Clearly, m(ν1) > m(ν2) > m(ν3), yet cπ(ν2) < cπ(ν1) < cπ(ν3).

General case: For η in class L, the moment-constraint limits the minimum and maximum possible
values of VaR and CVaR, as discussed in the following lemma (proof in Appendix B).
Lemma 2.1. For η ∈ L, cπ(η) ∈ D and xπ(η) ∈ C, where

D ,

[
−B

1
1+ε ,

(
B

1− π

) 1
1+ε

]
and C ,

[
−
(
B

π

) 1
1+ε

,

(
B

1− π

) 1
1+ε

]
.

Topology of weak convergence and the Lévy metric: Let φ be a bounded and continuous
function on <, δ > 0, and x ∈ <. Consider the topology on P(<), generated by the
base sets of the form U(φ, x, δ) =

{
η ∈ P(<) : |

∫
< φ(y)dη(y)− x| < δ

}
. Weak convergence

of a sequence κn to κ, denoted as κn
D
=⇒ κ, is convergence in this topology [see 23, Sec-

tion D.2]. It is equivalent to convergence in the Lévy metric on P(<), (denoted by dL), de-
fined next (see, [9, Theorem 6.8], [23, Theorem D.8]). For η, κ ∈ P(<), dL(η, κ) equals
inf {δ > 0 : Fη(x− δ)− δ ≤ Fκ(x) ≤ Fη(x+ δ) + δ, ∀x ∈ <} . Additionally, the metric space
(P(<), dL) is complete and separable.

3 Lower bound

We consider δ-correct algorithms for identifying the arm with minimum CVaR, acting on bandit
problems inM. While ensuring δ-correctness, the aim is to minimize the sample complexity, i.e.,
expected number of samples generated by the algorithm before it terminates. As is well known, the
δ-correctness property imposes a lower bound on the sample complexity of such algorithms.

Let µ ∈M denote the given bandit problem. Henceforth, for ease of notation, we assume without
loss of generality that the best-CVaR arm in µ is arm 1. Let ΣK denote the probability simplex in
<K , Aj denote the collection of all bandit problems inM which have arm j as the best-CVaR arm,
τδ be the stopping time for the δ-correct algorithm, Na(τ) denote the number of times arm a has
been sampled by the algorithm, and for a set S, let So denote its interior. It is easy to deduce using
standard arguments (see, e.g., [40, Theorem 33.5]) that for a δ-correct algorithm acting on µ ∈ A1,

E (τδ) ≥ V (µ)-1 log
1

4δ
where V (µ) = sup

t∈ΣK

inf
ν∈Ac1

K∑
a=1

ta KL(µa, νa), and Acj =M\Aj . (4)

Lemma 3.1. For µ ∈ A1, the inner minimization problem in V (µ) equals

min
j 6=1

inf
x≤y

{
t1 KLU

inf(µ1, y) + tj KLL
inf(µj , x)

}
,

and hence
V (µ) = sup

t∈ΣK

min
j 6=1

inf
x≤y

{
t1 KLU

inf(µ1, y) + tj KLL
inf(µj , x)

}
. (5)

Recall from (1) that the expressions in (4) and (5) above differ from those in the best-mean arm
setting in that the functionals KLL

inf and KLU
inf here are defined instead with the CVaR constraints.

Remark 3.1. Without any restriction on arm distributions for the CVaR-problem, for y ∈ < and
η ∈ L, KLU

inf(η, y) = 0. This is essentially because η can be perturbed in KL only slightly by
shifting an arbitrarily small mass from the lower tail to the extreme right, so that the CVaR constraint
is satisfied. Thus, without any restrictions, V (µ) = 0 (see, [2, Lemma 1, Theorem 3] for similar
results in selecting the arm with the largest mean setting). However, we later solve the VaR-problem
without such assumptions, i.e., arm distributions are allowed to be arbitrary probability measures in
<. The lower bound for the VaR problem is as in (4), with KLL

inf and KLU
inf in the representation in

(5) defined with VaR constraints, instead.
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A proof of Lemma 3.1 can be found in Appendix C.1. Let t∗ :M→ 2ΣK . In particular, for ν ∈M,
let t∗(ν) denote the set of maximizers in the V (ν) optimization problem in (5). A key nuance of
our algorithm and the related analysis is that the vector of empirical distributions may not belong to
the classM. The algorithm first projects the empirical distribution to class L, then solves for the
optimal t∗ in (5) for the projected distributions, and samples the arms in proportion to the computed
t∗ (Section 4). For appropriate choices of the projection maps, the following lemmas guarantee that
as the empirical distributions converge to the actual arm-distributions (in the weak topology), the t∗
computed by the algorithm converge to the optimal weights corresponding to µ.
Lemma 3.2. L is a compact set in the topology of weak convergence and the (Skorokhod transforms
of) its members form a uniformly integrable collection of random variables. When restricted to
L×Do, KLL

inf and KLU
inf are both jointly continuous functions of the arguments. Moreover, for fixed

x, KLU
inf(ν, x) is a convex function of ν.

Definition (Upper hemicontinuity) A set-valued function Γ : S → T is upper hemicontinuous at
s ∈ S if for any open neighbourhood V of Γ(s) there exists a neighbourhood U of s such that for all
x ∈ U , Γ(x) is a subsest of V .
Lemma 3.3. t∗ is an upper-hemicontinuous correspondence. For ν ∈Mo, t∗(ν) is a convex set.

In Lemma 3.2, we restrict to the interior of D as KLU
inf(·, B

1
1+ε (1 − π)

−1
1+ε ) and KLL

inf(·,−B
1

1+ε )
are not continuous (see, Remark C.2). In Lemma 3.3, we only need to eliminate distributions with
these extreme CVaRs (there are only two such distributions. See, Remark C.1). Lemma 3.3 and
Theorem 4.1 (optimality and δ-correctness of the proposed algorithm) hold for distributions with
CVaR in Do. For ease of notation, we restrict µ to lie in the interior ofM.

The proofs of the above two lemmas are technically challenging and involve nuanced analysis.
Detailed steps are given in Appendix C.2 and C.3. We first prove joint lower- and upper-semicontinuity
of the KL-projection functionals separately. These rely on various properties of the weak convergence
of probability measures in L, the dual representations for KLL

inf and KLU
inf (see Theorem 3.4),

properties of CVaR for probability measures in L, and the classical Berge’s theorem (see, [52])
for continuity of the optimal value and the set of optimizers for a parametric optimization problem.
We then use these to prove the continuity in Lemma 3.3. Convexity follows since t∗ is the set of
maximizers of a concave function over a convex, compact set.

Understanding the lower bound: Our proposed algorithm requires repeated evaluations of the lower
bound in (4) at its estimates of µ. To facilitate this, we now provide more tractable characterizations
of the two KL-projection functionals, and in particular, of (5). We also discuss the statistical and
computational implications of these alternative characterizations.

For η ∈ P(<), let Supp(η) denote the collection of points in the support of measure η. For v ∈ Do,
x0 ∈ C, λ ∈ <3, γ ∈ <2, and X ∈ <, set

gU (X,λ, v) = 1 + λ1v − λ2(1− π) + λ3(|X|1+ε −B)− (λ1X (1− π)
-1 − λ2)+,

and
gL(X,γ, v, x0) = 1− γ1(v − x0 − (X − x0)+ (1− π)

-1
)− γ2(B − |X|1+ε

).

Furthermore, define Ŝ(v) =
{
λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0 : ∀x ∈ <, gU (x,λ, v) ≥ 0

}
, andR2(x0, v)

to be
{
γ1 ≥ 0, γ2 ≥ 0 : ∀y ∈ <, gL(y,γ, v, x0) ≥ 0

}
. Notice that these are convex sets.

As shown in Theorem 3.4 below, gU (y, ·, v) and gL(y, ·, v, x0) are related to the dual formulations
of KLU

inf and KLL
inf , respectively, and the parameters λ and γ are the corresponding dual variables.

The sets Ŝ andR2 correspond to the feasible values of these dual variables.
Theorem 3.4. For η ∈ P(<) and v ∈ Do,

(a)
KLU

inf(η, v) = max
λ∈Ŝ(v)

Eη
(
log
(
gU (X,λ, v)

))
.

The maximum in this expression is attained at a unique point λ∗ ∈ Ŝ(v). The unique probability
measure κ∗ ∈ L that achieves infimum in the primal problem satisfies

dκ∗

dη
(y) =

1

gU (y,λ∗, v)
, for y ∈ Supp(η).
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Moreover, it has mass on at most 2 points outside Supp(η). Furthermore, for y′ ∈
{Supp(κ∗) \ Supp(η)}, gU (y′,λ∗, v) = 0.

(b)
KLL

inf(η, v) = min

x0∈[−(Bπ )
1

1+ε ,v]

max
γ∈R2(x0,v)

Eη
(
log
(
gL(X,γ, v, x0)

))
.

For a fixed x0, the maximum in the inner problem is attained at a unique γ∗ inR2(x0, v). The
unique probability measure κ∗ ∈ L achieving infimum in the primal problem satisfies

dκ∗

dη
(y) =

1

gL(y,γ∗, v, x0)
, for y ∈ Supp(η).

Moreover, size of the set {Supp(κ∗) \ Supp(η)} is at most 1, and for y′ ∈
{Supp(κ∗) \ Supp(η)}, gL(y′γ∗, v, x0) = 0.

These dual formulations help in reformulating the lower bound optimization problem in (5) as
optimization over reals. A computationally more efficient approach for this is to consider the joint
dual of the inner optimization problem in (5).

For η1, η2 ∈ P(<), and non-negative weights α1, α2, let

Z = inf
x≤y

{
α1 KLU

inf(η1, y) + α2 KLL
inf(η2, x)

}
. (6)

For y ∈ <, λ ∈ <2,ρ ∈ <2, and γ2 ∈ <, let

hL(y,λ, γ, ρ, x0) = 1− λ1 + γ2(|y|1+ε −B) + ρ1(x0 + (y − x0)+(1− π)-1),

and
hU (y,λ, γ, ρ) = 1 + λ1 + λ2(|y|1+ε −B)− (ρ2 + (ρ1y − ρ2)+(1− π)-1).

For x0 ∈ C, define the convex region Dx0
to be collection of λ1 ∈ <, ρ2 ∈ <, λ2 ≥ 0, γ2 ≥ 0, and

ρ1 ≥ 0, such that for all y ∈ <, hL(y,λ, γ, ρ, x0) ≥ 0 and hU (y,λ, γ, ρ) ≥ 0. As we show next,
these quantities are related to the dual formulation of (6).
Proposition 3.5. For η1, η2 ∈ P(<) and weights α1, α2 ∈ [0, 1], Z equals

min
x0∈C

max
(λ,γ,ρ)∈Dx0

α1Eη1
(
log
(
hU (X,λ, γ, ρ)

))
+ α2Eη2

(
log
(
hL(X,λ, γ, ρ, x0)

))
− α1 logα1 − α2 logα2 + (α1 + α2) log (α1 + α2)− (α1 + α2) log 2.

An application of above to the empirical distributions (ηa = µ̂a(t)) weighted by sample counts, i.e.,
αa = Na(t), for a ∈ {1, 2}, results in unweighted sums over the samples. Also observe that the
representation in Proposition 3.5 is 1 dimension smaller compared to that obtained by using Theorem
3.4 in (6), and hence, is faster to optimize numerically.

Recall that while KLU
inf is a convex optimization problem, KLL

inf is not (see Section 2). To handle
this, we use the min formulation for CVaR in 2 to turn it into a one-dimensional family of linear
constraints, which appears as the outer minx0

in the expression in (b) in Theorem 3.4, and Proposition
3.5 above, with the range constraint from Lemma 2.1. This renders the remanining problem as a
convex optimization problem. To simplify the CVaR constraint in KLU

inf , we use (3). Rest is the
Lagrangian duality. Complete proofs for Theorem 3.4, and Proposition 3.5, are given in Appendix D.

The equality in Proposition 3.5, and the dual formulations in Theorem 3.4, are important statistically
and computationally. First, our stopping rule will threshold the Z statistics to determine when to
safely stop. So we need to bound the deviations of Z. For this, we will use the dual formulations
from Theorem 3.4 in (6) to construct mixtures of super-martingales that dominate the deviations of
Z. Second, our sampling rule will sample according to the optimal proportions evaluated for the
empirical distribution vector, µ̂(t), in (5). For this, we use Proposition 3.5 in our experiments to solve
the inner optimization problem in (5). These will be made precise in Section 4.

Computing a gradient for the objective of the maximisation problem (5), seen as a function of the
sampling weights t, takes one Z evaluation per suboptimal arm. The inner maximisation over Dx0

is a constrained concave program, for which standard algorithms apply. The outer minx0
problem

requires a different approach, as it is not even quasiconvex. Empirically it does become quasiconvex
after seeing enough samples, so we employ a heuristic bisection search for which we measure the
impact on the error probability (there is none). Numerical results are presented in Section 4.4.
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4 The algorithm

Given a bandit problem µ ∈M, our algorithm is a specification of three things: a sampling rule, a
stopping rule, and a recommendation rule.

Sampling rule: At each iteration, the algorithm has access to the empirical distribution vector, µ̂(n).
It first projects µ̂(n) to LK in the Kolmogorov metric, dK , using the projection map, Π, defined
below. It then computes t∗ (Π (µ̂(n))) and allocates samples using the C-tracking rule of [27], which
we state in Appendix E for completeness. The map Π = (Π̃, . . . , Π̃), where Π̃ : P(<)→ L, is given
by

Π̃(η) ∈ argminκ∈L dK(η, κ), where dK(η, κ) := supx∈< |Fη(x)− Fκ(x)| .
We show in Appendix G that this projection has a simple form and can be computed easily.

Stopping rule: We use a modification of the generalized likelihood ratio test (GLRT) (see, [17])
as our stopping criterion. At any time, the vector of empirical distributions, µ̂(n), suggests an arm
with minimum CVaR (empirically best-CVaR arm), say arm i. This is our null hypothesis, which
we test against all the alternatives. Formally, the log of the GLRT statistic, denoted by Si(n), is
infν′∈Aci

∑K
a=1 Na(n) KL(µ̂a(n), ν′a). This is exactly the scaled inner optimization problem in the

expression of V (µ̂(n)) in (4), except that µ̂(n) may not belong toM (recall the Z statistic defined
in (6)). Let Zi(n) equal mina6=i infx≤y

{
Ni(n) KLU

inf(µ̂i(n), y) +Na(n) KLL
inf(µ̂a(n), x)

}
. It

equals Si(n) when µ̂(n) ∈M (Lemma 3.1). Our stopping rule corresponds to checking

Zi(n) ≥ β(n, δ) where β(n, δ) = log
(
(K − 1) δ-1)+ 5 log(n+ 1) + 2. (7)

Recommendation rule: After stopping, the algorithm outputs the arm with the minimum CVaR
of the corresponding empirical distribution, i.e., if τ is the stopping time of the algorithm, then it
outputs argmina cπ(µ̂a(τ)).

4.1 Theoretical guarantees

For a given confidence δ, let τδ denote the stopping time for the algorithm. The algorithm makes an
error if at time τδ, there is an arm j 6= 1 such that cπ(µ̂j(τδ)) < cπ(µ̂1(τδ)). Let the error event be
denoted by E .
Theorem 4.1. For δ > 0 and µ ∈Mo, the proposed algorithm with β(t, δ) chosen as in (7), satisfies

P (E) ≤ δ and lim sup
δ→0

Eµ (τδ)

log(1/δ)
≤ 1

V (µ)
.

We first sketch the proof for the δ-correctness part of the theorem. Proof ideas for sample complexity
are presented later in this section. The detailed proof for Theorem 4.1 can be found in Appendix F.

δ-correctness: Recall that the algorithm makes an error if at time τδ , the empirically best-CVaR arm
is not arm 1. As in the best-mean arm case, it can be argued that this probability is at most

K∑
i=2

P
(
∃n : Ni(n) KLU

inf(µ̂i(n), cπ(µi)) +N1(n) KLL
inf(µ̂1(n), cπ(µ1)) ≥ β

)
. (8)

See Appendix F for a proof of (8). The following proposition will be helpful in bounding each of the
summands above. Setting j = 1, and x = log K−1

δ in Proposition 4.2, along with β from (7), we get
that each summand in (8) is at most δ/(K − 1), proving that the proposed algorithm is δ-correct.
Proposition 4.2. For i ∈ [K], j ∈ [K], i 6= j, h(n) = 5 log(n+ 1) + 2, and x ≥ 0,

P
(
∃n : Ni(n) KLU

inf(µ̂i(n), cπ(µi)) +Nj(n) KLL
inf(µ̂j(n), cπ(µj))− h(n) ≥ x

)
≤ e−x.

A key step in proving Proposition 4.2 is constructing mixtures of super-martingales that dominate the
exponentials of Ni(n) KLU

inf(µ̂i(n), cπ(µi)) and Ni(n) KLL
inf(µ̂i(n), cπ(µi)). From Theorem 3.4(a)

and (2), it can be shown that for fixed dual-variables, the objective is a sum of logs of random variables
with mean at-most 1. Hence, its exponential is a non-negative candidate super-martingale. Since we
want to bound the maximum over the dual parameters, we construct a mixture of these candidates,
over the dual-parameters, and show that it dominates the exponential of Ni(n) KLU

inf(µ̂i(n), cπ(µi)).
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Sample complexity: Our sample complexity proof follows that of [27] for a parametric family.
However, we work with a more general non-parametric class, in which we establish continuity of the
KL-projection functionals (Lemma 3.2). Our proof also differs from that in [2] in that we only have
upper-hemicontinuity of the set of optimal sampling allocations (t∗) (Lemma 3.3). A nuance in our
analysis is that the empirical distribution may not belong to the class L, in which case we project
the empirical distribution onto that class, and the sampling rule uses this projected distribution to
compute t∗. Our careful choice of the projection map aids in the proof of this result.

Computational complexity: The computational cost of these KL-projection functionals, and hence,
that of the oracle weights, is linear in the number of samples taken (see, [2, 16, 30]). As a result, the
overall run-time is quadratic in τδ . We propose a modification in which we update the weights only
at geometrically spaced times. This modification improves the computational-cost to almost linear in
τδ , while its sample complexity is optimal up to a multiplicative constant depending on the choice of
geometrical-spacing factor, thus providing a controlled trade-off between the two costs. Recently,
[3] propose a similar yet different “doubling” trick in the regret-minimization setting. However, our
approach differs from theirs in that our update-times for weights are not random. We refer the reader
to Appendix K for details of the algorithm and proofs for its theoretical guarantees.

Mean-CVaR problem: We now extend the methodology for the CVaR problem to the more general
mean-CVaR problem. For a distribution η ∈ L (for example, a random loss in a financial investment),
the metric associated with the “badness” of a distribution is α1m(η) + α2cπ(η), for α1 > 0 and
α2 > 0, and the best-arm is the one with minimum value of this conic combination of mean and
CVaR. For α1 = 0 this is the CVaR-problem, which we have studied in this work. For α2 = 0, this is
the mean-problem, extensively studied in [2, 27].

As in (1), we can define corresponding KL-projection functionals, with the CVaR constraints replaced
with those on the modified metric. The above theory, with this updated KLL

inf and KLU
inf , gives the

corresponding results for this setting. In particular, the lower bound on E (τδ) for δ-correct algorithms
for mean-CVaR BAI is given by V (µ)-1 log 1

4δ , where V (µ) is defined in (5) with the updated KLU
inf

and KLL
inf .

Theorem 4.3 (Informal). For µ ∈ Mo, the proposed algorithm for CVaR, with KLU
inf and KLL

inf
defined with mean-CVaR constraints instead, is δ-correct and asymptotically optimal.

The proof of this theorem parallels that for CVaR above. We give the formal statement with proof-
details in Appendix I.

4.2 The VaR problem

In this section we present the main ideas for an analogous approach for the optimum VaR-problem.
Here, we will not impose any conditions (viz. membership in L) on the arm-distributions, as the
VaR lower bound is defined without it, i.e., arm distributions are allowed to be arbitrary probability
measures on <. For a probability measure η, let Fη(y), denote its CDF evaluated at y and F−η (y) =
limz↑y Fη(z) denote the left limit of the CDF. Moreover, for r, q ∈ (0, 1) let d2(r, q) denote the KL
divergence between the Bernoulli random variables with mean r and q. For y ∈ <, let KLL

inf(η, y)
and KLU

inf(η, y) be defined as in (1), with VaR constraints, instead. These simplify as follows.
Lemma 4.4. KLL

inf(η, y) = d2(min {Fη(y), π} , π) and KLU
inf(η, y) = d2(max

{
F−η (y), π

}
, π).

Unlike in the CVaR-problem, we show that KLL
inf and KLU

inf for the VaR problem are not jointly
continuous functionals (see Remark H.2). The discontinuity occurs at y being the jump points of Fη
in Lemma 4.4 above. However, we prove in Appendix H (Corollary H.3.1) that the set of optimal
proportions, t∗, is still upper-hemicontinuous and convex.

The algorithm for CVaR with KLU
inf and KLL

inf replaced by those in the lemma above, and setting

β(t, δ) = 6 log

(
1 + log

t

2

)
+ log

K − 1

δ
+ 8 log

(
1 + log

K − 1

δ

)
,

we get our algorithm for the VaR-problem.
Theorem 4.5 (Informal). The proposed algorithm for the VaR-problem is δ-correct and asymptotically
optimal.

