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Abstract

Existing studies have shown that Message-Passing Graph Neural Networks (MPNNs) are
highly susceptible to adversarial attacks. In contrast, despite the increasing importance of
Graph Transformers (GTs), their robustness properties are unexplored. We close this gap and
design the first adaptive attacks for GTs. In particular, we provide general design principles
for strong gradient-based attacks on GTs w.r.t. structure perturbations and instantiate our
attack framework for five representative and popular GT architectures. Specifically, we
study GTs with specialized attention mechanisms and Positional Encodings (PEs) based
on pairwise shortest paths, random walks, and the Laplacian spectrum. We evaluate our
attacks on multiple tasks and perturbation models, including structure perturbations for
node and graph classification and node injection for graph classification. Our results reveal
that GTs can be catastrophically fragile in many cases. Addressing this vulnerability, we
show how our adaptive attacks can be effectively used for adversarial training, substantially
improving robustness.

1 Introduction

Graphs are fundamental data structures with broad applications across various domains. In recent years,
Graph Neural Networks (GNNs) have become the go-to method for learning on graph-structured data.
Given their growing adoption, numerous studies have explored adversarial attacks on GNNs, revealing
their susceptibility to even minor perturbations of the graph structure (Zügner et al., 2018; Zügner &
Günnemann, 2019; Zügner & Günnemann, 2020). These studies mainly focus on Message-Passing GNNs
(MPNNs), such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017). More recently, Graph
Transformer (GT) models have emerged as a promising alternative, addressing key limitations of MPNNs,
such as over-smoothing, over-squashing, and limited receptive fields (Müller et al., 2024). Despite their
growing popularity, the adversarial robustness of GTs is unexplored and hence, unknown. This gap highlights
a crucial limitation in our understanding of GTs and poses a risk in practical applications where robustness is
critical. However, to understand their robustness, it is not possible to directly apply state-of-the-art attacks
for GNNs, such as PGD (Xu et al., 2019) and PRBCD (Geisler et al., 2021) as GTs employ modified attention
mechanisms and Positional Encodings (PEs) that are not differentiable w.r.t. the input. Consequently, the
lack of good tools to evaluate the robustness of GTs makes it difficult to understand the robustness properties
of different GT models, to determine which models or components are preferable in safety-critical settings,
and to apply state-of-the-art defense mechanisms such as adversarial training (Gosch et al., 2023a).

To address this challenge, we establish general guiding principles for designing differentiable relaxations to
the discrete and non-differentiable components in GTs. In doing so, we provide a general outline on how to
design strong gradient-based adaptive attacks for GTs that can adjust to all relevant architectural details.
Such adaptive attacks are essential for realistic robustness estimates in the vision domain (Athalye et al.,
2018; Carlini & Wagner, 2017; Tramèr et al., 2020) as well as the GNN domain (Mujkanovic et al., 2022). We
exemplify our guiding principles by developing specific relaxations for the most widely used GT components
including (a) Shortest Path, (b) Random Walk, and (c) Spectral PEs. Using our relaxations, we
provide the first analysis of the robustness of GTs by applying adaptive gradient-based attacks to five popular
and representative GT architectures: 1) Graphormer (Ying et al., 2021), 2) Spectral Attention Network
(SAN) (Kreuzer et al., 2021), 3) Graph Inductive bias Transformer (GRIT) (Ma et al., 2023), 4) General,
Powerful, Scalable (GPS) GT (Rampášek et al., 2022), and 5) Polynormer (Deng et al., 2024).

1



Under review as submission to TMLR

Graphormer GRIT SAN GPS GPS-GCN Polynormer GATv2 GAT GCN

0 1 2 3 4 5

Edge modification budget (%)

20

40

60

80

A
cc

u
ra

cy
(%

)

(a) CLUSTER.

0 5 10 15 20

Edge modification budget (%)

20

40

60

80

(b) Reddit Threads.

0 5 10 15

Edge modification budget (%)

40

50

60

70

80

90

(c) UPFD politifact.

0 5 10 15

Edge modification budget (%)

40

60

80

100

(d) UPFD gossipcop.

Figure 1: The adversarial classification accuracy for different GNNs with varying (evasion) attack budgets on
four different datasets: CLUSTER - inductive node classification (global structure attack), Reddit Threads -
graph classification (structure attack), UPFD politifact and gossipcop - graph classification (node injection
attack). The strongest attack for each budget is shown.

Our study reveals that GTs can be catastrophically fragile if evaluated with our adaptive attacks (Fig. 1).
For example, with our proposed node injection attacks (NIAs), perturbing 2% of the edges can halve the
model’s accuracy (Fig. 1c & 1d). Consequently, we use our adaptive attacks to devise an effective adversarial
training strategy and show its potential to alleviate the hypersensitivity of GT architectures.

Our main contributions are:

(1) We formulate general guiding principles to relax non-differentiable GT (Graph Transformer) components.
Based on this, we develop the first adaptive gradient-based structure attacks for five representative GT
architectures. Our developed relaxations concern the most common building blocks found in GTs and thus,
can find application across many different GT models.

(2) We conduct the first principled empirical study into the adversarial robustness of GTs and show that they
can suffer from catastrophic vulnerabilities to even minor perturbations of the graph’s structure, in some
cases even worse than traditional message-passing GNNs.

(3) We show how to leverage our adaptive attacks for adversarial training strategies that can result in an
effective defense counteracting GTs’ vulnerabilities. Thus, we establish that the flexibility of GT models can
lead to significantly better robust learning capabilities compared to classic message-passing GNNs.

2 Preliminaries

Let G = (V, E) be an undirected attributed graph with n nodes V = {v1, ..., vn} and m edges. Let xi ∈ Rd be
the feature vector of node vi. Then the graph can be defined as G = (A,X) with its symmetric binary adjacency
matrix A ∈ {0, 1}n×n and node feature matrix X ∈ Rn×d. The diagonal degree matrix D with entries
Dii = deg(vi) =

∑n
j=1 Aij and the normalized symmetric graph Laplacian matrix Lsym = I −D−1/2AD−1/2

can both be derived from A. The GNNs considered in this work are functions fθ(A,X) with model parameters
θ ∈ Rp. We denote the updated hidden node representations after each GNN layer l as H(l) with initialization
H(0) = X. For node-level tasks, we assume that each node should be assigned a class c ∈ {1, . . . ,K} and the
output node representations are directly utilized for the prediction, while for graph-level tasks, a graph-pooling
operation aggregates the node embeddings into a graph embedding before predicting one out of K classes for
the whole graph.

2.1 Structure Attacks

In this work, we focus on untargeted white-box evasion attacks, i.e., an attacker with full knowledge of the
model and data attempts to change the trained model’s prediction to any incorrect class at test time by slightly
perturbing the input graph structure. For node-level tasks we focus on global attacks that minimize the
overall performance metric across all nodes. The attack objective is described by the following optimization
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problem:
max

Ã s.t. ||Ã−A||0<∆
Latk(fθ(Ã,X)) (1)

where fθ is the GNN model with fixed parameters θ, Ã ∈ {0, 1}n×n is the discrete perturbed adjacency
matrix in relation to A with the number of edge flips bounded by the budget ∆ ∈ N0, and Latk is a suitable
attack loss function. For node classification, we use the tanh-margin attack loss proposed in Geisler et al.
(2021). For graph classification, we optimize the unnormalized class logits: Latk = −ly +

∑
c̸=y lc, where

lc ∈ R refers to the unnormalized logit of class c ∈ {1, . . . ,K}. It is convenient to model the perturbation as
a function of the binary matrix indicating the edge flips B ∈ {0, 1}n×n:

Ã = A + δA, δA = (1n1T
n − 2A)⊙B (2)

with element-wise product ⊙. Often, the combinatorial problem in Eq. 1 can be optimized more efficiently
using a continuous relaxation B′ ∈ [0, 1]n×n replacing B in Eq. 2. In this setting, the entry B′

ij represents
the probability that the edge (vi, vj) is flipped. Then, the discrete perturbation matrix Ã can be sampled
from the continuous solution. In the continuous relaxation, the budget constraint becomes E[Bernoulli(B′)] =∑

B′
ij ≤ ∆, which can be dealt with by using projected gradient descent (Xu et al., 2019). Note that

a continuous B′ gives rise to a continuous Ã′ ∈ [0, 1]n×n, whose elements Ã′
ij can be interpreted as the

probability an edge (i, j) being in Ã. For large graphs, updating all entries in B′ at once becomes infeasible.
Projected Randomized Block Coordinate Descent (PRBCD) solves this by optimizing over sampled random
blocks of limited size (Geisler et al., 2021).

