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ABSTRACT

We discuss several aspects of the loss landscape of regularized neural networks:
the structure of stationary points, connectivity of optimal solutions, path with non-
increasing loss to arbitrary global optimum, and the nonuniqueness of optimal
solutions, by casting the problem into an equivalent convex problem and consid-
ering its dual. Starting from two-layer neural networks with scalar output, we first
characterize the solution set of the convex problem using its dual and further char-
acterize all stationary points. With the characterization, we show that the topology
of the global optima goes through a phase transition as the width of the network
changes, and construct examples where the problem may have a continuum of
optimal solutions. Finally, we show that the solution set characterization and con-
nectivity results can be extended to different architectures, including two-layer
vector-valued neural networks and parallel three-layer neural networks.

1 INTRODUCTION

Despite the nonconvex nature of neural networks, training them with local gradient methods finds
nearly optimal parameters. Understanding the properties of the loss landscape is theoretically impor-
tant, as it enables us to depict the learning dynamics of neural networks. For instance, many existing
works prove that the loss landscape is “benign” in some sense - i.e. they don’t have spurious local
minima, bad valleys, or decreasing path to infinity Kawaguchi (2016), Venturi et al. (2019), Haeffele
& Vidal (2017), Sun et al. (2020), Wang et al. (2021b), Liang et al. (2022). Such characterization
enlightens our intuition on why these networks are trained so well.

As part of understanding the loss landscape, understanding the structure of global optimum has
gained much interest. An example is mode connectivity Garipov et al. (2018), where a simple curve
connects two global optima in the set of optimal parameters. Another example is analyzing the
permutation symmetry that a global optimum has Simsek et al. (2021). Mathematically understand-
ing the global optimum is important as it sheds light on the structure of the loss landscape. They
can also motivate practical algorithms that search over neural networks with the same optimal cost
Ainsworth et al. (2022), Mishkin & Pilanci (2023), having practical motivations to study.

We shape the loss landscape of regularized neural networks with ReLU activation, mainly analyzing
mathematical properties of the global optimum, by considering its convex counterpart and leveraging
the dual problem. Our work is inspired by the work of Mishkin & Pilanci (2023), where they
characterize the optimal set and stationary points of a two-layer neural network with weight decay
using the convex counterpart. They also introduce several important concepts such as the polytope
characterization of the optimal solution set, minimal solutions, pruning a solution, and the optimal
model fit. Expanding the idea of Mishkin & Pilanci (2023), we show a clear connection between the
polytope characterization and the dual optimum. We further derive novel characters of the optimal
set of neural networks, the loss landscape, and generalize the result to different architectures.

Finally, it is worth pointing out that regularization plays a central role in modern machine learning,
including the training of large language models Andriushchenko et al. (2023). Therefore, including
regularization better reflects the training procedure in practice.
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Figure 1: A schematic that illustrates the staircase of connectivity. This conceptual figure de-
scribes the topological change in solution sets as the number of neurons m changes in a high-level
manner. Connected components that are not singletons are shown as blue sets, whereas singletons
are depicted as red dots. When m = m∗, there are only finitely many red dots. When m ≥ m∗ + 1,
there exists a connected component that is not a singleton, i.e. a blue set. When m = M∗, there
exists a connected component which is a singleton, i.e. a red dot. When m ≥ M∗ + 1, there is no
red dot. At last, when m ≥ min{m∗ +M∗, n+ 1}, there is a single blue set.

More importantly, adding regularization can change the qualitative behavior of the loss landscape
and the global optimum Wang et al. (2021b): for example, there always exist infinitely many op-
timal solutions for the unregularized problem with ReLU activation due to positive homogeneity.
However, regularizing the parameter weights breaks this tie and we may not have infinitely many
optimal solutions. It is also possible to design the regularization for the loss landscape to satisfy
certain properties such as no spurious local minima Liang et al. (2022), Ge et al. (2017) or unique
global optimum Mishkin & Pilanci (2023), Boursier & Flammarion (2023). Understanding the loss
landscape of regularized neural networks is not only a more realistic setup but can also give novel
theoretical properties that the unregularized problem does not have.

The specific findings we have for regularized neural networks are:

• The optimal polytope: We revisit the fact that the regularized neural network’s convex reformu-
lation has a polytope as an optimal set Mishkin & Pilanci (2023). We give a connection between the
dual optimum and the polytope.

• The staircase of connectivity: For two-layer neural networks with scalar output, we give critical
widths and phase transitional behavior of the optimal set as the width of the network m changes.
See Figure 1 for an abstract depiction of this phenomenon.

• Nonunique minimum-norm interpolators: We examine the problem in Boursier & Flammarion
(2023) and show that free skip connections (i.e., an unregularized linear neuron), bias in the training
problem, and unidimensional data are all necessary to guarantee the uniqueness of the minimum-
norm interpolator. We construct explicit examples where the solution is not unique in each case, in-
spired by the dual problem. In contrast to the previous perspectives Boursier & Flammarion (2023),
Joshi et al. (2023), our results imply that free skip connections may change the qualitative behavior
of optimal solutions. Moreover, uniqueness does not hold in dimensions greater than one.

• Generalizations: We extend our results by providing a general description of solution sets of
the cone-constrained group LASSO. The extensions include the existence of fixed first-layer weight
directions for parallel deep neural networks, and connectivity of optimal sets for vector-valued neural
networks with regularization.

The paper is organized as follows: after discussing related work (Section 1.1) and notations (Sec-
tion 1.2), we discuss the convex reformulation of neural networks as a preliminary in Section 2.
Then we discuss the case of two-layer neural networks with scalar output in Section 3, starting from
the optimal polytope characterization (Section 3.1), the staircase of connectivity (Section 3.2), and
construction of non-unique minimum-norm interpolators (Section 3.3). The possible generalizations
are introduced in Section 4. Finally, we conclude the paper in Section 5. Detailed explanations of
the experiments and proofs are deferred to the appendix.

2



Published as a conference paper at ICLR 2025

1.1 RELATED WORK

Convex Reformulations of Neural Networks Starting from Pilanci & Ergen (2020), a series of
works have concentrated in reformulating a neural network optimization problem to an equivalent
convex problem and training neural networks to global optimality. It has been shown that many
different existing neural network architectures with weight decay have such convex formulations,
including vector-valued neural networks Sahiner et al. (2020), CNNs Ergen & Pilanci (2020), and
parallel three-layer networks Ergen & Pilanci (2021). Furthermore, properties of the original non-
convex problem such as the characterization of all Clarke stationary points Wang et al. (2021b), and
the polyhedral characterization of optimal set Mishkin & Pilanci (2023) have also been discussed.

Connectivity of optimal sets of neural networks Mode connectivity is an empirical phenomenon
where the optimal parameters of neural networks are connected by simple curves of almost similar
training/test accuracy Garipov et al. (2018). An intriguing phenomenon itself, it has given rise to
theoretical analysis of the connectivity of optimal solutions: to name a few, Kuditipudi et al. (2019)
introduces the concept of dropout stability to explain such phenomena, Zhao et al. (2023) uses group
theory to understand the connected components of deep linear neural networks, and Akhtiamov &
Thomson (2023) introduces theory from differential topology to understand mode connectivity. Per-
mutation symmetry in the parameter space also plays an important role in understanding connectiv-
ity. Simsek et al. (2021) shows that assuming a unique global minimizer modulo permutations of a
certain size, increasing the size of each layer by one connects all global optima. Unfortunately, their
assumption does not hold in our case (Appendix G). A similar characterization is also done in Brea
et al. (2019), where saddle points with permutation symmetry are connected. Sharma et al. (2024)
further discusses different notions of linear connectivity modulo permutations. A different line of
work concentrates on the connection between overparametrization and connectivity of solutions: the
main insight here is that when the model is as large as the number of data, the solution set becomes
connected Nguyen (2021), Nguyen et al. (2021), Nguyen (2019). Cooper (2021) has a similar con-
nection for overparametrized networks, where they characterize the dimension of the manifold of
the optimal parameter space.

Phase transitional behavior of the loss landscape Here we introduce existing work in the literature
that gives a characterization saying “adding one more neuron can change the qualitative behavior
of the loss landscape”, hence having the notion of critical model sizes. We reiterate Nguyen (2021)
and Simsek et al. (2021), where adding one neuron changes the connectivity behavior of the optimal
set. Liang et al. (2018) adds an exponential neuron, which is a specifically designed neuron, along
with a specific regularization to eliminate all spurious local minimum. Venturi et al. (2019) has the
idea of defining upper / lower intrinsic dimensions of the training problem in the unregularized case,
and shows that the quantity is related to whether the training problem has no spurious valleys. Li
et al. (2022) discusses a critical width m∗ where m ≥ m∗, all suboptimal basins are eliminated for
certain activation functions. They also discuss how m∗ is related with n, the number of data.

Loss landscapes and optimal sets of regularized networks Freeman & Bruna (2016) discusses the
loss landscape of the population loss along with a certain regularization, and proves the asymptotic
connectivity of all sublevel sets as m increases. Bietti et al. (2022) also introduces an asymptotic
landscape result for regularized networks. Haeffele & Vidal (2017) deduces the loss landscape of
parallel neural networks with the lens of convex equivalent problem, and shows that when the width
m is larger than a certain threshold, there are no spurious local minima. Kunin et al. (2019) analyzes
regularized linear autoencoders and points out the discrete structure of critical points under some
symmetries. Bucarelli et al. (2024) bounds the Betti number of the sublevel set of the loss landscape
for Pfaffian activations, discussing topological complexity of sublevel sets for both the unregularized
and the regularized case. On the empirical side, Yang et al. (2021) considers certain metrics to
consider the mode connectivity and sharpness of the landscape of regularized neural networks, and
indeed show that larger models tend to have more connected solutions. A few work design specific
regularization to make the loss landscape benign, removing spurious local minima and decreasing
paths to infinity Ge et al. (2017), Liang et al. (2022).

Properties of unidimensional minimum-norm interpolators Training minimum-norm interpola-
tors for unidimensional data can lead to sparse interpolators Parhi & Nowak (2023). When we do not
penalize the bias, Savarese et al. (2019) has an exact characterization of the interpolation problem
in function space, and Hanin (2021) completely characterizes the set of optimal interpolators. From
the construction of optimal interpolators, it is natural that there exist problems with a continuum of

3



Published as a conference paper at ICLR 2025

infinitely many optimal interpolators. A recent work by Nakhleh et al. (2024) extends this setup to
vector-valued networks and shows almost-sure uniqueness of a minimum norm interpolator. On the
other hand, Boursier & Flammarion (2023) recently showed that when we penalize the bias with free
skip connections, we have a unique optimal interpolator. Furthermore, under certain assumptions
on the training data, the optimal interpolator is the sparsest. Empirically, it has been believed that
having a free skip connection does not affect the behavior of the solution Boursier & Flammarion
(2023), Joshi et al. (2023).

1.2 PROBLEM SETTING AND NOTATIONS

We are interested in training a neural network with regularization and ReLU activation, namely the
optimization problem

min
θ∈Rp

L(fθ(X), y) + βR(θ). (1)

Here, X ∈ Rn×d is the data matrix, y ∈ Rn is the label vector, θ ∈ Rp the concatenation of
all parameters of the neural network, fθ the parametrization, β > 0 strength of the regularization,
L : Rn × Rn → R the convex loss function, and R : Rp → R the regularization.

We have two different objects of interest in the notion of optimal sets: the optimal solution set in
parameter space and the set of optimal functions

Θ∗ := argmin
θ∈Rp

L(fθ(X), y) + βR(θ) ⊆ Rp, F∗ := {fθ | θ ∈ Θ∗} ⊆ F , (2)

where F is the set of functions f : Rd → R. The notion of optimal functions will mostly be
discussed in Section 3.3, where we discuss minimum-norm interpolators. Note that Θ∗ regards
parameters with permutation symmetry as different parameters.

Next, we clarify the notion of connectivity in this paper. We say two points x, y ∈ S is connected
in S if for two points x, y ∈ S, there exists a continuous function f : [0, 1] → S that satisfies
f(0) = x, f(1) = y. We say S is connected if for any two points x, y ∈ S, x and y are connected in
S. Also, an isolated point x in S means a point that has no continuous path from x to S − {x}.

At last, we clarify the notations. the notation 1(condition(A)) is defined for a scalar, vector, or ma-
trix that notes if the entrywise condition is met, the value is 1, and else 0. Note [m] = {1, 2, · · · ,m},
∥·∥2 as the l2 norm, ∥·∥F as the Frobenious norm, (·)+ as the ReLU function, and diag the diagonal
matrix given a vector. By a hyperplane arrangement, we mean a diagonal matrix diag(1(Xh ≥ 0))
for a vector h ∈ Rd. When we write Di for i ∈ [P ], we mean all possible hyperplane arrangements
generated from the data matrix X ∈ Rn×d, hence P means the number of all possible arrangement
patterns. We also use the notation Ki = {u | (2Di − I)Xu ≥ 0} for i ∈ [P ] unless specified differ-
ently (in vector-valued networks we will). By a ⊕ b, we mean the concatenation of two vectors(or
matrices) a and b: if a ∈ Rm and b ∈ Rn, a ⊕ b ∈ Rm+n, (ai)

p
i=1 denotes a1 ⊕ a2 ⊕ · · · ap. For

matrices, the notation Ai· means the i-th row of A, A·i means the i-th column of A, and for vector
v, v,k denotes the k-th entry of v. We note the matrix inner product ⟨A,B⟩M = tr(ATB).

2 CONVEX REFORMULATIONS

Our main proof strategy will be introducing an equivalent convex reformulation of the training prob-
lem first introduced in Pilanci & Ergen (2020). In this section, we demonstrate the concept by giving
an example for two-layer scalar output networks with weight decay.

Consider the optimization problem in equation 3,

p∗ := min
{wj ,αj}m

j=1

L

 m∑
j=1

(Xwj)+αj , y

+
β

2

m∑
j=1

(
∥wj∥22 + α2

j

)
. (3)

The variables wj ∈ Rd, αj ∈ R for j ∈ [m]. When the width m of problem in equation 3 satisfies
m ≥ m∗ for a critical threshold m∗ ≤ n, we have an equivalent convex problem given as a cone-
constrained group LASSO,

p∗cvx := min
{ui,vi}P

i=1, ui,vi∈Ki

L

(
P∑
i=1

DiX(ui − vi), y

)
+ β

P∑
i=1

(∥ui∥2 + ∥vi∥2) . (4)
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The intuition of convexification is constraining each variable at a certain convex cone so that the
model looks linear in that region, and applying an appropriate scaling to deal with regularization.

As an equivalent convex problem, the optimal values p∗ and p∗cvx are equal. Moreover, from a
solution (ui, vi)

P
i=1 of equation 4 satisfying m =

∑P
i=1 1(ui ̸= 0) + 1(vi ̸= 0), we can recover the

solution of equation 3 with m neurons by a solution mapping (wi, αi) = (ui/
√

∥ui∥2,
√

∥ui∥2)
for i ∈ [a], (wi+a, αi+a) = (vi/

√
∥vi∥2,−

√
∥vi∥2) for i ∈ [m − a], without loss of generality

assuming ui ̸= 0 for i ∈ [a] and vi ̸= 0 for i ∈ [m− a].

The problem in equation 3 has a convex dual given as

d∗ := max
|νT (Xu)+|≤β, ∀∥u∥2≤1

−L∗(ν), (5)

where L∗ is the convex conjugate of L(·, y) and ν denotes the dual variable. Note that strong duality
holds and p∗ = p∗cvx = d∗ is satisfied when m ≥ m∗. Furthermore, we will see that the dual
optimum ν∗ determines the optimal set of both the convex problem in equation 4 and the original
problem in equation 3.

3 TWO-LAYER SCALAR OUTPUT NEURAL NETWORKS

3.1 THE OPTIMAL POLYTOPE

We first describe the optimal set of the problem in equation 4 where L is strictly convex. Note that
the polytope characterization was first done in Mishkin & Pilanci (2023). Here, we emphasize the
role of dual optimum in choosing the unique directions. To illustrate the solution set of equation 4,
we introduce the notion of an optimal model fit and further characterize it as a singleton.
Proposition 1. Mishkin & Pilanci (2023) Let the optimal solution set of equation 4 as Θ∗. If the
loss function L is strictly convex, the optimal model fit is unique, i.e. the set of optimal model fit

Cy =
{ P∑

i=1

DiX(u∗
i − v∗i ) | (u∗

i , v
∗
i )

P
i=1 ∈ Θ∗

}
= {y∗} for some y∗ ∈ Rn.

The solution set of equation 4 is given as Theorem 1. For a formal statement see Theorem C.1.
Theorem 1. (The Optimal Polytope, informal) Suppose L is a strictly convex loss function. The di-
rections of optimal parameters of the problem in equation 4, noted as ūi, v̄i, are uniquely determined
from the dual optimum ν∗. Moreover, the solution set of equation 4 is the polytope,

P∗
ν∗ :=

{
(ciūi, div̄i)

P
i=1 | ci, di ≥ 0 ∀i ∈ [P ],

P∑
i=1

DiXūici −DiXv̄idi = y∗

}
⊆ R2dP ,

(6)
for the unique optimal model fit y∗ defined in Proposition 1.

Note that P∗
ν∗ is invariant under different choices of ν∗, because they all correspond to the solution

set of equation 4. Hence, we use P∗ for simplicity. For a geometric intuition of ν∗, see Appendix G.

Theorem 1 implies that equation 4 has a unique direction for each ui, vi where i ∈ [P ], which is
determined by solving the dual problem. The intuition for this fact is quite clear: when we assume
there exist two different solutions (ui, vi)

P
i=1 and (u′

i, v
′
i)

P
i=1 where ui and u′

i are not colinear for
some i ∈ [P ], ((ui + u′

i)/2, (vi + v′i)/2)
P
i=1 has a strictly smaller objective because L is strictly

convex and ∥a∥2 + ∥b∥2 ≥ ∥a + b∥2 with equality only when a and b are colinear. However,
Theorem 1 implies further, that for any conic combination of such vectors DiXūi and −DiXv̄i that
sum up to y∗, it becomes an optimal solution of equation 4.

Another implication of Theorem 1 is that for all stationary points of equation 3, there exists a finite
set of possible first-layer weight directions. For a formal statement see Corollary C.1.
Corollary 1. Denote the set of Clarke stationary points of equation 3 as ΘC . The set of directions
of the stationary point

⋃m
j=1

{
wj/∥wj∥2 | (wi, αi)

m
i=1 ∈ ΘC , wj ̸= 0

}
is finite, and is determined

by the dual optimum of subsampled convex problems.
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The result follows from using the fact proven in Ergen & Pilanci (2023), where all stationary points
of equation 3 are characterized by the global minimizer of the subsampled convex program that has
the same structure with equation 4. The implication shows that not only the global minimum but the
stationary points of equation 3 also have a structure that is related to the convex problem.

3.2 THE STAIRCASE OF CONNECTIVITY

One significance of this characterization is that when m ≥ m∗, we can relate the optimal solution
set of the nonconvex problem in equation 3 with the subsets of equation 6 with certain cardinality
constraints. Specifically, the cardinality-constrained set

P∗(m) :=

{
(ui, vi)

P
i=1 | (ui, vi)

P
i=1 ∈ P∗,

P∑
i=1

1(ui ̸= 0) + 1(vi ̸= 0) ≤ m

}
⊆ R2dP , (7)

will determine the solution set of equation 3 , namely Θ∗(m), when m ≥ m∗. We write Θ∗(m) to
emphasize the dependency of m, since we illustrate a phase-transitional behavior as m changes. For
a formal definition of Θ∗(m) see Appendix D. The cardinality constraint is the main reason behind
the staircase of connectivity: if m were to be unbounded, the optimal set would be a single con-
nected polytope. However, as m becomes smaller, certain regions in the polytope are not reachable,
possibly becoming disconnected.