We refer the reader to Appendix H for a detailed discussion of the VaR-problem and proofs.
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4.3 Tight KLinf -based confidence intervals for CVaR

We now present tight anytime-valid confidence interval for the CVaR of a distribution in L.
Let η̂n denote the empirical distribution corresponding to n samples from η ∈ L. Our
proposed upper (Un) and lower (Ln) confidence intervals for cπ(η) are of the form Un =
max

{
x ∈ < : nKLU

inf(η̂n, x) ≤ C
}

and Ln = min
{
x ∈ < : nKLL

inf(η̂n, x) ≤ C
}
, for an appro-

priately chosen threshold C ≈ log δ-1 + 3 log n. Similar confidence intervals for the mean of heavy-
tailed distributions were proposed in [3]. Let x̂π,n denote the πth quantile for η̂n. Recall that the pop-
ular truncation-based estimator for cπ(η) is given by ĉπ,n = n-1(1−π)-1∑

iXi1(x̂π,n ≤ Xi ≤ un),
for appropriately chosen truncation levels, un (see, [39]). Observe that there are 2 sources of error in
this estimator, first, the estimation of the quantile, and second, the estimation of the tail-expectation.
On the other hand, our confidence intervals do not rely on estimation of the true quantile, xπ. In
Appendix J, we show that even given the correct estimation of x̂π,n, confidence intervals for ĉπ,n
perform poorly compared to those based on KLU

inf and KLL
inf , in some applications.

4.4 Numerical Results

This is only a brief teaser section on the experiments, which are detailed in Appendix L. We are
interested in the question whether the asymptotic sample complexity result of Theorem 4.1 is
representative at reasonable confidence levels δ. Whether this is the case or not differs greatly
between pure exploration setups: [27] see state-of-the-art numerical results in Bernoulli arms for
Track-and-Stop with δ = 0.1, while [22] present a Minimum Threshold problem instance where the
Track-and-Stop asymptotics have not kicked in yet at δ = 10−20. Our experiments confirm that our
approach is indeed practical at moderate confidence δ.

In our experiments we implement a version of Track-and-Stop including C-tracking and forced
exploration and apply it to Fisher-Tippett (F (µ, σ, γ)), Pareto (P (µ, σ, γ)), and mixtures of Fisher-
Tippett arms (these heavy-tailed distributions arise in extreme value theory).

Figure 1: Histogram of stopping times among 1000 runs
on 3 arms, as a function of confidence δ. Vertical bars
(solid) indicate the lower bound (4), and (dashed) a version
adjusted to our stopping threshold (7), i.e., the n that solves
n = β(n, δ)V (µ)-1.

Figure 1 shows the distribution of
the stopping time as a function
of δ in a synthetic three-arm task:
arm 1 is a uniform mixture of
F (−1, 0.5, 0.4) and F (−3, 0.5,−0.4),
arm 2 is P (0, 0.2, 0.55) and arm 3 is
F (−0.5, 1, 0.1) with respective CVaRs
at quantile π = 0.6 being −0.1428,
0.974 and 1.547. We select ε = 0.7
and B = 4.5. This is a moderately
hard problem of complexity V -1(µ) =
49.7. We conclude that even at mod-
erate δ the average sample complexity
closely matches the lower bound, espe-
cially after adjusting it for the lower-
order terms in the employed stopping
threshold β(n, δ). This demonstrates
that our asymptotic optimality is in fact
indicative of the performance in prac-
tice.

We do additional experiments to show the dependence of the algorithm’s performance on the number
of arms and the input parameter B. We see that the average stopping time of our algorithm increases
linearly in the number of arms. Moreover, the sample complexity is sensitive to B, indicating the
importance of correctly estimating it. We refer to Appendix L for details of these experiments.

Conclusion: We developed asymptotically optimal algorithms that identify the arm with the
minimum risk, measured in terms of CVaR, VaR, or a conic combination of mean and CVaR. Our
algorithms operate in non-parametric settings with possibly heavy-tailed distributions. Although
similar plug-and-play algorithms have been developed in simpler settings, our algorithms for tail-risk
measures require more nuanced analysis. The techniques developed may be generalizable to a much
broader class of problems.
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A Equivalence in canonical SPEF setting

In this section, we will show that xπ(ηθ) and cπ(ηθ) are monotonic functions of θ when ηθ belongs
to a canonical SPEF with parameter θ, as is the mean. Thus, the problem of identifying the best-
(CVaR/VaR/mean-CVaR) arm in this setting, is equivalent to identifying the arm with minimum
mean.

Let ν be the reference measure on < for the SPEF, and Θ ⊂ < be the parameter space, i.e., Θ = {θ ∈
< :
∫
< exp (θy) dν(y) <∞}. Then, for ηθ in the SPEF, for y ∈ <, (dηθ/dν) (y) = exp{θy−A(θ)},

where A(θ) is the normalizing factor. By direct computation, it can be verified that A′(θ) equals the
mean, and A′′(θ) equals the variance of ηθ. Hence, mean is an increasing function of θ ([16]).

Next, for a ∈ <, define F̄θ(a) =
∫
y≥a dηθ(y) to be the tail-CDF of ηθ. Clearly, F̄θ(a) increases

on increasing θ since dF̄θ(a)/dθ = F̄θ(a) (Eηθ (X|X ≥ a)−m(ηθ)) , which is positive. The fact
that xπ(ηθ) is a non-decreasing function of θ now follows from its definition. From (2), we see that
cπ(ηθ) is non-decreasing in θ.

B Bounds on CVaR and VaR for distributions in L: Proof of Lemma 2.1

We first recall the definitions and different representations of CVaR, which will be useful in this
section. Given a probability measure κ, let xπ(κ) and cπ(κ) denote its VaR and CVaR at level π.
Then, recall that

cπ(κ) =
F (xπ(κ))− π

1− π
xπ(κ) +

1

1− π

∫
<

(y − xπ(κ))+ dκ(y)

= min
z∈<

{
z +

1

1− π
Eκ ((X − z)+)

}
,

where the infimum of the set of minimizers in the second representation, is VaR at level π for κ.

Consider a probability measure η ∈ L. Recall that for ε > 0, L = {η ∈ P(<) : Eη (f(X) ≤ B)},
where f(y) = |y|1+ε, and

C =
[
−f -1(Bπ-1), f -1(B(1− π)-1)

]
and D =

[
−f -1(B), f -1(B(1− π)-1)

]
.

Let x−π (η) < xπ(η). Then for xπ(η) < 0,

π ≤
∫ x−π (η)

−∞
dη(y) =

∫ x−π (η)

−∞

f(y)

f(y)
dη(y) ≤

∫ x−π (η)

−∞

f(y)

f(xπ(η))
dη(y) ≤ B

f(xπ(η))
,

and for xπ(η) ≥ 0,

1− π ≤
∫ ∞
x−π (η)

dη(y) =

∫ ∞
x−π (η)

f(y)

f(y)
dη(y) ≤

∫ ∞
x−π (η)

f(y)

f(xπ(η))
dη(y) ≤ B

f(xπ(η))
.

Combining the two, we get −f -1(Bπ-1) ≤ xπ(η) ≤ f -1(B (1− π)
-1

), where f -1(c) is defined as
max {y : f(y) = c}, which equals c

1
1+ε . To get a bound on cπ(η), consider the following inequalities.

B ≥ Eη (f (X)) ≥ (F (xπ(η))− π) f (xπ(η)) +

∞∫
xπ(η)

f (y) dη(y)

= (1− π)

F (xπ(η))− π
1− π

f(xπ(η)) +
1

1− π

∞∫
xπ(η)

f (y) dη(y)

 ,

where the first inequality follows since η is in L, and the second follows since f is non-negative.
Furthermore, since f is convex, using conditional Jensen’s inequality, the above can be bounded from
below by

(1− π)f

F (xπ(η))− π
1− π

xπ(η) +
1

1− π

∞∫
xπ(η)

ydη(y)

 ,
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which is (1−π)f (cπ(η)) . Thus we have,−f -1(B (1− π)
-1

) ≤ cπ(η) ≤ f -1(B (1− π)
-1

).However,
the lower bound for cπ(η) obtained above can be further tightened. Recall that

min
η∈L

cπ(η) = min
z∈C

min
η∈L

{
z +

1

1− π
Eη ((X − z)+)

}
.

In the inner minimization problem in r.h.s. above, the objective is minimizing expectation under η
of convex functions of X , under the constraint that expectation under η of a convex function being
smaller that B. Thus, the minimizer concentrates at a single point, i.e., the minimizer η = δx, for
some x ∈ < such that f (x) ≤ B. Thus, the above problem equals

min
z∈C

min
x∈[−f -1(B),f -1(B)]

{
z +

1

1− π
(x− z)+

}
,

which is increasing in x. Thus, at optimal x = −f -1(B), it equals

min
z∈C

max

{
z,
−f -1 (B)− πz

1− π

}
.

Clearly, the minimum is attained at z = −f -1(B), with the optimal value being−f -1(B). Combining
with the previous bounds on cπ(η), we have that for η ∈ L, cπ(η) ∈ D.

C Details of proofs in Section 3

We first review some notation that will be useful in this section. Recall that for a non-negative
constant B, arm distributions belong to class L which equals {η ∈ P(<) : Eη (f (X)) ≤ B} , where
f(x) = |x|1+ε, for some ε > 0. Define f -1(c) = max {y : f(y) = c} = c

1
1+ε .

We denote byM the collection of all K-vectors of distributions, each belonging to L and by Aj the
collection of vectors inM with arm j having the minimum CVaR. Furthermore, for η ∈ P(<) and
π ∈ (0, 1), cπ(η) and xπ(η) denote the CVaR and VaR at confidence level π, for measure η. Also,
for x ∈ <, we define the KL projection functionals

KLU
inf(η, x) := inf

κ∈L: cπ(κ)≥x
KL(η, κ) and KLL

inf(η, x) = inf
κ∈L: cπ(κ)≤x

KL(η, κ).

Furthermore, recall that

D =
[
−f -1(B), f -1 (B(1− π)-1)] and C =

[
−f -1(Bπ-1), f -1 (B(1− π)-1)] ,

and Do and Co denote the interior of sets D and C, respectively. For v ∈ Do, x0 ∈ C, λ ∈ <3,
γ ∈ <2, and X ∈ <,

gU (X,λ, v) := 1 + λ1v − λ2(1− π) + λ3 (f(X)−B)−
(
λ1X

1− π
− λ2

)
+

, (9)

and

gL(X,γ, v, x0) := 1− γ1

(
v − x0 −

(X − x0)+

1− π

)
− γ2(B − f (X)). (10)

Furthermore,

Ŝ(v) :=
{
λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0 : ∀x ∈ <, gU (x,λ, v) ≥ 0

}
, (11)

and
R2(x0, v) :=

{
γ1 ≥ 0, γ2 ≥ 0,∀y ∈ <, gL(y,γ, x0, v) ≥ 0

}
. (12)

Later, in Theorem 3.4 we show that for η ∈ P(<),

KLU
inf(η, v) = max

λ∈Ŝ(v)

Eη
(
log
(
gU (X,λ, v)

))
and

KLL
inf(η, v) = min

x0∈C
max

γ∈R2(x0,v)

Eη
(
log
(
gL(X,γ, x0, v)

))
.
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C.1 Proof of Lemma 3.1

Recall that arm 1 is the arm with minimum CVaR in µ, and V (µ) = sup
t∈ΣK

inf
ν∈Ac1

K∑
i=1

ti KL(µi, νi),

where Ac1 =M\A1. Clearly, the inner optimization problem satisfies

inf
ν∈Ac1

K∑
i=1

ti KL(µi, νi) = min
j 6=1

inf
ν∈Aj

K∑
i=1

ti KL(µi, νi). (13)

Next, for µ ∈ M the infimum in the expression in r.h.s. above is attained by ν ∈ Aj such that
νi = µi for all arms i not in {1, j}, as otherwise, the value of the summation can be decreased by
setting them equal to µi. Thus,

inf
ν∈Aj

K∑
i=1

ti KL(µi, νi) = inf
ν1,νj∈L, x≤y,

cπ(νj)≤x, cπ(ν1)≥y

{t1 KL(µ1, ν1) + tj KL(µj , νj)} .

Now, from the definition of KLL
inf and KLU

inf , the r.h.s. in above equation equals

inf
x≤y

{
t1 KLU

inf(µ1, y) + tj KLL
inf(µj , x)

}
.

Combining this with (13) gives the desired result. �

C.2 Towards proving Lemma 3.2: Continuity of the KL-projection functionals

We first establish the properties of L stated in the Lemma.

Uniform integrability of L: Since each probability measure η in L has a uniformly bounded pth
moment for a fixed p > 1, their Skorokhod transforms {u 7→ F−1

η (u) | η ∈ L} form a uniformly
integrable collection ([57]).

Compactness of L: It is sufficient to show that L is closed and tight. Prohorov’s Theorem then
gives that it is a compact set in the topology of weak convergence ([9]). We first show that it is a
closed set. Towards this, consider a sequence ηn of probability measures in L, converging weakly to
η ∈ P(<). By Skorohod’s Representation Theorem (see, [9]), there exist random variables Yn, Y
defined on a common probability space, say (Ω,F , q), such that Yn ∼ ηn, Y ∼ η, and Yn

a.s.−−→ Y .
Then, by Fatou’s Lemma,

Eη
(
|X|1+ε

)
= Eq

(
|Y |1+ε

)
= Eq

(
lim inf
n→∞

|Yn|1+ε
)
≤ lim inf

n→∞
Eq
(
|Yn|1+ε

)
≤ B.

Hence, η is in L and the class is closed in the weak topology. To see that it is tight, consider

Kε :=
[
−
(
2Bε-1

) 1
1+ε ,

(
2Bε-1

) 1
1+ε

]
. For η ∈ L, η (Kc

ε ) ≤ ε.

Convexity of KLU
inf(., x): Consider two measures, η1, η2 in L, and let λ ∈ (0, 1). Let κ1 be

such that KLU
inf(η1, x) = KL(η1, κ1). Existence of κ1 is guaranteed by continuity of KLU

inf in its
arguments, and compactness of the domain of optimization, which follows from Lemma C.2 below.
Similarly, let κ2 satisfy KLinf(η2, x) = KL(η2, κ2). Let

η12 = λη1 + (1− λ)η2, and κ12 = λκ1 + (1− λ)κ2.

Clearly, κ12 is in L. Moreover, by concavity of cπ(·), cπ(κ12) ≥ λcπ(κ1) + (1 − λ)cπ(κ2).
Then, KLU

inf(η12, x) is at most KL(η12, κ12), which, by joint convexity of KL, is bounded by
λKL(η1, κ1) + (1− λ) KL(η2, κ2). This bound then equals λKLU

inf(η1, x) + (1− λ) KLinf(η2, x).

Joint continuity of KLU
inf and KLL

inf : We show upper- and lower-semicontinuity separately for
the KL projection functionals restricted to L (see Lemmas C.3, C.4, and C.5). The following results
will assist in the proofs of these.

Lemma C.1. For ηn and η ∈ L, cπ(ηn) −→ cπ(η) whenever ηn
D
=⇒ η.
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Proof. Consider a sequence ηn ∈ L weakly converging to η ∈ L. Then, there exist random
variables Yn, Y defined on a common probability space (Ω,F , q) such that Yn ∼ ηn, Y ∼ η, and
Yn

a.s.−−→ Y (Skorohod’s Theorem, see, [9]). Furthermore, since ηn, η are uniformly integrable,
Eq (|Yn|)→ Eq (|Y |) (see, [57, Theorem 13.7])

Consider a sequence of real numbers zn → z. Then, Yn − zn
a.s.−−→ Y − z, whence (Yn − zn)+

a.s.−−→
(Y − z)+. Clearly,

(Yn−zn)+ ≤ |Yn|+|zn| , |Yn|+|zn|
a.s.−−→ |Y |+|z| and Eq (|Yn|)+|zn| → Eq (|Y |)+|z| <∞.

Then, by generalized Dominated Convergence Theorem, Eq ((Yn − zn)+)→ Eq ((Y − z)+) . Now,
for η ∈ L, cπ(η) equals

min
z∈C

g(z, η), where g(z, η) = z +
1

1− π
Eη ((X − z)+) .

From the above discussion, g(z, η) restricted to C × L, is a jointly continuous function. Berge’s
Theorem ([8, Maximum Theorem, Page 116]) then gives the desired result.

Lemma C.2. The sets DLv , {η ∈ L : cπ(η) ≤ v} and DUv , {η ∈ L : cπ(η) ≥ v} are compact
sets in the topology of weak convergence.

Proof. Since L is compact, it is sufficient to show that the sets DLv and DUv are closed, which follows
from Lemma C.1.

Lemma C.3. For η ∈ P(<) and v ∈ D, the functionals KLU
inf(η, v) and KLL

inf(η, v) are jointly
lower-semicontinuous in (η, v).

Proof. Recall that

KLL
inf(η, v) = min

κ∈L: cπ(κ)≤v
KL(η, κ) and KLU

inf(η, v) = min
κ∈L: cπ(κ)≥v

KL(η, κ).

For η, κ ∈ P(<), KL(η, κ) is jointly lower-semicontinuous function in the topology of weak
convergence (see, [45]) and a jointly lower-semicontinuous function of (η, κ, v). Let Dv =
{κ ∈ L : cπ(κ) ≤ v}. Since Dv is a compact set for each v (Lemma C.2), it is sufficient to show that
Dv is an upper-hemicontinuous correspondence (see, [8, Theorem 1, Page 115]).

Consider a sequence vn in D, converging to ṽ in D. Let ηn ∈ Dvn , which exist since Dvn are
non-empty sets. Since L is a tight, and hence relatively compact collection of probability measures,
and ηn ∈ L, ηn has a weakly convergent sub-sequence, say ηni converging to η ∈ L (since L is
also closed). Furthermore, cπ(ηni) ≤ vni . From Lemma C.1, cπ(η) = limni cπ(ηni) ≤ ṽ, which
implies that η ∈ Dṽ , proving upper-hemicontinuity of the set Dv in v (see, [52, Proposition 9.8] for
sequential characterization of upper-hemicontinuity).

Similar arguments hold for KLL
inf(·, ·).

Lemma C.4. KLL
inf , viewed as a function from L ×

(
−f -1 (B) , f -1

(
B

1−π

)]
, is a jointly upper-

semicontinuous function.

Proof. Let

D =

(
−f -1(B), f -1

(
B

1− π

)]
and Cv =

[
−f -1

(
B

π

)
, v

]
.

We prove in Theorem 3.4(b) that for v ∈ D, KLL
inf(η, v) = minx0∈Cv h

∗(x0, v, η), where for gL
andR2 defined in (10) and (12) above,

h∗(x0, v, η) := max
γ∈R2(x0,v)

Eη
(
log gL(X,γ, x0, v)

)
.
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Joint upper-semicontinuity for v > cπ(η): Observe that for η ∈ L and v ≥ cπ(η), KLL
inf(η, v) =

0. Consider a sequence (ηn, vn) converging to (η, v). Then, ∃n0 such that for all n ≥ n0, cπ(ηn) ≤
vn. To see this, suppose not, i.e., for all n, cπ(ηn) > vn. Taking limits, this gives cπ(η) ≥ v, which
is a contradition. Thus, for n ≥ n0, KLL

inf(ηn, vn) = 0, proving continuity in this case.

We next prove the joint upper-semicontinuity for v < cπ(η), and handle the joint upper-semicontinuity
at (η, cπ(η)) separately.

Joint upper-semicontinuity for v < cπ(η): It can be argued that for η ∈ L and v < cπ(η),

KLL
inf(η, v) = min

x0∈Cv\{v}
h∗ (x0, v, η) . (14)

To see this, v < cπ(η) implies that η 6∈ P (Supp(−∞, v]) and from Lemma D.8 and the remark
following it, h∗(v, v, η) =∞, giving (14).

Clearly, Cv \ {v} is a lower-hemicontinuous correspondence. To show that KLL
inf is jointly upper-

semicontinuous, it suffices to show that h∗(x0, v, η) is jointly upper-semicontinuous ([8, Theorem 1,
Page 115]).

Joint upper-semicontinuity of h∗: It follows from the definition that R2(x0, v) 6= ∅ as 0 ∈
R2(x0, v), and for x0 6= v,R2(x0, v) is compact (Lemma D.8). Furthermore, supposeR2(x0, v) is
jointly upper-hemicontinuous correspondence, and for γ ∈ R2(x0, v), Eη

(
log gL(X,γ, x0, v)

)
is

jointly upper-semicontinuous in (x0, v, η,γ), then h∗(x0, v, η) is upper-semicontinuous ([8, Theorem
2, Page 116]). It then suffices to prove the following:

1. For x0 6= v, γ ∈ R2(x0, v), h(x0, v, η,γ) = Eη
(
log gL(X,γ, x0, v)

)
is a jointly upper-

semicontinuous function.

2. For x0 ∈ Cv \ {v} and v ∈ D,R2(x0, v) is an upper-hemicontinuous correspondence.

Proof of (1): Consider a sequence (xn, vn, ηn,γn) ∈ Cvn ×D × L ×R2(xn, vn) converging to
(x0, v, η,γ) ∈ Cv × D × L × R2(x0, v), where convergence is defined coordinate wise, and ηn
converges to η in topology of weak convergence. It is sufficient to show that

lim sup
n→∞

h(xn, vn, ηn,γn) ≤ h(x0, v, η,γ).

Since ηn
D
=⇒ η, by Skorokhod’s Representation Theorem (see, [9]), there are random variables,

Yn, Y defined on a common probability space, (Ω,F , q), such that Yn
a.s.−−→ Y and Yn ∼ ηn and

Y ∼ η. Then, log
(
gL(Yn,γn, xn, vn)

) a.s.−−→ log
(
gL(Y,γ, x0, v)

)
, and

h(xn, vn, ηn,γn) = Eq
(
log gL(Yn,γn, xn, vn)

)
and h(x0, v, η,γ) = Eq

(
log gL(Y,γ, x0, v)

)
.

Let
0 ≤ Zn , c1n + c2n |Yn|+ c3n |Yn|1+ε

,

where

c1n = γ1n (vn − xn) +
γ1n |xn|
1− π

+ γ2nB, c2n =
γ1n

1− π
, c3n = γ2n.