2.2 Graph Transformers

Figure 2: A
generic graph
transformer.

Graph transformers (GTs) apply the popular transformer architecture for sequences
(Vaswani et al., 2017) to arbitrary graphs. A general GT architecture is depicted in Fig. 2.
In this work, we focus on GTs that apply global self-attention, where each node can
attend to all other nodes. A “vanilla” structure-unaware self-attention head is defined as:

Attn(H) = softmax
(

(HWq)(HWk)T
√
d

)
(HWv) (3)

where Wq,Wk,Wv ∈ Rd×d are the weights for the query, key, and value projections. The
individual attention scores can thus be defined as:

αij = softmax(wij) = ewij∑
k e

wik
, wij =

W T
q hi ·W T

k hj√
d

(4)

Since this update is independent of the graph structure, many GTs apply a modified
attention mechanism that also depends on the adjacency matrix. Additionally, a crucial
and most common way to add structural information is by adding Positional Encodings
(PEs) to the node features:

H(0) = X + ψ(A) (5)
where ψ represents the positional encoding of choice. Some architectures append ψ(A) to X instead of
summing, or otherwise jointly process X and ψ(A). We categorize PEs roughly into three main categories:
(1) distance encodings, (2) spectral encodings, and (3) random walk encodings. Some works distinguish
between Structural Encodings (SEs) and PEs, where the term SE is used for encodings that make the GT
aware of graph structure and the term PE for making a node aware of its relative position. However, there is
no formal distinction between SEs and PEs (Müller et al., 2024) and for the purpose of this work, we do not
semantically distinguish between SEs and PEs and use the term positional encoding to refer to any encoding
based on A. Next, we describe the PEs and attention mechanisms of the five representative GT models that
we attack. For a detailed overview and taxonomy of current GTs we refer to Müller et al. (2024).

Graphormer (Ying et al., 2021). For the PEs, a degree embedding vector zd ∈ Rd is learned for each
discrete node degree value d. The embeddings are added to the node features according to the node degrees:

h
(0)
i = xi + zdeg(vi) (6)
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Similarly, a learnable scalar bs ∈ R is assigned to each discrete Shortest Path Distance (SPD) s ∈ N0. This
value is added to the raw attention scores and results in a re-weighting of the attention weights between two
nodes based on their distance in the graph:

ŵij = wij + bspd(vi,vj), αij = softmax(ŵij) (7)

where wij is set following Eq. 4. For graph-level tasks, a virtual node is added to the graph with its own
distinct learnable bias bvirtual, which is used as graph representation in the pooling stage.

Spectral Attention Network (SAN) (Kreuzer et al., 2021). SAN uses learned (spectral) Laplacian-based
PEs that are based on the eigen-decomposition of the Laplacian Lsym = UΛUT, where the diagonal entries
of Λii = λi are the eigenvalues of Lsym in ascending order λ1 ≤ λ2 ≤ ... ≤ λn, and the columns of U are
the corresponding eigenvectors. The PEs are computed by a learned transformer encoder that takes the k
smallest eigenvalues, which we denote by Λk ∈ Rk×k, and their corresponding eigenvectors Uk ∈ Rn×k as
input. Concretely, for each node vi, its PEs are initialized as the concatenation of the eigenvalues and the
i-th row of Uk:

Pi = [diag(Λk) ∥ (Uk)i] ∈ Rk×2 (8)
Further processing by a transformer encoder results in pi = f(Pi) ∈ Rdp , which is concatenated to the node
features: h

(0)
i = xi ∥ pi. Regarding the main graph transformer attention mechanism, it is modified to have

two separate key and query weights for connected and unconnected node-pairs. The attention scores to
the connected nodes and to the unconnected nodes are computed independently, each with a softmax. A
hyperparameter γ ∈ R+ controls how the two scores are relatively scaled, varying the bias towards sparse or
full attention:

αij =
{

1
1+γ softmaxNi (W T

q,realhi · W T
k,realhj/

√
d) if (vi, vj) is a real edge

γ
1+γ softmaxV\Ni

(W T
q,fakehi · W T

k,fakehj/
√

d) otherwise
(9)

where Ni is the first-order neighbors of node vi (including vi).

Graph Inductive Bias Transformer (GRIT) (Ma et al., 2023). GRIT’s PEs are based on random walk
probability matrices for walks of lengths 0 to k − 1. Concretely, the PEs are based on a 3D tensor:

P = [I,M ,M2, ...,Mk−1] ∈ Rn×n×k, with M = D−1A (10)

This yields an embedding vector Pij ∈ Rk for each of the n2 node-pairs (vi, vj). The diagonal vector entries
are transformed to dimension d by a linear layer and added to the node features as PEs: h

(0)
i = xi + g1(Pii).

Additionally, all n2 vectors are transformed by a separate linear layer and added as node-pair features:
h

(0)
i,j = g2(Pij). The node representations hi and node-pair representations hi,j are updated in each

transformer layer by a modified attention mechanism, which includes an adaptive degree-scaler that is applied
to the node representations:

hi,update = (hi ⊙ θ1) + log(1 + deg(vi)) · (hi ⊙ θ2) (11)

where θ1,θ2 ∈ Rd are learnable weights.

General, Powerful, Scalable (GPS) Graph Transformer (Rampášek et al., 2022). GPS is a modular
framework that first consists of a positional encoding of choice that is concatenated to the node features and
again processed with an MLP before being passed through L GPS layers. Each GPS layer combines the local
message passing of an MPNN with a global attention update as follows:

fGPS(H,A) = MLP (fMPNN (H,A) + fGlobalAttn (H)) (12)

There are several different choices of PEs, MPNNs, and global attention mechanisms tested by Rampášek
et al. (2022). We consider the configuration with (spectral) Laplacian PEs that are encoded using DeepSet
(Zaheer et al., 2017) (compared to a transformer encoder in SAN), local GatedGCN (Bresson & Laurent,
2018) as an MPNN, and standard transformer global attention (see Eq. 3), as this configuration choice is the
most common one by Rampášek et al. (2022).
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Polynormer (Deng et al., 2024). In the Polynormer model, the input is first processed by Llocal local
message passing layers and then by Lglobal global attention layers. Notably, PEs are not used. For both
type of layers, the node representation update is defined by a second-degree polynomial equation of the form
(omitting normalizations and activation functions):

Hupdate = (SHWv)⊙
(
HWp + σ

(
1βT))

, with attention matrix S = S (A,H) (13)

where σ is the sigmoid function and each layer has learnable weights Wv,Wp ∈ Rd×d and β ∈ Rd. To
calculate S, for local layers, the local attention mechanism from GAT (Veličković et al., 2018) is used. For
global layers, a linearized global attention mechanism is used based on the kernel trick. Instead of computing
the softmax after the query-key multiplication (Eq. 4), an element-wise sigmoid function is applied separately
to the queries and keys. Then a simple row-wise normalization ensures that rows sum to one:

αij = wij∑
k wik

, wij = σ
(
W T

q hi

)
· σ

(
W T

k hj

)
(14)

where Wq,Wk are the query and key projection matrices. Since the nonlinearity is applied before the
multiplication, the order of operations can be changed to avoid computing the full attention matrix S,
reducing complexity from O(n2d) to O(nd2). Thus, Polynormer is a type of GT that achieves linear
complexity in the number of nodes.

3 Attacking Graph Transformers

The main obstacles for gradient-based structure attacks on GTs are PEs and attention mechanisms that are
designed to operate on the discrete graph structure. As a result, even if one wants to solve the associated
optimization problem in Eq. 1 for a relaxed continuous adjacency matrix Ã′, the GT model fθ is often
discontinuous and non-differentiable w.r.t. Ã′, making continuous optimization through gradient-based attacks
inapplicable. Thus, to enable obtaining useful gradients, we need to relax the structure-aware components
such as PEs and specialized attention mechanisms in fθ, giving rise to a relaxed GT model f̃θ. For designing
effective continuous relaxations that lead to a useful f̃θ, we identify three main principles:

Principle I: Relaxed and target models should coincide for discrete inputs. The prediction
should equal f̃θ(A) = fθ(A) for any discrete adjacency matrix A ∈ {0, 1}n×n.

