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Video2Game: Real-time, Interactive, Realistic and Browser-Compatible
Environment from a Single Video

Supplementary Material

A. Additional Results and Analysis001

More qualitative results. We provide more qualitative002
comparison results among baselines [8, 12, 16, 20, 23] and003
our proposed method. For comparisons between Instant-004
NGP [16], Nerfacto [20], 3D Gaussian Splatting [12] and005
our base NeRF in KITTI-360 dataset [14] and Garden scene006
in Mipnerf-360 Dataset [7], see Fig. 1 and Fig. 2. We ob-007
serve that our method renders less noisy geometries while008
maintaining a superior or comparable visual quality. Es-009
pecially, 3D Gaussian Splatting [12] fails to learn correct010
3D orientations of Gaussians in sparse settings like KITTI-011
360 [14], leading to weird color renderings in novel views012
and noisy geometry rendering. As for mesh rendering qual-013
itative comparison between [8, 23] and ours, see Fig. 3.014
Our mesh rendering has similar and comparable render-015
ing results in Garden scene [7]. However, in KITTI-360016
dataset [14] which is extremely large-scale and open, the017
performance of MobileNeRF [8] drops dramatically and018
BakedSDF [23] generates slightly blurry in road-aside car019
rendering, while our mesh rendering is not only superior in020
KITTI-360 dataset [14], but it also maintains stable perfor-021
mance across different datasets.022

B. Dataset Details023

B.1. KITTI-360 Dataset024

We build “KITTI-Loop game” based on KITTI-360025
Dataset [14]. We use frames from sequence 0. The loop026
we build in our game utilizes frames 4240-4364, 6354-027
6577, 7606-7800, and 10919-11050. We compose those028
four snippets into a closed loop in our game. For baseline029
comparison and ablation study, we perform experiments on030
two blocks containing frames 7606-7665 and 10919-11000.031
We split the validation set every 10 frames (frames 7610,032
7620, 7630, 7640, 7650, and 7660 for the first block; frames033
10930, 10940, 10950, 10960, 10970, 10980, 10990 for the034
second block). We report the average metrics of two blocks.035

B.2. Mipnerf-360 Dataset036

We build the “Gardenvase game” based on the Garden scene037
of Mipnerf-360 Dataset [7]. We split the validation set every038
20 frames.039

B.3. VRNeRF Dataset040

We build our robot simulation environment based on the041
“table” scene of VRNeRF Dataset [22].042

C. Video2Game Implementation Details 043

C.1. Base NeRF Training Details 044

Network architecture and hyper-parameters Our net- 045
work consists of two hash grid encoding [16] components 046
Itd and Itc and MLP headers MLPd

θd
, MLPc

θc
, MLPs

θs
, and 047

MLPn
θn

, each with two 128 neurons layers inside. Tak- 048
ing 3D position input x, density σ is calculated follow- 049
ing σ = MLPd

θd
(Itd(Ct(x),Φd)). Color feature f = 050

Itc(Ct(x),Φc). Then we calculate c, s,n from feature f 051
and direction d through c = MLPc

θc
(f,d), s = MLPs

θs
(f) 052

and n = MLPn
θn
(f) respectively. All parameters in- 053

volved in training our base NeRF can be represented as 054
NGP voxel features Φ = {Φd,Φc} and MLP parameters 055
θ = {θd, θc, θs, θn}. To sum up, we get c, σ, s,n = 056
Fθ(x,d; Φ) = MLPθ(It(Ct(x),Φ),d). The detailed di- 057
agram of our NeRF can be found in Fig. 4. 058

Our hash grid encoding [16] is implemented by tiny- 059
cuda-nn [15], and we set the number of levels to 16, the 060
dimensionality of the feature vector to 8 and Base-2 loga- 061
rithm of the number of elements in each backing hashtable 062
is 19 for Itd and 21 for Itc. As for activation functions, 063
we use ReLU [17] inside all MLPs, Softplus for density σ 064
output, Sigmoid for color c output, Softmax for semantic s 065
output and no activation function for normal n output (We 066
directly normalize it instead). 067

KITTI-Loop additional training details In KITTI-Loop 068
which uses KITTI-360 Dataset [14], we also leverage stereo 069
depth generated from DeepPruner [10]. Here we calculate 070
the actual depth from disparity and the distance between 071
binocular cameras and adopt L1 loss to regress. We haven’t 072
used any LiDAR information to train our base NeRF in 073
KITTI-360 Dataset [14]. 074

