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A Lemma 1: Error Bound of Online Adaptation1

In this section, we establish the error bound for prediction errors in the general online adaptation.2

At time step t, we select the critical input-output pairs (Xs, ys+1) from recent L-steps observa-3

tions.These critical pairs are utilized to update the parameters of the prediction model, resulting in a4

refined model. Subsequently, predictions are made using the newly optimized parameters.5

Assuming that the transition function f : Xt → Yt+1 satisfies the K-Lipschitz continuity condition6

and the δ time-varying condition.7

Bound of ground-truth difference. Given a transition function f(t,X), if the K-Lipschitz conti-8

nuity and δ time-varying conditions holds within recent L steps, then the ground-truth value Yt+19

and Ys+1 has the following property:10

∥Yt+1 − Ys+1∥ = ∥f(t,Xt)− f(s,Xs)∥ ≤ K∥Xt −Xs∥+ δ∥t− s∥ (1)

The proof is shown below:11

∥Yt+1 − Ys+1∥ = ∥f(t,Xt)− f(s,Xs)∥
= ∥f(t,Xt)− f(t,Xs) + f(t,Xs)− f(s,Xs)∥
≤ ∥f(t,Xt)− f(t,Xs)∥+ ∥f(t,Xs)− f(s,Xs)∥ (triangle inequality)

≤ K∥Xt −Xs∥+ ∥f(t,Xs)− f(s,Xs)∥ (K Lipschitzness)

≤ K∥Xt −Xs∥+ δ|t− s| (δ time varying) (2)

Error Bound of Online Adaptation. For time step t, the (prior) prediction error et+1 has the12

following inequality:13

et+1 = ∥Yt+1 − Ŷt+1∥ = ∥Yt+1 − f̂(θt, Xt)∥
= ∥Yt+1 − Ys+1 + Ys+1 − f̂(θt, Xs) + f̂(θt, Xs)− f̂(θt, Xt)∥
≤ ∥Yt+1 − Ys+1∥+ ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥ (triangle inequality)

≤ K∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥ (3)

The first two terms come from the difference between ground-truth Yt+1 − Ys+1, the third term14

is a (posterior) fitting error for input-output tuple (Xs, Ys+1), and the last term is the difference15

between two predictions. Combining the above inequality with the Lipschitz continuity condition16

for f̂(θt, Xt), we obtain the error bound for general online adaptation is shown below:17

et+1 ≤ (K + K̂)∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥ (4)

Then lemma 1 is derived.18
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B Comparison of Error Bound between Feedforward Adaptation and19

Feedback Adaptation20

B.1 Lemma 2 (a,b,c): Expected Error Bound21

Considering the error bound (4), the first two terms are associated with the specific data compensa-22

tion strategy, while the last term represents the posterior fitting error on the selected samples. In this23

study, our main focus is on the data compensation strategy, and we do not prioritize the data fitting24

aspect. Additionally, with a powerful neural network prediction model, achieving a very small fit-25

ting error (almost zero) is relatively straightforward [1]. Therefore, we can disregard the fitting error26

when comparing feedforward and feedback adaptation. By neglecting the fitting error, we obtain an27

approximate upper bound Be for general online adaptation, as shown below:28

Be = (K + K̂)∥Xt −Xs∥+ δ|t− s| (5)

Error Bound for Feedforward Adaptation. In feedforward adaptation, the selected input-output29

pairs are the most similar samples to the current observation Xs = argminXi
∥Xt − Xi∥ from30

L-size buffer, and s = argmini∈[t−L,t−1] ∥Xt − Xi∥. Then we have an error bound Bff
e for31

feedforward adaptation:32

Bff
e = (K + K̂)∥Xt −Xs∥+ δ|t− s| ≤ (K + K̂)∥Xt −Xs∥+ δL (6)
Xs = arg min

Xi∈[Xt−L,Xt−1]
∥Xt −Xi∥ (7)

Error Bound for Feedback Adaptation. In feedback adaptation, the selected input-output pairs are33

the latest observations Xs = Xt−1 and s = t−1. Then we have an error bound Bfb
e for feedforward34

adaptation:35

Bfb
e = (K + K̂)∥Xt −Xt−1∥+ δ (8)

Comparison of the expected error bound between Feedforward and Feedback Adaptation. Let36

the expected distance between consecutive samples is D:37

D := E[∥Xt −Xt−1∥]. (9)