Principle II: f̃θ can interpolate between any different discrete graphs. In other words, f̃θ(Ã′)
should be continuous w.r.t. Ã′, and it should be differentiable almost everywhere w.r.t. Ã′.

Principle III: The relaxed model f̃θ must be efficient. It is a critical property that the relaxation
does not excessively increase the memory and runtime complexity.

We argue that in Principle II, we do not require continuous differentiability, as to obtain informative gradients
w.r.t. the input data, we do not need to enforce stronger standards on f̃θ than perhaps the most widely used
activation function ReLU. Now, below, we develop continuous relaxations for several common GTs that follow
the above outlined principles and thereby, enable the effective application of state-of-the-art gradient-based
graph structure attacks as described in § 5. Next to covering commonly used GT components, the following
derivations should act as guiding examples on how to instantiate the above principles to develop effective
continuous relaxations that enable strong adaptive attacks for a GT architecture or component of choice.

Graphormer. The degree PEs zdeg(vi) in Eq. 6 and SPD biases bspd(vi,vj) in Eq. 7 are indexed by the
discrete values of the node degrees (# of neighbors) and shortest path distances (# of hops). To enable the
use of continuous degrees, we define a linear interpolation between the PE vectors of the two closest integer
degree values:

z̃deg(vi) = η · zdl+1 + (1− η) · zdl

with dl = ⌊deg(vi)⌋, and η = deg(vi)− dl

(15)

Increasing the edge probabilities to a node also increases the expected discrete degree. However, the edge
probabilities are more challenging to interpret for the SPDs. When a very small edge probability lies on a
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(simple) shortest path, the path is less likely to exist in the discrete sampled adjacency matrix. Therefore,
low edge probabilities should only marginally affect the original SPDs. To model this relationship, we
use the reciprocal of the adjacency matrix Rij = 1/Ã′

ij to find continuous proxy shortest path distances
rspdij = spd(vi, vj |R). We interpolate between the closest discrete values again and obtain:

b̃spd(vi,vj) = η · bsl+1 + (1− η) · bsl

with sl = ⌊rspdij⌋, and η = rspdij − sl

(16)

Note that for discrete edge probability values 0 and 1, the reciprocal edge weights become −∞ and 1,
respectively, yielding the original SPDs. Hence, we do not alter the clean predictions if δA = B = 0 (see
Principle I ).

SAN. We first discuss how to relax SAN’s attention mechanism before discussing how to tackle relaxing the
spectral PEs. To allow for a smooth transition between the two separate sparse attention mechanisms in
Eq. 9, we formally convert both to full global attention. Then, by adding the log-probabilities of the edges
belonging to one of the attention mechanisms to the attention logits, we obtain:

w̃ij = wij + log(pij)

α̃ij = softmax(w̃ij) = ew̃ij∑
k e

w̃ik
= pij · ewij∑

k pik · ewik

(17)

The corresponding probabilities are pij = Ã′
ij for the sparse attention originally defined over Ni, and

pij = 1− Ã′
ij for the sparse attention originally defined over V \ Ni. Note that for a discrete connected edge

Ã′
ij = 1, the log-probabilities become 0, or −∞ respectively. Thus, such an edge still fully contributes to

the connected attention mechanism (over Ni), while not affecting the disconnected one (over V \ Ni) - and
vice versa for disconnected edges with Ã′

ij = 0. Thus, the relaxation in essence still is a sparse attention
mechanism and the discrete output remains unchanged (see Principle I ). Here we want to note that the
so-developed sparse attention relaxation can be generally applied to any sparse attention mechanism used in
other GTs, which we demonstrate when deriving a relaxed Polynormer model at the end of this section.

Now, regarding the spectral PEs, note that the Laplacian matrix itself is a continuous function of the entries
in the adjacency matrix. However, its eigen-decomposition used for the PEs poses some challenges for gradient
computation, especially w.r.t. the eigenvectors. The problems arise because: (a) the choice of direction
(sign) for eigenvectors is arbitrary, (b) the choice of an eigenvector-basis of the eigenspace of a repeated
eigenvalue is arbitrary, thus the gradient is not well defined, (c) for eigenvalues that are close together, the
corresponding eigenvector gradients are numerically unstable. To avoid direct gradient computation, we use
results from matrix perturbation theory (Stewart & Sun, 1990; Bamieh, 2022) to approximate the perturbed
eigen-decomposition as a simpler function of the input perturbation. We define the perturbation on the
Laplacian as δLsym = L̃sym − Lsym, where L̃sym is the Laplacian of the perturbed continuous adjacency
matrix Ã′. Following Bamieh (2022), the first-order approximations for the eigenvalues and eigenvectors are:

Λ̃ = Λ + δΛ, δΛ ≈ diag(UTδLsym U) (18)
Ũ = U + δU , δU ≈ −U

(
Π⊙

(
UTδLsym U

))
(19)

with Πij =
{

1
λi−λj

if λi ̸= λj

0 else

However, when repeated eigenvalues are present in the unperturbed Laplacian, special care for the choice of
the eigenvectors in U that span the eigenspaces of the repeated eigenvalues is required. This case is treated
by Bamieh (2022) and we show the application to our case in § F.1. A different strategy used by e.g. Lin
et al. (2022), consists of adding a bit of random noise to L̃sym in hopes of breaking apart any repeated
eigenvalues, such that is possible to directly backpropagate through the eigen-decomposition. We elaborate
on this strategy and propose our own alternative in § F.2.

GRIT. Relaxing the perturbed adjacency matrix Ã to be used in Eq. 10 to be continuous and allowing
for fractional node degrees in Eq. 11, one can see that the so relaxed GRIT model fulfills all three main
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principles for continuous relaxations outlined above. Thus, as only GT architecture, GRIT and its used
random walk embeddings do not require special treatment beyond relaxing Ã to be continuous, to yield an
effective continuous relaxation.

GPS. As GPS’ Laplacian PEs only differ to SAN’s by using a DeepSet encoder instead of a transformer
encoder, we can use the same relaxation as derived for SAN in Eqs. 18 & 19. Note that Rampášek et al. (2022)
lists six different categories of PEs, which they group into local, global, and relative positional encodings and
local, global, and relative structural encodings. Most of the example encodings provided for each category
are based on distances (shortest paths), node degrees, spectral decomposition, or random walks. Thus, they
can be directly tackled by the relaxations developed for Graphormer (Eqs. 6 & 7), SAN (Eqs. 18 & 19), or
GRIT. This highlights the common and widespread usage of distance, spectral, or random-walk encodings
and thus, the broad applicability of our developed PE relaxations to other GT models.

Now, we turn to the GPS layers defined by Eq. 12. The global attention fGlobalAttn requires no modification,
as it does not depend on the adjacency. However, we need to take a closer look at fMPNN for which GPS uses
a GatedGCN. The update of the local GatedGCN step for the embedding of a node i is defined as:

hi,update = hi + ρ

Wn1hi + 1
ni
⊙

∑
vj∈Ni\{vi}

ηij ⊙Wn2hj

 , ni =
∑

vj∈Ni\{vi}

ηij

with edge gates ηij = σ (We1hi + We2hj)

(20)

where Wn1,Wn2,We1,We2 are the learnable parameters and ρ is the activation function. The edge gates
ηij ∈ Rd can be interpreted as per-dimension local attention weights and control the aggregation strength
from each neighbor. Thus, to achieve a continuous relaxation, we can define that a node vj ∈ Ni if Ã′

ij > 0
and scale the edge gates by the probability that the neighbor node is connected:

η̃ij = pij ηij , pij = Ã′
ij (21)

This is in line with the way how other MPNNs such as a traditional GCN are relaxed to allow for gradient-based
structure attacks (Geisler et al., 2021).