Our proof strategy is first observing phase transitional behaviors in the cardinality-constrained set
P∗(m), and linking the connectivity behavior of P∗(m) and Θ∗(m) with appropriate solution map-
pings (Definition D.7, Definition D.8). Aside from the proof of Theorem 2, the machinery we
develop can potentially be applied to extend other topological properties of P∗(m) to Θ∗(m).

Theorem 2 states the staircase of connectivity informally. For a formal statement and a precise
definition of critical widths see Theorem D.2. Note that we get rid of the trivial case where P∗ =
{(0, 0)Pi=1} by assuming (wi, αi)

m
i=1 ̸= (0, 0)mi=1 ∈ Θ∗(m) exists for some m (Proposition D.1).

Theorem 2. (The staircase of connectivity, informal) Denote the optimal solution set of equation 3 in
parameter space as Θ∗(m) ⊆ R(d+1)m. Suppose L is a strictly convex loss function and there exists
(wi, αi)

m
i=1 ̸= (0, 0)mi=1 ∈ Θ∗(m) for some m. We have critical widths m∗,M∗ that determine the

phase transitional behavior of the solution set. Specifically, as m changes, we have that when

(i) m = m∗, Θ∗(m) is a finite set. Hence, all solutions are disconnected to each other.

(ii) m ≥ m∗ + 1, there exists A ̸= A′ ∈ Θ∗(m) and a path in Θ∗(m) connecting them.

(iii) m = M∗, Θ∗(m) is not a connected set. Moreover, there exists an isolated point in Θ∗(m).

(iv) m ≥ M∗ + 1, permutations of the solution are connected with no isolated points in Θ∗(m).

(v) m ≥ min{m∗ +M∗, n+ 1}, the set Θ∗(m) is connected.

Figure 1 demonstrates Theorem 2 at a conceptual level. When m = m∗, the solution set has
a discrete structure. One way to see the fact is that when m = m∗, the solutions are vertices
of the polytope P∗, hence they have a discrete and isolated structure. When m ≥ m∗ + 1, we
have a trivial “splitting” operation that connects two solutions with m∗ nonzero first-layer weights,
which leads to the existence of a “blue set”(a connected component with infinitely many solutions)
in Figure 1. When m = M∗, the solution having linearly independent first-layer weights with
maximum cardinality corresponds to the isolated point in Θ∗(M∗). When m ≥ M∗ + 1, on the
other hand, any solution is connected with permutations of the same solution. The proof follows
from first creating a zero slot in the first layer weights and using the zero slot to permute. The idea
of the proof is identical to that of Simsek et al. (2021), though the details differ. At last, when m ≥
min{m∗+M∗, n+1}, the whole set is connected: m∗+M∗ is obtained from first transforming the
solution to have linearly independent first-layer weights and interpolating the solution with minimum
cardinality. n+1 follows from the fact that P∗(n+1) is connected, which needs a more sophisticated
argument. For details see the proof in Appendix D. Note that there exists algorithms that can exactly
compute these critical widths Remark D.1.

From Haeffele & Vidal (2017), we know that when m ≥ n + 1 we have that all local minima are
global (Theorem 2, Haeffele & Vidal (2017)) and moreover we have a path with non-increasing
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m
m = 1 m = 2 m = 3

Figure 2: Staircase of connectivity for a toy example. The figures above the horizontal line
show the toy problem’s loss landscape as the width m changes. The red star denotes a single
optimal solution while the blue line denotes a continuum of optimal solutions. The figures be-
low the horizontal line show the corresponding optimal functions. The red/blue functions corre-
spond to the functions parametrized by the red/blue sets in the loss landscape. Note that when
m = 3 = min{m∗ + M∗, n + 1}, there exists a continuous deformation from one solution to an-
other.

objective to a global optimum starting from any point Vidal et al. (2022). With Theorem 2-(v) and
this fact, we can construct path with non-increasing objective from any point to any global minimum.
The path is clear: starting from any point, use the path in Vidal et al. (2022). Then use Theorem 2-(v)
to move to any global minimum.
Corollary 2. Consider the problem in equation 3 with m ≥ n + 1. For any parameter θ =
(wi, αi)

m
i=1, there is a continuous path from θ to any global minimizer θ∗ with nonincreasing loss.

Moreover, Corollary 2 implies the connectivity of all sublevel sets when m ≥ n + 1. This extends
the result of Nguyen (2019) to regularized networks. For a more formal statement see Corollary D.2.
Corollary 3. (Informal) Consider the problem in equation 3 with m ≥ n + 1. All sublevel sets of
the loss function is connected.

Example 1 demonstrates Theorem 2 for a toy optimization problem, which is solving a regularized
regression problem with two data points.
Example 1. (Demonstrating the staircase of connectivity for a toy example) Consider the dataset
{(xi, yi)}2i=1 = {(−

√
3, 1), (

√
3, 1)} and the regularized regression problem with bias

min
{(θi,ai,bi)}m

i=1

1

2

2∑
j=1

(
m∑
i=1

(aixj + bi)+θi − yj

)2

+
β

2

m∑
i=1

(θ2i + a2i + b2i ).

In Figure 2, we plot the loss landscape and the corresponding optimal functions when β = 0.1 for
m = 1, 2, 3.

The upper half of Figure 2 illustrates how the loss landscape looks near the global minima, and
visualizes the optimal solution set for m = 1, 2, 3. The lower half of Figure 2 shows the optimal
learned function for m = 1, 2, 3. The black dots are the datapoints, the red dots correspond to the
optimal model fit y∗, and the red/blue functions correspond to the functions parametrized by the
red/blue sets in the loss landscape, respectively.

When m = 2, two different functions are shown. This is because the connected component with
infinitely many solutions emerges from the split of a single neuron corresponding to the same optimal
function in F∗. When m = 3, we have a sequence of functions that continuously deform from one to
another with the same cost. For details on the solution set of the training problem, parameterization
of optimal functions, and how the loss landscape is visualized, see Appendix A.
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3.3 NON-UNIQUE OPTIMAL INTERPOLATORS

In this section, we will see how the dual problem can be used to construct specific problem instances
that have non-unique interpolators. There are three different setups of interest. First, the minimum-
norm interpolation problem with free skip connection and regularized bias (where we denote as SB
(Skip connection; Bias)) refers to the problem in equation 8, namely

min
m,{ai,biθi}m

i=0

m∑
i=1

∥ai∥22 + b2i + θ2i , subject to Xa0 + b01 +

m∑
i=1

(Xai + bi1)+θi = y. (8)

The parameters satisfy ai ∈ Rd and bi, θi ∈ R for i ∈ [m] ∪ {0}, and 1 ∈ Rn is a vector of ones.
The term “free skip connection” arises, as we have a skip connection, i.e. the linear neuron a0, that
is not regularized. Next, we discuss the minimum-norm interpolation problem without free skip
connections and regularized bias (NSB: No-Skip; Bias), which is the training problem in equation 8
with an additional constraint a0 = b0 = 0. At last we study the minimum-norm interpolation
problem with free skip connections but without bias (SNB: Skip; No-Bias), which is the problem in
equation 8 with bi = 0 for all i ∈ [m] ∪ {0}. Also, note that the width m is also optimized.

In Boursier & Flammarion (2023), it was proven that for unidimensional data, i.e. when d = 1, the
set of all optimal functions F∗ of equation 8 is a singleton. When d > 1, it is not the case. This fact
implies that to extend Boursier & Flammarion (2023) to higher dimensions, we may need additional
structures besides free skip connections.
Proposition 2. When X ∈ Rn×2, y ∈ Rn, we have a dataset (X, y) that has non-unique minimum-
norm interpolator both for the SB and SNB problem in equation 8.

When we have no free skip connections, i.e. the case of NSB, for d = 1 we have a class of data that
has infinitely many optimal interpolators. The construction follows from making the dual problem
max∥u∥≤1 |νT (Xu)+| have linearly dependent solutions by forcing n + 1 optimal solutions. For a
rigorous construction of (X, y), see Proposition E.4.
Proposition 3. (A class of training problems with infinitely many optimal interpolators, informal)
Consider the NSB problem in equation 8 with d = 1. For all n ≥ 2, we can construct infinitely
many different datasets (X, y) having infinitely many minimum-norm interpolators.

In the following example, we give a geometric description of finding the dataset (X, y) and the
continuum of optimal interpolators for n = 5.
Example 2. (Example of a class of non-unique optimal interpolators) Consider the figure in Fig-
ure 3a. Following the arrow, we can find sn, sn−1, · · · s1 defined in Proposition E.4, and can find
that each si has norm 1, sn = [0, 1]T and vn = [

√
3/2, 1/2]T . For the example in Figure 3a, the

data x and y can be chosen as

x = [tan
π

3
,− tan

5π

24
,− tan

7π

24
,− tan

9π

24
,− tan

11π

24
]T , y ≃ [94, 29, 24, 20, 20]T .

Figure 3b show the continuum of optimal interpolators. We can see that there are infinitely many
interpolators with the same cost. A magnification of the range x ∈ [−8, 0] is given to emphasize that
the interpolators are indeed different. We can also see from Figure 3c that gradient descent learns
the continuum of optimal interpolators. Here we set m = 10. For details on the formula of optimal
interpolators, see Appendix B.

(a) The planar geometry (b) Zooming in x ∈ [−8, 0] (c) Trained interpolators

Figure 3: A demonstration of non-unique interpolators for n = 5. Figure 3a shows the geometric
construction behind finding v s proposed in Proposition 3. Figure 3b shows the continuum of optimal
interpolators, and Figure 3c shows the learned interpolators trained by gradient descent.

8



Published as a conference paper at ICLR 2025

Proposition 3 demonstrates that understanding the optimal solution set with dual optimum enables
us to enforce non-uniqueness to the solution set. Moreover, these examples are not constructed case-
by-case, but from a geometric structure that is motivated by the object QX = {(Xu)+ | ∥u∥2 ≤ 1},
the convex set Conv(QX ∪ −QX), and its supporting hyperplane.

Experimentally, the existence of free skip connections does not seem important in the behavior of
the solution Boursier & Flammarion (2023), Joshi et al. (2023). However, note that when there
is no skip connection, there exists training problems where the minimum-norm interpolator has
infinitely many solutions. Furthermore the interpolators in Example 1 and Example 2 may have n
breakpoints even with Assumption 1 in Boursier & Flammarion (2023) - which can never be the
sparsest interpolator. Hence, at least theoretically, free skip connection plays a significant role in
guaranteeing the uniqueness and sparsity of the interpolator, along with penalizing the bias. Note
that these different interpolators may have drastically different behavior for points not in the training
set. For example, as x → ±∞, the difference between any two different interpolators diverge.

4 GENERALIZATIONS

In this section, we will extend our results from Section 3 to a more general training setup. We use
the fact that for networks of sufficiently large width, training a neural network can be cast as a cone-
constrained group LASSO problem Mishkin & Pilanci (2023). Analogous to Theorem 1, we first
derive the optimal set of a general cone-constrained group LASSO in equation 9:

min
θi∈Ci∩Vi,si∈Di

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

Ri(θi). (9)

Here, Ai, Bi ∈ Rn×d, θi, si ∈ Rd, y ∈ Rn, Ci,Di are proper cones, Ri is the regularization (which
we assume to be a norm defined in a subspace Vi ⊆ Rd and satisfy Vi ∩ Ci ̸= ∅), β > 0 is the
regularization strength, and L : Rn × Rn → R is a convex but not necessarily strictly convex loss
function. The assumption that Ri is a norm is natural because it will help the training problem find a
simpler solution. Equation (9) enables the analysis of many different training setups, including two-
layer networks with free skip connections, interpolation, vector-valued outputs, and parallel deep
networks of depth 3, extending the results in Section 3.

4.1 DESCRIPTION OF THE MINIMUM-NORM SOLUTION SET

The idea to derive the optimal set of equation 9 is essentially the same as deriving the optimal set
of equation 4: we consider the dual problem and use strong duality to obtain the wanted result. The
exact description of the optimal set is given as

P∗
gen =

{
(ciθ̄i)

P
i=1⊕(si)

Q
i=1| ci ≥ 0,

P∑
i=1

ciAiθ̄i+

Q∑
i=1

Bisi ∈ Cy, θ̄i ∈ Θ̄i, ⟨BT
i ν

∗, si⟩ = 0, si ∈ Di

}
.

(10)
First, Cy is the set of optimal model fits which was defined at Proposition 1. We have that θ̄i is
contained in a certain set, which is an analogy of the optimal polytope in the direction of each
variable is fixed. Theorem 1 is a special case where the set of optimal directions is a singleton.
Finally, we have a constraint given to variables without regularization, which is also derived from
the dual formulation. For a detailed derivation see Theorem F.1

Given the expression in equation 10, we can extend our results in Theorem 1 and Theorem 2 directly
to the interpolation problem (Proposition F.1, Proposition F.2) . That is because for the interpolation
problem, Cy is a singleton and the set Θ̄i is also a singleton. We can also find the optimal set
characterization of the interpolation problem with free skip connections (Proposition F.3). Here,
the dual variable has to satisfy ⟨XT ν∗, s⟩ = 0 for all s ∈ Rd, meaning XT ν∗ = 0 is given as an
additional constraint for the dual problem. The additional constraint is the main reason why we have
qualitatively different behavior in uniqueness when we have free skip connections.

9
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4.2 VECTOR-VALUED NETWORKS

Now we turn to two-layer neural networks with vector-valued outputs, namely the problem

min
(wi,zi)mi=1

1

2
∥

m∑
i=1

(Xwi)+z
T
i − Y ∥2F +

β

2

( m∑
i=1

∥wi∥22 + ∥zi∥22
)
, (11)

where wi ∈ Rd×1, zi ∈ Rc×1 and Y ∈ Rn×c. The vector-valued problem is known to have a convex
reformulation Sahiner et al. (2020), which is given as

min
Vi

1

2
∥

P∑
i=1

DiXVi − Y ∥22 + β

P∑
i=1

∥Vi∥Ki,∗.

The norm ∥V ∥Ki,∗ is defined as ∥V ∥Ki,∗ := min t ≥ 0 s.t. V ∈ tKi, for Ki = conv{ugT |(2Di−
I)Xu ≥ 0, ∥ugT ∥∗ ≤ 1}, and Vi = span{ugT |(2Di − I)Xu ≥ 0, g ∈ Rc}.

The problem falls in our category of equation 9, and we can describe the optimal set of the problem
completely. With appropriate solution maps, we can describe the optimal set of the nonconvex
vector-valued problem in equation 11 (Proposition F.5), and the same idea can be applied to describe
a subset of the optimal solution set for deep networks (Theorem F.2). A direct implication extends
the loss landscape result in Corollary 2 to vector-valued networks.
Corollary 4. Consider the problem in equation 11 with m ≥ nc + 1. For any θ := (wi, zi)

m
i=1 ∈

R(d+c)m, there exists a continuous path from θ to any global optimum θ∗ with nonincreasing loss.

4.3 PARALLEL DEEP NEURAL NETWORKS

Finally, we extend the characterization to deeper networks. Convex reformulations of parallel three-
layer neural networks have been discussed Ergen & Pilanci (2021), Wang et al. (2021a). The specific
training problem we are interested in is

min
m,{W1i,w2i,αi}m

i=1

1

3

(
m∑
i=1

∥W1i∥3F + ∥w2i∥32 + |αi|3
)

s.t.

m∑
i=1

((XW1i)+w2i)+αi = y. (12)

The size of each weights are W1i ∈ Rd×m1 , w2i ∈ Rm1 , and αi ∈ R. The dual problem of the con-
vex reformulation can be understood as optimizing a linear function with cone and norm constraints,
and we have analogous results of the optimal polytope. Specifically, we have the direction of the
columns of first-layer weights as a set of finite vectors (Theorem 3). The result suggests that our re-
sults are fairly generic, and could be generalized to other deep parallel architecture with appropriate
parametrization. For detailed proof see Appendix F.
Theorem 3. Consider the training problem in equation 12. Then, there are only finitely many
possible values of the direction of the columns of W ∗

1i. Moreover, the directions are determined by
solving the dual problem max∥W1∥F≤1,∥w2∥2≤1 |(ν∗)T ((XW1)+w2)+| when y ̸= 0.

5 CONCLUSION

In this paper, we present an in-depth exploration of the loss landscape and the solution set of reg-
ularized neural networks. We start with a two-layer scalar neural network as the simplest case and
demonstrate the properties of the set, including the existence of optimal directions, phase transition
in connectivity, and non-uniqueness of minimum-norm interpolators. Then, we give a more general
description on the optimal set of cone-constrained group LASSO and extend the previous results to
a more general setup.

Our paper may be extended in multiple ways. One interesting problem that is left is, what is the
right architecture to ensure the uniqueness of the minimum-norm interpolator for high dimensions,
as free skip connection itself does not help. Another interesting problem is showing ‘almost sure
uniqueness’ of problem equation 3, up to permutations: intuitively, from the examples we show,
it can be speculated that the solution of the dual problem max |νT (Xu)+| subject to ∥u∥ ≤ 1 is
unlikely to have “too many” optimal solutions. Hence it is likely that the dataset that makes the
minimum-norm interpolator non-unique is very small. We conjecture that the set will have measure
0 in R2n, and leave it for future work. At last, extending the optimal polytope/connectivity results
to tree neural networks Zeger et al. (2024) with arbitrary depth could be a meaningful contribution.
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REPRODUCIBILITY STATEMENT

The only randomness that occurs from our experiments are Figure 5a, Figure 5b, Figure 6a, and
Figure 6b, where different initialization may lead to different learned interpolators. We set random
seeds properly to make all results reproducible. We used a laptop to do the experiments, and provided
the code to generate the figures. Code available at https://github.com/pilancilab/Loss-landscape-
convex-duality
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APPENDIX

A DETAILS ON THE TOY EXAMPLE IN FIGURE 2

In this section, we give details of the toy example in Figure 2. Specifically, we illustrate how the
loss landscape is plotted, how the set of optimal solutions is derived, and present the models that are
found by gradient descent.

One important remark is that “the figure does not directly imply the staircase of connectivity”
- the fact that two optimal solutions are disconnected in the visualization does not mean disconnect-
edness in the optimal solution, and vice versa. The figures are for the illustration of the phenomenon,
not the proof.

The optimization problem that we consider is

min
{(θi,ai,bi)}m

i=1

1

2

2∑
j=1

(
m∑
i=1

(aixj + bi)+θi − yj

)2

+
β

2

m∑
i=1

(θ2i + a2i + b2i ),

where {(xi, yi)}2i=1 = {(−
√
3, 1), (

√
3, 1)} and β = 0.1. When we write X =

[
−
√
3, 1√
3, 1

]
∈

R2×2, y = [1, 1]T , and the first layer weights as U ∈ R2×m, second layer weights v = Rm, the
optimization problem can also be written as

min
U∈R2×m,v∈Rm

1

2
∥(XU)+v − y∥22 +

β

2
(∥U∥2F + ∥v∥22).