Clearly, each cin converge to ci <∞. With these notation, log
(
gL(Yn, γn, xn, vn)

)
is bounded by

log(1 + Zn), and Zn
n→∞−−−−→ Z. Thus, there exist c0n

n→∞−−−−→ c0 < ∞ such that log(1 + Zn) ≤
c0n + |Zn|1/(1+ε) and using the form of Zn from above, there also exist constants c4n

n→∞−−−−→ c4 and
c5n

n→∞−−−−→ c5 such that
|Zn|1/(1+ε) ≤ c4n + c5n |Yn| .

Thus, there exist constants c0n, c4n, c5n converging to c0, c4, c5 such that

log
(
gL(Yn,γn, xn, vn)

)
≤ c0n + c4n + c5n |Yn| , fL(Yn,γn, xn, vn).

Furthermore,

fL(Yn,γn, xn, vn)
a.s.−−→ fL(Y,γ, x0, v) and Eq

(
fL(Yn,γn, xn, vn)

)
→ Eq

(
fL(Y,γ, x0, v)

)
,
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since ηn, η ∈ L which is a collection of uniformly integrable measures (see, [57]). Since,
fL(Yn,γn, xn, vn)− log gL(Yn,γn, xn, vn) ≥ 0, by Fatou’s Lemma,

Eq
(

lim inf
n→∞

(fL(Yn,γn, xn, vn)− log gL(Yn,γn, xn, vn))
)

≤ Eq
(
fL (Y,γ, x0, v)

)
− lim sup

n→∞
Eq
(
log gL(Yn,γn, xn, vn)

)
,

which implies

h(x0, v, η,γn) = Eq

(
lim sup
n→∞

log
(
gL(Yn,γn, xn, vn)

))
≥ lim sup

n→∞
Eq
(
log
(
gL(Yn,γn, xn, vn)

))
= lim sup

n→∞
h(xn, vn, ηn,γn).

Proof of (2): Clearly, (0, 0) ∈ R2(x, v) for all x ∈ Cv and v ∈ D. Next, consider a sequence
(xn, vn) −→ (x0, v) ∈ Cv ×D and a sequence γn ∈ R2(xn, vn). Since (xn, vn) −→ (x0, v), there
exists a closed and bounded (compact) subset, K, of < × < containing (x0, v), such that for some
J ≥ 1, and all n ≥ J , (xn, vn) ∈ K. Since miny gL(y, ·, ·, ·) is a jointly continuous function,
for n ≥ J , γn also belongs to a compact subset of <. Bolzano-Weierstrass theorem then gives a
convergent subsequence {(xni , vni),γni} in <3 with the limit {(x0, v),γ}. It is then sufficient to
show that γ ∈ R2(x0, v), which follows since

gL(y,γn, xn, vn) ≥ 0 ⇒ gL(y,γ, x0, v) ≥ 0,

proving that the correspondenceR2(·, ·) is upper-hemicontinuous (see, [52, Proposition 9.8]). This
completes the proof for upper-semicontinuity of KLL

inf(η, v) for v < cπ(η).

Joint upper-semicontinuity of KLL
inf(η, cπ(η)): Towards this, consider a sequence (ηn, vn) ∈

L ×D converging to (η, cπ(η)), where the convergence is defined coordinate-wise and in the first
coordinate it is in the Lévy metric. Without loss of generality, assume that vn ≤ cπ(ηn) for all n. It
is then sufficient to argue that KLL

inf(ηn, vn)
n→∞−−−−→ 0.

We demonstrate a sequence of measures κn ∈ L which are feasible to KLL
inf(ηn, vn) problem, such

that KL(ηn, κn)
n→∞−−−−→ 0, whence KLL

inf(ηn, vn)
n→∞−−−−→ 0. Define

wn =
Eηn (X − zn)+ − (1− π)(vn − zn)

Eηn (X − zn)+

and κn = wnδ−f -1(B)+zn + (1− wn)ηn,

where,

zn =

{
xπ(η)− cπ(η)−vn

2 , for vn ≤ cπ(η)

xπ(η), otherwise.

It is easy to check that for wn ∈ [0, 1], κn ∈ L. The above choice of zn ensures that wn ∈ [0, 1].
Furthermore,

cπ(κn) ≤ zn +
1

1− π
Eκn (X − zn)+ ≤ vn,

where the last inequality follows from the choice of wn, whence κn are feasible.

Since vn
n→∞−−−−→ cπ(η), ηn

D
=⇒ η, and ηn, η ∈ L, Eηn (X − zn)+

n→∞−−−−→ Eη (X − xπ(η))+,

whence, wn
n→∞−−−−→ 0. With this choice of κn, KLL

inf(ηn, vn) is bounded from above by

− log (1− wn)
n→∞−−−−→ 0 = KLL

inf(η, cπ(η)).

Lemma C.5. KLU
inf , viewed as a function from L ×

[
−f -1 (B) , f -1

(
B

1−π

))
, is a jointly upper-

semicontinuous function.
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Proof. Proof for upper-semicontinuity of KLU
inf follows exactly as proof of the previous lemma.

However, we give it for completeness. Define

D̃ =

[
−f -1 (B) , f -1

(
B

1− π

))
.

Consider the dual formulation of KLU
inf from Theorem 3.4(a). Since for v ∈ D̃, Ŝ(η, v) (defined in

(11)) is a compact set (see Section D.3), and for all y ∈ < gU (y, ·, ·) is a jointly continuous map,
Ŝ(·) can be verified to be an upper-hemicontinuous correspondence. Whence, it suffices to show that
h(v, η,λ) := Eη

(
log
(
gU (X,λ, v)

))
is a jointly upper-semicontinuous map, where gU is defined in

(9) above.

Consider a sequence (vn, ηn,λn) ∈ D̃ ×L× Ŝ(vn) converging to v, η,λ ∈ D ×L× Ŝ(v). Notice
that the convergence is defined coordinate-wise, and ηn converges to η in weak topology. It suffices
to show:

lim sup
n→∞

h(vn, ηn,λn) ≤ h(v, η,λ).

By Skorokhod’s Theorem (see, [9]), there exist random variables Yn, Y defined on a common proba-
bility space (Ω,F , q) such that Yn ∼ ηn, Y ∼ η and Yn

a.s.−−→ Y . Hence, log
(
gU (Yn,λn, vn)

) a.s.−−→
log
(
gU (Y,λ, v)

)
, and

h(vn, ηn,λn) = Eq
(
log
(
gU (Yn,λn, vn)

))
and h(v, η,λ) = Eq

(
log
(
gU (Y,λ, v)

))
.

As earlier, let
0 ≤ Zn = c1n + c2n |Yn|+ c3n |Yn|1+ε

,

where

c1n = λ1n |vn|+ |λ2n(1− π)|+ λ3nB, c2n =
λ1n

1− π
, c3n = λ3n,

and Zn
n→∞−−−−→ Z and cin

n→∞−−−−→ ci < ∞. With these notation, log
(
gU (Yn,λn, vn)

)
is bounded

from above by log(1 + Zn), and there exist constants c0n
n→∞−−−−→ c0 such that log(1 + Zn) ≤

c0n + (Zn)1/(1+ε). Using the form of Zn from above, there also exist constants c4n
n→∞−−−−→ c4 and

c5n
n→∞−−−−→ c5 such that

(Zn)1/(1+ε) ≤ c4n + c5n |Yn| .
Thus as earlier, there exist constants c0n, c4n, c5n converging to c0, c4, c5 such that

log
(
gU (Yn,λn, vn)

)
≤ c0n + c4n + c5n |Yn| , fU (Yn,λn, vn).

and

fU (Yn,λn, vn)
a.s.−−→ fU (Y,λ, v) and Eq

(
fU (Yn,γn, vn)

)
→ Eq

(
fU (Y,γ, v)

)
,

since ηn, η ∈ L, whence Yn, Y are uniformly integrable (see, [57]) . Since, fU (Yn,λn, vn) −
log
(
gU (Yn,λn, vn)

)
≥ 0, by Fatou’s Lemma,

Eq
(

lim inf
n→∞

(
fU (Yn,λn, vn)− log

(
gU (Yn,λn, vn)

)))
≤Eq

(
fU (Y,λ, v)

)
− lim sup

n→∞
Eq
(
log
(
gU (Yn,λn, vn)

))
,

which implies

h(v, η,λ) = Eq

(
lim sup
n→∞

log
(
gU (Yn,λn, vn)

))
≥ lim sup

n→∞
Eq
(
log
(
gU (Yn,λn, vn)

))
= lim sup

n→∞
h(vnηn,λn).
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Remark C.1. κ1 = πδ0 + (1 − π)δf -1( B
1−π ) and κ2 = δ−f -1(B) are unique measures in L with

CVaR being f -1
(

B
1−π

)
and −f -1(B), respectively. Uniqueness of κ2 follows from the proof of

Lemma 2.1. To see the uniqueness of κ1, consider the following optimization problem, optimal value
of which equals f -1

(
B

1−π

)
:

max
η∈L

min
z∈C

{
z +

1

1− π
Eη (X − z)+

}
.

First observe that if Eη (f(X)) < B, then η does not belong to the set of maximizers above. Using
this, it is also sufficient to restrict to 2-point distributions with xπ(η) = 0 and mass on 0 being π,
as otherwise we can improve in the B constraint, and hence, the objective. Now, κ1 is the unique
distribution satisfying the above requirements, with CVaR being f -1

(
B

1−π

)
.

Remark C.2. Consider vn = v = f -1
(

B
1−π

)
, and let

ηn =

(
π − 1

n

)
δ0 +

1

n
δ1 + (1− π)δf -1( B

1−π ), and η = πδ0 + (1− π)δf -1( B
1−π ).

Clearly, dL(ηn, η)→ 0, as n→∞. Moreover, Remark C.1 argues that there is a unique κ ∈ L such
that cπ(κ) = f -1

(
B

1−π

)
, whence

KLU
inf(ηn, vn) = KL(ηn, κ) =∞ > 0 = KL(η, κ) = KLinf(η, v).

Thus, KLU
inf(η, f

-1(B(1 − π)-1)) is not a jointly continuous function. Similar example can be
constructed for KLL

inf(,−f -1(B)).

C.3 Proof of Lemma 3.3:

Upper-hemicontinuity of t∗: Let ν be in Aj ∩M, i.e., the best-CVaR arm in ν is arm j, and
each arm-distribution strictly satisfies the moment-constraint. Then from Lemma 2.1, for all i ∈ [K],
cπ(νi) ∈ Do. Let t∗(ν) be the set of maximizers in

V (ν) = max
t∈ΣK

min
a6=j

ga,j(ν, t),

where
ga,j(ν, t) = inf

x≤y

{
tj KLU

inf(νj , x) + ta KLL
inf(νa, y)

}
.

The infimum above is attained at a common point between the CVaR of the two distributions, whence
the above equals

ga,j(ν, t) = inf
x∈[cπ(νj),cπ(νa)]

{
tj KLU

inf(νj , x) + ta KLL
inf(νa, x)

}
.

Using Lemma C.1, it is easy to verify that the set [cπ(νj), cπ(νa)] is both upper- and lower- hemi-
continuous in (ν, t), whence continuous. Then by Berge’s Theorem and joint continuity of KLL

inf

and KLU
inf in arguments, when viewed as functions from L ×Do (Lemma 3.2), ga,j(ν, t) is jointly

continuous in (ν, t). Again by Berge’s Theorem, V (ν), as a function from M to <, is a contin-
uous function of ν. Furthermore, the set of maximizers,

{
t∗ : V (ν) = mina 6=j ga,j(ν, t

∗)
}

, is an
upper-hemicontinuous correspondence.

Convexity of the set of maximizers: Let t(1) and t(2) belong to t∗(ν). Then,

V (µ) = min
a 6=j

ga(ν, t(1)) = min
a6=j

ga(ν, t(2)).

Clearly, mina 6=j ga(ν, λt(1) + (1 − λ)t(2)) ≥ λmina 6=j ga(ν, t(1)) + (1 − λ) minb 6=j gb(ν, t
(2)),

which equals V (ν). Since t(1) and t(2) are maximizers, the above holds as an equality. Thus the set
t∗(ν) is convex.
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D Dual formulations

In this section we prove the Theorem 3.4. Recall that P(<) denotes the space of all probability
measures on <, and M+ denotes the collection of all finite, positive measures on <. Let η ∈ P(<).
Then, for π ∈ (0, 1), cπ(η) denotes the CVaR of η at the confidence level π. Furthermore,

cπ(η) = min
x0∈<

{
x0 +

1

1− π
Eη ((X − x0)+)

}
(15)

= max
v∈M+(<)

1

1− π

∫
<

ydv(y) s.t. ∀y, 0 ≤ dv(y) ≤ dη(y) and
∫
<
dv(y) = 1− π, (16)

For η ∈ P(<), and v ∈ Do,

KLU
inf(η, v) = inf

κ∈L: cπ(κ)≥v
KL(η, κ) and KLL

inf(η, v) = inf
κ∈L: cπ(κ)≤v

KL(η, κ).

Furthermore, extend the Kullback-Leibler Divergence to a function on M+(<) × M+(<), i.e.,
KL : M+(<)×M+(<)→ < defined as:

KL(κ1, κ2) ,
∫
y∈<

log

(
dκ1

dκ2
(y)

)
dκ1(y).

Note that for κ1 ∈ P(<) and κ2 ∈ P(<), KL(κ1, κ2) is the usual Kullback-Leibler Divergence
between the probability measures.

We first present the proof for the Theorem 3.4(a).

D.1 KLU
inf problem: towards proving Theorem 3.4(a)

Consider the following optimization problem, which is equivalent to the KLU
inf problem (see, (16)).

min
κ∈M+

W∈M+

KL (η, κ) subject to
1

1− π

∫
<
xdW (x) ≥ v∫

<
dW (x) = 1− π∫

<
f(x)dκ(x) ≤ B∫

<
dκ(x) = 1

∀x : 0 ≤ dW (x) ≤ dκ(x)

(17)

Introducing the dual variables (λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0, λ4 ∈ <,∀x λ5(x) ≥ 0). Then, the
Lagrangian, denoted as L(κ,W,λ), equals∫

<
log

(
dη

dκ
(y)

)
dη(y) + λ1

(
v − 1

1− π

∫
<
xdW (x)

)
+ λ2

(∫
<
dW (x)− 1 + π

)
− λ3B + λ3

∫
<
f(x)dκ(x) + λ4

(∫
<
dκ(x)− 1

)
+

∫
<
λ5(x) (dW (x)− dκ(x)) .

The Lagrangian dual problem is

max
λ1≥0,λ2∈<,λ3≥0,
λ4∈<,∀x:λ5(x)≥0

inf
κ∈M+

W∈M+

L(κ,W,λ). (18)

Let S = (λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0, λ4 ∈ <,∀x : λ5(x) ≥ 0) , and define

S1 = S ∩ {λ : ∀x ∈ <, λ4 + λ3f(x)− λ3B − λ5(x) ≥ 0} .
Lemma D.1. The Lagrangian dual problem (18) satisfies

max
λ1≥0,λ2∈<,λ3≥0,
λ4∈<,∀x:λ5(x)≥0

inf
κ∈M+

W∈M+

L(κ,W,λ) = max
λ∈S1

inf
κ∈M+

W∈M+

L(κ,W,λ).
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Proof. Consider λ ∈ S and λ 6∈ S1. Then, there exists y0 ∈ < such that

λ4 + λ3f(y0)− λ3B − λ5(y0) < 0.

Consider the measure κM ∈M+ such that κM (y0) = M and

dη

dκM
(y) = 1, for y ∈ {Supp(η) \ y0} .

Then, L(κM ,W,λ) equals∫
<

log

(
dη

dκM
(y)

)
dη(y) +

∫
<

(λ4 + λ3f(y)− λ3B − λ5(x))dκM (x) (19)

+ λ1

(
v − 1

1− π

∫
<
xdW (x)

)
+ λ2

(∫
<
dW (x)− 1 + π

)
− λ4 +

∫
<
λ5(x)dW (x).

Clearly, the first two terms in the expression above decrease to −∞ as M increases to∞. Thus, for
λ ∈ S and λ 6∈ S1, the infimum in the inner optimization problem in (18) is −∞, and we get the
desired equality.

Let Z(λ) = {y ∈ < : λ4 + λ3f(y)− λ5(y) = 0} .
Lemma D.2. For λ ∈ S1, κ∗ that minimizes L(κ,W,λ) satisfies Supp(κ∗) ⊂ Supp(η) ∪ Z(λ).
Furthermore, for y ∈ Supp (η), λ4 + λ3f(y)− λ3B − λ5(y) > 0, and

dκ∗

dη
(y) = (λ4 + λ3f(y)− λ3B − λ5(y))

-1
. (20)

Proof. Clearly, for λ ∈ S1, L(κ,W,λ) is a strictly convex function of κ being minimized over a
convex setM+. Thus, if there is a minimizer of L(κ,W,λ) overM+, it is unique. It is then sufficient
to show that κ∗ satisfying the conditions of the Lemma minimizes L(κ,W,λ). Let κ1 6= κ∗ and
κ1 ∈M+. For t ∈ [0, 1], define κ2,t = (1− t)κ∗+ tκ1. Then κ2,t ∈M+ and it suffices to show that

∂L(κ2,t,W,λ)

∂t

∣∣∣∣
t=0

≥ 0.

To see this, substituting for κ2,t in (19), L(κ2,t,W,λ) equals∫
Supp(η)

log

(
dη

dκ2,t
(y)

)
dη(y) +

∫
<

(λ4 + λ3f(y)− λ5(x))dκ2,t(x)

+ λ1

(
v − 1

1− π

∫
<
xdW (x)

)
− λ3B + λ2

(∫
<
dW (x)− 1 + π

)
− λ4 +

∫
<
λ5(x)dW (x).

Differentiating with respect to t and evaluating at t = 0, the derivative ∂L(κ2,t,W,λ)
∂t

∣∣∣∣
t=0

equals

∫
Supp(η)

dη

dκ∗
(y) (dκ∗ − dκ1) (y) +

∫
<

(λ4 + λ3f(y)− λ3B − λ5(y)) (dκ1 − dκ∗) (y).

Now, using the form of κ∗ from (20), the above expression simplifies to∫
<\Supp(η)

(λ4 +λ3f(y)−λ3B−λ5(y))dκ1(y)−
∫

<\Supp(η)

(λ4 +λ3f(y)−λ3B−λ5(y))dκ∗ ≥ 0,

where the inequality above follows since the integrand is 0 in the second term, while it is non-negative
in the first term.
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D.1.1 Proof of Theorem 3.4(a)

We first show that the dual problem in (18) simplifies to the alternative expression for KLU
inf(η, v) in

the Theorem. Then we argue that both the KLU
inf primal problem in (17) and the dual problems are

feasible, and that strong duality holds.

Using the expression for the optimizer for optimal κ∗ (Lemma D.2) in the Lagrangian dual in Lemma
D.1, (18) equals

max
λ∈S1

inf
W∈M+

∫
<

log (λ4 + λ3f(y)− λ3B − λ5(y)) dη(y)

+

∫
<

dW (x)

(
− λ1x

1− π
+ λ2 + λ5(x)

)
+ 1 + λ1v − λ2(1− π)− λ4.

Since W ∈M+, and if λ are such that the integrand in the second term above is negative, then the
value of the expression above will be −∞. Thus, it suffices to restrict λ so that this does not happen.
Let

S2 = S1 ∩
{
λ : ∀x,− λ1x

1− π
+ λ2 + λ5(x) ≥ 0

}
.

Then the dual problem simplifies to

max
λ∈S2

∫
<

log (λ4 + λ3f(y)− λ3B − λ5(y)) dη(y) + 1 + λ1v − λ2(1− π)− λ4.

Optimizing over the common scaling of the dual variables, we get

max
λ∈S2

∫
<

log

(
λ4 + λ3f(y)− λ3B − λ5(y)

−λ1v + λ2(1− π) + λ4

)
dη(y).

Observe that −λ1v + λ2(1 − π) + λ4 ≥ 0, for the dual optimal variables. Thus, it is sufficient
to restrict the variables to satisfy this constraint. This follows from the complementary slackness
condition and the restrictions in the set S2. We later show that strong duality holds. Since the problem
is a convex optimization problem, the dual optimal variables satisfy the complementary slackness
conditions.

Setting λ̃4 = −λ1v + λ2(1− π) + λ4, and substituting in the above expression, we get

max
λ∈S3(v)

∫
<

log (1 + λ1v − λ2(1− π) + λ3f(y)− λ3B − λ5(y)) dη(y),

where S3(v) is S2 with the above modifications, and is given by intersection of the set S with the set{
λ : ∀y, 1 + λ1v − λ2(1− π) + λ3f(y)− λ3B − λ5(y) ≥ 0, & ∀x λ5(x) ≥

(
λ1x

1− π
− λ2

)
+

}
.

Further, optimizing over λ5(x), the dual representation simplifies to

max
λ∈Ŝ(v)

Eη

(
log

(
1 + λ1v − λ2(1− π) + λ3f(X)− λ3B −

(
λ1X

1− π
− λ2

)
+

))
.

Thus, it suffices to show that both the primal problem in (17) and the dual in (18) are feasible, and
strong duality holds.

Consider λ1 = (0, 0, 0, 1, 0). To show that dual is feasible, it suffices to show

min
κ∈M+,W∈M+

L(κ,W,λ1) = min
κ∈M+,W∈M+

KL(η, κ)− 1 +

∫
<
dκ(y) > −∞.

Let κ̃ be the minimizer of the above expression. Then, Supp(κ̃) = Supp(η), as otherwise if there
is a point y in Supp(η) \ Supp(κ̃), then the above expression is ∞, and if there is a point in

25



Supp(κ̃) \ Supp(η), then the value of the above expression can be improved by removing that mass.
Furthermore, from (20),

dκ̃

dη
(y) = 1.

We next argue the feasibility of primal problem, and show that strong duality holds. For v ≤ 0, define
κ1 := δε1 , where ε1 > v and f(ε1) < B. Similarly, for v > 0, define κ2 := qδf -1( B

1−π ) + (1− q)δ0,
where q < 1− π is chosen to satisfy cπ(κ2) > v and Eκ2 (f (X)) < B.