Polynormer. The global attention mechanisms defined in Eq. 14 does not depend on the adjacency. Thus,
relevant to deriving a relaxed model is how the attention matrix S in Eq. 13 is calculated for the local layers
based on the local (sparse) attention mechanism from GAT. For this, recognize that the i-th row of the result
of the matrix product SHWv that concerns the intermediate embedding h̃i,update for a node i after sparse
aggregation and before the application of the element-wise multiplication in Eq. 13, can be written as:

hi,update = ρ

 ∑
vj∈Ni

αijW T
v hj

 , αij = softmaxNi(wij), wij = ρ
(
aT

s W hi + aT
t W hj

)
(22)

where ρ is an activation function and W ,as,at are the learnable parameters. Now, structure information
enters the sparse attention computation for αij through attending only to the neighbors Ni. To relax
this sparse attention mechanism, we can use the same continuous relaxation derived for SAN’s sparse
attention in Eq. 9 by formally converting the sparse αij computation (and summation) in Eq. 22 to full
attention and adding log pij as bias to the attention logits wij with pij = A′

ij . This highlights the general
applicability of the relaxed sparse attention developed in Eq. 9 for SAN to other sparse attention mechanisms
deployed in other GT models. Note that in contrast to relaxing an MPNNs aggregation through scaling each
summation (aggregation) term by Ã′

ij , the scaling for the relaxed sparse attention is already included in the
αij computation. We close this section by noting that Polynormer does not use PEs and hence, we do not
need to develop a relaxation for them.

4 Node Injection Attack

We also consider the relevant case of inserting nodes into an existing graph structure. In contrast to the
usual framing of Node Injection Attack (NIA), where the attacker also chooses the node features for the new
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vicious nodes (Wang et al., 2020), we connect existing nodes from other graphs of an inductive graph dataset.
Therefore, the nodes’ features are fixed but physically realizable even if, e.g., they represent embeddings of
natural language. This alleviates us from a somewhat subjective definition of imperceptibility required to
craft the node features in the existing NIA. Hence, our attack solely focuses on “structure” perturbations and
their influence on the PEs, which are of particular interest for attacking GTs.

We formulate our node injection attack as a structure attack on an augmented graph that includes both the
original nodes and the set of potential injection nodes. This formulation enables the use of the same PRBCD
attack optimization, where the edge flip budget constraint also serves as an upper bound for the number of
nodes that can be injected. We provide the details of extending PRBCD to node injection in § A.

Node probability for smooth node insertion. The continuous optimization of structure attacks in § 2.1
assigns probabilities to edges-flips, while nodes are assumed to be part of the graph. In contrast, during NIAs
nodes also have certain probabilities of being included. To approximate these node probabilities from the
edge weights in a general way, we propose a simple iterative computation. We can calculate the probability
pi of vi being connected to the graph, by using the probability of being connected to its neighbors and the
probabilities that these neighbors themselves are connected to the graph. We start with the assumption that
all nodes are connected to the graph and update using the edge probabilities:

p
(t+1)
i = 1 −

∏
vj∈Ni\{vi}

(1− Ã′
ij · p

(t)
j ), with p

(0)
i = 1 (23)

An illustrative example is shown in § A.1. To ensure that the model output is continuous w.r.t. node injections,
this node probability is used to compute a weighted sum or mean in the graph-pooling for graph level tasks.
Additionally for GTs, we use the node probability to bias the global pairwise attention scores which result
in a continuous weighting of the attention scores analogous to Eq. 17, where the bias probability is set to
the node probability pij = pj . Notably, this node probability bias can be applied to any global attention
mechanism even when it originally does not depend on the adjacency matrix (as is the case for e.g. GPS and
Polynormer).

5 Evaluation

In what follows we describe the experimental details for our reported results. The code to reproduce our
results can be found at https://figshare.com/s/69d4a90c0b068fde8663 and will be made public upon
acceptance.

Datasets. We first evaluate our structure attacks on CLUSTER (Dwivedi et al., 2023) which contains
SBM-generated graphs with 6 clusters. A single node in each cluster is labeled and the task is to predict the
cluster of all nodes (inductive node classification). We also consider the graph classification dataset Reddit
Threads (Rozemberczki et al., 2020). It contains many small graphs (without node features) that represent
users that are connected if they directly reply to each other in the thread. The task is to predict whether
the thread is discussion-based or not. For our node injection attacks, we evaluate on the UPFD fake news
detection datasets (Dou et al., 2021). There are 2 datasets: politifact, with political; and gossipcop with
celebrity fake news. The graphs consist of “retweet” trees, where each node contains the user features and
the edges represent retweets. Additionally, the root nodes contain features related to the news content and
are consequently not considered for node injection. We do not perturb the original graph structure and if
node injection does not result in a tree structure, we take the maximum spanning tree to ensure that all
perturbations are valid retweet trees. The task is binary classification of whether the graph contains fake
news or not. Further details of the datasets and splits used are given in § B.

Due to GTs (usually) quadratic scaling in the number of nodes, their application is limited to smaller graphs.
While GTs are most widely applied to molecule data, adversarial attacks are of little practical relevance in
that domain. Thus, we omit molecular datasets from our evaluations.

Models. We investigate the five representative GT models for which we developed continuous relaxations in
§ 3: Graphormer, SAN, GPS, and Polynormer. For their model training we do a hyperparameter search,

8

https://figshare.com/s/69d4a90c0b068fde8663


Under review as submission to TMLR

choosing the model with the highest validation metric and we describe the hyperparamter search and the
final hyperparameters used for the models in § E.

Attacks. As explained in § 2.1, we study untargeted global evasion attacks. Global applies to the task of node
classification and means that our attacks try to decrease the overall accuracy of all (test) node predictions in
the graph. This is more challenging than local attacks, which only attack a single victim node prediction
such as Nettack (Zügner et al., 2018), which cannot be effectively used for a global attack. Evasion means
the graph structure of the test input is modified for a trained model with fixed weights. This is different from
poisoning attacks such as Mettack (Zügner & Günnemann, 2019), where the victim model is trained on the
perturbed graph. Poisoning is much more relevant for transductive learning tasks (often on a single graph),
for which GTs are rarely used.

We show results for 4 different attacks. Adaptive PRBCD uses our relaxations described in § 3 for a gradient-
based PRBCD attack. Random perturbation is a simple baseline, where a single random perturbation of the
adjacency matrix is used. In contrast, random attack is a brute-force random search that tests many random
perturbations and selects the best. To match the computational budget of the adaptive attacks, it gets the
same number of model evaluations. Finally, the GCN PRBCD transfer attack transfers the perturbation
computed from an (adaptive) PRBCD attack to a GCN model to the GT models. This is a relatively strong
baseline attack that follows the same principle as many other established GNN attacks: it is a gradient-based
attack (PRBCD) on a simpler surrogate (GCN) that gets transferred to the victim model. Moreover, it is the
main (global evasion) attack for non-GCN models proposed and used by Geisler et al. (2021), where it has
been shown to be very effective against other GNNs.

For all datasets, we evaluate our attacks on the 50 first graphs in the test set and report average and standard
deviation over 4 random seeds. For UPFD node injection, we use a small block size of 1000, which is necessary
due to the quadratic scaling of GTs. We optimize all our adaptive attacks for 125 steps and sample 20
discrete perturbations from the result, of which we take the strongest. For all other attack hyperparameters,
we use default values that performed well in preliminary evaluations. For all main results, we use all of our
continuous relaxations proposed in § 3. We report and discuss ablation results using different combinations
of relaxation in § C.5.

6 Attack Results

In this section, we present the first principled analysis on the robustness of GTs on five representative
architecture types (Graphormer, GRIT, SAN, GPS, Polynormer) enabled by our developed adaptive attacks
based on our general principles for continuous relaxations outline in § 3. We define different goals for our
evaluation: (A) efficacy of the proposed adaptive attacks, (B) providing an accurate assessment of GT
robustness for relevant real-world tasks. To this end, we perform our evaluation on datasets with varying
complexity. Towards (A) we explore the robustness of GTs on CLUSTER and Reddit Threads, which
comprise simple, interpretable structures. This exploration helps us evaluate the effectiveness of the proposed
relaxations, ideally leading our attacks to target semantically meaningful structures within the dataset. We
address (B) through evaluations on UPFD. Here, we constrain our attack to remain within the predefined tree
structure of the dataset. As a result, the attack represents impersonating an existing user who is retweeting
the respective news article. This evaluation goes beyond previous robustness analyses of citation networks
in GNNs (Zügner et al., 2018; Geisler et al., 2021), offering a more practical use case and semantically
meaningful attacks (Hu et al., 2024; Wang et al., 2023b).