Let the objective be L(U, v). Note that even when m = 1, there are three parameters, so it is
impossible to plot the loss landscape in a three-dimensional plot. What we do is plot a certain
section of the loss landscape, as done in Li et al. (2018), to demonstrate our result.

When m = 1, where r =
√
1− 0.5β, we plot

F (t, s) = L(

[
t
s

]
, [r]),

for (t, s) ∈ [−1, 1]× [−0.5, 2]. t = 0, s = r is the only optimum.

When m = 2, where r =
√
1− 0.5β, we define

U0 =

[
0 0
r 0

]
, U1 =

[√
3r/(2

√
2) −

√
3r/(2

√
2)

r/(2
√
2) r/(2

√
2)

]
, U2 =

[
0 0
0 r

]
,

v0 =

[
r
0

]
, v1 =

[
r/
√
2

r/
√
2

]
, v2 =

[
0
r

]
.

Then, we plot

F (t, s) = L(cos(t)U0 + 2s(U1 − U0) + sin(t)U2, cos(t)v0 + 2s(v1 − v0) + sin(t)v2).

for (t, s) ∈ [−0.25, 0.6] × [−0.5, 0.3]. The optimal solutions here are (t, s) = (0, 0.5) and the line
s = 0, t ≥ 0.

When m = 3, where r =
√
1− 0.5β, we define

U0 =

[
0, 0, 0
r, 0, 0

]
, U1 =

[
0

√
3r/(2

√
2) −

√
3r/(2

√
2)

0 r/(2
√
2) r/(2

√
2)

]
, U2 =

[
0, 0, 0
0, r, 0

]
,

v0 =

[
r
0
0

]
, v1 =

 0
r/
√
2

r/
√
2

 , v2 =

[
0
r
0

]
.

Then, we plot

F (t, s) = L(cos(t) cos(s)U0+cos(t) sin(s)U1+sin(t)U2, cos(t) cos(s)v0+cos(t) sin(s)v1+sin(t)v2).
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for (t, s) ∈ [−0.5, 1]× [−0.5, 1]. The optimal solutions are s = 0, t ≥ 0 and t = 0, s ≥ 0.

The contour plot of the loss landscape can be found in Figure 4. It clearly shows that the connectivity
behavior of the optimal solution changes.

(a) m = 1 (b) m = 2 (c) m = 3

Figure 4: A contour plot of the loss landscape The three figures show the contour plot of the loss
landscape shown in Figure 2. We can see the staircase of connectivity more clearly.

Figure 5 gives what the gradient descent actually learns for the problem. We can see that gradient
descent finds multiple optimal solutions, which verifies our claim that we have a continuum of
optimal solutions. We present the case both when m = 3 and m = 5. When m is increased, the
model gets less stuck at local minima.

(a) m = 3 (b) m = 5

Figure 5: Learned functions found by gradient descent The two figures show what functions
gradient descent learns for the toy problem in Example 1. For both cases in m = 3, m = 5, either
gradient descent gets stuck at a local minimum or finds one of the optimal networks in the continuum
of optimal solutions.

At last, we show that all optimal functions can be written as

f(x) =
√
κt(

√
3κt

2
x+

√
κt

2
)+ +

√
κt(−

√
3κt

2
x+

√
κt

2
)+ +

√
κ(1− 2t)

(√
κ(1− 2t)

)
+
,

where κ = 1− β/2 and t ∈ [0, 1/2]. For νT = [1/2, 1/2], we know that max∥u∥2≤1 |νT (Xu)+| =
1. Let’s say the optimal model fit

y∗ =

m∑
i=1

(Xui)+αi.

Then,

⟨ν, y∗⟩ ≤
m∑
i=1

|νT (X ui

∥ui∥2
)|∥ui∥2|αi| ≤

1

2

( m∑
i=1

∥ui∥22 + |αi|2
)
.
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This means the objective has a lower bound 1
2∥y

∗ − y∥22 + β⟨ν, y∗⟩, and minimum of the lower
bound is attained when y∗ = [1 − β/2, 1 − β/2]T . Substitute to see that the lower bound of the
objective is β − β2/4, and when u1 = [0,

√
1− β/2]T , α1 =

√
1− β/2 we have a solution with

cost β − β2/4 hence y∗ is indeed optimal. ν∗ = y − y∗, and use Theorem 1 to find the complete
solution set.
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B DETAILS ON THE TOY EXAMPLE IN FIGURE 3

The construction of x follows from Proposition 3. For the particular example we distribute the
angles identically, hence we obtain the form in Example 2. The six optimal directions are[√

3/2
1/2

]
,

[√
2/2√
2/2

]
,

[
1/2√
3/2

]
,

[√
6−

√
2/4√

6 +
√
2/4

]
,

[
0
1

]
,

[
−
√
3/2

1/2

]
.

Let’s note these optimal directions as ū1, ū2, · · · ū6. We construct y as

y = 20((Xū1)+ + (Xū3)+ + (Xū5)+),

which is numerically very similar to [94, 29, 24, 20, 20]. Note that the class of optimal interpolators
are

f(x) = (20− 7.076t)([x, 1] · ū1)+ + (13.1592t)([x, 1] · ū2)+ + (20− 13.1623t)([x, 1] · ū3)+

+ (13.159t)([x, 1] · ū4)+ + (20− 7.081t)([x, 1] · ū5)+ + t([x, 1] · ū6)+,

where t ∈ [0, 1.5194] which all have the same optimal cost 60.

Similar to the experiment in Appendix A, we give an example of the learned functions by gradient
descent in Figure 6. We set β = 0.1 and solve the regularized problem. Here we find multiple
functions as optimal: and the important remark is that not all (as some do stuck at local minima),
but there exists different interpolators with the same cost.

(a) m = 6 (b) m = 10

Figure 6: Learned interpolators found by gradient descent The two figures show what functions
gradient descent learns for the toy problem in Example 2. We set β = 0.1 to approximately solve the
minimum-norm interpolation problem. For both cases m = 6 and m = 10, either gradient descent
gets stuck at a local minimum or finds one of the optimal networks in the continuum of optimal
solutions.
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C PROOFS IN SECTION 3.1

In this section, we briefly discuss how Theorem 1 is derived and the intuition behind it. Consider the
problem introduced in equation 4, and write its optimal solution set as Θ∗. To discuss the solution
set, we first define the set of optimal model fits, which was first introduced in Mishkin & Pilanci
(2023).
Definition C.1. Mishkin & Pilanci (2023) The set of optimal model fits Cy is defined as

Cy =
{ P∑

i=1

DiX(u∗
i − v∗i ) | (u∗

i , v
∗
i )

P
i=1 ∈ Θ∗

}
.

When L is strictly convex, which is the case for l2 regression for instance, Cy becomes a singleton
Mishkin & Pilanci (2023).
Proposition C.1. (Proposition 1 of the paper) Mishkin & Pilanci (2023) If the loss function L is
strictly convex, the optimal model fit is unique, i.e. for the set of optimal model fit

Cy =
{ P∑

i=1

DiX(u∗
i − v∗i ) | (u∗

i , v
∗
i )

P
i=1 ∈ Θ∗

}
,

Cy = {y∗} for some y∗ ∈ Rn.

Proof. Assume y1, y2 ∈ Cy and y1 ̸= y2. Let
∑P

i=1 DiX(ui−vi) = y1 and
∑P

i=1 DiX(u′
i−v′i) =

y2 for (ui, vi)
P
i=1, (u

′
i, v

′
i)

P
i=1 ∈ Θ∗. Think of (ui+u′

i

2 ,
vi+v′

i

2 )Pi=1 = θavg . The objective value of
θavg is

L(
y1 + y2

2
, y) + β

P∑
i=1

(
∥ui + u′

i

2
∥2 + ∥vi + v′i

2
∥2
)

which is strictly smaller than

1

2

(
L(y1, y) + β

(
P∑
i=1

∥ui∥2 + ∥vi∥2

)
+ L(y2, y) + β

(
P∑
i=1

∥u′
i∥2 + ∥v′i∥2

))
.

The strict inequality follows from the fact that L is strictly convex. Contradiction follows, as we
have found a parameter that has smaller objective value than the optimal cost.

It is not necessary to characterize Cy as a singleton to derive the solution set itself (see Section 4.1).
However, for the notion of the optimal polytope and its application to the staircase of connectivity,
we will need that Cy is a singleton.

Before proving the optimal polytope characterization, we show that the ūi, v̄i introduced in Theo-
rem 1 can be uniquely determined by solving the given optimization problem.
Proposition C.2. Consider the optimization problem

min
u∈Si

νTDiXu, min
u∈Si

−νTDiXu,

where ν ∈ Rn is an arbitary vector and Si = Ki ∩ {u | ∥u∥2 ≤ 1}. If the optimal objective is
nonzero, there exists a unique minimizer.

Proof. The problem is equivalent to
min
u∈Si

(w∗)Tu,

which is a linear program on a convex set. We write w∗ = ±XTDiν
∗ for convenience. Let’s say

the optimal objective p∗ < 0 and we have two minimizers u∗
1, u∗

2. The first thing to notice is that
∥u∗

1∥2 = 1. The reason is that when ∥u∗
1∥2 < 1, we can scale it to decrease the objective. Similarly,

∥u∗
2∥2 = 1. As they are two different minimizers, we know that

(w∗)Tu∗
1 = (w∗)Tu∗

2 = p∗ = (w∗)T (
u∗
1 + u∗

2

2
),

and ∥u∗
1 + u∗

2∥2 < 2 because u∗
1 ̸= u∗

2. Scale (u∗
1 + u∗

2)/2 to obtain contradiction that u∗
1 is the

minimizer.
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Theorem C.1. (Theorem 1 of the paper) Suppose L is a strictly convex loss function. The directions
of optimal parameters of the problem in equation 4, noted as ūi, v̄i, are uniquely determined from
the dual problem,

ūi = argmin
u∈Si

ν∗TDiXu if min
u∈Si

ν∗TDiXu = −β, 0 otherwise,

v̄i = argmin
v∈Si

−ν∗TDiXv if min
v∈Si

−ν∗TDiXv = −β, 0 otherwise.

where ν∗ is any dual optimum that satisfies

ν∗ = argmax−L∗(ν) subject to |νTDiXu| ≤ β∥u∥2 ∀u ∈ Ki, i ∈ [P ].

Here, Dis are all possible arrangements diag(1(Xh ≥ 0)) for i ∈ [P ], Si = Ki ∩ {u | ∥u∥2 ≤ 1}.
Moreover, the solution set of equation 4 is given as a polytope,

P∗
ν∗ :=

{
(ciūi, div̄i)

P
i=1 | ci, di ≥ 0 ∀i ∈ [P ],

P∑
i=1

DiXūici −DiXv̄idi = y∗

}
⊆ R2dP ,

(13)
where y∗ is the unique optimal fit satisfying Cy = {y∗}.

Proof. Let’s note Θ∗ as the solution set of equation 4. Also, fix ν∗ to be any dual optimum. The
directions ūi, v̄i are uniquely determined from Proposition C.2. Define P∗ to be the set defined in
equation 13: note the dependence of P∗ has with ν∗ (though we will see that for any choice of ν∗,
P∗
ν∗ = Θ∗ and the choice of ν∗ does not matter).

We first show that Θ∗ ⊆ P∗
ν∗ . Take a point (u∗

i , v
∗
i )

P
i=1 ∈ Θ∗. We first know that

∑P
i=1 DiX(u∗

i −
v∗i ) = y∗ from Proposition 1. What we would like to do is showing the existence of ci, di that
satisfies

ci ≥ 0, u∗
i = ciūi, di ≥ 0, v∗i = div̄i,

where ūi, v̄i are

ūi = argmin
u∈Si

ν∗TDiXu if min
u∈Si

ν∗TDiXu = −β, 0 otherwise,

v̄i = argmin
v∈Si

−ν∗TDiXv if min
v∈Si

−ν∗TDiXv = −β, 0 otherwise.

Consider the Lagrangian

L((ui, vi)
P
i=1, z, ν) = L(z, y)− νT z +

P∑
i=1

(β∥ui∥2 + νTDiXui) +

P∑
i=1

(β∥vi∥2 − νTDiXvi),

where ui, vi ∈ Ki. We can see that

min
ui,vi∈Ki,z

max
ν

L((ui, vi)
P
i=1, z, ν) = max

ν
min

ui,vi∈Ki,z
L((ui, vi)

P
i=1, z, ν),

because ν is the dual variable that is only related to linear constraints. We can prove the fact rigor-
ously by following the reasoning in Boyd & Vandenberghe (2004). We prove the fact for complete-
ness.

First, we define the set

A = {(w −
P∑
i=1

DiX(ui − vi), t) | ui, vi ∈ Ki, L(w, y) + β

P∑
i=1

∥ui∥2 + ∥vi∥2 ≤ t},

where A ⊆ Rn ×R. s A is a convex set. Now, denote the optimal value of problem in equation 4 as
p∗. When we define

B = {(0, s) | s < p∗},
it is clear that A ∩ B = ∅.
By the separating hyperplane theorem, there exists (ν̃, µ̃) ∈ Rn × R which is nonzero, α such that

(z, t) ∈ A ⇒ ν̃T z + µ̃t ≥ α ≥ µ̃p∗,
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and we also know µ̃ ≥ 0: else t → ∞ and contradiction follows. If µ̃ > 0 we have
L((ui, vi)

P
i=1, z, ν̃/µ̃) ≥ p∗, and strong duality follows. If µ̃ = 0, we conclude that for all

(ui, vi)
P
i=1, z we have that (ν̃)T (z−

∑P
i=1 DiX(ui− vi)) ≥ 0, which is simply impossible. Hence,

µ̃ > 0 and strong duality holds.

Moreover, the dual problem

max
ν

min
(ui,vi)Pi=1,z

L((ui, vi)
P
i=1, z, ν)

writes
maximize− L∗(ν) subject to β∥u∥2 ≥ |νTDiXu| ∀u ∈ Ki, i ∈ [P ].

The reason is the following: suppose for some ν′ ∈ Rn, there exists u′
i that satisfies u′

i ∈ Ki

and ν′TDiXu′
i + β∥u′

i∥2 < 0. As we can scale t → ∞ for tu′
i to see that for that ν′,

min(ui,vi)Pi=1,z
L((ui, vi)

P
i=1, z, ν

′) = −∞. Hence, this ν′ cannot be the dual optimum. This means
we only need to see the ν that satisfies νTDiXu + β∥u∥2 ≥ 0 for all u ∈ Ki, i ∈ [P ]. Similarly,
we only need to see ν that satisfies −νTDiXu + β∥u∥2 ≥ 0 for all u ∈ Ki, i ∈ [P ]. Hence, ν∗ is
the maximizer of

max
ν

min
z

L(z, y)− νT z subject to β∥u∥2 ≥ |νTDiXu| ∀u ∈ Ki, i ∈ [P ],

and the rest follows.

As strong duality holds, for any primal optimum ((u∗
i , v

∗
i )

P
i=1, y

∗), the function L((ui, vi)
P
i=1, z, ν

∗)
attains minimum at ((u∗

i , v
∗
i )

P
i=1, y

∗) Boyd & Vandenberghe (2004). Note that z∗ is always y∗ due
to Proposition 1, and replaced by it.

Now, as

L((ui, vi)
P
i=1, z, ν

∗) = L(z, y)− ν∗T z+

P∑
i=1

(β∥ui∥2+ ν∗TDiXui)+

P∑
i=1

(β∥vi∥2− ν∗TDiXvi),

each u∗
i becomes the minimizer of β∥u∥2 + ν∗TDiXu subject to u ∈ Ki and each v∗i becomes the

minimizer of β∥u∥2−ν∗TDiXu subject to u ∈ Ki. Recall that ν∗ is a vector that satisfies β∥u∥2 ≥
|νTDiXu| ∀u ∈ Ki, i ∈ [P ], and when u = 0, both β∥u∥2+ν∗TDiXu and β∥u∥2−ν∗TDiXu has
function value 0. This implies that the minimum of both β∥u∥2+ν∗TDiXu and β∥u∥2−ν∗TDiXu
subject to u ∈ Ki is 0 for all i ∈ [P ]. As ((u∗

i , v
∗
i )

P
i=1, y

∗) minimizes L((ui, vi)
P
i=1, z, ν

∗),

β∥u∗
i ∥2 + ν∗TDiXu∗

i = 0, β∥v∗i ∥2 − ν∗TDiXv∗i = 0.

We will find ci ≥ 0, and finding di will be identical. Let’s divide into cases.
i) When u∗

i = 0, let ci = 0 to find ci ≥ 0 that satisfies u∗
i = ciūi.

ii) When u∗
i ̸= 0, notice that

min
u∈Si

ν∗TDiXu = −β ̸= 0,

and the optimum is attained at u∗
i /∥u∗

i ∥2. To see this, recall that (ν∗)TDiXu + β∥u∥2 ≥ 0 and
(ν∗)TDiXu/∥u∥2 ≥ −β for all nonzero u ∈ Ki, which implies that minu∈Si

(ν∗)TDiXu = −β.
Furthermore, by Proposition C.2, there exists a unique minimizer of the problem
minu∈Si

(ν∗)TDiXu, and u∗
i /∥u∗

i ∥2 = ūi. Hence choosing ci = ∥u∗
i ∥2 gives ci ≥ 0 that

satisfies u∗
i = ciūi. Hence, we have found ci ≥ 0, di ≥ 0 that satisfies u∗

i = ciūi, v
∗
i = div̄i and∑P

i=1 DiX(u∗
i − v∗i ) =

∑P
i=1 DiX(ciūi − div̄i) = y∗, meaning (u∗

i , v
∗
i )

P
i=1 ∈ P∗.

Now, we show that P∗
ν∗ ⊆ Θ∗. Take an element (ciūi, div̄i)

P
i=1 ∈ P∗

ν∗ . It is clear that
ciūi ∈ Ci, div̄i ∈ Di. If ūi ̸= 0, we know that (ν∗)TDiXūi = −β. Similarly, if v̄i ̸= 0, we
know that −(ν∗)TDiXv̄i = −β. Also, if ūi, v̄i ̸= 0, ∥ūi∥2 = 1, ∥v̄i∥2 = 1, see the proof of
Proposition C.2 why this holds. Now, let’s calculate the objective of (ciūi, div̄i)

P
i=1. We know∑P

i=1 DiX(ciūi − div̄i) = y∗, hence the objective becomes

L(y∗, y) + β
∑
ūi ̸=0

ci + β
∑
v̄i ̸=0

di,
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using ∥ūi∥2 = 1, ∥v̄i∥2 = 1. Now, as
∑P

i=1 DiX(ciūi − div̄i) = y∗, multiplying (ν∗)T on both
sides gives

∑
ūi ̸=0 ci +

∑
v̄i ̸=0 di = −⟨ν∗, y∗⟩/β. Hence, the calculated objective becomes

L(y∗, y)− ⟨ν∗, y∗⟩,

hence for all points in P∗
ν∗ , the objective becomes constant. We already know that Θ∗ ⊆ P∗

ν∗ . This
means all points in P∗

ν∗ have the same optimal objective value, and P∗
ν∗ ⊆ Θ∗. This finishes the

proof.