C.2. Mesh Extraction and Post-processing Details 075

Mesh Post-processing details In mesh post-processing, 076
we first utilize all training camera views to prune the ver- 077
tices and faces that can’t be seen. Next, we delete those 078
unconnected mesh components that have a small number of 079
faces below a threshold so as to delete those floaters in the 080
mesh. Finally, we merge close vertices in the mesh, then 081
perform re-meshing using PyMesh [3] package, which it- 082
eratively splits long edges over a threshold, merges short 083
edges below a threshold and removes obtuse triangles. 084
Remeshing helps us get better UV mapping results since 085
it makes the mesh “slimmer” (less number of vertices and 086
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Figure 1. Qualitative comparisons among NeRF models [16, 20] and 3D Gaussian Splatting [12] in KITTI-360 Dataset [14]. We
provide NeRF rendering depths and normals for comparison as well. For 3D Gaussian Splatting, only rendering depth is provided. Here
we consider depths measured by LiDAR point cloud in KITTI-360 and compute normals based on it as our ground truth.

faces) and has similar lengths of edges. After the post-087
processing, we get meshes with a relatively small number088
of vertices and faces while still effectively representing the089
scene.090

Special settings in KITTI-Loop In KITTI-Loop, we par-091
tition the whole loop into 14 overlapping blocks. Since we092
adopt pose normalization and contract space in each block093
when training, it needs alignments when we compose them094
together. For each block, we first generate its own mesh.095
We partition the whole contract space ([−1, 1]3) into 3*3*3096
regions, and perform marching cubes with the resolution097
of 256*256*256 in each region. We then transform those098
vertices back from contract space to the coordinates before099
contraction. We then perform mesh post-processing here.100
To compose each part of the mesh in KITTI-Loop together,101
we then transform the mesh to KITTI-Loop world coordi-102
nates. For those overlapping regions, we manually define103
the block boundary and split the mesh accordingly. Finally,104
we add a global sky dome over the KITTI-Loop.105

C.3. NeRF Baking Details106

For each extracted mesh, we bake the NeRF’s color and107
specular components to it with nvdiffrast [13].108

GLSL MLP settings We adopt a two-layer tiny MLP109
with 32 hidden neurons. We use ReLU [17] activation for110

the first layer and sigmoid for the second. We re-implement 111
that MLP with GLSL code in Three.js renderer’s shader. 112

Initialization of texture maps and MLP shader Train- 113
ing the textures T = [B;S] and MLP shader MLPshader

θ 114
all from scratch is slow. Instead, we adopt an initial- 115
ization procedure. Inspired by [21, 23], we encode the 116
3D space by hash encoding [16] ItM and an additional 117
MLP MLPM

θ0
. Specifically, we first rasterize the mesh into 118

screen space, obtain the corresponding 3D position xi on 119
the surface of the mesh within each pixel, transform it 120
into contract space Ct(xi), and then feed it into ItM and 121
MLPM

θ0
to get the base color Bi and specular feature Si, 122

represented as Bi, Si = MLPM
θ0
(ItM (Ct(xi),Φ0)). Fi- 123

nally we computes the sum of the view-independent base 124
color Bi and the view-dependent specular color following 125
CR = Bi + MLPshader

θ (Si,di). The parameters Φ0, θ0, θ 126
are optimized by minimizing the color difference between 127
the mesh model and the ground truth: Lrender

initializeΦ0,θ0,θ
= 128∑

r ∥CR(r) − CGT(r)∥22. Anti-aliasing is also adopted in 129
the initialization step by perturbing the optical center of 130
the camera. With learned parameters, every correspond- 131
ing 3D positions xi in each pixel of 2D unwrapped tex- 132
ture maps T = [B;S] is initialized following Bi, Si = 133
MLPM

θ0
(ItM (Ct(xi),Φ0)) and the parameters of MLPshader

θ 134
is directly copied from initialization stage. 135
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Figure 2. Qualitative comparisons among NeRF models [16, 20] and 3D Gaussian Splatting [12] in Garden scene [7]. We provide
NeRF rendering depths and normals for comparison as well. For 3D Gaussian Splatting, only rendering depth is provided.

C.4. Physical Module Details136

Physical dynamics It is important to note that our ap-137
proach to generating collision geometries is characterized138

by meticulous design. In the case of box collider gener- 139
ation, we seamlessly repurpose the collider used in scene 140
decomposition. When it comes to triangle mesh colliders, 141

3



CVPR
#

CVPR
#

CVPR 2024 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

G.T. MobileNeRF BakedSDF Ours

Figure 3. Qualitative comparisons in mesh rendering. We compare our proposed mesh rendering method to MobileNeRF [8] and
BakedSDF [23] in KITTI-360 Dataset [14] and Garden scene [7].

we prioritize collision detection efficiency by simplifying142
the original mesh. Additionally, for convex polygon collid-143
ers, we leverage V-HACD [6] to execute a precise convex144
decomposition of the meshes.145

146

Physical parameters assignments. Physical parameters147
for static objects, such as the ground, were set to default val-148
ues. For interactive instances like cars and vases, we could149
query GPT-4 with box highlights and the prompts as shown150
on the left. Note that we reason about mass and friction us-151
ing the same prompt. The output is a range, and we find152
that selecting a value within this range provides reasonable153
results. See Fig. 5 for an example. Unit conversion from the154
metric system to each engine’s specific system is needed.155

C.5. Robot Simulation Details156

Data preparation We demonstrate the potential of lever-157
aging Video2Game for robot simulation using the VRN-158
eRF [22] dataset. We reconstruct the scene and segment159
simulatable rigid-body objects (e.g., the fruit bowl on the160
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Figure 4. Video2Game NeRF Module: The diagram of our de-
signed NeRF.

table). Then collision models are generated for those phys- 161
ical entities for subsequent physical simulations. 162
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Figure 5. Example of physical property reasoning by GPT-4.