CLUSTER. Across all models, our adaptive attacks result in the strongest perturbations except for the
smallest budgets, as shown in Fig. 3. The effectiveness of the random perturbation baseline indicates an
inherent fragility of the data. Intuitively, since only a single node in each cluster is labeled, attacking these
labeled nodes requires little budget and leads to strong attacks. We manually inspected the adaptive attack
perturbations and confirmed that most edge modifications are connected to the labeled nodes. The strength
of the transfer attacks also indicates that the straightforward nature of the task leads to the same type of
semantically meaningful model-independent perturbations. This outcome positively indicates the effectiveness
of our adaptive attacks (A), as they consistently identify meaningful perturbations across all GTs. To avoid
the natural fragility in the data, we also evaluate a constrained attack that prohibits modifying edges to
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Figure 3: Global structure (evasion) attack results for CLUSTER (inductive node classification).
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Figure 4: Structure (evasion) attack results for Reddit Threads (graph classification).

the labeled nodes, for which results are shown in § C.1. The worst-case perturbation results for all models,
including GAT and GATv2 (Brody et al., 2022), are shown in Fig. 1a. For these smaller budgets, the GTs
are consistently more robust than the MPNNs, though their clean accuracies are also higher.

Reddit Threads. Fig. 4 shows that our adaptive attacks are significantly stronger than the baselines.
SAN is the exception, where the adaptive attack is worse than transferring from GCN. This could be due
to the perturbation approximation adding noise to the gradient updates, or because it results in a harder
optimization function. For most models, the adversarial accuracy drops close to zero when up to 80% of the
edges can be modified. This is likely because there are no node features and the prediction relies only on
the graph structure. Interestingly, the random attacks never seem to work well, indicating that the gradient
information provided by our relaxations is extremely helpful for finding good perturbations. Fig. 1b shows a
comparison of the models’ robustness for small budgets. While there are differences in robustness, all models
follow a similar trend. Note that for this dataset we were unable to train a comparable Polynormer model.

UPFD. As shown in Fig. 5 for the gossipcop dataset, our adaptive attacks are significantly stronger than
the baselines in most cases, providing the best estimates of the models’ robustness. This highlights the
efficacy and importance of our gradient-based adaptive attacks also for the node injection setting. In contrast
to the results observed for the previous datasets, there are much more differences between models. Fig. 1
provides a direct model comparison of the worst-case perturbations for smaller budgets. It shows that the
GCN model can exhibit considerably higher robustness than some GTs. The SAN model is the exception, as
it is surprisingly robust for both UPFD datasets. These results reveal that GTs can showcase catastrophic
vulnerabilities to adversarial modifications of the graph structure, even when these changes are constrained
to meaningful perturbations. Results for the politifact dataset are shown in § C.2.

Transferability. We collected the adversarial examples generated for each of our adaptive GT attacks and
applied them to the other models. In Fig. 6, we compare the strongest such transfer attack (best transfer)
with the GCN transfer and adaptive attacks on UPFD gossipcop. The results show that our GT attack
perturbations transfer better than from GCN. This may be because the GT models are more similar to
each other than to a GCN. In some cases, best transfer is the overall strongest attack. However, note that
choosing the best from up to eight (adaptively generated) attacks can be considered an ensemble with high
computational cost. However, best transfer can be used as a “unit test” before laboriously designing adaptive
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Figure 5: Node injection (evasion) attack results for UPFD gossipcop (graph classification).
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Figure 6: Transfer attack results (node injection, evasion) for UPFD gossipcop (graph classification).

attacks for a new GT architecture. Results of best transfer for other datasets and all individual transfer
attacks are available in § C.3 & § C.4 respectively.

7 Adversarial Training

We base our Adversarial Training (AT) implementation on the “Free” adversarial training of Shafahi et al.
(2019). The main idea is to couple the attack and training optimizations by replaying the same mini-batch
k times. In each replay, both the attack perturbation and the model weights are updated. This approach
allows us to apply stronger perturbations through multi-step optimization, while avoiding the overhead of
only performing a single training update for every k attack steps. In § D we provide the pseudocode and
details our modifications to free AT, to make it applicable to our setting.

We explore adversarial training for Graphormer, one of the least robust models in our attack evaluation,
and compare it to a GCN as a baseline in a node injection attack scenario on the UPFD politifact dataset
in Figs. 7a & 7b. Fig. 7a shows that a GCN struggles to benefit from adversarial training, while Fig. 7b
demonstrates that AT significantly improves Graphormer’s robustness, surpassing the GCN by a large margin.
We find that these results are consistent across datasets with similar results on gossipcop in Figs. 7c & 7d.
These findings show that the increased flexibility and capacity of graph transformers can offer significant
advantages in learning robust models via adversarial training, even when the standard (non-adversarially
trained) versions of these models are highly vulnerable, as we establish in § 6. These results complement
and support the findings of Gosch et al. (2023a), who attribute the limited success of AT for traditional
message-passing GNNs to the lack of their flexibility in adjusting their message-passing to adversarial examples.
While Gosch et al. (2023a) establish that the capability of AT as a defense to structure perturbations can be
significantly improved by making message-passing GNNs more flexible by making the graph filter in a graph
convolution learnable, we show that breaking the static message passing by being able to learn to attend to
nodes has a similar effect and is a key enabler for effective adversarial training.

8 Related Work

Triggered by the seminal works of Zügner et al. (2018); Dai et al. (2018), a research area emerged spanning
attacks, defenses, and certification of message-passing GNNs (Jin et al., 2021; Günnemann, 2022; Guerranti

11



Under review as submission to TMLR

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

A
cc

u
ra

cy
(%

)

normal

adv. b=15%, k=4

adv. b=15%, k=6

(a) GCN, pol.

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

A
cc

u
ra

cy
(%

)

normal

adv. b=15%, k=4

adv. b=15%, k=6

(b) Graphormer, pol.

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

normal

adv. b=5%, k=4

adv. b=10%, k=4

adv. b=15%, k=5

(c) GCN, gos.

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

normal

adv. b=5%, k=4

adv. b=10%, k=4

adv. b=15%, k=4

(d) Graphormer, gos.

Figure 7: Node injection (evasion) attack results for adversarially trained models on UPFD politifact (pol)
and gossipcop (gos) (graph classification).

et al., 2023; Gosch et al., 2023b; Sabanayagam et al., 2025). However, GTs have been entirely neglected
despite being a very active field of research with demonstrated success on common benchmarks (Müller et al.,
2024). Zhu et al. (2024) is the sole exception acknowledging this gap. However, they propose their own
transformer-inspired defense component and evaluate it using transfer poisoning attacks. Thus, they do not
shine light on the robustness of the diverse set of GTs nor do they study adaptive attacks. Mujkanovic et al.
(2022) shows that adaptive attacks are crucial to correctly evaluate the robustness of GNNs. This follows
similar results from the vision domain (Tramèr et al., 2020; Carlini & Wagner, 2017; Athalye et al., 2018).

Next to adaptive-attack works, our attack is rooted in the GNN robustness literature. Xu et al. (2019) proposes
the first Projected Gradient Descent (PGD) attack for discrete L0 perturbations of the graph structure, with
a focus on message-passing architectures. Geisler et al. (2021) extend this PGD with a randomization scheme
to obtain the efficient (gradient-based) Projected Randomized Block Coordinate Descent (PRBCD) attack.
Gosch et al. (2023a) extend PRBCD with local constraints to allow for semantically more meaningful attacks,
which is conceptually related to our semantically meaningful node injection attack. Further important related
works are Lin et al. (2022); Zhu et al. (2018); Bojchevski & Günnemann (2019), where the authors study
similar approximations for perturbations on the eigen-decomposition of the graph Laplacian. Moreover, Wang
et al. (2023a) attack message-passing architectures on the UPFD fake news detection using reinforcement
learning. As an entry to Node Insertion Attacks (NIA), we refer to Wang et al. (2020); Zou et al. (2021).

9 Conclusion

We provide the first principled study into the adversarial robustness of graph transformers. Concretely, we
provide effective and general guiding principles for designing adaptive attacks for GTs. Consequently, we
study five representative graph transformers which use three of the most commonly used positional encodings:
random-walk-based, distance-based, and spectral PEs; as well as common sparse-attention mechanisms. Thus,
our developed continuous relaxations for these GT components can find broad application to other GT models.
Furthermore, our study demonstrates that GTs can be catastrophically fragile in many settings and more
robust in others. This diverse picture underlines the importance and need for adaptive attacks to reveal such
nuanced robustness properties. While the comparison of GT’s and traditional GNN’s robustness w.r.t. the
studied attacks does not allow for a conclusion about which architecture is superior in terms of robustness
when applying normal training, our adaptive attacks allow to uncover a strong difference in their robust
learning capabilities. Concretely, we show how to leverage our adaptive attacks for adversarial training with
GTs and that doing so, due to the flexibility of GTs, they have the potential to significantly outperform static
message-passing GNNs in their robust learning performance, alleviating one of the key limitations of classic
GNNs.