Corollary C.1. (Corollary 1 of the paper) Consider the optimization problem in equation 3. Denote
the set of Clarke stationary points of equation 3 as ΘC . The set

m⋃
j=1

{ wj

∥wj∥2
| (wi, αi)

m
i=1 ∈ ΘC , wj ̸= 0

}
,

is finite, and each direction is determined by the dual optimum of the subsampled convex program.

Proof. From Ergen & Pilanci (2023), we know that all Clarke stationary points of equation 3 have a
corresponding subsampled convex problem. More specifically, for any (wi, αi)

m
i=1 ∈ ΘC , we have

a convex program with subsampled arrangement patterns D̃1, D̃2, · · · D̃m ∈ {Di}Pi=1,

min
ui,vi∈K̃i

L
( m∑

i=1

D̃iX(ui − vi), y
)
+ β

( m∑
i=1

∥ui∥2 + ∥vi∥2
)
,

and a solution mapping

(wi, αi) =

{
(ui/

√
∥ui∥2,

√
∥ui∥2) if ui ̸= 0,

(vi/
√

∥vi∥2, −
√

∥vi∥2) if vi ̸= 0.

Hence, the set of first-layer directions of Clarke stationary points is contained in the set of optimal
directions of the subsampled convex program. As there are only finitely many subsampled convex
programs, and each convex program has a unique set of fixed optimal directions, we know that the
set

m⋃
j=1

{ wj

∥wj∥2
| (wi, αi)

m
i=1 ∈ ΘC , wj ̸= 0

}
,

is a finite set. Furthermore, applying Theorem 1 to the subsampled convex program leads to the
wanted result.
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D PROOFS IN SECTION 3.2

In this section we prove Theorem 2, using the cardinality-constrained optimal polytope P∗(m)
defined in equation 7. One thing to have in mind is that we are not trying to prove that P∗(m) and
Θ∗(m), the optimal set of the original problem in equation 3 with width m, are homeomorphic.
Rather, we will argue that certain mappings enable us to link the connectivity behavior between
P∗(m) and Θ∗(m) to arrive at Theorem 2.

We first start by defining some relevant concepts. As a starting point, we define the cardinality of a
solution.
Definition D.1. The cardinality of a solution (ui, vi)

P
i=1 ∈ P∗ is defined as

card((ui, vi)
P
i=1) =

P∑
i=1

1(ui ̸= 0) + 1(vi ̸= 0).

We introduce the cardinality-constrained optimal polytope again.
Definition D.2. The cardinality constrained optimal polytope P∗(m) is defined as the set

P∗(m) :=
{
(ui, vi)

P
i=1 | (ui, vi)

P
i=1 ∈ P∗, card((ui, vi)

P
i=1) ≤ m

}
⊆ R2dP . (14)

One remark is that the largest possible cardinality of P∗ may be huge: in worst case, it could be that
the largest cardinality is in a scale of P , which is the number of all possible arrangement patterns.
In general, the number of arrangement patterns are O(nd), hence P∗(m) consists of a very small
portion of P∗.

The next concept we introduce is the notion of irreducible solutions. This set can be understood as
a set of minimal networks discussed in Mishkin & Pilanci (2023), and is used to define the critical
widths of the staircase.
Definition D.3. The irreducible solution set is defined as the set

P∗
irr =

{
(ui, vi)

P
i=1 | (ui, vi)

P
i=1 ∈ P∗, {DiXui}ui ̸=0 ∪ {DiXvi}vi ̸=0 linearly independent

}
.

(15)

One intuition of the irreducible solution set is that it is the set of “smallest solutions Mishkin &
Pilanci (2023)”: if the set {DiXui}ui ̸=0∪{DiXvi}vi ̸=0 is linearly dependent we can find a strictly
smaller conic combination using the vectors from {DiXui}ui ̸=0 ∪ {−DiXvi}vi ̸=0. The set P∗

irr
can be understood as a collection of solutions obtained from repeating this “pruning step” - a step
that finds smaller solutions using linear dependence. A more rigorous definition of pruning is the
following. Note that the existence of m with a nonzero solution in Θ∗(m) implies P∗

irr ̸= ∅, which
is equivalent to having a nonzero element in P∗. We assume the nontrivial case where P∗ has a
nonzero element from now on.
Proposition D.1. The following three statements are equivalent:

i) There exists m that satisfies (wi, αi)
m
i=1 ̸= 0 ∈ Θ∗(m)

ii) There exists (ui, vi)
P
i=1 ̸= 0 ∈ P∗

iii) P∗
irr ̸= ∅

Proof. i) ⇒ ii): First assume m ≥ 2P . Consider Φ((wi, αi)
m
i=1) = (ui, vi)

P
i=1, where Φ is de-

fined in Definition D.8. We know that (ui, vi)
P
i=1 is not a solution of zeros, as if it were the

case,
∑m

i=1(Xwi)+αi = 0 and (0, 0)mi=1 would have a strictly smaller objective, contradicting
(wi, αi)

m
i=1 ∈ Θ∗(m). Now when we write the optimal value of the nonconvex objective in Equa-

tion (3) with p∗m, and the optimal value of the convex objective in Equation (4) with p∗, p∗m ≤ p∗.
Also, when we write L as the convex objective, we know that L((ui, vi)

P
i=1) = p∗m ≥ p∗. Hence

we have found a nonzero (ui, vi)
P
i=1 that has objective value p∗, which means there is a point in P∗

which is nonzero.
Now let m < 2P . Assume P∗ = {(0, 0)Pi=1}. We know that p∗ ≤ p∗m, and p∗ = 1

2∥y∥
2
2, hence

1
2∥y∥

2
2 ≤ p∗m. On the other hand, the value 1

2∥y∥
2
2 is achievable by setting (0, 0)mi=1 - which means

p∗m = p∗. With the same logic, Φ((wi, αi)
m
i=1) is not a solution of zeros and its objective value

22



Published as a conference paper at ICLR 2025

is same as p∗m which is p∗ - leading to a contradiction that P∗ = {(0, 0)Pi=1} since (ui, vi)
P
i=1 is

nonzero and in P∗.
ii) ⇒ iii): We use the pruning step in Definition D.4 to find an element in P∗

irr. Note that the prun-
ing step does not end with 0, as (ui, vi)

P
i=1 is not zero and the pruning step should not decrease the

objective.
iii) ⇒ ii): As P∗

irr ̸= ∅, there is a nonzero solution nz ∈ P∗
irr. As P∗

irr ⊆ P∗, we know the
existence of a nonzero solution in P∗.
ii) ⇒ i): Set m = 2P and consider Ψ((ui, vi)

P
i=1), where Ψ is defined in Definition D.7.

Definition D.4. (Mishkin & Pilanci (2023)) Pruning a solution (ui, vi)
P
i=1 ∈ P∗ means repeating:

1. Finding a nontrivial linear combination∑
ui ̸=0

ciDiXui +
∑
vi ̸=0

diDiXvi = 0,

and without loss of generality assume d1 > 0.
2. Constructing a solution with strictly less cardinality (u′

i, v
′
i)

P
i=1 = ((1 + cit)ui, (1− dit)vi)

P
i=1,

where t = min{minci<0 − 1
ci
,mindi>0

1
di
}, and ci, di are defined to be the coefficients defined in 1

when ui, vi ̸= 0 and 0 otherwise.
until the set {DiXui}ui ̸=0 ∪ {DiXvi}vi ̸=0 is linearly independent.

The notion of minimality gives a discrete structure in P∗
irr, hence the phase transitional behavior

follows. The two critical widths of interest are the minimum / maximum cardinality of P∗
irr. We

denote

m∗ := min
(ui,vi)Pi=1∈P∗

irr

card((ui, vi)
P
i=1), M∗ := max

(ui,vi)Pi=1∈P∗
irr

card((ui, vi)
P
i=1).

Remark D.1. These widths can be found computationally by the following scheme: for t = 1 to n,
choose t vectors from the set {DiXūi}Pi=1∪{DiXv̄i}Pi=1, where ūi, v̄i are optimal directions defined
in Theorem 1. Check if they are linearly independent and can express y∗ as the conic combination
of the t vectors. The first value of t that meets both criteria becomes m∗, and M∗ will be updated
each time t meets both criteria until t becomes n.

The two specific discontinuity results we can achieve are the following:
Proposition D.2. P∗(m∗) is a finite set.

Proof. Consider two points (ui, vi)
P
i=1, (u

′
i, v

′
i)

P
i=1 ∈ P∗(m∗). Suppose the two points have the

same support, i.e. ui ̸= 0 ⇔ u′
i ̸= 0 and vi ̸= 0 ⇔ v′i ̸= 0 for i ∈ [P ]. We know that as

P∗(m∗) ⊆ P∗,
P∑
i=1

DiX(ui − vi) = y∗ =

P∑
i=1

DiX(u′
i − v′i).

Now, let’s write the indices {i|ui ̸= 0} = {a1, a2, · · · at}, {i|vi ̸= 0} = {b1, b2, · · · bs}. We have
that t+ s ≤ m∗ as (ui, vi)

P
i=1 ∈ P∗(m∗). From Theorem 1, we know the existence of cai , c

′
ai

≥ 0
for i ∈ [t] and dbi , d

′
bi
≥ 0 for i ∈ [s] that satisfies

uai
= cai

ūai
, u′

ai
= c′ai

ūai
, ∀i ∈ [t],

vbi = dbi v̄bi , v
′
bi = d′bi v̄bi , ∀i ∈ [s].

This means that
t∑

i=1

caiDaiXūai −
s∑

i=1

dbiDbiXv̄bi =

t∑
i=1

c′ai
DaiXūai −

s∑
i=1

d′biDbiXv̄bi = y∗,

and as cai
, dbi s are not all the same, we have that the set

{DaiXūai}ti=1 ∪ {DbiXv̄bi}si=1

is linearly dependent. Now we apply pruning defined in Definition D.4 to find an irreducible solution
with cardinality strictly less than t+s = m∗, which is a contradiction to the minimality of m∗. This
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implies that two different points in P∗(m∗) cannot have identical support, and the number of points
in the set is upper bounded with the number of possible support, which is finite. More specifically,

|P∗(m∗)| ≤
m∗∑
j=1

(
2P

j

)
.

Proposition D.3. P∗(M∗) has an isolated point, i.e. it has a point p ∈ P∗(M∗) that has no path
in P∗(M∗) from p to a different point p′.

Proof. Take the maximal-cardinality solution from (u◦
i , v

◦
i )

P
i=1 ∈ P∗

irr, namely the solution

(u◦
i , v

◦
i )

P
i=1 ∈ P∗, {DiXu◦

i }u◦
i ̸=0 ∪ {DiXv◦i }v◦

i ̸=0 linearly independent,

and card((u◦
i , v

◦
i )

P
i=1) = M∗. Assume the existence of a continuous function f : [0, 1] → P∗(M∗)

satisfying
f(0) = (u◦

i , v
◦
i )

P
i=1, f(1) = (u′

i, v
′
i)

P
i=1, f(0) ̸= f(1).

Now, write f(t) = (ui(t), vi(t))
P
i=1 and define

ci(t) =

{
0 if ūi = 0

∥ui(t)∥2 otherwise,

di(t) =

{
0 if v̄i = 0

∥vi(t)∥2 otherwise,

For definition of ūi, v̄i, see Theorem 1. Some things to notice are:
i) The functions ci(t), di(t) : [0, 1] → R are continuous.
ii) f(t) = (ci(t)ūi, di(t)v̄i)

P
i=1. This holds because if ūi ̸= 0, ∥ūi∥2 = 1, and same for v̄i.

iii)
∑P

i=1 1(ci(t) ̸= 0) + 1(di(t) ̸= 0) ≤ M∗, and
∑P

i=1 1(ci(0) ̸= 0) + 1(di(0) ̸= 0) = M∗. The
former holds because f is a path in P∗(M∗), and the latter holds because (u◦

i , v
◦
i )

P
i=1 has cardinality

M∗.
iv) We know that there exists t′ ∈ [0, 1] that satisfies (ci(t

′), di(t
′))Pi=1 ̸= (ci(0), di(0))

P
i=1. It is

because f(0) ̸= f(1).
Based on the observations, let’s prove that if there exists such f , the set {DiXu◦

i }u◦
i ̸=0 ∪

{DiXv◦i }v◦
i ̸=0 is linearly dependent. Thus we will arrive at a contradiction and will be able to

show that there is no such f , and (u◦
i , v

◦
i )

P
i=1 is isolated.

Let’s define t1 as

t1 = inf
t≥0

{
t |

P∑
i=1

(ci(0)− ci(t))
2 + (di(0)− di(t))

2 > 0

}
.

In other words, t1 is the instant where f(0) ̸= f(t). From observation iv), we know that t1 ∈ [0, 1].
Another fact that we can deduce is that

P∑
i=1

(ci(0)− ci(t1))
2 + (di(0)− di(t1))

2 = 0. (16)

The reason is because if
∑P

i=1(ci(0) − ci(t1))
2 + (di(0) − di(t1))

2 > 0, we can find some ϵ

that will make
∑P

i=1(ci(0) − ci(t1 − ϵ))2 + (di(0) − di(t1 − ϵ))2 > 0 because of continuity,
which is a contradiction that t1 is the infremum (because we have found a smaller t that makes∑P

i=1(ci(0)− ci(t))
2 + (di(0)− di(t))

2 > 0). Hence, for t ∈ [0, t1],
P∑
i=1

(ci(0)− ci(t))
2 + (di(0)− di(t))

2 = 0.

At last, we know that for any ϵ > 0, there exists tϵ ∈ (t1, t1 + ϵ) that satisfies
P∑
i=1

(ci(0)− ci(tϵ))
2 + (di(0)− di(tϵ))

2 > 0. (17)
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If there is no t ∈ (t1, t1 + ϵ) that satisfies
∑P

i=1(ci(0) − ci(t))
2 + (di(0) − di(t))

2 > 0 for some
ϵ > 0, it means that for all t ∈ [0, t1 + ϵ2],

∑P
i=1(ci(0)− ci(t))

2 +(di(0)− di(t))
2 = 0: hence, the

infremum should be strictly larger than t1, which is a contradiction.

Now let’s prove the claim that if there exists such f , the set {DiXu◦
i }u◦

i ̸=0 ∪ {DiXv◦i }v◦
i ̸=0 is

linearly dependent. From equation 16, we know that

ci(0) = ci(t1), di(0) = di(t1) ∀i ∈ [P ].

Take ϵ0 > 0 sufficiently small so that for all i ∈ [P ] that satisfies ci(0) > 0, ci(t) > 0 for all
t ∈ [t1−ϵ0, t1+ϵ0], and for all i ∈ [P ] that satisfies di(0) > 0, di(t) > 0 for all t ∈ [t1−ϵ0, t1+ϵ0].
Such ϵ0 exists due to the continuity of ci, di. Due to the definition, we know that

M∗ =

P∑
i=1

1(ci(0) ̸= 0) + 1(di(0) ̸= 0) ≤
P∑
i=1

1(ci(t) ̸= 0) + 1(di(t) ̸= 0) ≤ M∗,

(see observation iii) if any confusion exists), for all t ∈ [t1 − ϵ0, t1 + ϵ0], and
P∑
i=1

1(ci(t) ̸= 0) + 1(di(t) ̸= 0) = M∗, ∀t ∈ [t1 − ϵ0, t1 + ϵ0].

This means that for all t ∈ [t1 − ϵ0, t1 + ϵ0], we know that ci(0) > 0 ⇔ ci(t) > 0 and di(0) > 0 ⇔
di(t) > 0. For that ϵ0, we can find tϵ0 that was defined in equation 17. As tϵ0 satisfies

P∑
i=1

(ci(0)− ci(tϵ0))
2 + (di(0)− di(tϵ0))

2 > 0,

(ci(0), di(0))
P
i=1 ̸= (ci(tϵ0), di(tϵ0))

P
i=1. Also, ci(0) > 0 ⇔ ci(tϵ0) > 0 and di(0) >

0 ⇔ di(tϵ0) > 0. Now we have found two different solutions (ci(0)ūi, di(0)v̄i)
P
i=1,

(ci(tϵ0)ūi, di(tϵ0)v̄i)
P
i=1 ∈ P∗(M∗), which means that

P∑
i=1

ci(0)DiXūi − di(0)DiXv̄i = y∗ =

P∑
i=1

ci(tϵ0)DiXūi − di(tϵ0)DiXv̄i. (18)

As (ci(0), di(0))Pi=1 ̸= (ci(tϵ0), di(tϵ0))
P
i=1 and ci(0) > 0 ⇔ ci(tϵ0) > 0, di(0) > 0 ⇔ di(tϵ0) >

0, we can see that equation 18 is two different linear combinations of the set {DiXu◦
i }u◦

i ̸=0 ∪
{DiXv◦i }v◦

i ̸=0 - hence the set {DiXu◦
i }u◦

i ̸=0 ∪ {DiXv◦i }v◦
i ̸=0 is linearly dependent.

As we claimed, we have arrived at a contradiction assuming a continuous path from (u◦
i , v

◦
i )

P
i=1.

Hence the point is isolated.

Next, we pay attention to the connectivity results of P∗(m). Our starting point will be noticing that
for any (ui, vi)

P
i=1 ∈ P∗ which is not in P∗

irr, the pruning mechanism defined in Definition D.4
gives a continuous path into P∗

irr. This means that if we can connect two points in P∗
irr ∩ P∗(m)

with a continuous path in P∗(m), the set P∗(m) is connected.
Proposition D.4. Consider (ui, vi)

P
i=1 ∈ P∗ −P∗

irr. Let m = card((ui, vi)
P
i=1). Then, there exists

a continuous path in P∗(m) that starts with (ui, vi)
P
i=1 and ends with a different point (u′

i, v
′
i)

P
i=1 ∈

P∗(m) ∩ P∗
irr.

Proof. We will find such path by pruning the solution as in Definition D.4. For each iteration of
the pruning step, the starting solution and the ending solution is connected by a continuous path.
As we iterate, we concatenate each continuous path, hence the resulting path should be continuous.
The next thing we have to check is that the path is contained in P∗(m). We can see this due to the
fact that in each pruning iteration, the cardinality of the solution does not increase, and the initial
cardinality of the solution is m. At last, when pruning ends we arrive at a irreducible solution,
meaning the final solution we get from pruning is in P∗(m) ∩ P∗

irr.

We have two different strategies to prove the connectedness of P∗(m). One is directly interpolating
the two solutions in P∗

irr, and increasing m to guarantee the validity of such interpolation. From
this, we obtain one critical width m∗ +M∗.
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Proposition D.5. The set P∗(m∗ +M∗) is connected.

Proof. We first prove that two points A,B ∈ P∗(m∗+M∗)∩P∗
irr are connected with a continuous

path in P∗(m∗ +M∗).
Take two points A ̸= B ∈ P∗(m∗ +M∗) ∩ P∗

irr. One observation that we can make is that A has
a continuous path in P∗(m∗ +M∗) to a certain solution Am ∈ P∗

irr that satisfies card(Am) = m∗.
The construction of such a path is simple: interpolate A and Am, i.e. f(t) = (1 − t)A + tAm. As
we know

card((1− t)A+ tAm) ≤ card(A) + card(Am) ≤ M∗ +m∗,

the path has cardinality ≤ m∗ + M∗. The last inequality follows from the fact that A ∈ P∗
irr

and card(A) ≤ M∗. Due to the polytope characterization, P∗ is convex, and the path is in P∗.
Combining these two, we know the existence of a path from A to Am in P∗(m∗ +M∗).
Similarly, we know the existence of a path from B to Bm in P∗(m∗ + M∗). At last, we know
the existence of a path from Am to Bm, again by interpolating these two. Concluding, for any two
A,B ∈ P∗(m∗ +M∗) ∩ P∗

irr, there exists a continuous path in P∗(m∗ +M∗).
Now, take any two points A′, B′ ∈ P∗(m∗ +M∗). From Proposition D.4, there exists a continuous
path in P∗(m∗+M∗) that starts from A′ to a certain Airr ∈ P∗(m∗+M∗)∩P∗

irr, and similarly there
exists a path from B′ to Birr. At last, there is a continuous path from Airr to Birr in P∗(m∗+M∗).
Connect all paths to find a continuous path from A′ to B′ in P∗(m∗ +M∗).