Clearly, κ1 and κ2 defined above, lie in the interior of the feasible region of the primal problem.
Hence, strong duality holds if the primal is feasible. To see feasibility, define

κ̃1 := p1η + (1− p1)κ1 and κ̃2 := p2η + (1− p2)κ2,

where p1 and p2 are chosen to satisfy

cπ(κ̃1) > v, Eκ̃1
(f (X)) < B and cπ(κ̃2) > v, Eκ̃2

(f (X)) < B.

It is easy to see the existence of p1, p2, ε1, and q satisfying the above requirement.

D.2 KLL
inf problem

For η ∈ P(<), and v ∈ <, using (15), the KLL
inf optimization problem is equivalent to the following

optimization problem (we refer to the inner optimization problem in the following as O1).

inf
−f -1(Bπ )≤x0≤v

min
κ∈M+(<)

KL (η, κ) subject to x0 +
1

1− π

∫
<

(y − x0)+dκ(y) ≤ v∫
<
f (y) dκ(y) ≤ B∫

<
dκ(y) = 1.

We first characterize the solution to the inner optimization problem for a fixed x0, O1. The proof is
similar to that for the duality result in [2].

Let γ = (γ1, γ2, γ3). For κ ∈M+(<), the Lagrangian, denoted by L(κ,γ, x0), for the Problem O1

is given by,

KL(η, κ) + γ1

(
x0 +

1

1− π

∫
<

(y − x0)+dκ(y)− v
)

+ γ2

(∫
<
f (x) dκ(x)−B

)
+ γ3

(∫
<
dκ(x)− 1

)
. (21)

Define
L(γ, x0) := inf

κ∈M+(<)

L(κ,γ, x0). (22)

The Lagrangian dual problem corresponding to the Problem (O1) is given by

max
γ1≥0,γ2≥0,γ3∈<

(
inf

κ∈M+(<)

L(κ,γ, x0)

)
. (23)

Let Supp(κ) denote the support of measure κ,

h(y,γ, x0) ,
γ1

1− π
(y − x0)+ + γ3 + γ2f (y) , Z(γ) = {y ∈ < : h(y,γ, x0) = 0} ,

and

R3(x0) =

{
γ ∈ <3 : γ1 ≥ 0, γ2 ≥ 0, γ3 ∈ <, inf

y∈<
h(y,γ, x0) ≥ 0

}
.

Observe that for γ ∈ R3(x0), there is a unique element in Z(γ).
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Lemma D.3. The Lagrangian dual problem (23) is simplified as below.

max
γ3∈<,γ1≥0,γ2≥0

(
inf

κ∈M+(<)

L(κ,γ, x0)

)
= max
γ∈R3(x0)

(
inf

κ∈M+(<)

L(κ,γ, x0)

)
.

Proof. For γ ∈ <3 \ R3(x0), there exists y0 ∈ < such that h(y0,γ, x0) < 0 and it suffices
to show that L(γ, x0) = −∞, where L(γ, x0) is defined in (22). Observe that for every M >
0, there exists a measure κM ∈M+(<) satisfying κM (y0) = M and for y ∈ Supp(η) \ {y0},

dη

dκM
(y) = 1.

Then, (21) can be re-written as:

L(κM ,γ, x0) =

∫
y∈<

log

(
dη

dκM
(y)

)
dη(y)

︸ ︷︷ ︸
,A1

+

∫
y∈<

h(y,γ, x0)dκM (y)

︸ ︷︷ ︸
,A2

+γ1(x0 − v)− γ3 − γ2B.

From above, it can be easily seen that L(κM ,λ)
M→∞−−−−→ −∞, since A1 + A2 → −∞. Thus, for

γ ∈ <3 \ R3(x0), L(γ, x0) = −∞ and we get the desired result.

Lemma D.4. For γ ∈ R3(x0), κ∗ ∈M+(<) that minimizes L(κ,γ, x0), satisfies
Supp(κ∗) ⊂ {Supp(η) ∪ Z(γ)} . (24)

Furthermore, for y ∈ Supp(η), h(y,γ, x0) > 0, and

dκ∗

dη
(y) =

(
γ1

1− π
(y − x0)+ + γ3 + γ2f (y)

)-1

. (25)

Proof. For γ ∈ R3(x0), L(κ,γ, x0) is a strictly convex function of κ being minimized over a convex
set. Hence, if the minimizer of L(κ,γ, x0) exists, it is unique. It then suffices to show that κ∗
satisfying (24) and (25) minimizes L(κ,γ, x0).

Let κ1 be any measure in M+(<) that is different from κ∗. Since M+(<) is a convex set, for
t ∈ [0, 1], κ2,t , (1− t)κ∗ + tκ1 belongs to M+(<). Since L(κ,γ, x0) is convex in κ, to show that
κ∗ minimizes L(κ,γ, x0), it suffices to show

∂L (κ2,t,γ)

∂t

∣∣∣∣
t=0

≥ 0.

Substituting for κ2,t in (21), L (κ2,t,γ) equals∫
y∈Supp(η)

log

(
dη

dκ2,t
(y)

)
dη(y) + (γ1(x0 − v)− γ3 − γ2B) +

∫
<

h(y,γ, x0)dκ2,t(y).

Evaluating the derivative with respect to t at t = 0,
∂L (κ2,t,γ)

∂t

∣∣∣∣
t=0

=

∫
y∈Supp(η)

dη

dκ∗
(y)(dκ∗ − dκ1)(y) +

∫
<

h(y,γ, x0)(dκ1 − dκ∗)(y).

For y ∈ Supp(η), ∂η/∂κ∗ = h(y,γ, x0). Substituting this in the above expression, we get:
∂L (κ2,t,γ)

∂t

∣∣∣∣
t=0

=

∫
y∈Supp(η)

h(y,γ, x0)(dκ∗ − dκ1)(y)−
∫
<

h(y,γ, x0)(dκ∗ − dκ1)(y)

=

∫
y∈{<\Supp(η)}

h(y,γ, x0)dκ1(y) −
∫

y∈{<\Supp(η)}

h(y,γ, x0)dκ∗(y)

≥ 0,

where, for the last inequality, we have used the fact that for y ∈ {Supp(κ∗) \ Supp(η)},
h(y,γ, x0) = 0 and h(y,γ, x0) ≥ 0, otherwise.
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D.2.1 Proof of Theorem 3.4(b)

To prove the alternative expression for KLL
inf given by this theorem, we first show that both the

primal and dual problems (O1 and O2, respectively) are feasible and that strong duality holds for
the Problem O1. We then show that the alternative formulation for KLL

inf is its simplified dual
formulation.

Let δy denote a unit mass at point y. For x0 > 0, define κ1 = (1 − π)δx0−ε0 + πδ0, where ε0
is chosen to satisfy f (x0 − ε0) (1 − π) < B. Similarly, for the other case (x0 ≤ 0), for x0 6=
v and x0 > −f -1

(
B
π

)
, define κ2 := πδx0−ε1 + (1− π)δx0+ε2 , where ε1 and ε2 are chosen to satisfy

x0 + ε2 < v and πf |x0 − ε1|+ (1− π)f (x0 + ε2) < B.

Also, for x0 = −f -1
(
B
π

)
, for v > 0, define κ3 = (1−π)δ0 +πδ(−f -1(Bπ )+ε3), where ε3 is chosen to

satisfy 0 < ε3 <
1−π
π v. Similarly, for x0 = −f -1

(
B
π

)
and v < 0, define κ4 = (π − ε4)δ−f -1(Bπ ) +

(1− π + ε4)δv−ε5 , where ε4 > 0 and ε5 > 0 are chosen to satisfy

ε4
1− π + ε4

(
f -1
(
B

π

)
+ v

)
< ε5 < f -1

(
B

1− π + ε4

)
+ v.

Define

κ0 := κ11(x0 > 0) + κ21(x0 ≤ 0)1

(
−f -1

(
B

π

)
< x0 < v

)
+ δv1 (x0 = v)1 (x0 ≤ 0)

+ 1

(
x0 = −f -1

(
B

π

))
(κ31 (v > 0) + κ41 (v ≤ 0)) .

Clearly, κ0 defined above satisfies all the inequality constraints in the primal problem strictly, whence,
lies in the interior of the feasible region.

Recall that cπ(η) is a concave function of η (see (15)). It is then easy to check that there exists
0 < p < 1 such that κ′ := pη + (1− p)κ0 is feasible for the primal problem, and KL(η, κ′) <∞.
Hence, primal problem O1 is feasible.

Next, we claim that γ1 = (0, 0, 1) is a dual feasible solution. To this end, it is sufficient to show that

min
κ∈M+(<)

L(κ, (0, 0, 1), x0) > −∞.

Observe that for κ ∈M+(<), KL(η, κ) defined to extend the usual definition of Kullback-Leibler
Divergence to include all measures in M+(<), can be negative with arbitrarily large magnitude.
From (21),

L(κ,γ1, x0) = KL(η, κ)− 1 +

∫
<
dκ(y).

Let κ̃ denote the minimizer of L(κ,γ1, x0). Then, as earlier, Supp(κ̃) = Supp(η). Furthermore,
from Lemma D.4, for y in Supp(η), the optimal measure κ̃ must satisfy

dκ̃

dη
(y) = 1.

Thus, κ̃ = η and minκ∈M+(<) L(κ,γ1, x0) = 0. This proves the feasibility of the dual problem O2.

Since both primal and dual problems are feasible, both have optimal solutions. Furthermore, κ0

defined earlier satisfies all the inequality constraints of (O1) strictly, hence lies in the interior of the
feasible region (Slater’s conditions are satisfied). Thus strong duality holds for the problem (O1) and
there exists optimal dual variable γ∗ = (γ∗1 , γ

∗
2 , γ
∗
3) that attains maximum in the problem O2 (see,

[41, Theorem 1, Page 224]).

Also, since the primal problem (for fixed x0) is minimization of a strictly-convex function (which is
non-negative on the feasible set) with an optimal solution over a closed and convex set, it attains its
infimum within the set. Strong duality implies

KLinf(η, v) = min
−f -1(Bπ )≤x0≤v

max
γ∈R3(x0)

inf
κ∈M+(<)

L(κ,λ, x0).
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Let κ∗ and γ∗ denote the optimal primal and dual variables. Since strong duality holds, and the
problem (O1) is a convex optimization problem, KKT conditions are necessary and sufficient for
κ∗ and γ∗ to be optimal variables (see, [11, page 224]). Hence κ∗, γ∗3 ∈ <, γ∗1 ≥ 0, and γ∗2 ≥ 0
must satisfy the following conditions (KKT):

κ∗ ∈M+(<),

∫
<
dκ∗(y) = 1, x0 +

1

1− π

∫ ∞
x0

(y − x0)dκ∗(y) ≤ v,
∫
<
f (y) dκ∗(y) ≤ B,

∫ ∞
x0

γ∗1
y − x0

1− π
dκ∗(y) = γ∗1(v − x0),

∫
<
γ∗3dκ

∗(y) = γ∗3 ,

∫
<
γ∗2f (y) dκ∗(y) = γ∗2B. (26)

and (γ∗1 , γ
∗
2 , γ
∗
3 ) ∈ R3(x0). Furthermore, κ∗ minimizes L(κ,γ∗, x0). From conditions (26), and

Lemma D.4, L(κ∗,γ∗) = Eη (h(X,γ∗, x0)) , where X is the random variable distributed as η.
Adding the equations in (26), and using the form of κ∗ from Lemma D.4, we get γ∗3 = 1− γ∗1 (v −
x0)− γ∗2B.
For γ̃ = (γ̃1, γ̃2) let,

gL(X, γ̃, v, x0) := 1− γ̃1

(
v − x0 −

(X − x0)+

1− π

)
− γ̃2(B − f (X)).

and
R2(x0, v) :=

{
γ1 ≥ 0, γ2 ≥ 0 : ∀y ∈ <, gL(y, (γ1, γ2), x0, v) ≥ 0

}
.

With this condition on γ∗3 , the regionR3(x0, v) reduces to the regionR2(x0). Since we know that
the optimal γ∗ inR3(x0) with the corresponding minimizer, κ∗, satisfies the conditions in (26) and
that γ∗3 has the specific form given above, the dual optimal value remains unaffected by adding these
conditions as constraints in the dual optimization problem. With these conditions, the dual reduces to

max
(γ1,γ2)∈R2(x0,v)

Eη
(
log
(
gL(X,γ, x0, v)

))
,

and by strong duality, this is also the value of KLinf(η, x).

D.3 Compactness of the dual regions

In this section we show that for valid values of v and x0, the regions Ŝ(v) and R2(x0, v) are
closed and bounded, i.e., compact. Recall that for v ∈ Do =

(
−f -1 (B) , f -1

(
B

1−π

))
, x0 ∈ C =[

−f -1
(
B
π

)
, f -1

(
B

1−π

)]
, λ ∈ <3 and γ ∈ <2,

gU (X,λ, v) = 1 + λ1v − λ2(1− π) + λ3 (f(X)−B)−
(
λ1X

1− π
− λ2

)
+

,

gL(X,γ, v, x0) = 1− γ1

(
v − x0 −

(X − x0)+

1− π

)
− γ2(B − f (X)),

Ŝ(v) =
{
λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0 : ∀x ∈ <, gU (x,λ, v) ≥ 0

}
,

and
R2(x0, v) =

{
γ1 ≥ 0, γ2 ≥ 0 : ∀y ∈ <, gL(y, (γ1, γ2), x0, v) ≥ 0

}
, (27)

where f(y) = |y|1+ε for some ε > 0.

We first state a few results, which are easy to prove, and will be used later.

Lemma D.5. For a > 0, b > 0, and z ∈ <, the minimizer, x∗, for a |x|1+ε
+ b(x− z)+ satisfies

x∗ =


0, if z ≥ 0

z, if z < 0, and z ≥ −
(

b
a(1+ε)

) 1
ε

−
(

b
a(1+ε)

) 1
ε

, otherwise.
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Lemma D.6. For ε > 0, b ≥ 0, a ∈ <, and c ≥ 0, the set of p ≥ 0, q ≥ 0, satisfying

a− bp+ cq − ε

p
1
ε

(
q

1 + ε

)1+ 1
ε

≥ 0

is compact, provided c1+ε ≤ b. Moreover,

p ∈
[
0,

a

c1+ε − b

]
; q ∈

[
0,

a

c− b
1

1+ε

]
.

Lemma D.7. For v ∈
[
−f -1(B), f -1

(
B

1−π

))
, Ŝ(v) is compact.

Proof. For λ ∈ Ŝ(v),

min
y

1 + λ1v − λ2(1− π) + λ3 (f (y)−B)−
(
λ1y

1− π
− λ2

)
≥ 0,

and
min
y

1 + λ1v − λ2(1− π) + λ3 (f (y)−B) ≥ 0.

The l.h.s. in the first inequality above is a convex function which is minimized at y1 for which the
derivative of the l.h.s. is 0, while the l.h.s. of the second inequality above is minimized at y2 = 0.
Substituting for y1 and y2 in the above inequalities,

1 + λ1v − λ3B

1− π
≥ λ2 ≥

λ
1+1/ε
1

λ
1/ε
3

ε

(1 + ε)1+1/ε

1

(1− π)1+1/ε

1

π
− 1 + λ1v − λ3B

π
. (28)

Eliminating λ2 and simplifying,

λ
1+1/ε
1 ε

(1 + ε)1+1/ε

1

(1− π)
1/ε
− λ

1
ε
3 − λ1λ

1
ε
3 v + λ

1+1/ε
3 B ≤ 0. (29)

L.h.s. above is a convex function of λ1 which is minimized at

λ∗1 = λ3v
ε(1− π)(1 + ε).

In particular, (29) holds for λ∗1. On substituting λ∗1 in (29), we get

λ3 ≤
(
B − v1+ε(1− π)

)-1
.

Again, observe that l.h.s. in (29) is a convex function of λ3 which is minimized at

λ∗3 =
1 + λ1v

B(1 + ε)
.

Substituting λ∗3 in (29), we get

λ1 ≤

((
B

εε(1− π)

)1+ 1
ε

− v

)-1

.

These bounds on λ1 and λ3, together with the fact that λ1 ≥ 0 and λ3 ≥ 0, and bounding λ2 using
(28), we get that the region specified by Ŝ(v) is compact.

Lemma D.8. For v ∈
(
−f -1(B), f -1

(
B

1−π

)]
and x0 ∈

[
−f -1

(
B
π

)
, v
)
,R2(x0, v) is compact.

Proof. For γ ∈ R2(v, x0),

min
y

1− γ1 (v − x0) + γ1
(y − x0)+

1− π
− γ2(B − |y|1+ε

) ≥ 0. (30)
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Using Lemma D.5, the region-constraint above can be re-written as

0 ≤ 1−γ1(v−x0)−γ2B+


0, if x0 ≥ 0,

γ2 |x0|1+ε
, if 0 ≥ x0 ≥ −

(
γ1

γ2(1−π)(1+ε)

) 1
ε

,

−γ1
x0

1−π −
ε

γ
1
ε
2

(
γ1

(1−π)(1+ε)

)1+ 1
ε

, if −
(

γ1
γ2(1−π)(1+ε)

) 1
ε ≥ x0.

Let x0 6= v. In this case, for x0 ≥ 0,

γ1 ≤ (v − x0)
-1 and γ2 ≤ B-1.

For x0 6= v, in the bottom case, optimizing out γ1 and setting derivative to 0, together with the fact
that γ1 ≥ 0, we get that the minimizer

γ∗1 = max {0, γ2(1 + ε)(1− π) (−πx0 − (1− π)v)
ε} .

This gives

γ2 ≤
(
B −max {0,−πx0 − (1− π)v}1+ε

)-1
.

Furthermore, the case constraint gives that

γ1 ≤ (−x0)εγ2(1− π)(1 + ε) ≤ (−x0)ε(1− π)(1 + ε)

B −max {0,−πx0 − (1− π)v}1+ε .

Note that for v > −f -1(B), the denominators in the bounds above is strictly positive.

Let us now consider the center case with x0 6= v. In this case, the region constraint is

0 ≤ 1− γ1(v − x0)− γ2

(
B − |x0|1+ε

)
.

Consider optimizing over γ1 to get a bound on γ2. Since the coefficient of γ1 is positive, optimal
value of γ1 equals 0, in which case, γ2 is at most (B − |x0|1+ε

)-1 if |x0|1+ε ≤ B, otherwise the
maximum occurs either at the case-line, or in the bottom case.

Similarly for γ1, for |x0|1+ε ≤ B, γ1 ≤ (v − x0)-1, and the maximum occurs either at the boundary,
or in the bottom case, otherwise.

Thus, overall bounds for x0 6= v are :

γ1 ≤ (v − x0)-1, γ2 ≤ B-1, for x0 ≥ 0,

γ1 ≤ (v − x0)-1, γ2 ≤ (B − |x0|1+ε
)-1, for x0 ≤ 0, (−x0)1+ε ≤ B,

and for x0 ≤ 0, (−x0)1+ε > B,

γ1 ≤
(−x0)ε(1− π)(1 + ε)

B −max {0,−πx0 − (1− π)v}1+ε , γ2 ≤
(
B −max {0,−πx0 − (1− π)v}1+ε

)-1
.

It is important to note that for v > −f -1(B), the bounds above blow-up only for x0 = v. This case
will be handled separately. Let us now look at the case when x0 = v. In this case, (30) simplifies to

min
y

1 + γ1
(y − x0)+

1− π
− γ2B + γ2 |y|1+ε ≥ 0.

When x0 ≥ 0, y = 0 is the minimizer for l.h.s. above. Substituting this, we get

γ2 ≤ B-1.

Remark D.1. When x0 = v ≥ 0, γ1 is unbounded. However, if the given probability measure, η,
is such that η(v,∞) = 0, then γ1 doesn’t appear in the objective function. Thus, it is sufficient to
restrictR2(x0(= v), v) to the γ2 axis. Hence, the modified region is again compact in this special
case.
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For the other case, i.e., when x0 = v < 0, l.h.s. in minimized at y∗ ∈ [x0, 0], which is given by

y∗ = (−1)
(
γ1γ2

-1)1/ε ((1− π)1/ε(1 + ε)1/ε
)-1

.

Substituting and simplifying as above, (or substituting y = x0), we get that

γ2 ≤
(
B − |x0|1+ε

)-1
.

Observe that the denominator is positive for x0 = v. Since y∗ ≥ x0, we get that

γ1 ≤ (−x0)εγ2(1− π)(1 + ε) ≤ (−x0)ε(1− π)(1 + ε)

B − |x0|1+ε .

Hence, the regionR2(x0, v) is compact in this case too.

D.4 Discussion on possibility of uniform priors on the dual feasible regions

Consider an arm distribution µi for i ∈ {1, . . . ,K}. Since Ŝ(cπ(µi)) is compact (see Lemma
D.7), uniform measure on the set is well defined. For the region R2(xπ(µi), cπ(µi)), whenever
xπ(µi) 6= cπ(µi), the region R2(xπ(µi), cπ(µi)) is compact, and uniform prior on this set is well
defined. When µi is such that xπ(µi) = cπ(µi)(=v, say), then Supp(µi) ⊂ (−∞, v]. In this case
R2(v, v) is unbounded along the γ1 axis. However, from the Remark D.1, it is sufficient to restrict
the region along γ2 axis, and this restricted region is then compact. We put uniform prior on this
modified region.

D.5 The joint-dual problem

Recall that L is the class of all probability measures on <, say η, with moment bound, i.e.
Eη (f(X)) ≤ B, where f(x) = |x|1+ε for some ε > 0.