Broader Impact Statement

While the threat model of attacking fake news detection could have a negative societal impact, our methods
are applicable mostly in a white-box setting and, therefore, are much more useful to those who are developing
fake news detection to probe and improve the robustness of their models. If a model developer has access to
the right tools, we are convinced that the information advantage outweighs the potential negative effects.
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A Node injection attack details

Let D = {G1, ...,GN} be the dataset of all graphs, where each graph Gi = (Vi, Ei) has ni nodes Vi =
{vi,1, ..., vi,ni} and a corresponding node feature matrix Xi ∈ Rni×d. The total number of nodes in the
dataset is nD =

∑
ni. Let Gatk be the graph that is being attacked. We define the candidate set of injection

nodes as the union of the nodes of all other graphs: Vcs =
⋃

Gi∈D\Gatk
Vi, which contains ncs = nD − natk

nodes with the corresponding features Xcs. It is of course possible to restrict this candidate set if it is not
sensible or feasible to include all nodes.

We can augment the original (connected) graph Gatk = (Aatk,Xatk) by adding the injection candidate set as
isolated nodes:

Ĝatk = (Âatk, X̂atk), Âatk =
[
Aatk 0

0 0

]
∈ {0, 1}nD×nD , X̂atk =

[
Xatk

Xcs

]
∈ RnD×d (24)

Edge-flip perturbations to this augmented adjacency matrix, Ă = Â+δÂ, model both structure perturbations
and node injections together. As in Eq. 2, the perturbation δÂ can be expressed in terms of a binary edge
flip matrix: Ă = Â + (1n1T

n − 2Â)⊙ B̂, where:

B̂ =
[

B E
ET F

]
∈ {0, 1}nD×nD (25)

Note that the edge flip budget ∆ is also an upper bound for the number of nodes that can be injected:
0 ≤ nin ≤ ∆. Since the attack budget is usually much smaller than the size of the candidate set, i.e. ∆≪ ncs,
the perturbed augmented graph Ğ = (Ă, X̂) still mostly contains isolated nodes. Therefore, we prune away all
disconnected components, which for the unperturbed graph simply reverts the augmentation: prune(Ĝ) = G.
However, for a perturbed augmented graph, this results in the perturbed graph that we are seeking:

G̃ = prune(Ă, X̂) = (Ã, X̃), Ã ∈ {0, 1}ñ×ñ, X̃ ∈ Rñ×d (26)

Here, nin is the number of injected nodes, and ñ = n+ nin is the total number of nodes of the perturbed
graph. The NIA objective can thus be written as:

max
B̂ s.t. ||B̂||0<∆

Latk(fθ(G̃)), with G̃ = prune(Â + (1n1T
n − 2Â)⊙ B̂, X̂) (27)

where, fθ is the trained GNN and Latk is a suitable attack loss.

Edge block sampling. To optimize the objective, we can apply the relaxation B̂′
ij ∈ [0, 1], as shown in

§ 2.1. In this case, PRBCD (Geisler et al., 2021) not only enables more efficient optimization, but setting a
smaller block size is crucial to limit the number of connected injection nodes during optimization, since GTs
complexity scales with O(ñ2). Moreover, random block edge sampling allows us to control which parts of B̂
in Eq. 25 can be changed, e.g. not sampling in B results in pure node injections without modifying edges in
the original graph. For NIAs with large candidate sets, we only sample from E, as sampling from the n2

cs

entries of F results in using most of the budget on disconnected injection node pairs that are later pruned
away.

A.1 Node probability example

We provide an illustrative example in Fig. 8 of how the iterative node probability is applied. Each iteration
of Eq. 23 can be thought of as a message passing step to update the node probability approximation based
on the neighbors current approximations:

p
(t+1)
i = 1 −

∏
vj∈Ni\{vi}

(1− Ã′
ij · p

(t)
j ), with p

(0)
i = 1

The number of iterations should be set in the order of expected longest chain of added injection nodes.
Therefore, very few iterations (2-5) should suffice for most NIAs.
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(d) After 2nd iteration.

Figure 8: Node probability example. Dashed lines indicate injection nodes.

B Dataset details

The inductive node classification dataset CLUSTER (Dwivedi et al., 2023) has 12 000 graphs with an average
of 117.2 nodes. We used the standard PyG train/val/test split of 83.3/8.3/8.3% graphs. The binary graph
classification dataset Reddit Threads (Rozemberczki et al., 2020) contains 203 088 graphs with an average
of 23.9 nodes. We used a stratified random split of 75/12.5/12.5%. The binary graph classification dataset
UPFD gossipcop (Dou et al., 2021) contains 5464 graphs with an average of 58 nodes. We use the standard
PyG split of 20/10/70%. The binary graph classification dataset UPFD politifact (Dou et al., 2021) contains
314 graphs with an average of 131 nodes. We use the standard PyG split of 20/10/70%.

C Additional attack results

C.1 CLUSTER constrained attack

Fig. 9 shows the attack results for the CLUSTER dataset when constraining edge perturbations such that
edges to the labeled nodes cannot be flipped. As expected, this significantly reduces the attack strength
compared to the unconstrained setting shown in Fig. 3.
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Figure 9: CLUSTER constrained attack results.
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C.2 UPFD politifact node injection attack

Fig. 10 shows the attack results for the UPFD politifact dataset. The results are similar to the ones from the
UPFD gossipcop dataset discussed in § 6 and shown in Fig. 5.
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Figure 10: Node injection (evasion) attack results for UPFD politifact (graph classification).

C.3 Best transfer attacks

Here we provide the results for the best transfer results, analogous to Fig. 6 but for all additional datasets.
Results for CLUSTER are in Fig. 11, for CLUSTER (constrained) in Fig. 12, for Reddit Threads in Fig. 13,
and for UPFD politifact in Fig. 14.
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Figure 11: Best transfer, CLUSTER (inductive node classification), structure attack (global, evasion).
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Figure 12: Best transfer, CLUSTER (inductive node classification), constrained structure attack (global,
evasion).

C.4 All transfer attacks

Here we provide the more detailed (but less readable) attack results including the individual transfer models.
Results for Graphormer are in Fig. 15, for GRIT in Fig. 16, for SAN in Fig. 17, for GPS in Fig. 18, for
Polynormer in Fig. 19, and for GCN in Fig. 20.
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Figure 13: Best transfer, Reddit Threads (graph classification), structure attack (evasion).
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Figure 14: Best transfer, UPFD politifact (graph classification), node injection attack (evasion).
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Figure 15: Graphormer attack results with all transfer models shown.
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Figure 16: GRIT attack results with all transfer models shown.
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Figure 17: SAN attack results with all transfer models shown.
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Figure 18: GPS attack results with all transfer models shown.
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Figure 19: Polynormer attack results with all transfer models shown.
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Figure 20: GCN attack results with all transfer models shown.
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C.5 Ablations

We enable each of the continuous relaxations individually and together in different combinations. We report
the results for Graphormer in Tab. 1. The node probability relaxation only applies to the node injection
attacks on UPFD. The main insights from the results are: (a) All continuous relaxations individually seem to
give somewhat useful gradients and can be used to get better results than the gradient-free random baseline.
(b) For node injection attacks, using only the node probabilities in the graph pooling and to bias the attention
scores is usually sufficient and leads to some of the strongest attack results. (c) Some relaxations are more
effective than others, and using multiple does not seem to always work better than only one. However, one
is not consistently better than the other. A good approach might be to try the relaxations individually, to
find which are most relevant. Similar effects have been reported by Tramèr et al. (2020) (Recurring Attack
Theme T2). We also show ablations for GRIT and SAN components in Tab. 2 and Tab. 3 respectively, from
which we can draw the similar conclusions.

We also check the attack strength for GRIT when enabling or disabling gradient computation through certain
parts of the model and show the results in Tab. 2. It is possible to get strong attacks even without computing
gradients through RRWP, which could be much more efficient computationally, depending on the model and
graph size. For node injection attacks, as for the other models, using only the node probability bias in the
attention scores already leads to the strongest attacks we report.