Let the expected minimum sample distance is D⋆:38

D⋆ := E[∥Xt −Xs∥] = E[min
Xi

∥Xt −Xi∥]. (10)

Then the expected error bound for feedforward adaptation is:39

E[Bff
e ] ≤ (K + K̂)E[∥Xt −Xs∥] + δL = (K + K̂)D⋆ + δL. (11)

The expected error bound for feedback adaptation is:40

E[Bfb
e ] = (K + K̂)E[∥Xt −Xt−1∥] + δ = (K + K̂)D + δ. (12)

Consider the conditions that feedforward adaptation has a smaller error bound than feedback adap-41

tation in expectation. In order to make: E[Bff
e ] < E[Bfb

e ], we have:42

(K + K̂)D⋆ + δL < (K + K̂)D + δ (13)

⇒ δ

K + K̂
<

D −D⋆

L− 1
(14)

Equation (14) represents the condition under which feedforward adaptation surpasses feedback43

adaptation in terms of the expected error bound. Here, the hyperparameter L denotes the prede-44

fined buffer size. It is important to note that when L = 1, feedforward adaptation is equivalent to45

feedback adaptation. Therefore, our focus is primarily on the case when L > 1. From the equation,46

we observe that if the system exhibits a smaller time-varying property δ compared to the Lipschitz47

constant K, and a smaller minimum sample distance D⋆, feedforward adaptation is more likely48

to achieve a greater improvement over feedback adaptation. For instance, when δ = 0, we have49

E[Bff
e ] < E[Bfb

e ] for any K, K̂,D,D⋆, and L.50

By combining (11), (12) and (14), we can conclude Lemma 2 (a,b,c).51
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B.2 Lemma 2 (d): Expected Error Bound on Random-input System52

Consider a transition function f with randomly sampled input observations. Specifically, input Xt53

is a random variable sampled from the uniform distribution: Xt ∼ U(0, 1). In this case, the current54

sample Xt and last sample Xt−1 are independent random variables from U(0, 1). According to [2],55

the expectation of the distance between these two independent and uniform-distributed variables is56
1
3 . Then for feedback adaptation57

E[∥Xt −Xt−1∥] =
1

3
, for Xt, Xt−1 ∼ U(0, 1) (15)

The term E[minXi ∥Xt − Xi∥] represents the expected minimum distance between the current58

sample Xt and previous L samples in the buffer, which is 1
L+2 [2], according to [2]. Then for59

feedforward adaptation:60

E[∥Xt −Xs∥] = E[ min
Xi∈[Xt−L,Xt−1]

∥Xt −Xi∥] =
1

L+ 2
, for Xt, Xi ∼ U(0, 1) (16)

Let D = 1
3 , D

⋆ = 1
L+2 on the expected error bound (11) and (12), we obtain the expected error61

bound for feedforward and feedback adaptation on the system with random input:62

E[Bff
e ] = (K + K̂)D⋆ + δL =

K + K̂

L+ 2
+ δL (17)

E[Bfb
e ] = (K + K̂)D + δ =

K + K̂

3
+ δ (18)

Consider the conditions that feedforward adaptation has a smaller error bound than feedback adap-63

tation in expectation. In order to make: E[Bff
e ] < E[Bfb

e ], we have:64

(K + K̂)D⋆ + δL < (K + K̂)D + δ (19)

⇒ K + K̂

L+ 2
+ δL <

K + K̂

3
+ δ (20)

⇒ δ

K + K̂
<

1

3L+ 6
(21)

If L = 1, the feedforward adaptation is equal to the feedback adaptation. For feedforward adapta-65

tion, we have L > 1. Then we consider the buffer size L = 2 as general settings, then conclude the66

conditions for applying feedforward adaptation:67

δ

K + K̂
<

1

3L+ 6
=

1

12
≈ 0.083 (22)

In this case, with the optimal buffer size L = L⋆ :=

√
K+K̂

δ − 2, feedforward adaptation achieves68

the smallest expected error bound:69

E[Bff
e ]⋆ = 2

√
δ(K + K̂)− 2δ (23)

As can be seen, if δ ≈ 0, feedforward adaptation could achieve the zero expected error bound with70

optimal buffer size L⋆, while feedback adaptation cannot converge to zero expected error bound.71