In this sub-section, we look at the joint optimization problem, which appears in the lower bound as a
weighted sum of KLL

inf and KLU
inf for two arms. Specifically, for η1, η2 ∈ P(<), and non-negative

weights α1, α2, we denote the inner optimization problem in (5) by

Z = infx≤y
{
α1 KLU

inf(η1, y) + α2 KLL
inf(η2, x)

}
,

which is equivalent to the following problem:

minimise α1 KL (η1, κ1) + α2 KL (η2, κ2)

subject to κ1, κ2 ∈ L
cπ(κ2) ≤ cπ(κ1)

Using the maximization form of CVaR for κ1 and the minimization form for κ2 from (16) and (15),
the above problem is equivalent to

minimise α1 KL (η1, κ1) + α2 KL (η2, κ2)

subject to κ1, κ2 ∈ L, z ∈ R,W ∈M+(<)

z +
1

1− π
Eκ2

((X − z)+) ≤ 1

1− π

∫
x∈<

xdW (x)

∀x : 0 ≤ dW (x) ≤ dκ1(x)∫
x∈<

dW (x) = 1− π.

Introducing the dual variables (ρ1 ≥ 0, ρ2 ∈ <, λ1 ∈ <, λ2 ≥ 0, γ1 ∈ <, γ2 ≥ 0,∀x λ3(x) ≥
0). Then, single out the minimisation over z, the Lagrangian in terms of κ1, κ2,W , denoted as

32



L(κ1, κ2,W,λ,γ,ρ), equals

α1

∫
<

log

(
dη1

dκ1
(y)

)
dη1(y) + α2

∫
<

log

(
dη2

dκ2
(y)

)
dη2(y) + λ1

(∫
<
dκ1(x)− 1

)
+ λ2

(∫
<
f(x)dκ1(x)−B

)
+ γ1

(∫
<
dκ2(x)− 1

)
+ γ2

(∫
<
f(x)dκ2(x)−B

)
+ ρ1

(
z +

1

1− π

∫
(x− z)+dκ2(x)− 1

1− π

∫
<
xdW (x)

)
+

∫
λ3(x) (dW (x)− dκ1(x)) + ρ2

(∫
<
dW (x)− (1− π)

)
.

Then the Lagrangian dual problem is
min
z∈R

max
ρ1≥0,ρ2∈<,

λ1∈<,λ2≥0,λ3(x)≥0,
γ1∈<,γ2≥0.

min
κ1∈M+

κ2∈M+

W∈M+

L(κ1, κ2,W,λ,γ,ρ). (31)

Let S = {ρ1 ≥ 0, ρ2 ∈ <, λ1 ∈ <, λ2 ≥ 0, γ1 ∈ <, γ2 ≥ 0,∀x λ3(x) ≥ 0} , and let S1 be the set
obtained by intersection of S and set of (λ,γ,ρ) such that

min
x∈<

λ1 + λ2f(x)− λ2B − λ3(x) ≥ 0, min
x∈<

γ1 + γ2f(x)− γ2B + ρ1
(x− z)+

1− π
≥ 0.

Lemma D.9. The Lagrangian dual problem (31) satisfies
min
z∈R

max
ρ1≥0,ρ2∈<,
λ1∈<,λ2≥0,
λ3(x)≥0,
γ1∈<,γ2≥0.

min
κ1∈M+

κ2∈M+

W∈M+

L(κ1, κ2,W,λ,γ,ρ) = min
z∈<

max
(λ,γ,ρ)∈S1

inf
κ1∈M+

κ2∈M+

W∈M+

L(κ1, κ2,W,λ,γ,ρ).

Proof. Consider (λ,γ,ρ) ∈ S and λ 6∈ S1. Then, there exist y1 ∈ < such that
λ1 + λ2f(y1)− λ2B − λ3(y1) < 0.

Set κ2 = η2 and define κ1M ∈M+ such that κ1M (y1) = M and
dη1

dκ1M
(y) = 1, for y ∈ {Supp(η1) \ y1} .

Then, L(κ1M , κ2,W,λ,γ,ρ) equals

α1

∫
<

log

(
dη1

dκ1M

)
(y)dη1(y) +

∫
<

(λ1 + λ2f (x)− λ2B − λ3(x)) dκ1M (x)

+

∫
<

(
γ1 + γ2f (x)− γ2B +

ρ

1− π
(x− z)+

)
dκ2(x)

+

∫
<

(
− ρ1x

1− π
+ λ3(x) + ρ2

)
dW (x)− λ1 − γ1 + ρ1z − ρ2(1− π).

Clearly, the first two terms in the expression above decrease to −∞ as M increases to∞. The other
cases, specifically (γ, ρ) 6∈ S1 and (λ, γ, ρ) 6∈ S1 can be handled similarly. Thus, the infimum in
the inner optimization problem in (31) is −∞, and we get the desired equality.

Using arguments similar to those in Lemma D.2 and Lemma D.4, it can be shown that the optimal κ∗1
and κ∗2, that solve the inner minimization problem in (31) have the following form:

dκ∗1
dη1

(y) =
α1

λ1 + λ2 (f (y)−B)− λ3(y)
for y ∈ Supp(η1), (32)

dκ∗2
dη2

(y) =
α2

γ1 + γ2 (f (y)−B) + ρ1
(y−z)+

1−π

for y ∈ Supp(η2). (33)

Furthermore, for y ∈ Supp(κ∗1) \ Supp(η1), λ1 + λ2 (f (y)−B) − λ3(y) = 0 and for y ∈
Supp(κ∗2) \ Supp(η2), γ1 + γ2 (f (y)−B) + ρ1

(y−z)+
1−π = 0.
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D.5.1 Proof of Proposition 3.5

We first show that the dual problem in (31) simplifies to the alternative expression given in the
Theorem. Then we argue that both the primal and the dual problems are feasible, and that strong
duality holds.

Using the expressions for the optimizers κ∗1 and κ∗2 from above in the dual in Lemma D.9, the dual in
(31) equals

min
z∈<

max
(λ,γ,ρ)∈S1

inf
W∈M+

α1Eη1 (log (λ1 + λ2 (f (Y )−B)− λ3(Y )))− α1 logα1 − α2 logα2 − λ1

+ α2Eη2

(
log

(
γ1 + γ2 (f (Y )−B) + ρ1

(Y − z)+

1− π

))
+ α1 + α2

+

∫
<

dW (x)

(
− ρ1x

1− π
+ ρ2 + λ3(x)

)
− ρ2(1− π) + ρ1z − γ1.

Since W ∈M+, and if (λ, γ, ρ) are such that the integrand in the integral above is negative, then
the value of the expression above will be −∞. Thus, it suffices to restrict (λ, γ, ρ) so that this does
not happen. Let

S2 = S1 ∩

{
(λ, γ, ρ) : ∀x, λ3(x) ≥

(
ρ1x− ρ2(1− π)

1− π

)
+

}
.

Then the dual problem simplifies to

min
z∈<

max
(λ,γ,ρ)∈S2

α1Eη1 (log (λ1 + λ2 (f (Y )−B)− λ3(Y )))− α1 logα1 − α2 logα2 − γ1

+ α2Eη2

(
log

(
γ1 + γ2 (f (Y )−B) + ρ1

(Y − z)+

1− π

))
+ α1 + α2 + ρ1z − λ1 − ρ2(1− π).

Let (λ, γ, ρ) = (λ1, λ2, γ1, γ2, ρ1, ρ2) and

S3 = S ∩

{
(λ, γ, ρ) : min

y
λ1 + λ2 (f (y)−B) ≥

(
ρ1y − ρ2

1− π

)
+

}
,

and

S4 = S3 ∩
{

(λ, γ, ρ) ∈ S : min
y
γ1 + γ2 (f (y)−B) + ρ1

(y − z)+

1− π
≥ 0

}
.

Optimizing over the choice of λ3(x), and renaming ρ2(1− π) to ρ2, we get

min
z∈<

max
(λ,γ,ρ)∈S4

α1Eη1

(
log

(
λ1 + λ2 (f (Y )−B)−

(
ρ1Y − ρ2

1− π

)
+

))
+ α1 + α2 − λ1 − γ1

+ α2Eη2

(
log

(
γ1 + γ2 (f (Y )−B) + ρ1

(Y − z)+

1− π

))
− α1 logα1 − α2 logα2 − ρ2 + ρ1z.

(34)

Optimizing over the common scaling of the dual variables, the inner problem in (34) above can be
re-written as

max
(λ,γ,ρ)∈S4

α1Eη1

log
λ1 + λ2 (f (Y )−B)−

(
ρ1Y−ρ2

1−π

)
+

λ1 + ρ2 − ρ1z + γ1

+ (α1 + α2) log (α1 + α2)

+ α2Eη2

(
log

γ1 + γ2 (f (Y )−B) + ρ1
(Y−z)+

1−π
λ1 + ρ2 − ρ1z + γ1

)
− α1 logα1 − α2 logα2.

Observe that as earlier, λ1 +ρ2−ρ1z+γ1 ≥ 0. This follows from the conditions on the dual variables
in S4 and complementary slackness conditions, which hold as the problem is convex optimization
and satisfies strong duality (proved later).
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Setting γ̃1 = λ1 + ρ2 − ρ1z + γ1, and λ1 + ρ2 = λ̃1 and substituting in the above expression and
renaming the variables, we get

max
(λ,γ,ρ)∈S5

α1Eη1

(
log

(
λ1 + λ2 (f (Y )−B)− ρ2 −

(
ρ1Y − ρ2

1− π

)
+

))
− α1 logα1 − α2 logα2

+ α2Eη2

(
log

(
1− λ1 + γ2 (f (Y )−B) + ρ1z + ρ1

(Y − z)+

1− π

))
+ (α1 + α2) log (α1 + α2) ,

where S5 is given by intersection of the set S with the sets{
(λ, γ, ρ) : min

y

(
λ1 + λ2 (f (y)−B)− ρ2 −

(
ρ1y − ρ2

1− π

)
+

)
≥ 0

}
,

and {
(λ, γ, ρ) : min

y

(
1− λ1 + γ2 (f (Y )−B) + ρ1z + ρ1

(Y − z)+

1− π

)
≥ 0

}
.

Re-parameterize again by setting λ̃1 = λ1 − 1/2 and scaling every dual variable by 1/2, we get the
desired dual formulation.

It now suffices to show that both the primal and dual problems are feasible, and strong duality holds.

Consider (λ, γ, ρ)
1

= (1, 0, 0, 1, 0, 0, 0). To show that dual is feasible, it suffices to show

min
κ1∈M+

κ2∈M+

L(κ1, κ2, ,W, (λ, γ, ρ)
1
) = min

κ1∈M+

κ2∈M+

α1 KL(η1, κ1) + α2 KL(η2, κ2)− 2

+

∫
<
dκ1(y) +

∫
<
dκ2(y) > −∞.

Let κ̃1 and κ̃2 be the minimizers in the above expression. Then, Supp(κ̃1) = Supp(η1) and
Supp(κ̃2) = Supp(η2), and from (32) and (33),

dκ̃1

dη1
(y) = α1 and

dκ̃2

dη2
(y) = α2.

We next argue the feasibility of primal problem, and show that strong duality holds. Consider
κ1 = κ2 = p1η1 + p2η2 + (1− p1 − p2)δ0, where, p1, p2 ∈ (0, 1) and Eκ1 (f (X)) < B. Clearly,
KL(η1, κ1) < ∞ and KL(η2, κ2) < ∞ and are feasible for the primal problem. Furthermore, the
measures κ̃1 = (1− ε)δ−f -1(B) + εδ0 and κ̃2 = (π+ ε)δ0 + (1− π− ε)δf -1(Bπ ) lie in the interior of
the primal region. Hence, strong duality holds.

E Description of the C-tracking rule of [27] used in Section 4

Recall that at each time n, the algorithm evaluates the optimization problem (5) for the projected
empirical distribution vector, i.e., it computes V (Π (µ̂(n))). Let t∗(Π (µ̂(n))) be a maximizer.
In order to track these with some forced-exploration, for ζ ∈ (0, 1

K ], let tζ(Π(µ̂(n))) be a L∞

projection of t∗(Π(µ̂(n))) onto ΣζK = {(t1, . . . , tK) ∈ [ζ, 1] : t1 + · · ·+ tK = 1} . The algorithm
sets ζn = (K2 + n)−

1
2 /2, and chooses

An+1 ∈ argmax
1≤a≤K

n∑
s=0

(
tζna (Π(µ̂(n)))−Na(n)

)
.

See [27, Section 3.1] for details of the C-tracking rule, and its properties.

F Theoretical guarantees for the algorithm: Proof for Theorem 4.1
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F.1 Proof of Theorem 4.1: δ-correctness

In this section, we prove that the algorithm presented is δ-correct, i.e., the first part of Theorem 4.1
holds. Recall that the error occurs when at the stopping time τδ , the arm with minimum CVaR is not
arm 1. Let the event {µ̂(n) suggests arm j as answer} be denoted by En(j). Then, using the stopping
rule in (7), E is contained in∃n :

⋃
i 6=1

{
min
a 6=i

inf
x≤y

{
Ni(n) KLU

inf(µ̂i(n), y) +Na(n) KLL
inf(µ̂a(n), x)

}
≥ β; En(i)

} ,

which is further contained in∃n :
⋃
i 6=1

{
inf
x≤y

{
Ni(n) KLU

inf(µ̂i(n), y) +N1(n) KLL
inf(µ̂1(n), x)

}
≥ β; En(i)

} . (35)

Clearly, x = cπ(µ1) and y = cπ(µi) are feasible for the infimum problem above. Using these with
the union bound, the probability of the error event is bounded by

K∑
i=2

P
(
∃n : Ni(n) KLU

inf(µ̂i(n), cπ(µi)) +N1(n) KLL
inf(µ̂1(n), cπ(µ1)) ≥ β

)
. (36)

Whence, it is sufficies to show that each summand in (36) is at most δ
K−1 .

Recall that f -1(c) = max {y : f(y) = c} = c
1

1+ε , and for v ∈ Do =
(
−f -1 (B) , f -1

(
B

1−π

))
,

x0 ∈ C =
[
−f -1

(
B
π

)
, v
]
,

Ŝ(v) :=
{
λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0 : ∀x ∈ <, gU (x,λ, v) ≥ 0

}
,

and
R2(x0, v) :=

{
γ1 ≥ 0, γ2 ≥ 0 : ∀y ∈ <, gL(y,γ, v, x0) ≥ 0

}
,

where,

gU (X,λ, v) = 1 + λ1v − λ2(1− π) + λ3 (f(X)−B)−
(
λ1X

1− π
− λ2

)
+

,

and

gL(X,γ, v, x0) = 1− γ1

(
v − x0 −

(X − x0)+

1− π

)
− γ2(B − f (X)).

Clearly, gU and gL are concave functions of λ and γ. Recall from Theorems 3.4 that for each arm i,

Ni(n) KLU
inf(µ̂i(n), cπ(µi)) = max

λ∈Ŝ(cπ(µi))

Ni(n)∑
j=1

log
(
gU (Xi

j ,λ, cπ(µi))
)
, (37)

and

Ni(n) KLL
inf(µ̂i(n), cπ(µi)) ≤ max

γ∈R2(xπ(µi),cπ(µi))

Ni(n)∑
j=1

log
(
gL(Xi

j ,γ, cπ(µi), xπ(µi))
)
, (38)

where, Xi
j : j ∈ {1, . . . , Ni(n)} are samples from µi.

The following lemma bounds the maximum of a sum of exp-concave functions, i.e., functions whose
exponentials are concave. It is essentially the regret bound for the continuous exponentially weighted
average predictor, which was shown for the core portfolio optimisation case by [10] and stated in
general by [29, Theorem 7].
Lemma F.1. Let Λ ⊆ Rd be a compact and convex subset and q be the uniform distribution on Λ.
Let gt : Λ→ R be any series of exp-concave functions. Then

max
λ∈Λ

T∑
t=1

gt(λ) ≤ log Eλ∼q
(
e
∑T
t=1 gt(λ)

)
+ d log(T + 1) + 1.
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Let q1i be a uniform prior on the set Ŝ(cπ(µi)), and q2i be the uniform prior on the set
R2(xπ(µi), cπ(µi)). See Sections D.3 and D.4 for a discussion on the possibility of having uniform
priors on these sets. For samples Xi

j : j ∈ {1, . . . , Ni(n)}, define

Li(n) = Eγ∼q2i

Ni(n)∏
j=1

gL(Xi
j ,γ, cπ(µi), xπ(µi))

∣∣∣Xi
1, . . . , X

i
Ni(n)

 ,

and

Ui(n) = Eλ∼q1i

Ni(n)∏
j=1

gU (Xi
j ,λ, cπ(µi))

∣∣∣Xi
1, . . . , X

i
Ni(n)

 .

Then, using Lemma F.1 with gt(λ) = log gU (Xt,λ, cπ(µi)), d = 3, and (37), on each sample path,
we have

Ni(n) KLU
inf(µ̂i(n), cπ(µi)) ≤ logUi(n) + 3 log(Ni(n) + 1) + 1.

Also using Lemma F.1 with gt(γ) = gL(Xt,γ, cπ(µi), xπ(µi)), d = 2, (38) and Remark D.1, on
each sample path,

Ni(n) KLL
inf(µ̂i(n), cπ(µi)) ≤ logLi(n) + 2 log(Ni(n) + 1) + 1, a.s.

For each arm i, let
Y Li (n) = Ni(n) KLL

inf(µ̂i(n), cπ(µi))− 2 log (Ni(n) + 1)− 1. (39)
and

Y Ui (n) = Ni(n) KLU
inf(µ̂1(n), cπ(µi))− 3 log (Ni(n) + 1)− 1. (40)

Then we have that
eY

L
i (n) ≤ Li(n) and eY

U
i (n) ≤ Ui(n), a.s.

Furthermore, it is easy to verify that for each arm i, Li(n) and Ui(n) are non-negative, super-
martingales satisfying E (Ui(n)) ≤ 1 and E (Li(n)) ≤ 1. Thus, Ui(n)L1(n) is a non-negative
super-martingale with mean at most 1, and satisfies that the event{

∃n : Ni(n) KLU
inf(µ̂i(n), cπ(µi)) +N1(n) KLL

inf(µ̂1(n), cπ(µ1)) ≥ β(n, δ)
}

is contained in {
∃n : L1(n)Ui(n) ≥ K − 1

δ

}
.

Using Ville’s inequality (see, [55]), the probability of the above event is bounded by δ
K−1 .

F.1.1 Proof of Lemma F.1

Recall that q is uniform over Λ. Let λ∗ denote the maximizer for maxλ∈Λ

∑T
1 gt(λ). Then, for any

distribution r over Λ, Donsker-Varadhan variational form for KL(r, q) gives that

max
λ∈Λ

T∑
t=1

gt(λ) ≤ KL(r, q) +

T∑
t=1

Eλ∼r (gt(λ
∗)− gt(λ)) + log Eλ∼q

(
e
∑T

1 gt(λ)
)
. (41)

Fix α ∈ (0, 1). Define the set Λ̃ = {αλ∗ + (1− α)λ0 : λ0 ∈ Λ}, and choose r to be uniform
over Λ̃. Then, KL(r, q) = −d log(1 − α). Moreover, since egt is concave, for λ ∈ Λ̃ such that
λ = αλ∗ + (1− α)λ0,

egt(λ) ≥ αegt(λ
∗) + (1− α)egt(λ0) ≥ αegt(λ

∗).

Taking negative logarithm of the above inequality, we get gt(λ∗)− gt(λ) ≤ − logα, for all λ ∈ Λ̃.
Using this and the bound for KL(r, q) in (41), along with setting α = T

T+d , we get

max
λ∈Λ

T∑
t=1

gt(λ) ≤ (T + d)H2

(
T

T + d

)
+ log Eλ∼q

(
e
∑T

1 gt(λ)
)
,

where H2(a) is the entropy of Bernoulli(a) random variable. The required inequality then follows by
observing that (T + d)H2

(
T
T+d

)
≤ d log(T + 1) + 1.
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F.2 Sample complexity

We now prove that the sample complexity of the algorithm matches the lower bound asymptotically,
as δ → 0, i.e., it satisfies

lim sup
δ→0

Eµ (τδ)

log 1
δ

≤ 1

V (µ)
.

The proof works for any projection map Π, which is continuous at L. However, we give proof
for the map that projects onto the element in L which is closest in the Kolmorogov metric, i.e.,
Π = (Π1,Π2, . . . ,ΠK), where

Πi(η) ∈ argmin
κ∈L

dK(κ, η), and dK(κ, η) = sup
x∈<
|Fκ(x)− Fη(x)| ,

and Fκ and Fη denote the CDF functions for the measures η and κ.

Let ε′ > 0 and n ∈ N. Define Iε′ , Bζ(µ1) × Bζ(µ2) × . . . × Bζ(µK), where Bζ(µi) =
{κ ∈ P(<) : dK(κ, µi) ≤ ζ} , and ζ > 0 is chosen to satisfy the following:

µ′ ∈ Iε′ =⇒ ∀t′ ∈ t∗ (Π(µ′)) , ∃t ∈ t∗ (µ) s.t. ‖t′ − t‖∞ ≤ ε′.

Observe that for ζ → 0, probability measures in Bζ(µi) weakly converge to µi, for all i. Also, for all
κ ∈ Bζ(µi), dK(κ, µi) ≤ ζ which implies that dK(Π(κ), κ) ≤ ζ, and hence, dK(Π(κ), µi) ≤ 2ζ,
where the last inequality follows from triangle inequality for dK .

Recall that µ ∈ M is such that −f -1 (B) < cπ(µ1) < maxj 6=1 cπ(µj) < f -1
(

B
1−π

)
, where

f -1(c) := max {y : f(y) = c}. Existence of ζ = ζ(ε) is then guaranteed by the upper-hemicontinuity
of the set t∗(µ) (Lemma 3.3). See, [21, Theorem 9] for a proof in the parametric setting, when the
optimal proportions are only upper-hemicontinuous.

For T ∈ N, set l0(T ) = T 1/4, and define

GT (ε′) =

T⋂
n=l0(T )

{µ̂(n) ∈ Iε′} .