Physical simulation To simulate the interactions between163
robots and physical entities in a dynamic environment, we164
employ PyBullet [9], a Python module designed for physics165
simulations in the realms of games, robotics, and machine166
learning. Given the intricate dynamics of articulated robots,167
PyBullet serves as a powerful tool for conducting physics168
calculations within the context of robot simulation. Our ap-169
proach involves loading all generated collision models and170
URDF 1 files for both the Stretch Robot [4] and Fetch Robot171
[1]. Utilizing PyBullet’s integrated robotic inverse kinemat-172
ics, we can effectively control the mechanical arms of the173
robots to interact with surrounding objects. Specifically, for174
the Stretch Robot, we define a predefined path for its arm,175
enabling it to exert a direct force to displace the central bowl176
off the table. On the other hand, for the Fetch Robot, we177
leverage the collision boxes specified in its URDF file. Our178
manipulation involves grasping the corresponding collision179
model of the central bowl on the table, eschewing the use of180
the magnetic gripper for object control. Subsequently, the181
robot lifts the bowl and relocates it to a different position.182
Following the simulations in PyBullet, we extract physics183
calculation results, including joint values and the position184
of the robots’ base link. These results are then exported and185
integrated into the rendering engine of Three.js for further186
visualization and analysis.187

Rendering in robot simulation We import the URDF188
files of our robots into our engine using the urdf-loader [5]189
in Three.js, a library that facilitates the rendering and con-190

1http://wiki.ros.org/urdf

figuration of joint values for the robots. Leveraging pre- 191
computed physics simulations in PyBullet, which are based 192
on our collision models, we seamlessly integrate these sim- 193
ulations into the Three.js environment. This integration al- 194
lows us to generate and render realistic robot simulation 195
videos corresponding to the simulated physics interactions. 196

C.6. Training time 197

For base NeRF training, it takes 8 hours for training 150k 198
iterations on an A6000. For the NeRF baking procedure, 199
the initialization and training take 4 hours on an A5000. 200

D. Baseline Details 201

D.1. Instant-NGP 202

We adopt the re-implementation of Instant-NGP [16] in [2]. 203
We choose the best hyper-parameters for comparison. For 204
normal rendering, we calculate by the derivative of density 205
value. 206

D.2. Nerfacto 207

Nerfacto is proposed in Nerfstudio [20], an integrated sys- 208
tem of simplified end-to-end process of creating, training, 209
and testing NeRFs. We choose their recommended and de- 210
fault settings for the Nerfacto method. 211

D.3. 3D Gaussian Splatting 212

For 3D Gaussian Splatting [12] training in Garden 213
scene [7], we follow all their default settings. In the KITTI- 214
360 Dataset, there are no existing SfM [18] points. We 215
choose to attain those 3D points by LoFTR [19] 2D im- 216
age matching and triangulation in Kornia [11] using existing 217
camera projection matrixs and matching results. We choose 218
their best validation result throughout the training stage by 219
testing every 1000 training iterations. 220

D.4. MobileNeRF 221

In Garden scene [7], we directly follow the default set- 222
tings of MobileNeRF [8]. For training in KITTI-360 223
Dataset [14], we adopt their “unbounded 360 scenes” set- 224
ting for the configurations of polygonal meshes, which is 225
aligned with KITTI-360 Dataset. 226

D.5. BakedSDF 227

We adopt the training codes of BakedSDF [23] in SDFStu- 228
dio [24], from which we can attain the exported meshes with 229
the resolution of 1024x1024x1024 by marching cubes. For 230
the baking stage, we adopt three Spherical Gaussians for 231
every vertices and the same hyper-parameters of NGP [16] 232
mentioned in [23]. We follow the notation BakedSDF [23] 233
used in its paper, where “offline” means volume rendering 234
results. 235
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E. Limitation236

Although Video2Game framework could learn view-237
dependent visual appearance through its NeRF module and238
mesh module, it doesn’t learn necessary material proper-239
ties for physics-informed relighting, such as the metallic240
property of textures. Creating an unbounded, relightable241
scene from a single video, while extremely challenging,242
can further enhance realism. We leave this for future243
work.244
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