Thus, given a prediction system f with a random input state, if δ
K+K̂

< 1
12 , with buffer size L = 2,72

feedforward adaptation achieves the smaller expected error bound than feedback adaptation. In this73

case, the optimal buffer size for minimum error bound is L⋆ =

√
K+K̂

δ − 2.74

By combining (17), (18), (22) and (23), one can conclude Lemma 2 (d).75

B.3 Synthetic Experiments: Linear Time-varying System76

We design a toy experiment to evaluate Lemma 2. We consider the following linear time-varying77

system78

yt+1 = f(xt) = sinxt + δt, xt ∼ U(0, 1)
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Our parameterized prediction model is a one-layer perception with Sigmoid activation function.79

ŷt = f̂(Vt, bt;xt) = S(Vtxt) + bt =
1

1 + e−Vtxt
+ bt (24)

Where S(·) denotes a Sigmoid activation function. We have The Lipschitz constant K and K̂ for80

the ground-truth function f and the one-layer perception f̂ :81

K = sup | ∂f
∂xt

| = sup | cos(xt)| = 1 (25)

K̂ = sup(| ∂f̂
∂xt

|) = sup |Vt · S(Vtxt) · (1− S(Vtxt)) | = 0.25 sup |Vt| (26)

We use SGD as an optimizer in feedback and feedforward adaptation. During training, we keep the82

∥Vt∥ bounded, i.e. ∥Vt∥ ≤ 1, then K̂ = 0.25. We use Lemma 3 (17) and (18) to calculate the error83

bound for feedback and feedforward adaptation:84

E[Bfb
e ] =

5

12
+ δ (27)

E[Bff
e ] =

5

4L+ 8
+ δL (28)

Then we calculate the threshold δ⋆ (22). If δ ≤ δ⋆, feedforward adaptation has a smaller error85

bound.86

δ⋆

K + K̂
=

1

12
(29)

⇒ δ⋆ =
1

12
(K + K̂) ≈ 0.1 (30)

Thus, in the toy experiment, If δ ≤ 0.1, feedforward adaptation has a smaller error bound. The87

experimental results are shown in Figure 1 of the main paper.88

C Applications of Feedforward Adaptation89

When determining whether to apply feedforward adaptation to a system or time-series function,90

Lemma 2(c) can serve as a criterion. However, estimating the values of δ,K,D,D⋆ for the system91

is required. As a straightforward and conservative approach, if δ ≈ 0, feedforward adaptation92

outperforms feedback adaptation for any δ,K,D,D⋆. To simplify this decision-making process, we93

propose a simple criterion based on the widely used stationarity test in time-series analysis.94

C.1 Stationary time series and ADF test95

A stationary time series is one that exhibits properties that do not depend on time. Therefore, a sta-96

tionary time series does not possess trends or seasonality. In the context of a time series (Xt, Yt+1),97

stationarity implies that the transition function f : Xt → Yt+1 is not explicitly linked to the time98

step t. In accordance with the δ time-varying condition, which is equivalent to δ ≈ 0.99

The Augmented Dickey-Fuller (ADF) test is a widely used method for detecting the stationarity of a100

time series [3]. It tests the null hypothesis that a time series is non-stationary or time-dependent (i.e.,101

it has a unit root), while the alternative hypothesis suggests stationarity, indicating that it cannot be102

represented by a unit root. The ADF test yields a p-value that is used to assess the test. If the p-value103

is less than 0.05, we reject the null hypothesis and conclude that the series is stationary. Conversely,104

if the p-value is greater than or equal to 0.05, we fail to reject the null hypothesis and conclude that105

the series is non-stationary.106

C.2 Differencing107

In many real-world scenarios, time series signals exhibit non-stationarity. Therefore, it is crucial to108

transform these non-stationary signals into stationary ones in order to apply feedforward adaptation109
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effectively. One approach to achieve this is by computing the differences between consecutive ob-110

servations, denoted as dt+1 = Yt+1 − Yt. This process is commonly referred to as differencing [4].111