Another strategy is more involved, which is not directly interpolating two solutions A,B in P∗
irr,

but repeatedly interpolating A with parts of B until the two are connected with a path. We start with
a particular lemma.

Lemma D.1. Suppose we have two linearly independent sets A = {a1, a2, · · · am}, B =
{b1, b2, · · · bk} ⊆ Rn and a given subset I = {ai1 , ai2 , · · · ait} ⊂ A. Also,

m∑
i=1

λiai =

k∑
i=1

µibi,

for some λ ∈ Rm that satisfies
∑t

j=1 λij > 0, and µ ∈ Rk that satisfies µ > 0. Then, there exists a
vector µ∗ ∈ Rk that satisfies the following three properties:
1) ∥µ∗∥0 ≤ n−m+ 1.
2) µ∗ ≥ 0.
3)
∑k

i=1 µ
∗
i bi ∈ span({a1, a2, · · · am}) and when we express

k∑
i=1

µ∗
i bi =

m∑
i=1

δiai,

t∑
j=1

δij > 0.

Proof. If k ≤ n−m+ 1 there is nothing to prove. Assume k > n−m+ 1. Showing the existence
of a vector µ̃ that satisfies ∥µ̃∥0 < ∥µ∥0, µ̃ ≥ 0 and

k∑
i=1

µ̃ibi ∈ span({a1, a2, · · · am}),
k∑

i=1

µ̃ibi =

m∑
i=1

δiai and

t∑
j=1

δij > 0,

is enough to prove our proposed claim. That is because if the existence of such µ̃ is proved, we can
apply the existence result again to A = {a1, a2, · · · , am} and B̃ = {bi|i ∈ [k], µ̃i ̸= 0} with the
same I. The premises are all satisfied: from the definition of µ̃ we know that

∑
i∈[k],µ̃i ̸=0

µ̃ibi =

m∑
i=1

δiai,

t∑
j=1

δij > 0,
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and µ̃i > 0 if µ̃i ̸= 0. Moreover, |B̃| < |B|. This means if we prove the existence of such µ̃ and
iteratively apply the existence result as stated above, we will arrive at a set B◦ ⊆ B that satisfies

|B◦| ≤ n−m+1,
∑

bi∈B◦

µ◦
i bi =

m∑
i=1

δ◦i ai,

t∑
j=1

δ◦ij > 0, µ◦
i > 0 if bi ∈ B◦, 0 otherwise.

The reason why |B◦| ≤ n −m + 1 is that if |B◦| > n −m + 1, we can find a subset of B◦ with
strictly less cardinality with the same property, hence it is not the terminal set. For that set, choosing
µ◦ = µ∗ gives the wanted vector.

Now we show the existence of such µ̃ when k > n −m + 1. We first extend {a1, a2, · · · am} to a
basis of Rn, and note it as {a1, a2, · · · an}. Express each bi s as

bi =

n∑
j=1

γijaj .

where i ∈ [k]. Now, write Γ ∈ Rn×k as Γij = γji. What we know is the relation

Γµ =

[
λ

0n−m

]
,

which is simply the coordinate representation of
∑k

i=1 µibi. Now we know the set

{µ ∈ Rk | 1TΓ[i1, i2, · · · it]µ = 0,Γ[m+ 1]Tµ = 0, · · ·Γ[n]Tµ = 0}

has dimension at least k − n + m − 1, as each linear constraint decreases the dimension at most
1. Here Γ[p1, p2, · · · pr] ∈ Rr×k denotes the concatenation of r rows of Γ, Γ[p1] to Γ[pr]. As
k − n+m− 1 > 0, there exists a nonzero µ′ that satisfies

Γµ′ =

[
λ′

0n−m

]
,

t∑
j=1

λ′
ij = 0.

For that µ′, consider µ+ϵµ′ and either increase or decrease ϵ until the cardinality of µ decreases. As
µ > 0, we can always find such ϵ that satisfies ∥µ+ ϵµ′∥0 < ∥µ∥0. As we stop when the cardinality
changes, µ+ ϵµ′ ≥ 0 should also hold. At last, we know that

Γ(µ+ ϵµ′) =

[
λ+ ϵλ′

0n−m

]
,

and as
∑t

j=1 λ
′
ij

= 0,
∑t

j=1(λiJ + ϵλ′
ij
) > 0. As the values of Γµ directly correspond to the

coordinate representation of {a1, a2, · · · an}, we know that µ + ϵµ′ is the µ̃ that we were looking
for. This finishes the proof.

The necessary width in this case is n+ 1, and we obtain the following result.
Theorem D.1. The set P∗(n+ 1) is connected.

Proof. Similar to the proof of Proposition D.5, we show that for any two A,B ∈ P∗(n+1)∩P∗
irr,

they are connected with a continuous path in P∗(n+ 1). The rest will directly follow.
First, let’s write A = (ui, vi)

P
i=1, B = (u′

i, v
′
i)

P
i=1. Also, let’s write

A = {DiXūi}ui ̸=0 ∪ {−DiXv̄i}vi ̸=0, B = {DiXūi}u′
i ̸=0 ∪ {−DiXv̄i}v′

i ̸=0,

and note them as A = {a1, a2, · · · am} ⊆ Rn, B = {b1, b2, · · · bk} ⊆ Rn. At last, λ1, λ2, · · ·λm,
µ1, µ2, · · ·µk are unique nonnegative numbers that satisfy

m∑
i=1

λiai =

k∑
i=1

µibi = y∗.

The uniqueness follows from the fact that A,B ∈ P∗(n + 1) ∩ P∗
irr, and the nonnegativeness

follows from the optimal polytope characterization in Theorem 1. Furthermore, note that λp > 0 for
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all p ∈ [m], µq > 0 for all q ∈ [k]. For example, if ap = DiXūi for some ui ̸= 0, λp = ∥ui∥2 > 0.
The rest is similar.
Our main proof strategy will be finding k + m continuous functions F1, F2, · · ·Fm, G1, G2, · · · ,
Gk : [0, 1] → R that satisfies:
Property 1) Fi(0) = λi, Fi(1) = 0, Fi(t) ≥ 0 ∀i ∈ [m], t ∈ [0.1].
Property 2) Gj(0) = 0, Gj(1) = µj , Gj(t) ≥ 0 ∀j ∈ [k], t ∈ [0.1].
Property 3)

m∑
i=1

Fi(t)ai +

k∑
j=1

Gj(t)bj = y∗ ∀t ∈ [0, 1].

Property 4)
m∑
i=1

1(Fi(t) > 0) +

k∑
j=1

1(Gj(t) > 0) ≤ n+ 1 ∀t ∈ [0, 1].

First, let’s see that if we find such continuous functions that satisfy Property 1) to Property 4), we
can construct a path from A to B in P∗(n+ 1). The specific path we construct is: (ui(t), vi(t))

P
i=1

given as

ui(t) =


(Fp(t) +Gq(t))ūi if ap = bq = DiXūi

Fp(t)ūi if ap = DiXūi, ∄ q ∈ [k] such that bq = DiXūi.

Gq(t)ūi if bq = DiXūi, ∄ p ∈ [m] such that ap = DiXūi

0 otherwise.

vi(t) =


(Fp(t) +Gq(t))v̄i if ap = bq = −DiXv̄i
Fp(t)v̄i if ap = −DiXv̄i, ∄ q ∈ [k] such that bq = −DiXv̄i.

Gq(t)v̄i if bq = −DiXv̄i, ∄ q ∈ [m]such that ap = −DiXv̄i
0 otherwise.

Let’s check that (ui(t), vi(t))
P
i=1 is a path from A to B in P∗(n+ 1). As Fi(1) = 0 for all i ∈ [m],

Gj(0) = 0 for all j ∈ [k], we can see that (ui(0), vi(0))
P
i=1 = A, (ui(1), vi(1))

P
i=1 = B. Also, we

can see that it is a curve in P∗: all ui(t), vi(t) are nonnegative multiples of ūi, v̄i, and we know that

P∑
i=1

DiX(ui(t)− vi(t)) =

m∑
i=1

Fi(t)ai +

k∑
j=1

Gj(t)bj = y∗.

Moreover, the cardinality of (ui(t), vi(t))
P
i=1 bounded with

card((ui(t), vi(t))
P
i=1) ≤

m∑
i=1

1(Fi(t) > 0) +

k∑
j=1

1(Gj(t) > 0) ≤ n+ 1

hence the proposed path becomes a continuous path in P∗(n+ 1).
Now, we describe how we find such m+ k continuous functions. We do:
Step 0) Initialize C = A, fi(0) = λi, gi(0) = 0.
Step 1) While T = 0, 1, · · · , repeat:

• If C ⊆ B, break.

• (Facts that hold from the previous iteration) Let’s write C = {ai1 , ai2 , · · · air} ∪
{bj1 , bj2 , · · · bjs}. We inductively have:
1) C is a linearly independent set.
2) fi(T ) ≥ 0 ∀i ∈ [m], gj(T ) ≥ 0 ∀j ∈ [k].
3) fi(T ) > 0 ⇔ i ∈ {i1, i2, · · · ir}, gj(T ) > 0 ⇔ j ∈ {j1, j2, · · · js}.
4)

r∑
w=1

fiw(T )aiw +

s∑
w=1

gjw(T )bjw = y∗.
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• (Applying Lemma D.1) We also know that
∑k

w=1 µwbw = y∗ and µw > 0 ∀w ∈ [k].
Now we check the conditions to apply Lemma D.1 with A := C, B := B, given subset
{ai1 , ai2 , · · · , air} ⊆ A. Then we know that C, B are linearly independent,

r∑
w=1

fiw(T )aiw +

s∑
w=1

gjw(T )bjw =

k∑
w=1

µwbw = y∗,

and
∑r

w=1 fiw(T ) > 0, µw > 0 for all w ∈ [k]. Thus all conditions for Lemma D.1 are
met, and we can find λ̃iw for w ∈ [r], µ̃jw for w ∈ [s], µ∗ that satisfies

∥µ∗∥0 ≤ n+1− r− s, µ∗ ≥ 0,

r∑
w=1

λ̃iwaiw +

s∑
w=1

µ̃jwbjw =

k∑
w=1

µ∗
wbw,

r∑
w=1

λ̃iw > 0.

• (Update 1) Now we update the values of fi, gj as the following:

fi(t) =

{
fi(T ) = 0 if i /∈ {i1, i2, · · · ir}
fi(T )− αλ̃i(t− T ) if i ∈ {i1, i2, · · · ir},

t ∈ [T, T + 1/2],

gi(t) =

{
gi(T ) + αµ∗

i (t− T ) = αµ∗
i (t− T ) if i /∈ {j1, j2, · · · js}

gi(T ) + αµ∗
i (t− T )− αµ̃i(t− T ) if i ∈ {j1, j2, · · · js},

t ∈ [T, T+1/2].

Here, α = 2min{minλ̃iw>0 fiw(T )/λ̃iw ,minµ̃jw>µ∗
jw

gjw(T )/(µ̃jw − µ∗
jw
)} > 0.

Update C so that fi(T + 1/2) > 0 ⇔ ai ∈ C, gi(T + 1/2) > 0 ⇔ bi ∈ C.

• (Update 2: Pruning) After this, we initialize r = 0, si(0) = fi(T + 1/2), i ∈ [m], zj(0) =
gj(T + 1/2), j ∈ [k] and repeat:
(Check) If C is linearly independent, break
(Update) Say C = {ar1, ar2, · · · arx} ∪ {bs1, bs2, · · · bsy}. Find a nontrivial linear combi-
nation

x∑
w=1

ηwarw +

y∑
w=1

η′wbsw = 0,

and without loss of generality suppose
∑x

w=1 ηw ≥ 0. If
∑x

w=1 ηw = 0, choose η′w to find
at least one η′w > 0 for w ∈ [y]. Then, write

srw(r + t) = srw(r)− αηwt, zsw(r + t) = zsw(r)− αη′wt

for t ∈ [0, 1]. Here α = min{minηw>0 srw(r)/ηw,minη′
w>0 zrw(r)/η

′
w}.

At last, update C so that si(r + 1) > 0 ⇔ ai ∈ C, zi(r + 1) > 0 ⇔ bi ∈ C. Increase r by
1.

• (Construct fi, gj for t ∈ [T + 1/2, T + 1]) Concatente fi and si, gj and zj for all i ∈ [m],
j ∈ [k].

Step 2) Let the termination time be T ∗. To obtain Fi, Gj : [0, 1] → R, simply write Fi(t) =
fi(T/T

∗), Gj(t) = gj(T/T
∗).

Let’s first verify that the facts that hold from the previous iteration. First, C is a linearly independent
set at the start of each iterate because of step (Update 2: Pruning), and the first fact holds. Also, fi, gj
are updated only in steps (Update1) and (Update 2: Pruning), and we can see that for all t ∈ [0, T ∗]
the function values are nonnegative. In update 1, we chose α sufficiently small and µ∗ ≥ 0. In
update 2, we also chose α sufficiently small. Hence, the second fact holds. At every update, we also
update C, and the third fact holds. At last, we add a nontrivial linear combination of A∪B that sums
up to 0 at each update, so the sum

m∑
i=1

fi(t)ai +

k∑
j=1

gj(t)bj ,

is preserved to be y∗, which means that the last fact follows.
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One important argument to make is that the algorithm actually terminates, i.e. T ∗ < ∞. The
iteration in the second update terminates eventually, because at each iteration the cardinality of C
decreases by 1. To see the larger loop terminating, observe that

m∑
i=1

fi(t)

is a strictly decreasing function for t ∈ N. This is because in (Update 1), as
∑r

w=1 λ̃iw > 0, the sum
decreases, and in (Update 2), the sum does not increase because we suppose

∑x
w=1 ηw ≥ 0. This

means that at each starting step of the algorithm, identical C cannot appear twice: as C is linearly
independent there exists a unique expression that gives

r∑
w=1

fiw(T )aiw +

s∑
w=1

gjw(T )bjw = y∗,

and if identical C appeared twice we will have the same value of
∑r

w=1 fiw(T ) =
∑m

i=1 fi(t),
which is contradicting the fact that

∑m
i=1 fi(t) strictly decreases.

Finally, let’s check that we have found the right Fi, Gjs. As the algorithm terminated, C ⊆ B, and
we know that Fi(1) = 0 for all i ∈ [m]. Also, as

k∑
j=1

Gj(1)bj = y∗,

and the set B is linearly independent, we know that Gj(1) = µj for all j ∈ [k]. As previously
mentioned, Property 3) is guaranteed as we are adding a nontrivial linear combination that sums
up to 0 at each update. To see that Property 4) is true, we see the value of

∑m
i=1 1(Fi(t) > 0) +∑k

j=1 1(Gj(t) > 0) for each update. In (Update 1), as ∥µ∗∥ ≤ n + 1 − t − s, the total cardinality
does not exceed n + 1. In (Update 2), the cardinality always decreases. Hence,

∑m
i=1 1(Fi(t) >

0) +
∑k

j=1 1(Gj(t) > 0) ≤ n + 1 for all t ∈ [0, 1], and we know that we have actually found the
wanted functions. This finishes the proof.

Recall that in Nguyen (2021), it is proved that the solution set is connected for m = n + 1 in the
unregularized case. The proof strategy of Nguyen (2021) is first creating a zero entry in the second
layer and changing the corresponding first layer weight arbitrarily. If the network is unregularized
this is possible because the change in the corresponding first layer weight where the second layer
weight is 0 will not change the model fit, hence the optimality. However, when we have regulariza-
tion, such transformation is not possible as the first and second layer weights are tied together. This
is why we need to use the characterization in Theorem 1 and Lemma D.1 to prove Theorem D.1.
Overall, our result is a nontrivial extension of Nguyen (2021) to regularized networks.

At last, from Proposition D.6, we know that P∗(m) is connected when m ≥ min{n+1,m∗+M∗}.

Proposition D.6. Suppose P∗(m′) is connected and m′ ≥ M∗. Then P∗(m) is connected for all
m ≥ m′.

Proof. Take two points A,B from P∗(m). We know that there exists a path from A to Airr, B to
Birr that satisfies Airr, Birr ∈ P∗(m)∩P∗

irr. Notice that as Airr, Birr ∈ P∗
irr, there cardinality is

at most M∗. Hence they are elements of P∗(m′), which finishes the proof as P∗(m′) is connected.

Now we connect the connectivity results of P∗(m) to that of Θ∗(m), the solution set of the original
problem in equation 3. The object Θ∗(m) we care about is precisely

Θ∗(m) :=

{
(wi, αi)

m
i=1 | min

(wi,αi)mi=1

L

(
m∑
i=1

(Xwi)+αi, y

)
+

β

2

m∑
i=1

(∥wi∥22 + |αi|2)

}
⊆ R(d+1)m,

We first define essential sets and mappings to do this.
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Definition D.5. (Minimal Optimal Neural Networks) We say a parameter (wj , αj)
m
j=1 is minimal

optimal if (wj , αj)
m
j=1 ∈ Θ∗(m) and αpαq > 0 implies 1(Xwp ≥ 0) ̸= 1(Xwq ≥ 0) for all

p ̸= q ∈ [m]. We denote the set of minimal optimal neural networks as Θ∗
min(m).

Adapting the proof from Wang et al. (2021b), we can show that for any point A ∈ Θ∗(m), there is
a continuous path from A to a point in Θ∗

min(m). The path is essentially merging the neurons with
same arrangement patterns and second layer sign.
Proposition D.7. Take any point A ∈ Θ∗(m). We have a continuous path from A to some point
Amin ∈ Θ∗

min(m) in Θ∗(m).

Proof. Write A = (wj , αj)
m
j=1. Assume we have (w1, α1) and (w2, α2) that satisfies α1α2 > 0 and

1(Xw1 ≥ 0) = 1(Xw2 ≥ 0). Let’s write sign(α1) = sign(α2) = s. Define the curve

C(t) = (
w1α1 + tw2α2√
∥w1α1 + tw2α2∥2

,
√
∥w1α1 + tw2α2∥2s)

⊕ (
√
1− t

w2α2√
∥w2α2∥2

,
√

(1− t)∥w2α2∥2s) ⊕ (wj , αj)
m
j=3,

where t ∈ [0, 1]. The intuition of this curve is merging two pair (w1, α1) and (w2, α2).
Let’s check some basic facts to see that this curve indeed merges the two pairs and is in Θ∗(m).
i) C(t) is well-defined. First, we know ∥w2α2∥2 ̸= 0, because α2 ̸= 0. Also, say w1α1 + (1 −
t)w2α2 = 0 for some t ∈ [0, 1]. Then we have DXw1α1 = −(1 − t)DXw2α2, where D =
diag(1(Xw1 ≥ 0)). As DXw1 and DXw2 is consisted of nonnegative entries and α1α2 > 0,
DXw1α1 = 0 must hold. This means w1 = α1 = 0 because A ∈ Θ∗(m) - which is again
contradiction because α1 ̸= 0. The well-definedness of C(t) implies that it is continuous, because
it is a composition of continuous functions.
ii) C(0) = A, C(1) = ( w1α1+w2α2√

∥w1α1+w2α2∥2

,
√

∥w1α1 + w2α2∥2s) ⊕ (0, 0) ⊕ (wj , αj)
m
j=3 from

direct substitution. Note that the value
∑m

i=1 1(αi ̸= 0) decreased by 1.
iii) C(t) is a curve in Θ∗(m). This is because the sum

∑m
i=1(Xwi)+αi is preserved through the

curve, and the regularization loss is less than that of A due to triangular inequality. In other words,
the loss L(C(t)) ≤ L(C(0)) for all t ∈ [0, 1], and as L(C(0)) is optimal, C(t) is a curve in Θ∗(m).