Let µ′ be a vector of K, 1-dimensional distributions from P(<), [K] = {1, . . . ,K}, and let t′ ∈ ΣK .
Define

g(µ′, t′) , max
a∈[K]

min
b6=a

inf
x∈[−f -1(B),f -1( B

1−π )]

(
t′a KLU

inf(µ
′
1, x) + t′b KLL

inf(µ
′
b, x)

)
.

Note that, for µ ∈ (P(<))
K , from Lemma C.3 and Berge’s Theorem (see, [8, Theorem 2, Page 116]),

g(µ, t) is a jointly lower-semicontinuous function of (µ, t). Let ‖.‖∞ be the maximum norm in <K ,
and

C∗ε′(µ) , inf
µ′∈Iε′

t′:inft∈t∗(µ) ‖t
′−t‖∞≤4ε′

g(µ′, t′).

From Lemma F.4, for T ≥ Tε′ , on GT (ε′), for t ≥ T 1/4, the modified log generalized likelihood ratio
statistic for µ̂(n), used in the stopping rule, is given by Z(n) = maxa minb 6=a Za,b(n), where

Za,b(n) = n inf
x∈[−f -1(B),f -1( B

1−π )]

(
Na(n)

n
KLU

inf(µ̂a(n), x) +
Nb(n)

n
KLL

inf(µ̂b(n), x)

)
.

In particular, on GT (ε′), for T ≥ Tε′ and n ≥ l0(T ),

Z(n) = n max
a

min
b6=a

inf
x∈[−f -1(B),f -1( B

1−π )]

(
Na(n)

n
KLU

inf(µ̂a(n), x) +
Nb(n)

n
KLL

inf(µ̂b(n), x)

)

= n g

(
µ̂(n),

{
N1(n)

n
, . . . ,

NK(n)

n

})
≥ n C∗ε′(µ).
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Furthermore, the stopping time is at most inf {n ≥ l0(T ) : Z(n) ≥ β(n, δ), l ∈ N}. For T ≥ Tε′ ,
on GT (ε′),

min{τδ, T} ≤
√
T +

T∑
l=
√
T+1

1 (t < τδ)

≤
√
T +

T∑
l=
√
T+1

1 (Z (l) < β (l, δ))

≤
√
T +

T∑
l=
√
T+1

1

(
l <

β (l, δ)

C∗ε′(µ)

)

≤
√
T +

β(T, δ)

C∗ε′(µ)
.

(42)

Define,

T0(δ) = inf

{
l ∈ N :

√
l +

β(l, δ)

C∗ε′(µ)
≤ l
}
.

On GT , for T ≥ max {T0(δ), Tε′}, from (42) and definition of T0(δ),

min {τδ, T} ≤
√
T +

β(T, δ)

C∗ε′(µ)
≤ T,

which gives that for such a T, τδ ≤ T . Thus, for T ≥ T0(δ), we have GT (ε′) ⊂ {τδ ≤ T} and hence,
Pµ (τδ > T ) ≤ Pµ(GcT ). Since τδ ≥ 0,

Eµ(τδ) ≤ T0(δ) + Tε′ +

∞∑
T=T0(δ)+1

Pµ (GcT (ε′)) . (43)

For ẽ > 0, it can be shown that

lim sup
δ−→0

T0(δ)

log (1/δ)
≤ (1 + ẽ)

C∗ε′(µ)
. (44)

Then, from (43), (44), and Lemma F.5,

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ (1 + ẽ)

C∗ε′(µ)
.

From lower-semicontinuity of g(µ′, t′) in (µ′, t′) for µ′ ∈ (P(<))
K , it follows that lim inf

n→∞
C∗ε′(µ) ≥

V (µ). First letting ẽ→ 0 and then letting ε′ → 0, we get

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ 1

V (µ)
.

Lemma F.2 ([27], Lemma 7). For n ≥ 1 and a ∈ [K], the C-tracking rule ensures that Na(n) ≥√
n+K2 − 2K and that

max
a∈[K]

∣∣∣∣∣Na(n)−
n−1∑
s=0

ta(s)

∣∣∣∣∣ ≤ K(1 +
√
n), where t(s) ∈ t∗ (Π(µ̂(s))) .

Lemma F.3 ([21], Lemma 33). Let ε > 0 and A ⊂ ΣK be a convex set and let t(1), t(2), . . . , t(n) ∈
ΣK be such that for s ∈ {1, . . . , n}, inft∈A ‖t(s)−t‖∞ ≤ ε′. Then inft∈A ‖ 1

n

∑n
s=1 t(s)−t‖∞ ≤ ε.

Lemma F.4. For ε′ > 0, there exists a constant T ′ε such that for T ≥ Tε′ , it holds that on GT for
tracking rule

∀n ≥
√
T , inf

t∗∈t∗(µ)

max
a∈[K]

∣∣∣∣Na(n)

n
− t∗a

∣∣∣∣ ≤ 3ε′.
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Proof. The proof follows along the lines of [27, Lemma 20] and [21, Lemma 35]. For any n ≥√
T = l0(T ), using the Lemma F.2, for all a,

inf
t∈t∗(µ)

max
a∈[K]

∣∣∣∣Na(n)

n
− ta

∣∣∣∣ ≤ max
a∈[K]

∣∣∣∣∣Na(n)

n
− 1

n

n−1∑
s=0

ta(s)

∣∣∣∣∣+ inf
t∈t∗(µ)

max
a∈[K]

∣∣∣∣∣ 1n
n−1∑
s=0

ta(s)− ta

∣∣∣∣∣
≤ K(1 +

√
n)

n
+
l0(T )

n
+ inf
t∈t∗(µ)

∥∥∥∥∥∥ 1

n

n−1∑
s=l0(T )

(t(s)− t)

∥∥∥∥∥∥
∞

.

On the set GT , from the definition of this set, for all n ≥ l0(T ), ∀t′ ∈ t∗ (Π(µ̂(n))), inft∈t∗(µ) ‖t′ −
t‖∞ ≤ ε′. Since t∗(µ) is a convex set, by Lemma F.3, the last term in the expression above is at most
ε′. Thus,

inf
t∈t∗(µ)

max
a∈[K]

∣∣∣∣Na(n)

n
− ta

∣∣∣∣ ≤ 2K

l0(T )
+

1

l0(T )
+ ε′ ≤ 3ε′,

for T ≥ ((2K + 1)/2ε′)4.

Lemma F.5.

lim sup
δ→0

∞∑
T=1

Pµ(GcT (ε′))

log (1/δ)
= 0.

Proof. Recall that for T ∈ N, l0(T ) = T 1/4, and

GT (ε′) =

T⋂
n=l0(T )

{µ̂(n) ∈ Iε′} .

Using union bounds,

Pµ(GcT (ε′)) ≤
T∑

l=l0(T )

Pµ (µ̂(l) 6∈ Iε′) ≤
T∑

l=l0(T )

K∑
a=1

P

(
sup
x

∣∣Fµ̂a(l)(x)− Fa(x)
∣∣ ≥ ε′) .

From Lemma F.2, C-Tracking ensures at least
√
l/2 samples to each arm till time l. Using this, each

summand in the above can be bounded as follows:

P

(
sup
x

∣∣Fµ̂a(l)(x)− Fa(x)
∣∣ ≥ ε′) ≤ P

(
sup
x

∣∣Fµ̂a(l)(x)− Fa(x)
∣∣ ≥ ε′;Na(l) ≥

√
l

2

)
.

R.h.s. in the above inequality can be bounded using union bound and DKW inequality by
l∑

j=
√
l/2

e−2jε
′2

= e−ε
′2√l

(
1− e−2ε

′2
)-1

.

Thus,

Pµ(GcT (ε)) ≤ KTe−ε
′2T 1/8

(
1− e−2ε

′2
)-1

,

completing the proof.

G Computing the projection in Kolmogorov metric

In this section, we describe a method for computing the projection of F (where the typical application
has F as the empirical CDF) onto L in the Kolmogorov metric, i.e.

argmin
G: EG(f(X))≤B

dK(F,G),
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where recall that
dK(F,G) := sup

x∈<
|F (x)−G(x)| .

To project F onto L in the Kolmogorov metric, we will essentially relocate equal mass from the
extreme left and right tails to 0. This is because relocating some mass, say ξ, from points in the
right tail already incurs ξ cost in the Kolmogorov metric (observe the shift in the CDF at 0 due to
this mass). Thus relocating an equal mass from points in the left tail to 0 is for free in the metric
under consideration. However, if the left tail does not have the required ξ mass, then the additional
mass needed to bring down the (1 + ε)th moment will only be relocated from points in the right tail.
Lemma G.1 essentially shows that there exists a projection of F on L which satisfies this.
Lemma G.1. There exists z ≥ 0 such that an optimal measure in L has CDF of the following form:

Gz(x) =

{
max {0, F (x)− z} , for x < 0

min {1, F (x) + z} , for x ≥ 0.

Proof. Let G∗ be a minimiser, and let z = dK(F,G∗). Clearly, Gz as defined above is a CDF, and
dK(F,Gz) ≤ z. It then suffices to show that Gz is also a feasible solution, i.e., EGz

(
|X|1+ε

)
≤ B.

For ε > 0, since f(x) = |x|1+ε is a non-negative function, and f -1(c) := max {y : f(y) = c} ,

EGz (f (X)) =

∫
x≥0

PGz (f (X) ≥ x) dx

=

∫
x≥0

PGz
(
X ≥ f -1 (x)

)
dx+

∫
x≥0

PGz
(
X ≤ −f -1 (x)

)
dx. (45)

Since dK(F,G∗) ≤ z,

G∗(x) ≥ Gz(x), for x < 0 and G∗(x) ≤ Gz(x), for x ≥ 0.

Using this in (45), we have that

EGz (f (X)) ≤
∫
x≥0

PG∗
(
X ≥ f -1 (x)

)
dx+

∫
x≥0

PG∗
(
X ≤ −f -1 (x)

)
dx = EG∗ (f(X)) ,

which is bounded from above by B, as desired.

Since there is an optimizer of the specific form considered in Lemma G.1, to compute the projection,
it suffices to search over only such probability measures. Hence, it only remains to compute the
smallest z for which Gz ∈ L is feasible. We can see from the expression in (45) that EX∼Gz [f(X)]
is a convex, decreasing function of z, which is moreover piecewise linear for discrete (i.e. empirical)
F . This means we can use many techniques to find the argument z for which it first reaches 0 (binary
search, Newton, explicitly enumerating the segments/knots, etc.).

H Discussion on the VaR problem

In the main text, we mainly focused on the minimum CVaR arm identification problem. In this section
we formally present the ideas for the analogous approach of the optimum VaR arm identification
problem. As before, our treatment is based on the lower bound problem. In this section we will not
(need to) impose a moment constraint, i.e., µ ∈ P(<), as the VaR lower bound is defined without it.
The main object of study is the optimization problem that appears in the lower bound, given below:

V (µ) = sup
t∈ΣK

inf
ν∈Ac1

K∑
a=1

ta KL(µa, νa), and Acj = M̃ \ Aj (46)

where M̃ ⊂ P(<)K is the set of all bandit models with a unique best VaR arm, and Aj ⊆ M̃ is the
set of bandit models with j being the arm of lowest VaR.

Recall that for a distribution η, VaR at quantile π, denoted as xπ(η), is defined as

xπ(η) = inf {x ∈ < : Fη(x) ≥ π} .

41



As in the CVaR case, for µ ∈ M̃, (46) can be shown to simplify as

V (µ) = sup
t∈ΣK

min
b 6=1

inf
y

{
t1 KLU

inf(µ1, y) + tb KLL
inf(µb, y)

}
,

where KLL
inf and KLU

inf are defined similar to (1) earlier, with the CVaR constraints replaced with
the corresponding VaR constraints, and are given as:

KLU
inf(η, y) := min

κ∈P(<): xπ(κ)≥y
KL(η, κ) and KLL

inf(η, y) := min
κ∈P(<): xπ(κ)≤y

KL(η, κ).

(47)

Let x+
π (η) := sup {x ∈ < : Fη(x) ≤ π}. Then the set of πth-quantiles for the distribution η is given

by (xπ(η), x+
π (η)).

Remark H.1. We assume that the given bandit problem, µ, has the set of πth-quantiles disjoint from
that of every other arm distribution , as otherwise the bandit instance is not learnable. To see this, fix
π = 0.8 and consider a two-armed bandit problem, µ, where µ1 = Ber(0.2) and µ2 = Ber(0.2 + ε),
for an arbitrarity small ε > 0. Then xπ(µ1) = 0, x+

π (µ1) = 1, and xπ(µ2) = 1. Clearly V (µ) = 0,
whence, µ is unlearnable.

Let us now understand some structural properties of the KLinf functionals which will be helpful for
proving δ-correctness and optimality of the proposed algorithm. For a probability measure η, let
Fη(x) := η((−∞, x]), denote its CDF evaluated at x and F−η (x) = limy↑x Fη(y) denote the left
limit of the CDF of η. Moreover, for p, q ∈ (0, 1) let d2(p, q) denote the KL divergence between the
Bernoulli random variables with mean p and q.
Lemma H.1 (Restating Lemma 4.4). For y ∈ <,

KLL
inf(η, y) = d2(min {Fη(y), π} , π) and KLU

inf(η, y) = d2(max
{
F−η (y), π

}
, π).

Proof. Recall that KLL
inf(η, y) and KLU

inf(η, y) equal the optimal values of the following problems,
respectively:

min KL(η, κ) s.t. κ ∈ P(<), Fκ(y) ≥ π, 1− Fκ(y) ≤ 1− π, (48)

and
min KL(η, κ) s.t. κ ∈ P(<), F−κ (y) ≤ π, 1− F−κ (y) ≥ 1− π. (49)

Clearly,

KL(η, κ) =

y∫
−∞

(
dη

dκ
(x) log

dη

dκ
(x)

)
dκ(x) +

∞∫
y+

(
dη

dκ
(x) log

dη

dκ
(x)

)
dκ(x),

where the first term in the summation above equals

Fη(y)

y∫
−∞

dη/Fη(y)

dκ/Fκ(y)
(x) log

(
dη/Fη(y)

dκ/Fκ(y)
(x)

)
dκ(x)

Fκ(y)
+ Fη(y) log

Fη(y)

Fκ(y)
,

which can be lower bounded using Jensen’s ineqality by

Fη(y) log
Fη(y)

Fκ(y)
.

Similarly, the second term in the definition of KL(η, κ) above can be lower bounded by

(1− Fη(y)) log
1− Fη(y)

1− Fκ(y)
,

giving
KL(η, κ) ≥ d2(Fη(y), Fκ(y)). (50)

Let Supp(η) denote the support of measure η. Consider κ∗ defined below.
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κ∗(x) ,

{
η(x)π (min {π, Fη(y)})-1

, for x ∈ {x : x ≤ y} ,
η(x) (1− π) (1−min {π, Fη(y)})-1

, for x ∈ {x : x > y} ,

and κ∗(x) ≥ 0 for x ≤ y such that x /∈ Supp(η), if {x : x ≤ y} ∩ Supp(η) = ∅.
Clearly, κ∗ satisfies the constraints of 48 and is feasible to the KLL

inf(η, y) problem. Moreover,

KL(η, κ∗) = d2(min {π, Fη(y)} , π) ≤ d2(Fη(y), Fκ∗(y)),

where the inequality above follows from the monotonicity of d2 in the second argument. This, along
with the bound in (50) implies that the above inequality holds as an equality. Whence, κ∗ is optimal
for KLL

inf(η, y) problem, and we get the desired equality for KLL
inf(η, y).

The equality for the KLU
inf(η, y) problem can be argued similarly using ζ∗ defined below:

ζ∗(x) =

{
η(x)π

(
max

{
π, F−η (y)

})-1
for x ∈ {x : x < y}

η(x) (1− π)
(
1−max

{
π, F−η (y2)

})-1
for x ∈ {x : x ≥ y} ,

and ζ∗(x) ≥ 0 for x ≥ y and x /∈ Supp(η), if {x : x ≥ y} ∩ Supp(η) = ∅.

Thus, V (µ) in the lower bound equals

sup
t∈ΣK

min
b 6=1

inf
y

{
t1 d2(max

{
π, F−µ1

(y)
}
, π) + tb d2(min {π, Fµb(y)} , π)

}
,

which can also be shown to equal

sup
t∈ΣK

min
b 6=1

inf
y∈[x+

π (µ1),xπ(µb)]

{
t1 d2(max

{
π, F−µ1

(y)
}
, π) + tb d2(min {π, Fµb(y)} , π)

}
.

(51)

Lemma H.2. For fixed η and π, KLL
inf(η, y) and KLU

inf(η, y) are lower-semicontinuous in y.

The proof of the above lemma follows from continuity of d2(., π) and dual formulations for KLL
inf

and KLU
inf . At the points of discontinuity of Fη , KLL

inf and KLU
inf can only decrease in value, whence,

lower-semicontinuous.

Remark H.2. Let ηn = 0.25δ0 + 0.25δ1 + 0.25δ2 + 0.25δ3, π = 0.6, yn = 1 − 1
n , and y = 1.

With these, η = ηn, and yn → y. Using Lemma H.1, KLL
inf(ηn, yn) = d2(0.25, 0.6), while

KLL
inf(η, y) = d2(0.5, 0.6), thus showing that KLL

inf is not jointly continuous. Similar example can
be constructed for KLU

inf .

Lemma H.3. Let X and Y be metric spaces with dX and dY being the respective metics. Let
f̃ : X × Y → < be such that ∀ε̃ > 0, ∃δ̃ such that ∀x ∈ X , we have

∀x′ : dX (x, x′) ≤ δ =⇒ sup
y∈Y

∣∣∣f̃(x, y)− f̃(x′, y)
∣∣∣ ≤ ε̃.

Furthermore, for a fixed x, f̃(x, y) is lower-semicontinuous function of y. Then, infy∈C(x) f̃(x, y)

is continuous in x, where C : X → 2Y is a compact set-valued map.

Proof. Consider a sequence xn such that dK(xn, x0)→ 0 as n→∞. Let yn be the minimizer for
f̃(xn, y), i.e., infy∈C(xn) f̃(xn, y) = f̃(xn, yn) and let y0 be that for f̃(x0, y). Existence of yn and
y0 is guaranteed by lower-semicontinuity of f̃(x, y) for fixed x, and compactness of the map C. Then,
for a fixed n,

f̃(x0, y0)− f̃(xn, yn) ≤ f̃(x0, yn)− f̃(xn, yn),

which, for n large enough so that dX (xn, x0) ≤ δ̃, is bounded by ε̃. Similarly,

f̃(xn, yn)− f̃(x0, y0) ≤ f̃(xn, y0)− f̃(x0, y0),

which is again bounded by ε̃ for large enough n, concluding the proof.
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For µ ∈M and t ∈ ΣK , define gb(µ, t, y) := t1 KLU
inf(µ1, π) + tb KLL

inf(µb, π), and let

h(µ, t) = min
b6=1

inf
y∈[x+

π (µ1),xπ(µb)]

gb(µ, t, y).

From Lemma H.2, for fixed µ, t, gb is lower-semicontinuous function of y. Furthermore, d2(., π)
being a continuous function on bounded support, is a uniformly continuous function. Whence, given
ε > 0, there exists δ > 0 such that

∀(µ̃, t̃) :
∑
a

(
dK(µ̃a, µa) + d(t̃a, ta)

)
≤ δ =⇒ sup

y

∣∣gb(µ, t, y)− gb(µ̃, t̃, y)
∣∣ ≤ ε,

where d is a metric on <.
Corollary H.3.1. h(µ, t) is a jointly continuous function.

As we did in Section 4 for CVaR, we will use the maximiser, t∗, evaluated at the empirical distribution
vector to drive our sampling rule. Observe that, unlike CVaR, we do not need to project the empirical
distribution in this setting. The algorithm stops at the first time, n, when

max
a

min
b6=a

inf
x∈[x+

π (µ̂a(n)),xπ(µ̂b(n))]

Na(n) KLU
inf(µ̂a(n), x) +Nb(n) KLL

inf(µ̂b(n), x) ≥ β(n, δ),

where

β(t, δ) = 6 log

(
1 + log

t

2

)
+ log

K − 1

δ
+ 8 log

(
1 + log

K − 1

δ

)
.

All in all, the algorithm for finding the best VaR arm is similar to that for CVaR, with the correct
definition of KLL

inf and KLU
inf used at all places.

Theorem H.4 (Formal statement of Theorem 4.5). For µ ∈ M̃, the proposed algorithm for finding
the best VaR-arm is δ-correct, and satisfies

lim sup
δ→0

E (τδ)

log (1/δ)
≤ 1

V (µ)
. (52)

For the proof of the Theorem H.4 above, we need to discuss two things: upper-hemicontinuity of t∗,
which is needed for the proof of (52) and deviation inequalities for the stopping statistic, which is
needed for the δ-correctness.

To prove δ-correctness of the algorithm, we would like to show that

P

(
∃n ∈ N : max

a6=1
min
b6=a

{
Na(n) KLU

inf(µ̂a, xπ(µa)) +Nb(n) KLL
inf(µ̂1, xπ(µ1))

}
≥ β(n, δ)

)
is at most δ. Towards this, it is sufficient to show that the following event has probability at most δ:{

∃n ∈ N : max
a6=1

{
Na(n)d2(Fµ̂a(n), π) +N1(n)d2(Fµ̂1(n), π)

}
≥ β(n, δ)

}
.

The above deviation inequality follows from the observation (see e.g. [32]) that for each arm a,
Fµ̂a(t)(xπ(µa)) is an average of i.i.d. Bernoulli random variables with bias π. This means that we
can employ standard uniform deviation inequalities for sums of self-normalised variables (see, [38,
Section 6.1]).

Recall that the sample complexity proof for the best CVaR-arm problem required continuity (upper-
hemicontinuity) of t∗ only in the Kolmogorov metric which, for measures η1 and η2 is defined
as

dK(η1, η2) = sup
x∈<
|Fη1(x)− Fη2(x)| .