Differencing helps stabilize the mean of a time series by eliminating changes in its level and remov-112

ing trends. By applying differencing, it becomes possible to convert many non-stationary series into113

stationary ones, thereby facilitating the use of feedforward adaptation114

C.3 Criterion for applying feedforward adaptation115

The criterion and procedure for applying feedforward adaptation are presented in Figure 2 of the116

main paper. In this approach, given a time series (Xt, Yt+1), such as the training set of the prediction117

task f : Xt → Yt+1, we follow a specific process based on the stationarity of the series. If the ADF118

test indicates that the series is stationary, we directly apply feedforward adaptation to the original119

series. This involves prediction and adaptation on Yt+1 = f(t,Xt). If the series is found to be non-120

stationary, we employ differencing by calculating the difference between consecutive observations,121

denoted as dt+1 = Yt+1 − Yt. We then assess the stationarity of the differenced signal dt+1. If it is122

determined to be stationary, we proceed with feedforward adaptation on the difference series. This123

entails prediction and adaptation on dt+1, followed by converting it back to Yt+1 = Yt+dt+1 based124

on the value of Yt. If the differenced signal remains non-stationary even after differencing, we resort125

to feedback adaptation for handling the non-stationary signal.126

D Additional Details of Experiments127

D.1 Dataset128

We evaluate the effectiveness of the proposed feedforward adaptation method in three different sce-129

narios: (1) Human motion prediction in human-robot collaboration, using the THOR dataset and As-130

sembly dataset; (2) Vehicle trajectory prediction in autonomous driving, using the NGSIM dataset;131

and (3) Robotic arm trajectory prediction for quality control and monitoring purposes, using the132

Robot arm trajectory dataset. The specific tasks for each dataset are illustrated in Fig. 1.133

The description of the datasets is shown below.134

• THOR1 is a public dataset of human motion trajectories, recorded in a controlled indoor experi-135

ment [5]. Which includes the motion trajectories with diverse and accurate social human motion136

data in a shared indoor environment. In our experiments, we use No. 2 ∼ 4 agent’s trajectory as137

a train set and No. 5 ∼ 10 agent’s trajectory as a test set.138

• Assembly dataset 2 records arm motions in assembly tasks. This dataset includes 5 different139

assembly tasks. Each task requires the human to use LEGO pieces to assemble an object. In our140

experiments, we use task 1 ∼ 2 as a train set and task 3 ∼ 5 as a test set.141

• NGSIM dataset: US 101 human driving data from Next Generation SIMulation dataset 3. The142

dataset contains highway driving trajectories captured by cameras mounted on top of surrounding143

buildings [6]. In our experiment, we use a subset of the dataset which contains 100 trials of144

different agents. We use No. 1 ∼ 50 trial’s trajectory as a train set and No. 50 ∼ 100 trial’s145

trajectory as a test set.146

• We collect the Robot arm trajectory dataset, which records the joint position (De-147

navit–Hartenberg parameters) of the KINOVA Gen 3 (7 DoF) robotic arm in pick-and-place148

tasks. This dataset includes 4 pick-and-place tasks for picking objects from different positions149

on a workbench. In our experiments, we use task 1 ∼ 2 as a train set and task 2 ∼ 4 as a test set.150

We will make the dataset publicly available.151

In our experiments, the prediction model utilizes the most recent 1 second of observations to predict152

the trajectory for the next 2 seconds. To ensure consistent sampling frequencies, we subsampled the153

1http://thor.oru.se/
2https://github.com/intelligent-control-lab/Human_Assembly_Data
3https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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(a) THOR human motion prediction dataset (b) Arm motion prediction in assembly tasks

(c) NGSIM vehicle trajectory prediction
dataset

(d) Robot arm trajectory prediction in pick-
and-place tasks

Figure 1: Illustration of tasks in different datasets. Figure (a) is copied from the public website of
the THOR dataset http://thor.oru.se/; Figure (b) is copied from the website of the Assembly
dataset https://github.com/intelligent-control-lab/Human_Assembly_Data; Figure
(c) is copied from the public website of the NGSIM dataset https://data.transportation.
gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-I-80-Vide/
2577-gpny; Figure (d) shows a KINOVA robot arm performing pick-and-place tasks in our
dataset.

THOR and Assembly datasets to 20Hz. For these datasets, we set the input horizon to 20 and the154

prediction horizon to 40. The NGSIM dataset has a sampling frequency of 15Hz, so we adjusted the155

input horizon to 15 and the prediction horizon to 30 accordingly. As for the Robot arm trajectory156

dataset, we subsampled it to a sampling frequency of 25Hz and set the input horizon to 25 and the157

prediction horizon to 50.158

D.2 Stationarity test of datasets159

As discussed in Appendix C, we use the ADF method to test the stationarity of the time-series data160

and check the slow-varying property of its transition function. If the p-value of the ADF test is less161

than 0.05, we can reject the null hypothesis and conclude that the time series is stationary. If the162

p-value of the ADF test is greater than 0.05, we cannot reject the null hypothesis and conclude that163

the time series is non-stationary.164

The results of the ADF test are shown Table 1. It can be observed that the original raw series165

of the THOR and Assembly datasets exhibit stationarity, indicating that the transition function of166

these datasets is slow time-varying. Therefore, feedforward adaptation can be directly applied to the167

THOR and Assembly datasets. On the other hand, the original raw series of the NGSIM and Robot168

arm datasets are non-stationary, but the difference series demonstrates stationarity. This implies that169
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Table 1: ADF test results for raw time-series and the difference signal on Thor, Assembly, NGSIM,
Robot arm datasets.