We repeat the merging process until there is no such pair. This process should terminate because
each merging decreases

∑m
i=1 1(αi ̸= 0) by 1. After we don’t have such pair, concatenate all the

curves that we have to find a curve in Θ∗(m). At the end of the path, we don’t have two (wi, αi),
(wj , αj) that satisfy αiαj > 0 and 1(Xwi ≥ 0) = 1(Xwj ≥ 0), hence it is in Θ∗

min(m).

Also, we define the notion of a canonical polytope. A canonical polytope is defined to break ties that
occur because two cones Ki and Kj may have nonempty intersections. For instance, say D1Xu1 =
D2Xu1 and u2 = 0 for some (ui, vi)

P
i=1 ∈ P∗. Then, swapping (u1, v1) and (u2, v2) will not

change the solution’s optimality. As we will see later on, we will want to erase such ambiguity,
hence we consider a canonical polytope.
Definition D.6. (Canonical Polytope) The canonical polytope is defined as

P∗
can =

{
(ui, vi)

P
i=1 | (ui, vi)

P
i=1 ∈ P∗, diag(1(Xui ≥ 0)) =Di if ui ̸= 0,

diag(1(Xvi ≥ 0)) = Di if vi ̸= 0
}
.

Remark D.2. diag(1(Xu ≥ 0)) = Di implies (2Di − I)Xu ≥ 0, but not the opposite. The
ambiguity happens because xj · u might be 0 for some rows.

Given the notion of the minimal optimal neural network and the canonical polytope, we define
two natural mappings Ψ : P∗(m) → Θ∗(m) and Φ : Θ∗(m) → P∗(m). These mappings have
been discussed multiple times in the literature Pilanci & Ergen (2020), Wang et al. (2021b), and we
introduce it again with slight variations for our needs.
Definition D.7. Suppose m ≥ m∗. We define Ψ : P∗(m) → Θ∗(m) as

Ψ((ui, vi)
P
i=1) := (

ui√
∥ui∥2

,
√

∥ui∥2)ui ̸=0⊕ (
vi√
∥vi∥2

,−
√

∥vi∥2)vi ̸=0⊕ (0, 0)m−card((ui,vi)
P
i=1),
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Definition D.8. Suppose m ≥ m∗. We define Φ : Θ∗(m) → P∗(m) as

Φ((wi, αi)
m
i=1) = (ui, vi)

P
i=1 :=

{
up =

∑
i∈I wi|αi| where I = {i | αi > 0, Dp = diag(1(Xwi ≥ 0))}

vq =
∑

i∈I wi|αi| where I = {i | αi < 0, Dq = diag(1(Xwi ≥ 0))}.

The mappings are indeed well-defined Proposition D.8.

Proposition D.8. Suppose m ≥ m∗. Ψ : P∗(m) → Θ∗(m) and Φ : Θ∗(m) → P∗(m) are well
defined.

Proof. By well-defined, we want to see that for all A ∈ P∗(m), Ψ(A) ∈ Θ∗(m) and has a unique
value, and similarly for Φ too.
From Definition D.7 and Definition D.8, it is not hard to see that the function value is uniquely
determined for each input. Also, from direct calculation, we can see that

L

 m∑
j=1

(Xwj)+αj , y

+
β

2

m∑
j=1

(
∥wj∥22 + α2

j

)
= L

(
P∑
i=1

DiX(ui − vi), y

)
+β

P∑
i=1

(∥ui∥2 + ∥vi∥2) ,

for both A = (ui, vi)
P
i=1 and Ψ(A) = (wj , αj)

m
j=1 and when A = (wj , αj)

m
j=1 and Φ(A) =

(ui, vi)
P
i=1. The former case is rather clear. To see the latter case, first observe that when we apply

the merging operation in Proposition D.7, the loss will strictly decrease if for two wi, wj with same
arrangement pattern weren’t parallel. So they are actually parallel, and for all i ∈ I such that
Dp = diag(1(Xwi ≥ 0)),

∥up∥2 =
∑
i∈I

∥wi∥2|αi| =
1

2

∑
i∈I

(∥wi∥22 + α2
i ),

because all wi are parallel for i ∈ I. The last equality follows from A ∈ Θ∗(m). As m ≥ m∗

the optimization problems in equation 3 and equation 4 have same optimal values, which means
Ψ(A) ∈ Θ∗(m) and Φ(A) ∈ P∗(m).

Moreover, we can see that the two mappings are similar to inverses of each other.

Proposition D.9. Take any A ∈ P∗
can ∩ P∗(m). Then, Φ(Ψ(A)) = A. Also, take any B =

(wj , αj)
m
j=1 ∈ Θ∗

min(m). Then, Ψ(Φ(B)) = (wσ(j), ασ(j))
m
j=1 a permutation of B.

Proof. We know

Ψ((ui, vi)
P
i=1) := (

ui√
∥ui∥2

,
√

∥ui∥2)ui ̸=0⊕ (
vi√
∥vi∥2

,−
√

∥vi∥2)vi ̸=0⊕ (0, 0)m−card((ui,vi)
P
i=1).

Write Φ(Ψ((ui, vi)
P
i=1)) = (u′

i, v
′
i)

P
i=1. Let s see that u′

i = ui for all i ∈ [P ]. The case of v will
follow similarly.
The first case is when ui = 0. Say there exists uj ̸= 0 and diag(1(Xuj ≥ 0)) = Di. As
(ui, vi)

P
i=1 ∈ P∗

can, diag(1(Xuj ≥ 0)) = Dj = Di, meaning i = j. This is a contradiction
because ui = 0. This means there is no uj ̸= 0 that is 1(Xuj ≥ 0) = Di, and there is no uj ̸= 0

that is diag(1(Xuj/
√
∥uj∥2 ≥ 0)) = Di, meaning u′

i = 0.
The next case is when ui ̸= 0. For uj ̸= 0 such that diag(1(Xuj ≥ 0)) = Di, the only possible j =
i. For that j, we know that diag(1(Xui/

√
∥ui∥2 ≥ 0)) = Di, and u′

i = ui/
√
∥ui∥2 ×

√
∥ui∥2 =

ui. This means u′
i = ui for all i ∈ [P ], same for v, meaning Φ(Ψ((ui, vi)

P
i=1)) = (ui, vi)

P
i=1.

Let’s see Ψ ◦ Φ. We know

Φ((wi, αi)
m
i=1) = (ui, vi)

P
i=1 :=

{
up = wi|αi| if αi > 0 and Dp = diag(1(Xwi ≥ 0)), 0 otherwise

vq = wi|αi| if αi < 0 and Dq = diag(1(Xwi ≥ 0)), 0 otherwise,

because (wi, αi)
m
i=1 is minimal. Let’s say

∑m
i=1 1(αi > 0) = mp,

∑m
i=1 1(αi = 0) = mz ,∑m

i=1 1(αi < 0) = mn. In {u1, u2, · · ·uP }, there will be mp nonzero vectors. Index them as
ua1

, ua2
, · · ·uamp

. For uai
, we can find ji ∈ [m] that satisfies uai

= wji |αji |. Furthermore,
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ji1 ̸= ji2 if i1 ̸= i2 because ji1 = ji2 means Dai1
= Dai2

and ai1 = ai2 , i1 = i2. Similarly, define
vb1 , vb2 , · · · vbmn

and vbi = wki |αki |. Then,

Ψ(Φ((wi, αi)
m
i=1)) =

(
wji |αji |√
wji |αji |

,
√
wji |αji |

)mp

i=1

⊕

(
wki |αki |√
wki |αki |

,−
√
wki

|αki
|

)mn

i=1

⊕ (0, 0)mz .

First, we know that ∥wj∥2 = |αj | for all j ∈ [m]. This leads to

Ψ(Φ((wi, αi)
m
i=1)) = (wji , |αji |)

mp

i=1 ⊕ (wki
,−|αki

|)mn

i=1 ⊕ (0, 0)mz .

As ji1 ̸= ji2 if i1 ̸= i2, the result is a permutation of (wi, αi)
m
i=1.

At last, for these mappings to be meaningful, we would want them to be continuous. Luckily, Φ is
continuous Proposition D.10.
Proposition D.10. The map Φ : Θ∗(m) → P∗(m) is continuous.

Proof. We consider the sequence (wk
j , α

k
j )

m
j=1 in Θ∗(m) that converges to (w∞

j , α∞
j )mj=1 ∈ Θ∗(m).

Let’s write

Φ((wk
j , α

k
j )

m
j=1) = (uk

i , v
k
i )

P
i=1, Φ((w∞

j , α∞
j )mj=1) = (u∞

i , v∞i )Pi=1.

We will show that uk
i → u∞

i . The rest will follow.
As a starting point, we define some necessary constants. We define Mj for j ∈ [m] that satisfy
w∞

j ̸= 0 as the following: if k ≥ Mj , 1(Xw∞
j ≥ 0) = 1(Xwk

j ≥ 0) and αk
jα

∞
j > 0. Such Mj

exists due to the following reasoning: we know that for any solution A ∈ Θ∗(m), there exists a
finite set of possible directions for wj , which are the directions of ūi, v̄i in P∗. As w∞

j ̸= 0 and
wk

j → w∞
j , for sufficiently large k so that ∥wk

j −w∞
j ∥2 is sufficiently small, w∞

j has to be a positive
scaling of wk

j . Also w∞
j ̸= 0 implies α∞

j ̸= 0, meaning for sufficiently large k, αk
jα

∞
j > 0 holds.

For j ∈ [m] that has w∞
j = 0, define Nj(ϵ) to be the number that satisfies k ≥ Nj(ϵ) implies

∥wk
jα

k
j ∥2 ≤ ϵ.

Now we prove that for sufficiently large k, ∥uk
i − u∞

i ∥2 ≤ ϵ for all i ∈ [P ]. For a certain i ∈ [P ],
suppose there exists {j1, j2, · · · jt} ⊆ [m] that satisfies Di = diag(1(Xw∞

j1
≥ 0)) = · · · =

diag(1(Xw∞
jt

≥ 0)) and α∞
j1
, · · · , α∞

jt
> 0 (hence w∞

j1
, · · · , w∞

jt
̸= 0). It is clear that u∞

i =∑t
i=1 w

∞
ji
α∞
ji

. When k ≥ max{maxw∞
j =0 Nj(ϵ/m),maxw∞

j ̸=0 Mj}, we know that 1(Xwk
ji

≥
0) = 1(Xw∞

ji
≥ 0) and αk

ji
> 0 for i ∈ [t]. Also, for some j ∈ [m] which is not in {j1, j2, · · · , jt}

and Di = diag(1(Xwk
j ≥ 0)), w∞

j = 0. Hence,

uk
i =

t∑
i=1

wk
jiα

k
ji +

∑
w∞

j =0,Di=diag(1(Xwk
j ≥0)),αk

j>0

wk
jα

k
j .

uk
i → u∞

i , as wk
ji

→ w∞
ji
, αk

ji
→ α∞

ji
for i ∈ [t] and the rest sum becomes smaller than ϵ, hence

converging to 0 as k → ∞.

Finally, let’s see the case where there is no j ∈ [m] that satisfies Di = diag(1(Xw∞
j ≥ 0)) and

α∞
j > 0. Here, u∞

i = 0. Now take k ≥ max{maxw∞
j =0 Nj(ϵ/m),maxw∞

j ̸=0 Mj}. One thing to
notice is for this k, if Di = diag(1(Xwk

j ≥ 0)) and αk
j > 0 for some j ∈ [m], w∞

j = 0. Suppose
w∞

j ̸= 0. As k ≥ Mj , we know that Di = diag(1(Xw∞
j ≥ 0)) and α∞

j > 0, which contradicts the
assumption that there is no such j. Hence, when we write

uk
i =

∑
w∞

j =0,Di=diag(1(Xwk
j ≥0)),αk

j>0

wk
jα

k
j ,

as k ≥ Nj(ϵ/m), ∥uk
i ∥2 ≤ ϵ. As u∞

i = 0, we have that uk
i → u∞

i . This finishes the proof.

However, Ψ may not be continuous. The intuition is that the solutions in the image of Ψ have zeros
at the end, whereas the limit of Ψ((ui, vi)

P
i=1) as ui → 0 may have zeros at the middle. Thus we

have a slightly weaker notion of continuity for Ψ Proposition D.11.
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Proposition D.11. Consider a continuous path (ui(t), vi(t))
P
i=1 in P∗(m), where ui(t), vi(t) :

[0, 1] → Rd is either a zero map or a map can only have zero when t = 1. Consider the path
ϕ(t) = Ψ((ui(t), vi(t))

P
i=1) in Θ∗(m). Then, ϕ(t) is continuous in [0, 1), and limt→1 ϕ(t) is a

permutation of ϕ(1).

Proof. Let’s write what ϕ(t) looks like. Write i1 < i2 < · · · ip the indices where ui(0) ̸= 0, and
write j1 < j2 < · · · < jq the indices where vi(0) ̸= 0. Denote the indices I,J . For t ∈ [0, 1), ϕ(t)
is

ϕ(t) =

(
ui(t)√
∥ui(t)∥2

,
√
∥ui(t)∥2

)
i∈I

⊕

(
vi(t)√
∥vi(t)∥2

,−
√

∥vi(t)∥2

)
i∈J

⊕ (0, 0)m−p−q.

As I,J is fixed for t ∈ [0, 1) and ui(t) ̸= 0 if ui(0) ̸= 0, vi(t) ̸= 0 if vi(0) ̸= 0, ϕ is continuous for
[0,1). When t = 1, limt→1 ϕ(t) may have zeros in the middle, whereas ϕ(1) has zeros at the end,
and the rest is the same. Hence, limt→1 ϕ(t) is a permutation of ϕ(1).

Given the machinery, we are ready to elaborate the results. We start with proving that if m is
sufficiently large, all permutations of a point A ∈ Θ∗(m) are connected. The proof strategy is
analogous to the proof in Simsek et al. (2021), where we create an empty slot to permute the weights.
Proposition D.12. Suppose m ≥ M∗ +1. Take any (wj , αj)

m
j=1 ∈ Θ∗(m). There exists a continu-

ous path from (wj , αj)
m
j=1 to an arbitrary permutation (wσ(j), ασ(j))

m
j=1.

Proof. Our proof will start from showing that for any A = (wj , αj)
m
j=1 ∈ Θ∗(m), we can find

a continuous path A′ = (w′
j , α

′
j)

m
j=1 ∈ Θ∗(m) that satisfies

∑m
j=1 1(α

′
j ̸= 0) < m. First, use

Proposition D.7 to find a continuous path from A to some Amin = (w◦
j , α

◦
j ) ∈ Θ∗

min(m). If∑m
j=1 1(α

◦
j ̸= 0) < m, we have found such path.

If not, let’s show that {(Xw◦
j )+}mj=1 is linearly dependent. As all α◦

j ̸= 0, all w◦
j ̸= 0. Now think

of Φ(Amin) = (ui, vi)
P
i=1. We can easily see that

{(Xw◦
j )+α

◦
j}mj=1 = {DiXui}ui ̸=0 ∪ {−DiXvi}vi ̸=0.

As the latter set has m > M∗ elements, it should be linearly dependent. If not, it is a contradiction to
the fact that the maximal cardinality of the element in P∗

irr is M∗. Hence, the set {(Xw◦
j )+α

◦
j}mj=1

is linearly dependent, and as all α◦
j is nonzero, the set {(Xw◦

j )+}mj=1 is linearly dependent.
Now consider a nontrivial linear combination,

m∑
i=1

ci(Xw◦
i )+ = 0.

Without loss of generality say α◦
1c1 < 0. Define

tm = min
α◦

i ci<0
−α◦

i

ci
,

and for t ∈ [0, tm] define

w̃i(t) = w◦
i

√
|α◦

i + tci|
∥w◦

i ∥2
, α̃i(t) =

√
∥w◦

i ∥2|α◦
i + tci| sign(α◦

i ).

From the definition of tm, sign(α◦
i + tci) = sign(α◦

i ) for t ∈ [0, tm]. Also,
m∑
i=1

(Xw̃i(t))+α̃i(t) =

m∑
i=1

(Xw◦
i )+(α

◦
i + tci) =

m∑
i=1

(Xw◦
i )+α

◦
i ,

and

1

2

m∑
i=1

∥w̃i(t)∥22 + |α̃i(t)|2 =

m∑
i=1

∥w̃i(t)∥2|α̃i(t)| =
m∑
i=1

∥w◦
i ∥2|α◦

i |+ ∥w◦
i ∥2tcisign(α◦

i ).
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At last, we know that for the dual optimum ν∗ defined in Theorem 1,

(ν∗)T (Xw◦
j )+ = −β∥w◦

j ∥2sign(α◦
j ),

for all j ∈ [m]. This is obtained by using the fact that Φ(Amin) ∈ P∗. Hence, if
∑m

i=1 ci(Xw◦
i )+ =

0, multiplying (ν∗)T on both sides leads
m∑
i=1

∥w◦
i ∥2tcisign(α◦

i ) = 0,

and
1

2

m∑
i=1

∥w̃i(t)∥22 + |α̃i(t)|2 =

m∑
i=1

∥w◦
i ∥2|α◦

i | =
1

2

m∑
i=1

∥w◦
i ∥22 + |α◦

i |2.

Hence the objective is preserved throughout the curve, meaning the curve is in Θ∗(m). The cardi-
nality decreased by at least 1 at the end due to the definition of tm.
Now that we can find a continuous path from A to A′ = (w′

j , α
′
j)

m
j=1 ∈ Θ∗(m) where

∑m
j=1 1(α

′
j ̸=

0) < m, we will find a path from A′ to any permutation of A′, namely (w′
σ(j), α

′
σ(j))

m
j=1 for some

permutation σ : [m] → [m]. A simple path construction is as follows: we know that at least one
α′
i = 0. Let that i = m without loss of generality. Starting from i0 = 1, we do the following: if

w′
i0

= w′
σ(i0)

, we do nothing. If w′
i0

̸= w′
σ(i0)

, we first write

w′
i0(t) = w′

i0

√
1− t, αi0(t) = α′

i0

√
1− t, w′

m(t) = w′
i0

√
t, α′

m(t) = α′
i0

√
t,

for t ∈ [0, 1], which intuitively ’moves’ w′
i0

to the empty space wm and making w′
i0

= 0. Next we
move w′

σ(i0)
to w′

i with

w′
i0(t) = w′

σ(i0)

√
t, αi0(t) = α′

σ(i0)

√
t, w′

σ(i0)
(t) = w′

σ(i0)

√
1− t, α′

σ(i0)
(t) = α′

σ(i0)

√
1− t,

for t ∈ [0, 1], which intuitively ’moves’ w′
σ(i0)

to the empty space wi0 and making wσ(i0) = 0. At
last, we make wm empty by using

w′
σ(i0)

(t) = w′
i0

√
t, ασ(i0)(t) = α′

i0

√
t, w′

m(t) = w′
i0

√
1− t, α′

m(t) = α′
i0

√
1− t.