Ablation on different attack components on SAN are presented in Tab. 3. The colomn ‘Eig. backp.’ refers
to the alternative method of obtaining gradients through the eigen-decomposition discussed in § F.2. The
results indicate that both methods seem to work equally well.

Table 1: Ablations for the Graphormer relaxations for a fixed budget of 1% for CLUSTER without and
with perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

Deg. SPD Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 52.61 ± 0.57 60.00 ± 0.42 ✓ 67.0 ± 2.0 38.0 ± 0.0
✓ 46.78 ± 0.46 68.45 ± 0.37 ✓ 67.0 ± 2.0 38.0 ± 0.0

✓ 50.81 ± 0.41 60.66 ± 0.21 ✓ 66.5 ± 1.9 39.5 ± 1.9

✓ 66.5 ± 1.9 38.5 ± 1.0
✓ ✓ 80.5 ± 3.4 53.5 ± 1.0

random 66.52 ± 0.61 70.29 ± 0.32 85.0 ± 2.6 61.5 ± 4.1
clean 77.89 77.89 92.0 98.0

Table 2: Ablations for the GRIT relaxations for a fixed budget of 1% for CLUSTER without and with
perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

PE
grad.

Deg.
grad.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 44.07 ± 0.79 65.25 ± 0.22 ✓ 34.5 ± 1.0 75.0 ± 2.6
✓ 46.27 ± 0.36 65.70 ± 0.35 ✓ 34.5 ± 1.0 74.5 ± 2.5

✓ 49.51 ± 0.90 66.49 ± 0.49 ✓ 34.5 ± 1.0 73.5 ± 1.0

✓ 34.5 ± 1.0 73.5 ± 1.0
✓ ✓ 54.5 ± 1.9 83.0 ± 2.0

random 69.13 ± 0.10 72.25 ± 0.29 76.0 ± 4.3 82.0 ± 0.0
clean 78.98 78.98 98.0 84.0
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Table 3: Ablations for the SAN relaxations for a fixed budget of 1% for CLUSTER without and with
perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

Attn. Lap.
pert.

Eig.
backp.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 54.0 ± 0.6 63.3 ± 0.3 ✓ 83.5 ± 1.0 91.5 ± 4.1
✓ ✓ 54.4 ± 0.6 62.9 ± 0.2 ✓ 82.0 ± 2.3 94.0 ± 3.0
✓ 53.9 ± 0.3 63.2 ± 0.1 ✓ 77.5 ± 1.0 91.5 ± 2.5

✓ 57.1 ± 0.6 67.2 ± 0.2 ✓ 83.5 ± 1.0 89.5 ± 1.9
✓ 55.1 ± 1.0 67.3 ± 0.3 ✓ 81.0 ± 1.2 89.5 ± 3.4

✓ 77.0 ± 1.2 89.5 ± 3.4
✓ ✓ 86.0 ± 0.0 90.1 ± 6.0
✓ ✓ 86.0 ± 2.3 91.0 ± 5.3

random 65.7 ± 0.7 68.9 ± 0.3 86.0 ± 0.0 87.5 ± 1.0
clean 76.1 76.1 86.0 98.0

D Adversarial training algorithm

We based our implementation of the adversarial training on the ‘Free’ adversarial training of Shafahi et al.
(2019). Pseudocode for our adversarial training is given in Alg. 1. The main modifications are that we do two
separate forward and backwards passes for the attack and model respectively. This is because: (1) the attack
and model often have distinct loss functions that they optimize for, and (2) we sample a discrete structure
perturbation for the model, such that the perturbed graph is included in the original valid sample space.
Another difference is that we need to iterate over the graphs in the minibatch separately. This is a limitation
caused by: (1) The attack optimization steps are not trivial to parallelize, especially for node injection attacks,
and (2) the PE computations (e.g. Laplacian eigen-decomposition) are also not easily parallelizable and need
to re-computed for each new perturbed graph.

Given these limitations, our adversarial training is much less efficient. It requires at least 2 · |B| times more
model evaluations than normal training. Furthermore, for many GTs the PE computation is one of the most
computationally expensive steps. Therefore, PEs are usually precomputed in a pre-processing step. During
adversarial training, we need to compute PEs for new unseen perturbations at each step, which further
increases the overhead. Nonetheless, following the main idea of Shafahi et al. (2019) alleviates some of the
overhead and makes it somewhat practically feasible.

Algorithm 1 Our k-step ‘free’ adversarial training
Require: Training dataset T , model fθ, attack budget ∆, number of steps k, learning rate α

Initialize θ
for epoch = 1...Nep/k do

for minibatch B ⊂ T do
Initialize perturbations P
for i = 1...k do
gθ ← 0
for graph G = (A,X,y) ∈ B do

P ← PRBCD_step(fθ,X,A,P ,∆)
A′ ← sample_discrete(A,P )
gθ ← gθ∇θL(fθ(A′,X),y)

end for
θ ← θ + α · 1

|B| · gθ

end for
end for

end for
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E Hyperparameters

To obtain trained models of comparable performance for each architecture type, we performed a hyperparameter
search for each model and dataset. Because of the large number of experiments and hyperparameters we
used random sampling of hyperparameter values in predetermined ranges. These ranges are defined and
available in the configuration files in our anonymous code repository under https://figshare.com/s/
69d4a90c0b068fde8663 (code made public upon acceptance). The final hyperparameters of the best models
used for the robustness results are shown for Graphormer in Tab. 4, for SAN in Tab. 5, for GRIT in Tab. 6,
for Polynormer in Tab. 8, for GPS in Tab. 7, for GCN in Tab. 9, for GPS-GCN in Tab. 10, for GAT in
Tab. 11, and for GATv2 in Tab. 12.

Table 4: Hyperparameters for Graphormer.

CLUSTER Reddit Threads UPFD gos. UPFD pol.

Optimizer adam adamW adamW adamW
Learning rate 8.04 × 10−4 1.05 × 10−4 3.75 × 10−4 1.29 × 10−4

Weight decay 0 1.18 × 10−6 1.37 × 10−5 6.7 × 10−3

PE max. degree 70 42 21 31
SPD max. distance 4 8 8 10
Attention dropout 0.107 0.138 0.382 0
Input dropout 0 0 8.65 × 10−3 0
MLP dropout 4.47 × 10−2 1.21 × 10−2 5.37 × 10−2 0
Hidden dimension 60 48 30 40
Layers 15 6 8 6
Attention heads 6 8 3 8
Graph pooling - virtual node virtual node virtual node

Table 5: Hyperparameters for SAN.

CLUSTER Reddit Threads UPFD gos. UPFD pol.

Optimizer adam adamW adam adam
Learning rate 5.0 × 10−4 5.66 × 10−4 5.41 × 10−4 1.29 × 10−4

Weight decay 0 3.54 × 10−7 0 1.0 × 10−3

k (num. eig.) 10 18 24 10
PE dimension 16 8 20 16
PE layers 1 1 2 2
PE heads 4 8 5 4
γ (global/ local) 0.1 5.46 × 10−5 4.28 × 10−3 1.43 × 10−2

Dropout 0 7.92 × 10−2 1.73 × 10−2 0
Hidden dimensions 48 48 80 96
Layers 16 7 3 3
Attention heads 8 8 8 4
Graph pooling - add mean add

Table 6: Hyperparameters for GRIT.

CLUSTER Reddit Threads UPFD gos. UPFD pol.

Optimizer adamW adamW adamW adamW
Learning rate 1.29 × 10−3 8.02 × 10−4 2.24 × 10−3 5.61 × 10−4

Weight decay 4.16 × 10−6 3.05 × 10−8 1.2 × 10−8 2.97 × 10−2

RRWP max. steps 4 6 6 9
Attention dropout 0.478 0.28 0.293 0.49
Dropout 1.0 × 10−2 1.05 × 10−2 5.55 × 10−2 0
Hidden dimensions 48 24 18 9
Layers 12 11 6 2
Attention heads 8 8 6 3
Graph pooling - mean add mean
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Table 7: Hyperparameters for GPS.

CLUSTER Reddit Threads UPFD gos. UPFD pol.

Optimizer adamW adamW adamW adamW
Learning rate 5.0 × 10−4 3.21 × 10−3 4.28 × 10−4 1.18 × 10−2

Weight decay 1.0 × 10−5 7.44 × 10−3 6.34 × 10−8 1.3 × 10−4

k (num. eig.) 10 13 10 10
PE dimension 16 16 16 16
PE encoder DeepSet DeepSet DeepSet DeepSet
Attention dropout 0.1 9.32 × 10−2 0.1 0.1
Dropout 0.1 9.32 × 10−2 0.1 0.1
Hidden dimensions 48 24 40 32
Layers 16 7 5 6
Attention heads 8 8 8 8
Graph pooling - add add add

Table 8: Hyperparameters for Polynormer.