Dataset THOR Assembly NGSIM Robot arm
P value on Raw Series 5e-3 (stationary) 4e-3 (stationary) 0.34 (nonstationary) 0.09 (nonstationary)
P value on Difference 1e-20 7e-21 0 (stationary) 0.008 (stationary)

the transition function of the difference signal for the NGSIM and Robot arm datasets is slow time-170

varying. Consequently, feedforward adaptation can be applied to the difference series in NGSIM171

and Robot arm datasets, which is equivalent to predicting velocity instead of the raw trajectory.172

D.3 Experimental design173

Parameterized Prediction models. We utilize a Multi-layer Perceptron (MLP) with a direct mul-174

tistep (DMS) prediction strategy [7]. The choice of MLP with DMS is motivated by the superior175

performance of a simple MLP over many larger Transformer-based models, as reported in [7]. Our176

MLP architecture consists of two layers. The first layer can be considered as an Encoder, denoted177

as Xt = W · Xt. Following the encoder, the MLP incorporates layer normalization, an activation178

function, and a final linear projection represented as Yt+1 = V ·Relu(LayerNorm(Xt)). The layer179

normalization and the final projection can be viewed as a decoder. It is worth noting that we do not180

flatten the input for the MLP. The expression Xt = W ·Xt represents a linear layer applied along181

the temporal axis.182

Baselines. We compare the proposed method with four baselines.183

• w/o adapt directly conduct prediction without adaptation. Which is a lower bound for adaptation184

methods.185

• Feedback adaptation selected the latest sample to optimize the model [8]. Which is the most186

important baseline for us.187

• Random adaptation is the same as the Experience Replay with Reservoir Sampling [9]. Which188

is a method that selects the critical pair from the L-size buffer with random sampling.189

• Full adaptation is a method that uses all samples from the buffer to adapt the model, which is190

similar to offline training.191

Hyperparameters. For offline training, we follow the strategy in [7]. In adaptation, we set the192

learning rate of SGD as η = 0.001. Buffer size for feedforward adaptation is L = 1000. For193

uncertainty estimation, we set δ̃ = 0, K̃ = 1.194

D.4 Prediction output and Prediction Error195
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Figure 2: Experimental results on THOR dataset.

Figure 2a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty196

estimation (blue dashed region) on the THOR dataset. Figure 2b shows the real prediction error197
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for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest198

prediction error among them.199
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Figure 3: Experimental results on NGSIM dataset.

Figure 3a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty200

estimation (blue dashed region) on the NGSIM dataset. Figure 3b shows the real prediction error201

for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest202

prediction error among them.203
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Figure 4: Experimental results on Robot arm dataset.

Figure 4a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty204

estimation (blue dashed region) on the Robot arm dataset. Figure 4b shows the real prediction error205

for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest206

prediction error among them.207

D.5 Study of the sample selection strategy of different adaptation methods208
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Figure 5: Experimental results on Robot arm dataset. (a) FFT period analysis. (b) Timeshift t − s
between current sample Xt and selected sample Xs in feedforward adaptation.
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Feedforward adaptation selects samples with the smallest sample difference minXi |Xt −Xi|. This209

selection strategy allows feedforward adaptation to inherently capture the periodicity in time-series210

data when faced with periodic patterns. In the case of the robot arm dataset, as depicted in Figure211

4a, we observe an approximate periodicity of T ≈ 420. This is evident from the FFT (Fast Fourier212

Transform) period analysis depicted in Figure 5a. In Figure 5b, we demonstrate how many samples213

were chosen from (t−s) ≈ 420 steps earlier during the feedforward compensation process, aligning214

with the repetition period of T ≈ 420. Feedforward adaptation’s selection of the most similar215

samples to the current sample facilitates the extraction of hidden periodic patterns within the input216

signal over time. Consequently, the distribution of t−s exhibits similarity to the FFT period analysis.217
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