To wrap up, we may swap the element in (wi, αi) and (wσ(i), ασ(i)) by first moving wi to wm, then
moving wσ(i) to wi, and at last moving wm to wσ(i).
Until here we connected A = (wj , αj)

m
j=1 with A′, and then A′ with a permutation of A′. To connect

A with (wσ(j), ασ(j)), simply run the path A → A′ backwards to obtain (wσ(j), ασ(j))
m
j=1.

Proposition D.12 enables us to connect two different permutations. Even though Ψ is not essentially
continuous, the fact that two permutations are connected will allow us to construct paths in Θ∗(m)
from paths in P∗(m).
Proposition D.13. Suppose m ≥ M∗ + 1. If any two points A,B ∈ P∗(m) are connected with a
path with finite cardinality changes, Θ∗(m) is connected.

Proof. Take two points A,B ∈ Θ∗(m). First use Proposition D.7 to find path from A to Amin ∈
Θ∗

min(m) and B to Bmin ∈ Θ∗
min(m). Our main goal will be connecting Amin and Bmin by using

the path from Φ(Amin) to Φ(Bmin).
Consider the continuous path from Φ(Amin) to Φ(Bmin), namely f : [0, 1] → P∗(m) satisfying
f(0) = Φ(Amin), f(1) = Φ(Bmin). Write f(t) = (ui(t), vi(t))

P
i=1. Divide [0, 1] to times (t0 =

0, t1), (t1, t2) · · · (tk−1, tk = 1), where in each time interval either each ui, vi are either always zero
or always nonzero. We have finitely many such ti s because we assume that the cardinality change
is finite. From Proposition D.11, we can see that the path Ψ ◦ f(t) is continuous at each interval.
However, as we saw in Proposition D.11, Ψ ◦ f(ti), limt→t−i

Ψ ◦ f(t), limt→t+i
Ψ ◦ f(t) are all

permutations of each other.
We construct a path from Ψ ◦ f(0) to Ψ ◦ f(1) as following: First, for each p = 0, 1, · · · , k − 1,
construct a path from limt→t+p

Ψ ◦ f(t) to limt→t−p+1
Ψ ◦ f(t) by defining

g(t) =


limt→t+p

Ψ ◦ f(t) if t = tp

Ψ ◦ f(t) if t ∈ (tp, tp+1)

limt→t−p+1
Ψ ◦ f(t) if t = tp+1,
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for t ∈ [tp, tp+1]. It is clear that g is continuous. Moreover, we can connect each Ψ ◦ f(tp)
with limt→t+p

Ψ ◦ f(t) and limt→t−p
Ψ ◦ f(t), because from Proposition D.12, we know that when

m ≥ M∗ + 1, two permutations are connected in Θ∗(m), and from Proposition D.11, from this
construction, a one-sided limit is a permutation of the image. Hence, a connection from Ψ ◦ f(0) to
Ψ ◦ f(1) is possible, by connecting permutations at boundaries of each interval t0, t1, · · · , tk, and
moving with Ψ ◦ f inside the intervals.
Hence, Ψ ◦ Φ(Amin) and Ψ ◦ Φ(Bmin) are connected. From Proposition D.9, we know that Ψ ◦
Φ(Amin) is a permutation of Amin, and as m ≥ M∗ + 1 we know that they are connected. Same
holds for Ψ ◦ Φ(Bmin). This means that we have found a continuous path from Amin to Bmin. At
the beginning we connected A with Amin, B with Bmin, which finishes the proof.

For discontinuity, we use the property of isolated points A ∈ P∗
can ∩ P∗(m) with cardinality m.

Proposition D.14. Suppose m ≥ m∗. If A ∈ P∗(m) ∩ P∗
can is an isolated point in P∗(m) and has

card(A) = m, Ψ(A) is an isolated point in Θ∗(m).

Proof. Assume the existence of a continuous function f : [0, 1] → Θ∗(m) that satisfies Ψ(A) =
f(0), Φ ◦ f(1) ̸= A. Consider the path Φ ◦ f(t) in P∗(m). As A ∈ P∗(m) ∩ P∗

can, Φ(Ψ(A)) =
A ̸= Φ ◦ f(1), which is a contradiction that A is an isolated point in P∗(m). Hence, Ψ(A) does not
have a path into Θ∗(m)− Φ−1(A).
To finish the proof, we show that Φ−1(A) is finite. If Φ−1(A) is finite, we will not be able to move
from Ψ(A) to a point in Φ−1(A) − {Ψ(A)} only using points in Φ−1(A) − {Ψ(A)}, meaning we
do not have a path from Ψ(A) to Θ∗(m)− {Ψ(A)}, proving our claim.
Suppose Φ((wi, αi)

m
i=1) = A. If diag(1(Xwi ≥ 0)) = diag(1(Xwj ≥ 0)) = Dp for some αiαj >

0, the two indices i and j will either correspond to the same up or vp, and card(Φ((wi, αi)
m
i=1)) <

m, which is a contradiction. Hence, (wi, αi)
m
i=1 ∈ Θ∗

min(m). From Proposition D.9, we know that
Ψ(Φ((wi, αi)

m
i=1)) = Ψ(A) is a permutation of (wi, αi)

m
i=1. This means Φ−1(A) is contained in a

set of permutation of Ψ(A), which is finite.

Proposition D.13 and Proposition D.14 enables us to discuss connectivity of Θ∗(m) with the con-
nectivity of P∗(m). With the results that we obtained for P∗(m), more specifically Proposi-
tion D.2, Proposition D.3, Proposition D.5, Theorem D.1, and applying Proposition D.13 and Propo-
sition D.14 appropriately, we arrive at the staircase of connectivity defined in Theorem 2.

Theorem D.2. (Theorem 2 of the paper) (The staircase of connectivity) Denote the optimal solution
set of equation 3 in parameter space as Θ∗(m) ⊆ R(d+1)m. Suppose L is a strictly convex loss
function and there exists (wi, αi)

m
i=1 ̸= (0, 0)mi=1 ∈ Θ∗(m) for some m. Let m∗,M∗ be two critical

values defined in Theorem 2.
As m changes, we have that when

(i) m = m∗, Θ∗(m) is a finite set. Hence, for any two optimal points A ̸= A′ ∈ Θ∗(m), there is
no path from A to A′ inside Θ∗(m).

(ii) m ≥ m∗ + 1, there exists optimal points A,A′ ∈ Θ∗(m) and a path in Θ∗(m) connecting
them.

(iii) m = M∗, Θ∗(m) is not a connected set. Moreover, there exists A ∈ Θ∗(m) which is an
isolated point, i.e. there is no path in Θ∗(m) that connects A with A′ ̸= A ∈ Θ∗(m).

(iv) m ≥ M∗ + 1, permutations of the solution are connected. Hence, for all A ∈ Θ∗(m), there
exists A′ ̸= A in Θ∗(m) and a path in Θ∗(m) that connects A and A′.

(v) m ≥ min{m∗ + M∗, n + 1}, the set Θ∗(m) is connected, i.e. for any two optimal points
A ̸= A′ ∈ Θ∗(m), there exists a continuous path from A to A′.

Proof. Proof of i) starts by observing that A ∈ Θ∗
min(m

∗) if A ∈ Θ∗(m∗). If not, we can find a
solution A′ ∈ Θ∗

min(m
∗ − 1) using Proposition D.7, and its image Φ(A′) ∈ P∗(m∗ − 1). At last,

Φ(A′) is connected with a point in P∗(m∗ − 1) ∩ P∗
irr using Proposition D.4, which contradicts

the minimality of m∗. Now, for any A ∈ Θ∗(m∗), Φ(A) = B ∈ P∗(m∗) satisfies that Ψ(B) is
a permutation of A. Hence, Θ∗(m∗) is contained in the set of permutations of Ψ(P∗(m∗)), and as
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P∗(m∗) is finite from Proposition D.2, we know that Θ∗(m∗) is also finite.
Proof of ii) is rather simple: we know that the solution in Θ∗(m∗) will have a zero slot in Θ∗(m∗+1),
and by using the moving operation in the proof of Proposition D.12, we can show that we can move
a neuron to the zero slot.
Proof of iii) follows from Proposition D.3 and Proposition D.14. We can find an isolated point with
cardinality M∗ and is also canonical: the isolated point in Proposition D.3 has cardinality M∗ and is
in P∗

irr. Say the isolated point is (ui, vi)
P
i=1. If diag(1(Xui ≥ 0)) = diag(1(Xuj ≥ 0)) = Dp for

some i ̸= j and ui ̸= 0, uj ̸= 0, DpXui and DpXuj are colinear, which leads to a contradiction.
Hence all patterns are different for u, v, and by appropriate rearrangement, we can find a canonical
solution with cardinality M∗. Say that solution is Pcan Now we apply Proposition D.14 to see that
Ψ(Pcan) is isolated in Θ∗(M∗).
Proof of iv) almost directly follows from Proposition D.12. Note that when w1 = w2 = · · ·wm, we
can prune the solution to connect it with a different solution, hence there is no isolated point.
Proof of v) directly follows from Proposition D.5, Theorem D.1 and Proposition D.13. Note that the
paths constructed in Proposition D.5 and Theorem D.1 has only finitely many cardinality changes,
hence we can apply Proposition D.13. The solution set is not a singleton because m ≥ m∗ + 1.

Corollary D.1. (Corollary 2 of the paper) Consider the optimization problem in equation 3. Sup-
pose m ≥ n + 1 and denote the optimal set of equation 3 as Θ∗(m). For any θ := (wi, αi)

m
i=1 ∈

R(d+1)m, there exists a continuous path from θ to any point θ∗ ∈ Θ∗(m) with nonincreasing loss.

Proof. The proof almost directly follows from Haeffele & Vidal (2017) and Theorem D.1. First,
we know the existence of a continuous path with nonincreasing loss from any point to any local
minimum. We know that the local minimum is actually global from Haeffele & Vidal (2017). Now,
we know that the set Θ∗(m) is connected: hence, we can construct a continuous path from that global
minimum to any global minimum we want. Note that we can apply the result of Haeffele and Vidal
(Grohs & Kutyniok (2022), chapter4) because ϕ(X,w, α) = (Xw)+α and θ(w,α) =

∥w∥2
2+|α|2
2

are nondegenerate pairs.

Corollary D.2. (Corollary 3 of the paper) Consider the optimization problem in equation 3. Sup-
pose m ≥ n+1 and denote the objective in equation 3 as L(θ), where θ := (wi, αi)

m
i=1 ∈ R(d+1)m.

Let the optimal value of equation 3 as p∗. For any λ greater than or equal to p∗, we have that the
sublevel set {θ | L(θ) ≤ λ} is connected.

Proof. Take two points θ1, θ2 that satisfies L(θ1),L(θ2) ≤ λ. Fix an arbitrary θ∗ from the optimal
set Θ∗. From Corollary 2, we know the existence of a path with nonincreasing loss from θ1 to θ∗,
and θ2 to θ∗. Hence we found a path inside the sublevel set {θ | L(θ) ≤ λ} that connects θ1 and θ2.
This means that the sublevel set is connected.
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E PROOFS IN SECTION 3.3

In this section, we give the examples constructed in Section 3.3 and their rigorous proof.

The specific examples we present are the following:
Proposition E.1. Suppose n = 3, input data is given as

{(x1i, x2i, yi)}3i=1 = {(1, 0, 1/6), (−1/2,
√
3/2, 2/3), (−1/2,−

√
3/2, 1/6)},

X = [x1x2] ∈ R3×2. Then, the minimization problem in equation 8 with free skip connections and
without bias, namely the SNB problem, has at least two different solutions in F∗.

Proof. Let’s consider the set QX = {(Xu)+ | ∥u∥2 ≤ 1}. The six possible hyperplane arrangement
patterns 1(Xu ≥ 0) are (001), (010), (100), (011), (101), (110), and when we draw the set QX we
get the following shape in Figure 7.

(a) Six linear regions of (Xu)+.
(b) The set Conv(QX ∪ −QX). y is denoted with
the black point.

Figure 7: The shape of QX for a certain 2d data. The input space is split into six regions, and each
region becomes either a 1d or a 2d object in a 3-dimensional space. Observe that QX meets with
x+ y + z = 1 with six points.

With some scaling trick, we can see that the problem is further equivalent to

minimizem,w0,{wi,αi}m
i=1

m∑
i=1

|αi|, subject to Xw0+

m∑
i=1

(Xwi)+αi = y, ∥wi∥2 ≤ 1 ∀i ∈ [m].

Now, choose ν = [1, 1, 1]T . For any optimal w0, w1, w2, α0, α1, we know that

νTXw0 +

m∑
i=1

νT (Xwi)+αi =

m∑
i=1

νT (Xwi)+αi = ⟨ν, y⟩,

and

⟨ν, y⟩ ≤
m∑
i=1

|νT (Xwi)+||αi| ≤
m∑
i=1

|αi|,

which means that the objective value is lower bounded by ⟨ν, y⟩ = 1. At last, we have two different
models that have different breaklines and have objective value 1. The two models are:

w0 = −1

3

[
1
0

]
, w1 =

1√
2

[
1
0

]
, w2 =

1√
2

[
−1/2√
3/2

]
, α1 =

1√
2
, α2 =

1√
2
,

and

w0 = −1

3

[
−1/2
−
√
3/2

]
, w1 =

1√
2

[
−1/2
−
√
3/2

]
, w2 =

1√
2

[
−1/2√
3/2

]
, α1 =

1√
2
, α2 =

1√
2
.

With direct substitution, we can see that they are both valid interpolators. A direct calculation shows
that both have objective value of 1. At last, the breaklines differ, as the breaklines directly correspond
to the weight vectors w1, w2: this means that the two optimal functions are different.
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Proposition E.2. Suppose n = 4, input data is given as

{(x1i, x2i, yi)}4i=1 = {(1, 0, 1), (0, 1,−1), (−1, 0, 1), (0,−1,−1)},
X = [x1x2] ∈ Rn×2. Then, the minimization problem in equation 8, namely the SB problem, has at
least two different solutions in F∗.

Proof. We give a similar proof strategy as that in Proposition E.1, writing X̄ = [X | 1] ∈ Rn×3 and
bounding |νT (X̄u)+| for ν = [1,−1, 1,−1]T and ∥u∥ ≤ 1. Note that X̄T ν = 0. It is not easy to
visualize the shape of {(X̄u)+|∥u∥2 ≤ 1} as in Figure 7, but we can solve the optimization problem
by splitting the input domain into 14 regions where the function (X̄u)+ is linear. There are 14 such
regions due to the classical result of Cover (1965). A simple convex optimization for these 14 liner
regions yields that

|νT (X̄u)+| ≤ 1 ∀∥u∥2 ≤ 1.

Another way to see this is writing u = [a, b, c] and νT (X̄u)+ as

1

2
(|a+ c|+ |a− c| − |b+ c| − |b− c|),

and with the constraint a2 + b2 + c2 ≤ 1, we have that the above formula is bounded between −1
and 1. Using the same scaling trick, we see that the lower bound of the objective is ⟨ν, y⟩ as in
Proposition E.1, which is 4. At last, choose two models as

w0 =

[
0
0
1

]
, w1 =

 0√
2
0

 , w2 =

 0
−
√
2

0

 , α1 = −
√
2, α2 = −

√
2,

and

w0 =

[
0
0
−1

]
, w1 =

√2
0
0

 , w2 =

−√
2

0
0

 , α1 =
√
2, α2 =

√
2.

Both solutions have cost 4 and interpolates the data. With some simplification, we can see that the
first solution gives f(x, y) = 1−2(y)+−2(−y)+, whereas the second solution gives f(x, y) = −1+
2(x)+ + 2(−x)+. Apparently we have two different minimum-norm interpolators. A visualization
(and the symmetry behind it) can be found in Figure 8.

−1
0

1 −1

0

1−2

0

(a) Interpolator f(x, y) = 1− 2(y)+ − 2(−y)+

−1
0

1 −1

0

1

0

2

(b) Interpolator f(x, y) = −1 + 2(x)+ + 2(−x)+

Figure 8: Two different minimum-norm interpolators. We can see that the V shape is the minimum-
norm interpolator, and one is the rotation of the other.

The two propositions Proposition E.1 and Proposition E.2 gives Proposition 2.
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Proposition E.3. (Proposition 2 of the paper) Consider the minimum-norm interpolation problem

min
m,u,{wi,αi}m

i=1

1

2

m∑
i=1

(
∥wi∥22 + α2

i

)
, subject to Xu+

m∑
i=1

(Xwi)+αi = y,

where for input Xin, X = Xin in the unbiased case and X = [Xin|1] in the biased case. Note
that m is also an optimization variable that is not fixed. When the input is 2-dimensional, we have a
non-unique minimum-norm interpolator regardless of bias.

Proof. This is a direct consequence of Proposition E.1 and Proposition E.2.

Proposition E.4. (Proposition 3 of the paper) Consider the minimum-norm interpolation problem
without free skip connections and regularized bias, namely the NSB problem. Take n vectors in R2

that satisfy

vn = [

√
3

2
,
1

2
]T , ∥sk∥2 = 1, sk > 0 ∀k ∈ [n− 1], sn = [0, 1]T , vi,2 > 0 ∀i ∈ [n].

where we write
∑k

i=1 vn−i+1 = sk. Now, choose xi = vi,1/vi,2 and choose y as any conic combi-
nation of n+ 1 vectors

(si,1x+ si,21)+ ∀i ∈ [n], ((sn − vn)1x+ (sn − vn)21)+,

with positive weights. Then, there exist infinitely many minimum-norm interpolators.

Proof. Let’s choose x as proposed in Proposition 3. Also, let’s choose ν ∈ Rn as νi = vi,2. Write
X̄ = [x|1] ∈ Rn×2. Then the NSB problem is written as

min
m,{wi,αi}m

i=1

m∑
i=1

∥wi∥22 + |αi|2 subject to

m∑
i=1

(X̄wi)+αi = y.

We first show that
max

∥u∥2≤1
|νT (X̄u)+| = 1, (19)

and the solutions are s1, s2, · · · sn, sn − vn.
The first thing to observe is that x1 < x2 < · · · < xn. To prove this, let’s see that for i =
2, 3, · · ·n− 1,

xi−1 < −sn−i+1,2

sn−i+1,1
< xi.

The reason is the following: for i = 2, 3, · · ·n − 1, we know ∥sn−i+1 + vi−1∥2 = 1, and as
∥sn−i+1∥2 = 1 we know sn−i+1 · vi−1 = −1/2 · ∥vi−1∥22 < 0. Hence, sn−i+1,1vi−1,1 +
sn−i+1,2vi−1,2 < 0, and as sn−i+1,1, sn−i+1,2, vi−1,2 > 0, we have sn−i+1,2/sn−i+1,1 <
−vi−1,1/vi−1,2 = −xi−1. Similarly, ∥sn−i+1 − vi∥2 = 1, and as sn−i+1 · vi > 0, we have
sn−i+1,2/sn−i+1,1 > −vi,1/vi,2 = −xi. This means for i = 2, 3, · · ·n − 1, xi−1 < xi, and
x1 < x2 < · · · < xn−1. At last, we have vn−1 · vn < 0 because ∥vn∥2 = ∥vn + vn−1∥2 = 1,
meaning xn−1 < 0, whereas xn =

√
3 > 0, meaning x1 < x2 < · · · < xn.