CLUSTER UPFD gos. UPFD pol.

Optimizer adamW adamW adamW
Learning rate 2.35 × 10−3 8.93 × 10−4 1.72 × 10−4

Weight decay 1.0 × 10−7 1.0 × 10−7 1.0 × 10−7

Attention dropout 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2

Dropout local 0.137 0.149 0.121
Dropout global 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2

Hidden dimensions 72 48 32
Layers local 16 13 3
Layers global 3 4 1
Attention heads local 8 8 8
Attention heads global 8 8 8
Graph pooling - add add

Table 9: Hyperparameters for GCN.

CLUSTER Reddit Threads UPFD gos. UPFD pol.

Optimizer adam adamW adamW adamW
Learning rate 1.0 × 10−3 3.17 × 10−3 1.23 × 10−4 5.29 × 10−3

Weight decay 0 2.7 × 10−6 2.85 × 10−6 2.59 × 10−2

Dropout 0 3.82 × 10−3 0.5 0
Hidden dimension 172 30 105 473
Layers 16 8 3 2
Graph pooling - mean add mean

Table 10: Hyperparameters for
GPS-GCN.

CLUSTER

Optimizer adamW
Learning rate 9.74 × 10−4

Weight decay 1.0 × 10−8

k (num. eig.) 10
PE dimension 16
PE encoder DeepSet
Attention dropout 5.0 × 10−2

Dropout 5.0 × 10−2

Hidden dimensions 40
Layers 13
Attention heads 8
Graph pooling -

Table 11: Hyperparameters for
GAT.

CLUSTER

Optimizer adam
Learning rate 1.0 × 10−3

Weight decay 0
Dropout 0
Hidden dimension 176
Layers 16
Attention heads 8
Graph pooling -

Table 12: Hyperparameters for
GATv2.

CLUSTER

Optimizer adam
Learning rate 1.0 × 10−3

Weight decay 0
Dropout 0
Hidden dimension 120
Layers 16
Attention heads 8
Graph pooling -
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F Laplacian eigen-decomposition gradient

F.1 Perturbation approximation: repeated eigenvalues

Unfortunately, Eq. 18 and 19 do not hold in general when repeated eigenvalues are present. This is due
to the fact that a small perturbation can separate repeated eigenvalues into distinct eigenvalues. For the
unperturbed graph, the choice of eigenvector basis of the repeated eigenvalue’s eigenspace is arbitrary. In the
perturbed graph, however, the eigenvectors corresponding to the now distinct eigenvalues are uniquely defined
(up to the sign). Thus, a large discontinuous change in the eigenvectors can be caused by an arbitrarily small
input perturbation. For instance, consider the matrix M with repeated eigenvalue 1 and the following valid
eigendecomposition:

M =
[
1 0
0 1

]
= UΛUT, Λ =

[
1 0
0 1

]
, U =

√
2

2

[
1 1
1 −1

]
(28)

As soon as an arbitrarily small perturbation ε is added to one of the diagonal entries, the eigenvalues become
distinct and the choice of eigenvectors becomes constrained, which results in a discontinuous change:

M̃ =
[
1 0
0 1 + ε

]
= ŨΛ̃ŨT, Λ̃ =

[
1 0
0 1 + ε

]
, Ũ =

[
1 0
0 1

]
(29)

However, there is always some valid choice of eigenvectors in the unperturbed graph that leads to a continuous
change with respect to the given perturbation, e.g., in the above example Ũ is also a valid choice for
the eigenvectors U of the unperturbed matrix. With the right choice of unperturbed eigenvectors, the
approximation equations are, therefore, still valid. Here, we provide a procedure to transform arbitrary
eigenvectors into the ones that lead to good perturbation approximations. For the theory showing why this
leads to the correct result, we refer to Bamieh (2022).

Let (Λ, Û) be the output of the eigendecomposition algorithm for the unperturbed Laplacian Lsym containing
repeated eigenvalues. We can write the eigendecomposition in it’s block form:

Lsym = ÛΛÛT, Λ =

Λ1
. . .

Λn′

 , Û =

 | |
Û1 · · · Ûn′

| |

 (30)

For a simple eigenvalue λi, the block has dimension one, i.e., Λi = [λi] and Ûi = ui. For a repeated
eigenvalue λj with multiplicity r, it’s corresponding block is λjIr and Ûj ∈ Rn×r. Let P = P T be an
arbitrary symmetric perturbation to the original symmetric Laplacian. We can transform each eigenspace
basis of a repeated eigenvalue Ûj to the correct choice of eigenvectors as follows:

Uj = ÛjQ

PÛ,j = ÛT
j P Ûj = QΛP QT ∈ Rr×r

(31)

First, we do a basis transformation of the perturbation matrix onto the eigenbasis Û . Then we find the
eigendecomposition of the corresponding diagonal block PÛ,j and use these perturbation eigenvectors to
transform the original Laplacian eigenvectors. This results in a choice of valid eigenvectors Uj such that
the approximations in Eq. 18 and 19 are valid for repeated eigenvalues and guarantees continuity of the
eigenvalues and vectors with respect to a single perturbation, e.g., when linearly interpolating from the
unperturbed to the fully perturbed matrix.

F.2 Backpropagation: breaking up repeated eigenvalues

The only thing preventing the use of auto-differentiation to compute gradients through the eigen-decomposition
is the presence of repeated eigenvalues. As a workaround, Lin et al. (2022) propose adding small amplitude
random noise to the entire adjacency matrix. While this usually separates the repeated eigenvalues, it is
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not guaranteed to. We propose a different approach in which the smallest possible perturbation term is
added to the Laplacian matrix, such that the repeated eigenvalues are guaranteed to be separated while the
eigenvectors remain unchanged.

To achieve this, we must first define a minimum eigenvalue distance hyperparameter ε, which we set to 10−4

in our experiments. Then we define eigenvalue separation such that for all perturbed Laplacian eigenvalues
|λ̂i − λ̂j | ≥ ε must hold. Furthermore, we can define a vector o ∈ Rn such that each entry represents the
offset of the perturbed eigenvalue in relation to the true value:

Λ̂ =

λ1 + o1
. . .

λn + on

 = Λ + diag(o) (32)

In order for the perturbed matrix to have the same eigenvectors as the unperturbed Laplacian, we can define
it by its eigendecomposition:

L̂sym = UΛ̂UT

= U(Λ + diag(o))UT

= UΛUT + Udiag(o)UT

= Lsym + Udiag(o)UT

(33)

Consequently, the additive perturbation has the form P = Udiag(o)UT, such that it shares the same
eigenvectors as the original Laplacian, and its eigenvalues are exactly the offsets.

Since the Frobenius norm can also be computed using the singular values, finding the perturbation with
minimum norm is equivalent to minimizing the Euclidean norm of the offset vector ∥P ∥F =

√∑
i oi

2 = ∥o∥2.
To ensure that the order of the eigenvalues is not changed we can define the separation constraints for the
consecutive pairs of the perturbed eigenvalues λ̂i+1− λ̂i = (λi+1 +oi+1)− (λi−oi) ≥ ε. The total constrained
optimization problem can be written as:

min
o

1
2∥o∥

2
2

subject to oi+1 − oi ≥ ε− (λi+1 − λi)
(34)

The (n− 1) inequality constraints are linear and can be written in matrix-vector form. To further ensure that
the total range of the eigenvalues is not changed, the equality constraints o0 = on = 0 can be added. As an
initial guess, the offsets can be set to equally separate the eigenvalues in their range, which is guaranteed to
satisfy all constraints. The optimal solution o∗ can be calculated efficiently using constrained optimization.

In conclusion, using the slightly perturbed Laplacian L̂sym = Lsym + Udiag(o∗)UT as input to the eigen-
decomposition in the forward pass results in usable gradient via back-propagation. Note that to get the
perturbation, the eigendecomposition of the original Laplacian has to be computed. Thus, it can be checked
for the presence of repeated eigenvalues, and a second perturbed eigendecomposition is only computed when
necessary. Tab. 3 includes results using this approach, which seems to work about as well as the perturbation
approximation.
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