Upper-hemicontinuity of t∗(µ) (in the Kolmogorov metric, as a function of µ) follows from Corollary
H.3.1 together with Berge’s Maximum theorem. Furthermore, the set of maximizers, t∗, is convex.

In conclusion, we see that asymptotically optimal algorithms for the minimum VaR arm identification
problem lie squarely in the convex hull of existing ideas.
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One challenge with the VaR objective is that the objective inside the infx0
in the expression for V (µ)

is not (quasi) convex. Our current best computational approach is to do a one-dimensional grid search
over candidates x0. Once we have the oracle for computing the inner optimization problem for a
given t ∈ ΣK , we can compute the inner infx0

problem for the best-looking arm vs all alternatives.
We may then further wrap this oracle in an outer optimisation (for example by the Ellipsoid method)
to find t∗.

I Discussion on the mean-CVaR problem

Recall that we have K arms, each associated with a distribution, which may, for example, correspond
to a loss in a financial investment. When an arm is selected, an independent sample from the
associated distribution is revealed. In the mean-CVaR problem, the performance-metric associated
with a distribution η is o(η) := α1m(η) + α2cπ(η), where α1 > 0, α2 > 0, m(η) and cπ(η) denote
the mean and CVaR at πth-quantile for distribution η. We are interested in finding the arm with
minimum value of this metric in a δ-correct BAI framework. We point out that this problem is
conceptually and technically similar to the CVaR-BAI problem, described in detail in the main text.
Hence, we state the results directly, while omitting the proofs.

In this section, we again need to restrict arm-distributions to class L = {η ∈ P(<) : Eη(|X|1+ε
) ≤

B}, otherwise the problem is un-learnable. This imposes restrictions on possible values of o(η),
cπ(η), and xπ(η), which are stated next.
Lemma I.1. For α1 > 0, α2 > 0, π ∈ (0, 1)

min
η∈L

α1m(η) + α2cπ(η) + α2xπ(η)
π

1− π
= −B

1
1+ε

(
α1 +

α2

1− π

)
.

Proof. First, observe that it suffices to consider distributions supported on only 2-points. Then the
following is an equivalent problem:

min
x≤y

α1xπ + (1− π)α1y + α2y + α2x
π

1− π
s.t. π |x|1+ε

+ (1− π) |y|1+ε ≤ B.

The objective function can be re-written as
(
α1 + α2

1−π

)
(xπ + (1− π)y) , which clearly is mini-

mized at x = y = −B
1

1+ε , proving the desired equality.

Lemma I.2. For α1 > 0, α2 > 0, π ∈ (0, 1)

max
η∈L

α1m(η) + α2cπ(η) = B
1

1+εα1

(
π + (1− π)

(
1 +

α2

α1(1− π)

)1+ 1
ε

) ε
1+ε

.

Proof. First, observe that it is sufficient to consider distributions supported only on 2 points. Thus,
the problem is equivalent to

max
x≤y

α1πx+ α1(1− π)y + α2y s.t. π |x|1+ε
+ (1− π) |y|1+ε ≤ B.

The objective function above can be re-written as α1πx + (1 − π)y
(
α2

1−π + α1

)
. Since we are

optimizing a linear function over a convex set, the optimal will occur at a boundary. In particular, the
moment-constraint will hold as equality, and

x∗ =

(
B − (1− π)y1+ε

π

) 1
1+ε

will be satisfied. At this point, the problem reduces to

max

( B
1−π )

1
1+ε≥y≥0

α1π
ε

1+ε
(
B − (1− π)y1+ε

)
+ (1− π)y

(
α2

1− π
+ α1

)
.
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Differentiating with respect to y, and setting derivative to 0, we get

y∗ =

(
1 +

α2

α1(1− π)

) 1
ε

 B

θ + (1− θ)
(

1 + α1

α1(1−θ)

)1+ 1
ε


1

1+ε

.

Furthermore, it can be verified that y∗ <
(

B
1−π

)
. Hence, substituting this into the objective function

gives the desired result.

Lemma I.3. For α1 > 0, α2 > 0, π ∈ (0, 1)

min
η∈L

α1m(η) + α2cπ(η) = −B
1

1+ε (α1 + α2).

Proof. First, observe that it is sufficient to consider distributions supported only on 2 points. Thus,
the problem is equivalent to

max
x≤y

α1πx+ α1(1− π)y + α2y s.t. π |x|1+ε
+ (1− π) |y|1+ε ≤ B.

The objective function above can be re-written as α1πx + (1 − π)y
(
α2

1−π + α1

)
. Since we are

optimizing a linear function over a convex set, the optimal will occur at a boundary. In particular, the
moment-constraint will hold as equality, and

x∗ = −
(
B − (1− π)y1+ε

π

) 1
1+ε

will be satisfied. At this point, the problem reduces to

max

−B
1

1+ε≤y≤0

− α1π
ε

1+ε
(
B − (1− π)(−y)1+ε

)
+ (1− π)y

(
α2

1− π
+ α1

)
.

Differentiating with respect to y, and setting derivative to 0, we get

y∗ = −
(

1 +
α2

α1(1− π)

) 1
ε

 B

θ + (1− θ)
(

1 + α1

α1(1−θ)

)1+ 1
ε


1

1+ε

.

Observe that y∗ < −B
1

1+ε . Substituting y∗ = 0 in the objective function, we get the desired
bound.

Lemma I.4. For α1 > 0, α2 > 0, π ∈ (0, 1)

min
η∈L

α1m(η) + α2cπ(η)− α2xπ(η) = − α1B
1

1+ε .

Proof. First, observe that the given problem can be re-written as

min
η∈L

α1m(η) + α2Eη
(
(X − xπ(η))+

)
.

Since the second term above is non-negative, and the first term is minimized by η∗ which is a point
mass at −B

1
1+ε , with second term being 0, η∗ is optimal, proving the desired equality.

As earlier, for η ∈ P(<) and x ∈ <, the following two quantities will be crucial for the algorithm
and its analysis:

KLU
inf(η, x) = min

κ∈L
o(κ)≥x

KL(η, κ) and KLL
inf(η, x) = min

κ∈L
o(κ)≤x

KL(η, κ).
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I.1 Mean-CVaR: algorithm and results

For x ∈ <, z ∈ <, and η ∈ P(<), let S2(z, x) equal{
λ1 ≥ 0, λ2 ≥ 0 : min

y∈<
1− λ1(B − |y|1+ε

)− λ2

(
x− α1y − α2z −

α2

1− π
(y − z)+

)
≥ 0

}
,

Z(x) :=

[
−
(
B

π

) 1
1+ε

,
x+ α1B

1
1+ε

α2

]
,

O =

−B 1
1+ε (α1 + α2), B

1
1+εα1

(
π + (1− π)

(
1 +

α2

α1(1− π)

)1+ 1
ε

) ε
1+ε

 ,
and let S5 be set of all (ρ1, ρ2, ρ4) such that ρ1 ≥ 0, ρ2 ≥ 0, ρ4 ∈ <, and

min
y∈<

1− ρ1(B − |y|1+ε
) + ρ2 (x− α1y)− ρ4(1− π)−

(
ρ2α2y

1− π
− ρ4

)
+

≥ 0.

For η ∈ P(<) and x ∈ Oo, KLL
inf(η, x) equals

min
z∈Z(x)

max
(λ1,λ2)∈S2

Eη

(
log

(
1− λ1(B − |X|1+ε

)− λ2

(
x− α1X − α2z −

α2

1− π
(X − z)+

)))
,

and KLU
inf(η, x) equals

max
ρ∈S5

Eη

(
log

(
1− ρ1(B − |X|1+ε

) + ρ2 (x− α1X)− ρ4(1− π)−
(
ρ2α2X

1− π
− ρ4

)
+

))
.

As earlier, these are precisely the dual representations for the KL-projection functionals, crucial for
the algorithm, and its analysis. Compactness of the dual regions, S2 and S5, can be argued as in
Section D.3. Joint-continuity of these KL-projection functionals can also be established by mimicking
the arguments in Section C.2, which is required for the sample complexity proof. Concentration
inequalities similar to those in Proposition 4.2 can be developed for the empirical versions of these
mean-CVaR KL-projection functionals, and the algorithm of Section 4, with KLU

inf and KLL
inf as

defined in this section, and β as in (7), gives a plug-n-play algorithm for the mean-CVaR BAI
problem.
Theorem I.5 (Formal statement of Theorem 4.3). For µ ∈Mo, the proposed algorithm for finding
the best mean-CVaR-arm is δ-correct, and satisfies

lim sup
δ→0

E (τδ)

log (1/δ)
≤ 1

V (µ)
.

J Discussion of KLinf-based confidence intervals for CVaR

In this section we construct KLinf -based confidence intervals for CVaR, and compare them to those
obtained from the traditional concentration and clipping arguments. We will show how the traditional
argument can be recovered from the KLinf concentration at minor overhead, but with built-in anytime
validity.

Given n samples from a distribution η ∈ L, Un defined below is an upper bound on the true CVaR of
η at its πth quantile, where

Un = max
{
x ∈ < : nKLU

inf(η̂n, x) ≤ C
}
, (53)

for an appropriately chosen threshold C, so that Un ≥ cπ(η) with probability at least 1 − δ. This
follows from Proposition 4.2.
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This upper bound can be re-formulated as

Un = max {cπ(κ) : κ ∈ L, nKL(η̂n, κ) ≤ C} .

Using the Donsker-Varadhan variational representation for the KL divergence, Un is at most

max
κ∈L

cπ(κ) s.t. nEη̂(n) (g(X))− n log Eκ
(
eg(X)

)
≤ C,

for all measurable functions, g, with a finite second term above. Let xπ denote the πth-quantile for κ.
Then, for a sequence of thresholds un, and θ > 0, we define the function

gn(X) = − θ

1− π
X1 (xπ ≤ X ≤ un) .

Substituting gn for g in the above, and adding nθ
1−πEκ (X1 (xπ ≤ X)) on both the sides, we get that

Un is at most the maximum cπ(κ) such that κ ∈ L and

θ

1− π

n∑
i=1

(Eκ (X1 (xπ ≤ X))−Xi1 (xπ ≤ Xi ≤ un))

− n log Eκ
(
e−

θ
1−πX1(xπ≤X≤un)

)
≤ C +

nθ

1− π
Eκ (X1 (xπ ≤ X)) . (54)

Let Yn = X1 (xπ ≤ X ≤ un), mn = Eκ (X1 (xπ ≤ X ≤ un)), and θπ = θ
1−π . Then |Yn| ≤ un

and Eκ
(
θ2
πY

2
n

)
≤ θ2

πBu
1−ε
n . Using this,

Eκ
(
e−θπX1(xπ≤X≤un)

)
≤ 1− θπmn +

∞∑
j=2

Eκ
(
|θπYn|j

)
j!

≤ 1− θπmi +
B

u1+ε
n

∞∑
j=2

(θπun)j

j!
.

(55)

Thus, we have Eκ
(
e−θπX1(xπ≤X≤un)

)
≤ 1− θπmn + B

u1+ε
n

(
eθπun − θun − 1

)
. Using 1 + x ≤ ex

and (55) in (54), we get that Un is at most: max
κ∈L

cπ(κ) subject to

θπ

n∑
i=1

(Eκ (X1 (xπ ≤ X))−Xi1 (xπ ≤ Xi ≤ un))

≤ C + n

(
θπEκ (X1 (xπ ≤ X))− θπmn +

B

u1+ε
n

(
eθπun − θun − 1

))
.

Clearly, Eκ (X1 (X ≥ un)) is at most B/(un)ε. The above constraint can be relaxed to

1

n

n∑
i=1

(Eκ (X1 (xπ ≤ X))−Xi1 (xπ ≤ Xi ≤ un))

≤ B

uεn
+

1

θπ

(
C

n
+

B

u1+ε
n

(
eθπun − θπun − 1

))
.

Choosing θπ =
Cuεn
nB , the above constraint is

1

n

n∑
i=1

(Eκ (X1 (xπ ≤ X))−Xi1 (xπ ≤ Xi ≤ un)) ≤ B

uεn
+

nB2

Cu1+2ε

(
e
Cu1+ε

Bn − 1
)
.

Recall that
cπ(κ) =

1

1− π
Eκ (X1 (xπ ≤ X)) .
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Setting

un =
(
Bn
(
log δ-1

0

)-1
) 1

1+ε

and ĉπ,n(δ0) :=
1

n(1− π)

n∑
i=1

Xi1 (xπ ≤ Xi ≤ un) ,

for some parameter δ0 which will be chosen later, we get the following upper bound on Un:

ĉπ,n(δ0) +
B

1
1+ε

1− π

(
log δ-1

0

n

) ε
1+ε
(

1 +

(
e

C

log δ-1
0 − 1

)
log δ-1

0

C

)
. (56)

Observe that ĉπ,n(δ) is the popular truncation-based estimator. Now, if δ0 = δ and C ≈ log δ-1, then
we obtain

Un ≤ ĉπ,n(δ) +
4B

1
1+ε

1− π

(
log δ-1

n

) ε
1+ε

, (57)

which is a (1− δ)-probability upper bound for the true CVaR, obtained using the truncated estimator,
ĉπ,n(δ) [39, see, (29)], assuming perfect estimation of VaR at the πth quantile. From Proposition
4.2, however, the current best C permitted is log δ-1 with an additional 3 log(number of samples),
which gives that our upper-bound will be worse. However, our confidence intervals are any-time (as
Proposition 4.2 is).

Typically, in applications to multi-armed bandit problems, we require high-probability upper bounds
for a random number of samples allocated to an arm. Our confidence intervals are any-time and can
be directly used in these applications. The same is not true for the truncation-based intervals, where a
union bound would instead be needed in the analysis.

For example, in the classical regret-minimization framework of MAB with CVaR as the (unobserved)
loss, a UCB algorithm based on the truncation-based estimator in (57) would choose δ = T−2 at
time T , for constructing index for an arm with n samples. With this choice of δ, r.h.s. of (57) would
correspond to index for such an arm at time T . On the other hand, since the bound for KLU

inf is
anytime, UCB constructed using it would require δ ≈ (T log2(T ))-1. This would correspond to
setting C ≈ log T + 2 log log T + 3 log (number of samples) in (53).

[3] recently show that a UCB algorithm using an arm index similar to (53) (KLinf -UCB) is asymptot-
ically optimal for the mean objective in heavy-tailed bandits. Their algorithm, with KLinf replaced
with KLU

inf or KLL
inf as appropriate, will be an optimal algorithm for regret-minimization with the

CVaR-objective. Since for such an algorithm, sub-optimal arms are pulled approximately log T times
till time T , this would correspond to setting

C ≈ log T + 2 log log T + 3 log log T

for sub-optimal arms in this application. With this choice of C, (56) is an upper bound on our index at
time T , for all values of δ0. In particular, setting δ0 = T−2, we get that our index for a sub-optimal
arm is dominated by

ĉπ,n(T−2) +
3B

1
1+ε

1− π

(
2 log T

n

) ε
1+ε

,

which is smaller than the index of UCB with the truncated estimator.

Furthermore, the comparison with (56) doesn’t account for error in estimating the VaR of the
underlying distribution, which is also needed in the truncation-based CVaR estimator. We would also
like to point out that the estimator of [39] is similar to the ĉπ,n(δ) defined above, with the truncation
level changing for each sample. However, using their analysis, it can be shown that both ĉπ,n(δ) have
the same guarantees.

K Batched algorithm and Sample complexity

In this section, look at the computational complexity of our asymptotically-optimal algorithm for
the CVaR or mean-CVaR BAI, and propose a modification which is optimal up to constants, but is
computationally less expensive.

We observe numerically that the computational cost of the KL-projection functionals increases
linearly in the number of samples of the empirical distribution. In particular, the computation of
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optimal weights increases linearly with number of samples. Let this cost at time n be c1 + c2n,
where c1 and c2 are non-negative constants. Then, the over-all cost of the algorithm till time τδ is(
c1 + c2

2

)
τδ + c2

2 τ
2
δ , which is quadratic in the total number of samples.

Consider a modification in which we only check for stopping condition, and compute the weights at
(1 + η)-geometrically spaced times, for η > 0, and use these weights to allocate the samples at all
the intermediate times using any reasonable tracking rule. The (1 + η)-batched algorithm with the
randomized tracking rule of [2] is formally described in the next subsection. The algorithm makes an
error if at the stopping time, its estimate for the best-arm is incorrect. As earlier, the error probability
can be seen to be at most 36, and δ-correctness thus follows (Section K.2).
Theorem K.1. The η-batched algorithm with randomized tracking is δ-correct, and satisfies:

lim sup
δ→0

E (τδ)

log (1/δ)
≤ 1 + η

V (µ)
.

The proof of the Theorem K.1 is similar to that of sample complexity part of Theorem 4.1 and can
be found in Appendix K.3 below. Thus, if τδ denotes the stopping time of the original algorithm,
the batched algorithm stops after at most (1 + η)τδ . Moreover, it computes optimal weights roughly
at times (1 + η)i, for i ∈

{
0, 1, . . . , log τδ

1+η + 1
}

. Thus, the computational cost of this algorithm is

at most
(

log τδ
log(1+η) + 1

)
c1 + (1 + η)2τδ

c2
η , which is roughly linear in τδ, the number of samples

generated.

K.1 Algorithm

The algorithm proceeds in batches, as below. Let tl denote the time of beginning of lth batch, and let
bl denote its size. We use the randomized sampling rule, as in [2]. The stopping and recommendation
rules are as earlier (see Section 4).

• Pull each arm K times. Initialize l = 1, tl = K2 + 1 and bl = max
{

1,
⌈
η̃(tl −K2)

⌉}
.

• At the beginning of each batch, l, compute the optimal weights t∗(Π(µ̂(tl))), where Π is
the map that projects the argument on to LK in the Kolmogorov metric (see Section 4 for
details of the projection map). Check if the stopping condition is met. If not,

1. Compute starvation of each arm a, defined as sa = max
{

0, (tl + bl)
1/2 −Na(tl)

}
.

2. If
∑
a sa ≤ bl, generate sa many samples from arm a, for all arms. Furthermore,

generate bl −
∑
a sa i.i.d. samples from the weight distribution, t∗ (Π (µ̂(tl))). For

each arm a, count the number of times a appears in the generated samples and sample
arm a that many times.

3. Else if bl <
∑
a sa, then generate ŝa samples from arm a, where ŝ = {ŝ1, . . . ŝK} is

the solution to the following load balancing problem: minŝ maxa {sa − ŝa} such that
ŝa ∈ N, ŝa ∈ [0, sa], and

∑
a ŝa = bl.

4. Set tl+1 = tl + bl, bl+1 = max
{

1,
⌈
η̃(tl+1 −K2)

⌉}
, and l = l + 1, and repeat.

• If the stopping condition is met, declare the empirically-best CVaR-arm as the answer.

Clearly, K2 + (1+η̃)l−1
η̃ ≥ tl ≥ K2 + (1 + η̃)l−1 and (1 + η̃)l ≥ bl ≥ η̃(1 + η̃)l−1, and are

deterministic. Moreover, for t > 0, let l(t) denote the batch l such that tl ≤ t ≤ tl+1.

Lemma K.2. The η̃-batched algorithm ensures that for all l ≥ 1, Na(tl) ≥
t
1
2
l

K − 1.

Proof. Clearly, for l = 1, t1 = K2 + 1, and each arm has K ≥ t
1
2
1

K − 1 samples. Let the given
statement be true for all l ≤ l0, for some l0 ∈ N. Then, for l = l0 + 1 the statement will be
true if (t

1
2

l0+1 − t
1
2

l0
) ≤

⌈
η̃(tl0 −K2)

⌉
, where r.h.s. is the number of samples available with the

algorithm in the batch l0 + 1, and l.h.s. is the maximum number of samples the algorithm will
need to allocate in order to ensure the inequality in the lemma. The above is equivalent to showing

that
(
tl0 +

⌈
η̃(tl0 −K2)

⌉) 1
2 − t

1
2

l0
<
⌈
η̃tl0 − η̃K2

⌉
. For positive a and b, a

1
2 + b

1
2 ≥ (a + b)

1
2 .
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Hence, (tl0 +
⌈
η̃(tl0 −K2)

⌉
)

1
2 − t

1
2

l0
≤
⌈
η̃tl0 − η̃K2

⌉ 1
2 ≤

⌈
η̃tl0 − η̃K2

⌉
, proving the desired

inequality.

K.2 δ-correctness

As in Section 4, our stopping rule corresponds to thresholding the Z statistic (see (7)). However,
instead of checking this at each time, we do this only at the beginning of each batch. Formally, the
stopping time, τδ, lies in {tl : l ∈ N}, where tl corresponds to time of beginning of lth batch. As
earlier, error occurs when at time τδ, the estimated best-arm is not arm 1. Thus, the error event is
contained in∃n :

⋃
i 6=1

{
inf
x≤y

{
Ni(n) KLU

inf(µ̂i(n), y) +N1(n) KLL
inf(µ̂1(n), x)

}
≥ β; En(i)

} ,

which can be bounded using Proposition 4.2, as in Section 4. We omit the details here, and refer the
reader to Section 4.

K.3 Sample complexity

We now prove that the sample complexity of the batched-algorithm matches the lower bound upto a
factor of 1 + η̃, asymptotically as δ → 0, i.e., it satisfies

lim sup
δ→0

Eµ (τδ)

log 1
δ

≤ 1 + η̃

V (µ)
.

As in Section F.2, we use the projections in the Kolmorogov metric, i.e., Π = (Π1,Π2, . . . ,ΠK),
where

Πi(η) ∈ argmin
κ∈L

dK(κ, η), and dK(κ, η) = sup
x∈<
|Fκ(x)− Fη(x)| ,

and Fκ and Fη denote the CDF functions for the measures η and κ. As earlier (Section F.2), define
Iε′ , Bζ(µ1) × Bζ(µ2) × . . . × Bζ(µK), where Bζ(µi) = {κ ∈ P(<) : dK(κ, µi) ≤ ζ} , and
ζ > 0 is chosen to satisfy the following:

µ′ ∈ Iε′ =⇒ ∀t′ ∈ t∗ (Π(µ′)) , ∃t ∈ t∗ (µ) s.t. ‖t′ − t‖∞ ≤ ε′.

Recall that µ ∈ M is such that −f -1 (B) < cπ(µ1) < maxj 6=1 cπ(µj) < f -1
(

B
1−π

)
, where

f -1(c) := max {y : f(y) = c}. For T ∈ N, define l0(T ) = l(T
1
4 ), l1(T ) = l(T

3
4 ) + 1, l2(T ) =

max {l1(T ), l(T )− 1}, where for n ∈ N, l(n) denotes l such that tl ≤ t ≤ tl+1 and tl denotes time
of beginning of lth batch. Furthermore, let

GT (ε′) =

l2(T )⋂
l=l0(T )

{µ̂(tl) ∈ Iε′}
l2(T )⋂
l=l1(T )

{
max
a∈[K]

∣∣∣∣Na(tl)

tl
− t∗a(µ)

∣∣∣∣ ≤ 4ε′

}
.

Let µ′ be a vector of K, 1-dimensional distributions from P(<), [K] = {1, . . . ,K}, and let t′ ∈ ΣK .
Define

g(µ′, t′) , max
a∈[K]

min
b6=a

inf
x∈[−f -1(B),f -1( B

1−π )]

(
t′a KLU

inf(µ
′
1, x) + t′b KLL

inf(µ
′
b, x)

)
.

Note that, for µ ∈ (P(<))
K , from Lemma C.3 and Berge’s Theorem (see, [8, Theorem 2, Page 116]),

g(µ, t) is a jointly lower-semicontinuous function of (µ, t). Let ‖.‖∞ be the maximum norm in <K ,
and

C∗ε′(µ) , inf
µ′∈Iε′

t′:inft∈t∗(µ) ‖t
′−t‖∞≤4ε′

g(µ′, t′).
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Recall that for n ∈ N, the modified log generalized likelihood ratio statistic for µ̂(n), used in the
stopping rule, is given by Z(n) = maxa minb 6=a Za,b(n), where

Za,b(n) = n inf
x∈[−f -1(B),f -1( B

1−π )]

(
Na(n)

n
KLU

inf(µ̂a(n), x) +
Nb(n)

n
KLL

inf(µ̂b(n), x)

)
.

On GT (ε′), for T ≥ K + 1 and l ∈ N such that l2(T ) ≥ l ≥ l1(T ),

Z(tl) = tl max
a

min
b6=a

inf
x∈[−f -1(B),f -1( B

1−π )]

(
Na(tl)

tl
KLU

inf(µ̂a(tl), x) +
Nb(tl)

tl
KLL

inf(µ̂b(n), x)

)

= tl g

(
µ̂(tl),

{
N1(tl)

tl
, . . . ,

NK(tl)

tl

})
≥ tl C∗ε′(µ).

(58)

Furthermore, for T ≥ K2 + 1, on GT (ε′),

min{τδ, T} ≤ tl1(T ) +

l2(T )∑
l=l1(T )+1

bl1 (tl < τδ)

= tl1(T ) +

l2(T )∑
l=l1(T )+1

bl1 (Z (tl) < β (tl, δ))

≤ tl1(T ) +

l2(T )∑
l=l1(T )+1

bl1

(
tl <

β (tl, δ)

C∗ε′(µ)

)

≤ tl1(T ) +
β(tl2(T ), δ)

C∗ε′(µ)
+ bl2(T )

≤ tl1(T ) + (1 + η̃)
β(T, δ)

C∗ε′(µ)
+ 1,

(59)

where for the last inequality, we use monotonicity of β(·, ·) in the first argument, and that bl2(T ) ≤
η̃ β(T,δ)
C∗
ε′ (µ) + 1. Next, define

T0(δ) = inf

{
n ∈ N : tl1(n) + (1 + η̃)

β(n, δ)

C∗ε′(µ)
+ 1 ≤ n

}
.

On GT , for T ≥ max
{
T0(δ),K2 + 1

}
, from (59) and definition of T0(δ),

min {τδ, T} ≤ tl1(T ) + (1 + η̃)
β(T, δ)

C∗ε′(µ)
≤ T,

which gives that for such a T, τδ ≤ T . Thus, for T ≥ max
{
T0(δ),K2 + 1

}
, we have GT (ε′) ⊂

{τδ ≤ T} and hence, Pµ (τδ > T ) ≤ Pµ(GcT ). Moreover, for a constant Tε′ , Lemma F.5 bounds the
probability of GcT for T ≥ Tε′ . Since τδ ≥ 0,

Eµ(τδ) ≤ T0(δ) +K2 + 1 + Tε′ +

∞∑
T=T0(δ)+K2+1+Tε′

Pµ (GcT (ε′)) . (60)

For ẽ > 0, it can be shown that

lim sup
δ−→0

T0(δ)

log (1/δ)
≤ (1 + η̃)(1 + ẽ)

C∗ε′(µ)
. (61)

Then, from (60), (61), and Lemma K.3,

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ (1 + η̃)(1 + ẽ)

C∗ε′(µ)
.
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From lower-semicontinuity of g(µ′, t′) in (µ′, t′) for µ′ ∈ (P(<))
K , it follows that lim inf

n→∞
C∗ε′(µ) ≥

V (µ). First letting ẽ→ 0 and then letting ε′ → 0, we get the desired inequality.

Lemma K.3. Let Tε′ = ε
′−8/3. Then, lim sup

δ→0

∞∑
T=T

ε′
Pµ(GcT (ε′))

log(1/δ) = 0.

Proof. The proof of this is similar to that in [2, Lemma 32]. However, the batch sizes in our algorithm
may not be constant. We modify the proof to allow for this flexibility.

Recall that for T ∈ N and T > K2, l0(T ) = l(T
1
4 ), l1(T ) = l(T

3
4 ) + 1, l2(T ) equal

max {l1(T ), l(T )− 1)}, for l ∈ N, tl denotes the beginning of lth batch, and

GT (ε′) =

l2(T )⋂
l=l0(T )

{µ̂(tl) ∈ Iε′}
l2(T )⋂
l=l1(T )

{
max
a∈[K]

∣∣∣∣Ni(tl)tl
− t∗a(µ)

∣∣∣∣ ≤ 4ε′

}
.

Let

G1
T (ε′) ,

l2(T )⋂
l=l0(T )

{µ̂(tl) ∈ Iε′} .

Using union bounds,

Pµ(GcT (ε′)) ≤
l2(T )∑
l=l0(T )

Pµ (µ̂(tl) 6∈ Iε′) +

l2(T )∑
l=l1(T )

K∑
i=1

P

(∣∣∣∣Na(tl)

tl
− t∗i (µ)

∣∣∣∣ ≥ 4ε′,G1
T (ε′)

)
. (62)

The first term above can be bounded by
l2(T )∑
l=l0(T )

K∑
a=1

P

(
sup
x

∣∣Fµ̂a(tl)(x)− Fa(x)
∣∣ ≥ ε′) .

From Lemma K.2, the algorithm ensures at least
√
tl
K − 1 ≥

√
tl/(2K) samples to each arm till time

tl. Using this, each summand in the bound above can be bounded as follows:

P

(
sup
x

∣∣Fµ̂a(tl)(x)− Fa(x)
∣∣ ≥ ε′) ≤ P

(
sup
x

∣∣Fµ̂a(tl)(x)− Fa(x)
∣∣ ≥ ε′;Na(tl) ≥

√
tl

2K

)
.

R.h.s. in the above inequality can be bounded using union bound and DKW inequality by
tl∑

j=
√
tl/(2K)

e−2jε
′2
≤ e−ε

′2
√
tl
K

(
1− e−2ε

′2
)-1

.

Thus, the first term in (62) is bounded by KTe−ε
′2 T1/8

K

(
1− e−2ε

′2
)-1

.

To bound the other term in (62), for l ∈ {l1(T ), . . . , l2(T )}, let Mtl denote the set of times in
{1, . . . , tl} when the algorithm flipped coins to decide which arm to pull. Define

A2 ,
1

tl

∑
j∈Mtl

|t∗i (Π (µ̂(j)))− t∗i (µ)| , and A3 ,
1

tl

∑
j /∈Mtl

|Ii(j)− t∗i (µ)| ,

where Ii(j) is the indicator that ith arm is pulled on jth time step, and µ̂(j) denotes the empirical
distribution vector at the beginning of the batch to which the time j belongs. Using these,

P

(∣∣∣∣Ni(tl)tl
− t∗i (µ)

∣∣∣∣ ≥ 4ε′,G1
T

)
≤ P

 1

tl

∣∣∣∣∣∣
∑
j∈Mtl

(Ii(j)− t∗i (Π (µ̂(j))))

∣∣∣∣∣∣+A2 +A3 ≥ 4ε′,G1
T

 .

Since |Ii(j)− t∗i (µ)| ≤ 1, and from Lemma K.2 we have that tl − |Mtl | ≤ t
1/2
l . For T ≥ Tε′ and

l ≥ l1(T ), A3 above satisfies

A3 ≤
√
tl
tl
≤ 1√

tl1(T )

≤ 1

T 3/8
≤ ε′.
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Next,

A2 =
1

tl

∑
j∈Mtl
j<tl0(T )

|t∗i (Π (µ̂(j)))− t∗i (µ)|+ 1

tl

∑
j∈Mtl
j≥tl0(T )

|t∗i (Π (µ̂(j)))− t∗i (µ)| .

If tl0(T ) ≤ K2, then the first term above is 0 since in this case, Mtl ∩
{

1, . . . , tl0(T )

}
is empty, as

the algorithm does not flip any coins in this period. Otherwise, the first term is bounded by tl0(T )

tl1(T )
,

which is further bounded by 1
T 1/2 , which for T ≥ Tε′ , is bounded by ε′.

On G1
T (ε′), the second term in A2 is atmost ε′, since for j ≥ tl0(T ) µ̂(j) ∈ Iε′ . Thus, A2 ≤ 2ε′.

Thus, for T ≥ Tε′ = 1
ε′8/3

, and for l ≥ l1(T ),

P

(∣∣∣∣Ni(tl)tl
− t∗i (µ)

∣∣∣∣ ≥ 4ε′,G1
T

)
≤ P

∣∣∣∣∣∣
∑
j∈Mtl

(Ii(j)− t∗i (Π (µ̂(j))))

∣∣∣∣∣∣ ≥ tlε′,G1
T

 .

Let Sn =
∑
j∈Mn

(Ii(j)− t∗i (µ)). Clearly, Sn is a sum of 0-mean random variables. Whence, it is a
martingale, and satisfies |Sn+1 − Sn| ≤ 1. Azuma-Hoeffding inequality then gives,

P

(∣∣∣∣Ni(tl)tl
− t∗i (µ)

∣∣∣∣ ≥ 4ε′,G1
T

)
≤ 2 exp

(
− ε

′2t2l
2 |Mtl |

)
≤ 2 exp

(
−ε
′2tl
2

)
≤ 2 exp

(
−ε
′2T 3/4

2

)
,

where for the last inequality, we used that l ≥ l1(T ). Summing this over l and i, the second term in
(62) is bounded by

2KT exp

(
−ε
′2T 3/4

2

)
.

L Details on the Experiments

In this section we report the numerical studies undertaken to validate our methods. We are interested
in the question whether the asymptotic sample complexity result of Theorem 4.1 is representative
at reasonable confidence δ. Whether this is the case or not differs greatly between pure exploration
setups. [27] see state-of-the-art numerical results in Bernoulli BAI for Track-and-Stop with δ = 0.1,
while [22] present a Minimum Threshold problem instance where the Track-and-Stop asymptotics
have not kicked in yet at δ = 10−20.1 The latter work suggests the difference may very well lie in the
specifics of the lower-bound optimisation problem for each task, with the good case arising when
the optimal solution t∗ to the lower bound puts positive mass on all arms, so that convergence of
estimates does not require forced exploration. Our heavy-tailed best CVaR problem (4) indeed has
full support, and our experiments confirm that the approach is practical at moderate δ.

To focus on the heavy-tailed regime, we select arm distributions for which higher moments do not
exist. In particular, we choose Fisher-Tippett (F (µ, σ, γ)), Pareto (P (µ, σ, γ)), and mixtures of
Fisher-Tippett arms (these heavy tailed distributions arise in extreme value theory). The standard
Fisher-Tippet distribution with shape parameter γ has CDF FFγ (x) = e−(1+γx)−1/γ

(continuously
extended to γ = 0), and this is lifted to three parameters FFµ,σ,γ(x) = FFγ (x−µσ ) by adding a location
µ and scale σ. The m-th moment of Fγ exists iff γ < 1/m. Similarly, CDF for P (µ, σ, γ) is given by
FPµ,σ,γ(x) := 1−(1+γ

(
x−µ
σ

)
)−1−1/γ . For γ > 0, both F (µ, σ, γ) and P (µ, σ, γ), have unbounded

support on the positive axis. F (µ, σ, γ) has unbounded support on the negative axis for γ < 0. We
create interesting two-sided distributions by taking (binary) mixtures of these.

In our first experiment, we look at the distribution of the stopping time of the algorithm as a
function of δ. In this setup, there are three arms: arm 1 is a uniform mixture of F (−1, 0.5, 0.4) and
F (−3, 0.5,−0.4), arm 2 is P (0, 0.2, 0.55) and arm 3 is F (−0.5, 1, 0.1) with respective CVaRs at
quantile 0.6 being −0.1428, 0.974 and 1.547. We select ε = 0.7 and B = 4.5. This is a moderately
hard problem of complexity V -1(µ)∗ = 49.7. The arm-densities are shown in Figure 2b.

1[21, Figure 2] show that (unmodified) Track-and-Stop is not asymptotically optimal for problems with mul-
tiple correct answers including (ε, δ)-BAI. They have to go out to δ = e−80 to see the suboptimal asymptotics.
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(a) Histogram of stopping time (b) Arm densities

Figure 2: Histogram of stopping times based among 1000 runs on 3 arms with heavy-tailed distri-
butions, with densities shown in (b), as a function of confidence δ. Vertical bars indicate the lower
bound (4) (solid), and a version adjusted to our stopping threshold (7) (dashed), i.e., the n that solves
n = β(n, δ)V (µ)-1.

Figure 3: Stopping time (empirical sample complexity) of the algorithm at δ = 0.05 as a function of
number of arms. Each data point is an average of 1000 independent runs.

Figure 2a shows histograms of the sample complexity, together with the lower bound (solid vertical
line) and a second reference point (dashed line) which is the n that solves n = V (µ)-1β(n, δ), i.e.
the time by which our stopping threshold activates for the optimal sampling allocation. We see that,
for a range of practical δ, the actual stopping time is very close to it. In particular, this means that
the algorithms learns to approximate the optimal sampling strategy. We thus conclude that even at
moderate δ the average sample complexity closely matches the lower bound, especially after adjusting
it for the lower-order terms in the employed stopping threshold β(n, δ). This demonstrates that our
asymptotic optimality is in fact indicative of the performance in practice.

In our second experiment, we let L be the collection of all distributions with 1.7th-moment bounded
by 4.5. We demonstrate in Figure 3 that the stopping time of the algorithm (empirical sample
complexity), at δ = 0.05, increases linearly with the number of arms, though currently theory shows
a dependence of K4, where K is number of arms, in the lower-order terms (see the very last line
of Lemma F.4). The experiment suggests that this K4 dependency is an artefact, as it does not
materialise in practise. For this experiment, we start with a 2-armed bandit: arm 1 being a uniform
mixture of F (−1, 0.5, .4) and F (−3, 0.5,−.4), and arm 2 being P (2.25, 0.1, 0.01). The CVaRs for
these arms at 0.6th quantile are −0.1428 and 2.4439, respectively. Here, arm 2 is sub-optimal (recall
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(a) Stopping time for 3 different ε. (b) Zoomed in for ε = 1.1

Figure 4: Stopping time (empirical sample complexity) of the algorithm as a function of the moment
bound, B. The graph shows the dependence for 3 values of ε: 0.5, 0.7, and 1.1. We observe that for
ε < 1, the sample complexity is a convex function of B, and is linear for ε > 1. Each data point is an
average of 1000 independent runs.

that we are interested in the arm with minimum CVaR). We then keep adding more arms which are
replicas of arm 2, thus minimizing the effect of other factors on the sample complexity.

In our final experiment, we look at the dependence of empirical sample complexity on the parameter
B. The arms are the same as in our previous experiment, i.e., arm 1 is a uniform mixture of
F (−1, 0.5, .4) and F (−3, 0.5,−.4), and arm 2 is P (2.25, 0.1, 0.01). In this experiment, we change
the comparator class L by changing only B. ε is set to one of 0.5, 0.7, or 1.1, and we start with
B = 7.5, and increase it upto 20, in steps of 0.5. Figure 4a plots the stopping time of the algorithm
as a function of B, for the 3 different values of ε. It demonstrates that for ε < 1, the dependence is
convex, approaching to linear-dependence as ε→ 1. We in fact sketch approximate lower and upper
bounds for V (µ) (Section M), a quantity that characterizes the asymptotic sample complexity. These
bounds show that sample complexity scales as B

1
ε for ε < 1, and scales linearly for ε > 1. This

is clearly visible from the graph in Figure 4a, where the blue curve, which corresponds to ε = 0.5,
can be checked to be quadratically increasing, and the curve in Figure 4b demonstrates a linear
dependence for ε = 1.1.

In each case we perform 1000 independent replications. We use the stylised threshold β(n, δ) =

log 1+log(n)
δ . This threshold is not currently allowed by theory. Yet we find that it is still conservative,

as we do not observe a single mistake. Finally, instead of computing t∗(η̂n) at each round, we make
use of a technique recently introduced by [22] to reduce computation: namely after each round we
perform a single step of an iterative saddle point solver for t∗. We do not make use of their optimistic
gradients, instead relying on classical

√
n-forced exploration. We use C-tracking from [27].

Finally, the computation of the stopping statistic (GLRT) and also the gradient involves an optimisation
over x0 as in the optimization problem in Proposition 3.5. We use bisection search to find the minimum
in x0. Even though this is not licensed by theory, we consistently observe in practice that after a few
rounds all these minimisation problems are in fact quasiconvex in x0. We use the ellipsoid method
for the inner minimisation problem. As the number of terms grows by one each round, the overall
run-time is O(Kn) in round n.

We conclude that even at moderate δ the average sample complexity closely matches the lower bound
(with adjusted stopping threshold β(n, δ)). This demonstrates that our asymptotic optimality is in
fact indicative of the performance in practice. The stopping time of the algorithm increases linearly
with the number of arms. Moreover, for ε < 1, the stopping time is a convex function of the class
parameter, B, indicating that it is important to correctly estimate this parameter for smaller ε.
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M Interpretable Lower Bound Approximation

In this section we consider an approximate version of the lower bound problem. Even though it is
heuristic, it is worthwhile as it gives an interpretable result. We take as our starting point (57), which
we may invert to give us

KLU
inf(η, x) ≈

(
4

1− π

)1+1/ε

B−1/ε(x− cπ(η))
1+1/ε
+

KLL
inf(η, x) ≈

(
4

1− π

)1+1/ε

B−1/ε(cπ(η)− x)
1+1/ε
+

Let µ1 be the best CVaR arm, in that cπ(µ1) < cπ(µj) for all j > 1. The lower bound problem (see
Lemma 3.1) then requires solving the approximate problem (denoted by a tilde)

Ṽ (µ) := sup
t∈ΣK

min
j 6=1

inf
x

(
4

1− π

)1+1/ε

B−1/ε
{
t1(x− cπ(µ1))

1+1/ε
+ + tj(cπ(µj)− x)

1+1/ε
+

}
.

(63)
Plugging in the optimiser x =

tε1cπ(µ1)+tεjcπ(µj)

tε1+tεj
, which is the midpoint under the renormalised

ε-powered weights, results in

Ṽ (µ) =

(
4

1− π

)1+1/ε

B−1/ε sup
t∈ΣK

min
j 6=1

∆
1+1/ε
j(

t−ε1 + t−εj
)1/ε ,

where we abbreviated ∆j = cπ(µj)− cπ(µ1) for j 6= 1 and ∆1 := minj 6=1 ∆j . From this point we
can already see that the characteristic time, 1/Ṽ (µ), scales with B1/ε, which is clearly visible e.g. the
blue line in in Figure 4a, corresponding with ε = 1/2, and which matches a quadratic (quadrupling
when B doubles).

At this point we can follow [27, Appendix A.4] and obtain an interpretable sandwich on Ṽ (µ) with a
multiplicative factor 21/ε.
Lemma M.1.(

1− π
4

)1+1/ε

B1/ε
∑
j

1

∆
1+1/ε
j

≤ Ṽ (µ)−1 ≤ 21/ε

(
1− π

4

)1+1/ε

B1/ε
∑
j

1

∆
1+1/ε
j

.

Proof. Let C =
(

1−π
4

)1+1/ε
. First, by plugging in the sub-optimal choice for t given by

tj =
∆
−1−1/ε
j∑

j ∆
−1−1/ε
j

,

where we interpret ∆1 = minj 6=1 ∆j . We then find

Ṽ (µ)−1 ≤ CB1/ε

∑
j

∆
−1−1/ε
j

max
j 6=1

((
∆1

∆j

)1+ε

+ 1

)1/ε

≤
∑
j

21/εCB1/ε

∆
1+1/ε
j

.

We may also obtain a lower bound on the characteristic time of the same order by considering the
sub-optimal choice x = cπ(µ1) in (63) instead. We obtain

Ṽ (µ∗) ≤ sup
t∈ΣK

min
j 6=1

tjC
−1B−1/ε∆

1+1/ε
j =

1∑
j
CB1/ε

∆
1+1/ε
j

.

Taking the reciprocal gives the result.
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