Now we consider the possible arrangement patterns diag(1(X̄u ≥ 0)). We can see
that the possible patterns are diag([0, 0, · · · , 0]), diag([0, 0, · · · , 0, 1]), diag([0, 0, · · · , 1, 1]),
· · · diag([0, 1, · · · , 1, 1]), diag([1, 1, · · · , 1, 1]), · · · diag([1, 0, · · · , 0, 0]). In other words, starting
from the n-th entry, 0 turns to 1 in reverse order, then we have all ones, then 1s become 0s at starting
from the n-th entry. Let’s denote the diagonal matrices D1, D2, · · ·D2n.

Solving equation 19 is equivalent to solving

max
(2Di−I)X̄u≥0, ∥u∥2≤1

νTDiX̄u.

The absolute value function is erased as ν > 0.

For D1, the objective is 0. For D2 to Dn+2, we first know that ∥νTDiX̄∥2 = 1. To see this, observe
that ∥νTD2X̄∥2 = ∥νn[xn, 1]∥2 = ∥vn∥2 = 1, ∥νTD3X̄∥2 = ∥νn[xn, 1] + νn−1[xn−1, 1]∥2 =
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∥vn + vn−1∥2 = 1, · · · , ∥νTDn+1X̄∥2 = ∥
∑n

i=1 vi∥2 = 1, ∥νTDn+2X̄∥2 = ∥
∑n−1

i=1 vi∥2 =

∥[−
√
3
2 , 1

2 ]∥2 = 1. For Dn+3 to D2n, we can also see that ∥νTDiX̄∥2 < 1. That is because
νTDn+kX̄ = sn − sk−1 for k ≥ 2. ∥sn − sk−1∥2 = 2 − 2sn · sk−1, and as we know 1/2 =
sn · s1 < sn · s2 < · · · sn · sn−1 (which is the sum of vi,2, and as vi,2 > 0 we have the property),
∥sn − sk−1∥2 < 1 for k = 3, 4, · · ·n.

We can then see that max(2Di−I)X̄u≥0, ∥u∥2≤1 ν
TDiX̄u ≤ maxi∈[2n]∥νTDiX̄∥2 = 1. The last

thing to check is that s1, s2, · · · sn, sn − vn are actual solutions. For i = 2, 3, · · ·n − 1, we know
that

x1 < x2 < · · · < xi−1 < −sn−i+1,2

sn−i+1,1
< xi < xi+1 < · · · < xn,

and when we write ki = [xi, 1]
T , we have that kn ·sn−i+1 > 0, · · · ki ·sn−i+1 > 0, ki−1 ·sn−i+1 <

0, · · · k1 · · · sn−i+1 < 0 for all i = 2, 3, · · ·n−1. Hence, for s2, s3, · · · sn−1, (2Di+1−I)X̄si ≥ 0.
As si = X̄TDi+1ν, for these sis, νT (X̄si)+ = 1.

The three cases we have to check are when i = 1, n, and sn − vn. When i = n, sn = [0, 1]T and
as all kis have positive y values, sn · ki > 0 for all i ∈ [n] and indeed, sn becomes a solution.
Also, we know that ∥s1 + vn−1∥2 = 1, meaning x1 < x2 < · · · < xn−1 < −s1,2/s1,1. Hence,
kn−1 · s1 < 0, · · · k1 · s1 < 0. As s1 and kn are parallel, we know kn · s1 > 0. Same with other
cases, as ∥s1∥2 = 1, s1 is a solution. At last, let’s check that (2Dn+2 − I)X̄(sn − vn) ≥ 0. As
vn = [

√
3/2, 1/2]T , sn − vn = [−

√
3/2, 1/2]T , vn · (sn − vn) < 0 and kn · (sn − vn) < 0. For

i ∈ [n− 1], we know xi < 0. Hence, −
√
3xi + 1 > 0. This means (2Dn+2 − I)X̄(sn − vn) > 0

and as ∥sn − vn∥2 = 1, we have sn − vn as a solution too.

Now that we have found n + 1 different solutions to problem in equation 19, let’s note them
w1, w2, · · ·wn+1. y is chosen as any conic combination

y =

n+1∑
i=1

ci(X̄wi)+, (20)

where ci > 0. We know that the interpolation problem is equivalent to

min t subject to y ∈ tConv(QX̄ ∪ −QX̄),

where QX̄ = {(X̄u)+ | ∥u∥2 ≤ 1} Pilanci & Ergen (2020). In other words, the minimum-norm
interpolation problem without free skip connections and regularized bias is equivalent to

min
m,(zi,di)mi=1

m∑
i=1

|di|, y =

m∑
i=1

di(X̄zi)+,

for some ∥zi∥2 ≤ 1, i ∈ [m]. For any di, zi that satisfies ∥zi∥2 ≤ 1 and

y =

m∑
i=1

di(X̄zi)+,

we have that

⟨ν, y⟩ =
n+1∑
i=1

ci =

m∑
i=1

diν
T (X̄zi)+ ≤

m∑
i=1

|diνT (X̄zi)+| ≤
m∑
i=1

|di|,

meaning ⟨ν, y⟩ is the optimal value, and any conic combination of {(X̄wi)+}n+1
i=1 yields a solution.

Let’s write wi = [ai, bi]
T . The optimal interpolator then becomes

f(X̄) =

n+1∑
i=1

ci(aix+ bi)+,

for ci s satisfying equation 20. The last thing to check is that there are infinitely many such interpola-
tors. This is slightly different from y having infinitely many different conic combination expressions
of {(X̄wi)+}n+1

i=1 , because different ci may correspond to the same function.

41



Published as a conference paper at ICLR 2025

As a final step, we show that we indeed have infinitely many different interpolators. Recall that
{s1, s2, · · · sn, sn−vn} = {w1, w2, · · ·wn+1}. Note that s1,1, s2,1, · · · sn,1 ≥ 0 and sn,1−vn,1 < 0.
Without loss of generality let si = wi for i ∈ [n] and sn − vn = wn+1. As x → −∞, the slope
will be cn+1an+1. Showing the different conic representations of y have different cn+1 values is
enough. The interesting observation is that the vectors {(X̄wi)+}ni=1 is actually linearly indepen-
dent, because each vector has D2, D3, · · ·Dn+1 as arrangement patterns and for each s1, s2, · · · sn,
strict inequality holds. Hence, for each different conic combination of y, cn+1 should be differ-
ent. This means the slope at x → −∞ is different, and we indeed have infinitely many optimal
interpolators.
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F PROOFS IN SECTION 4

In this section, we prove how our results can be generalized to different architectures and setups.
We begin by describing a general solution set.
Theorem F.1. Consider the cone-constrained group LASSO with regularization Ri,

min
θi∈Ci∩Vi,si∈Di

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

Ri(θi). (21)

Assume θi, sj ∈ Rd, Ai, Bj ∈ Rn×d, Ri : Vi → R are norms, Ci,Dj ⊆ Rd are proper cones for
i ∈ [P ], j ∈ [Q], Ci ∩ Vi ̸= ∅ for i ∈ [P ] and β > 0. The optimal set P∗

gen is given as

P∗
gen =

{
(ciθ̄i)

P
i=1 ⊕ (si)

Q
i=1| ci ≥ 0,

P∑
i=1

ciAiθ̄i +

Q∑
i=1

Bisi ∈ Cy,

θ̄i ∈ Zer(F (Si, A
T
i ν

∗,−β, ⟨, ⟩)), ⟨BT
i ν

∗, si⟩ = 0, si ∈ Di

}
,

(22)

where ν∗ is any vector that minimizes f∗(ν) subject to the constraint

min
u∈Ci∩Vi

⟨AT
i ν, u⟩+ βRi(u) = 0, min

s∈Dj

⟨BT
j ν, s⟩ = 0,

for all i ∈ [P ], j ∈ [Q], F (S, v,−β, ⟨, ⟩) = {u | u ∈ S, ⟨v, u⟩ = −β}, Si = Ci ∩ {u | Ri(u) ≤ 1}
and Zer(S) = {0} if S = ∅, S otherwise. Here, f(·) = L(·, y) and f∗ denotes the Fenchel
conjugate of f .

Proof. Suppose the optimal set of the problem in equation 21 is Θ∗
gen. We show that Θ∗

gen ⊆ P∗
gen

and vice versa. Suppose (θ∗, s∗) = (θ∗i )
P
i=1 ⊕ (s∗i )

Q
i=1 ∈ Θ∗

gen. We know that
∑P

i=1 Aiθ
∗
i +∑Q

i=1 Bis
∗
i ∈ Cy , hence it satisfies the second condition for w∗ =

∑P
i=1 Aiθ

∗
i +

∑Q
i=1 Bis

∗
i . Also,

consider the convex optimization problem

min
w,θi∈Ci∩Vi,si∈Di

L(w, y) + β

P∑
i=1

R(θi) subject to

P∑
i=1

Aiθi +

Q∑
i=1

Bisi = w,

and its Lagrangian

L(w, θ, s, ν) = L(w, y)− νTw +

P∑
i=1

(⟨AT
i ν, θi⟩+ βRi(θi)) +

Q∑
i=1

⟨BT
i ν, si⟩. (23)

The strong duality argument is essentially the same as that with the proof in Theorem 1. Moreover,
for the dual problem

max
ν

min
w,θi∈Ci∩Vi,si∈Di

L(w, θ, s, ν),

if minu∈Ci∩Vi
⟨AT

i ν, u⟩ + βRi(u) < 0, we can scale u infinitely large to attain the minimum −∞.
Same holds when minu∈Di⟨BT

i ν, u⟩ < 0. Hence, these cases cannot maximize the dual objective,
and the dual problem can be written as

max
minu∈Ci∩Vi

⟨AT
i ν,u⟩+βRi(u)=0

minu∈Di
⟨BT

i ν,u⟩=0

min
w

L(w, y)− νTw = max
minu∈Ci∩Vi

⟨AT
i ν,u⟩+βRi(u)=0

minu∈Di
⟨BT

i ν,u⟩=0

−f∗(ν),

meaning ν∗ is the dual optimal point. When strong duality holds, for any primal optimal point
(w∗, θ∗, s∗) and the dual optimal point ν∗, the Lagrangian L(w, θ, s, ν∗) attains minimum at
(w∗, θ∗, s∗). Substitute ν∗ in equation 23 to see that each θ∗i is a minimizer of the problem

min ⟨AT
i ν

∗, u⟩+ βR(u) subject to u ∈ Ci ∩ Vi.

One thing to notice is that the value ⟨AT
i ν

∗, θ∗i ⟩+βRi(θ
∗
i ) = 0, because if it is strictly smaller than

0 we can strictly decrease the objective ⟨AT
i ν

∗, u⟩+ βRi(u) with u = 2θ∗i .
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If θ∗i = 0, we can choose ci = 0 to find ci, θ̄i ∈ Zer(F (Si, A
T
i ν

∗,−β)). If θ∗i ̸= 0, we know that
Ri(θ

∗
i ) ̸= 0, and the vector θ∗i /Ri(θ

∗
i ) satisfies θ∗i /Ri(θ

∗
i ) ∈ Si and ⟨AT

i ν
∗, θ∗i /Ri(θ

∗
i )⟩ = −β.

Choose ci = Ri(θ
∗
i ), θ̄i = θ∗i /Ri(θ

∗
i ) to find ci, θ̄i ∈ Zer(F (Si, A

T
i ν

∗,−β)).

For s∗i s, we know that each s∗i s are the minimizer of the problem

min⟨BT
i ν

∗, u⟩ subject to u ∈ Di,

hence it should be in Di and the value ⟨BT
i ν

∗, s∗i ⟩ = 0.

Concluding, for any (θ∗, s∗), clearly
∑P

i=1 Aiθ
∗
i +
∑Q

j=1 Bjs
∗
j ∈ Cy and s∗i ∈ Di, ⟨BT

i ν
∗, s∗i ⟩ = 0,

choose ci = 0 when θ∗i = 0, ci = R(θ∗i ), θ̄i = θ∗i /R(θ∗i ) otherwise to see that (θ∗, s∗) ∈ P∗
gen, and

Θ∗
gen ⊆ P∗

gen.

Now, let’s take an element (θ, s) ∈ P∗
gen. We know that θ ∈ Ci ∩Vi and s ∈ Di. If θ̄i ̸= 0, we know

that ⟨ν∗, Aiθ̄i⟩ = −β as θ̄i ∈ F (Si, A
T
i ν

∗,−β). Moreover, θ̄i is the solution to

min
u∈Ci∩Vi,Ri(u)≤1

⟨AT
i ν

∗, u⟩,

because for all u ∈ Si, ⟨AT
i ν

∗, u⟩ ≥ −βRi(u) ≥ −β holds. This means Ri(θ̄i) = 1 for all θ̄i ̸= 0,
as the minimum will be attained at a nonzero point, hence the boundary where Ri(u) = 1. Using
⟨ν∗, Aiθ̄i⟩ = −β and ⟨BT

i ν
∗, si⟩ = 0, we get

⟨ν∗, w′⟩ = ⟨ν∗,
P∑
i=1

ciAiθ̄i +

Q∑
i=1

Bisi⟩ = −β
∑
θ̄i ̸=0

ci,

for some w′ ∈ Cy . On the other hand, from Ri(θ̄i) = 1 for all i ∈ [P ], we know that
P∑
i=1

Ri(ciθ̄i) =
∑
θ̄i ̸=0

ci.

This leads to the fact that for (θ, s),

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

Ri(θi) = L(w′, y) + β
∑
θ̄i ̸=0

ci = L(w′, y)− ⟨ν∗, w′⟩.

At last, we show that for all w′ ∈ Cy ,

L(w′, y)− ⟨ν∗, w′⟩ = min
θi∈Ci∩Vi,si∈Di

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

Ri(θi).

The fact follows when we use the fact that for (θ′, s′) ∈ Θ∗
gen that satisfies w′ =

∑P
i=1 Aiθ

′
i +∑Q

i=1 Bis
′
i, the point (w′, θ′, s′) becomes a minimizer of L(w, θ, s, ν∗). Hence, each minimizer θ′i

is a minimizer of the problem

min⟨AT
i ν

∗, u⟩+ βRi(u) subject to u ∈ Ci ∩ Vi,

which means that βRi(θ
′
i) = −⟨ν∗, Aiθ

′
i⟩ for all i ∈ [P ], as ν∗ satisfies

min
u∈Ci∩Vi

⟨AT
i ν

∗, u⟩+ βRi(u) = 0.

Also, ⟨ν∗, Bis
′
i⟩ = 0 as s′i minimizes ⟨BT

i ν
∗, s⟩ subject to s ∈ Di, and we see that

β

P∑
i=1

Ri(θ
′
i) = −⟨ν∗, w′⟩,

and

min
θi∈Ci∩Vi,si∈Di

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

R(θi) = L(

P∑
i=1

Aiθ
′
i +

Q∑
i=1

Bis
′
i, y) + β

P∑
i=1

R(θ′i)

= L(w′, y)− ⟨ν∗, w′⟩,
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meaning (θ, s) ∈ Θ∗
gen because

L(

P∑
i=1

Aiθi +

Q∑
i=1

Bisi, y) + β

P∑
i=1

R(θi) = L(w′, y)− ⟨ν∗, w′⟩.

This means
P∗
gen ⊆ Θ∗

gen,

and finishes the proof.

One application of the theorem is characterizing the optimal set of the interpolation problem. This
leads to the staircase of connectivity for interpolation problems.

Proposition F.1. The solution set of the optimization problem

min
ui,vi∈Ki

P∑
i=1

∥ui∥2 + ∥vi∥2

subject to
P∑
i=1

DiX(ui − vi) = y,

is given as

P∗ :=

{
(ciūi, div̄i)

P
i=1 | ci, di ≥ 0 ∀i ∈ [P ],

P∑
i=1

DiXūici −DiXv̄idi = y

}
⊆ R2dP ,

where ūi, v̄i are fixed directions found by solving the optimization problem

ūi = argmin
u∈Si

ν∗TDiXu if min
u∈Si

ν∗TDiXu = −1, 0 otherwise,

v̄i = argmin
v∈Si

−ν∗TDiXv if min
v∈Si

−ν∗TDiXv = −1, 0 otherwise.

and ν∗ is any dual optimum that satisfies

ν∗ = argmin⟨ν, y⟩ subject to |νTDiXu| ≤ ∥u∥2 ∀u ∈ Ki, i ∈ [P ].

Here, Si = Ki ∩ {u | ∥u∥2 ≤ 1}.

Proof. Let’s apply Theorem F.1 to the problem. Note that we can set β = 1. In fact, β can be
arbitrary, and scaling ν∗ to make β = 1 will lead to the same result.

When we apply Theorem F.1, we have that

P∗
gen =

{
(ciūi, div̄i)

m
i=1 | ci, di ≥ 0,

P∑
i=1

DiXūici −DiXv̄idi = y,

ūi ∈ Zer(F (Si, X
TDiν

∗,−1)), v̄i ∈ Zer(F (Si,−XTDiν
∗,−1))

}
,

where ν∗ is the dual optimum that minimizes L∗(·, y) subject to the constraint

min
u∈Ki

⟨XTDiν, u⟩+ ∥u∥2 = 0, min
u∈Ki

⟨−XTDiν, u⟩+ ∥u∥2 = 0, (24)

for all i ∈ [P ]. We know that L∗(ν) = ⟨ν, y⟩, and equation 24 can be rewritten to |νTDiXu| ≤
∥u∥2.
Also, F (Si, X

TDiν
∗,−1) = {0} if there is no u such that ν∗TDiXu = −1, and is exactly that

vector if exists. Note that as minu∈Ki
⟨XTDiν, u⟩+ ∥u∥2 = 0, we have a unique minimum for the

optimal direction Proposition C.2. Same holds for v̄i.
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Proposition F.2. (The staircase of connectivity for minimum-norm interpolation problem) Write the
solution set of the optimization problem

min
(wj ,αj)mj=1

1

2

m∑
i=1

∥wi∥22 + |αi|2,

subject to
m∑
i=1

(Xwi)+αi = y,

as Θ∗(m). Suppose y ̸= 0. As m changes, we have that

(i) m = m∗, Θ∗(m) is a finite set. Hence, for any two optimal points A ̸= A′ ∈ Θ∗(m), there is
no path from A to A′ inside Θ∗(m).

(ii) m ≥ m∗ + 1, there exists optimal points A,A′ ∈ Θ∗(m) and a path in Θ∗(m) connecting
them.

(iii) m = M∗, Θ∗(m) is not a connected set. Moreover, there exists A ∈ Θ∗(m) which is an
isolated point, i.e. there is no path in Θ∗(m) that connects A with A′ ̸= A ∈ Θ∗(m).

(iv) m ≥ M∗ + 1, permutations of the solution are connected. Hence, for all A ∈ Θ∗(m), there
exists A′ ̸= A in Θ∗(m) and a path in Θ∗(m) that connects A and A′.

(v) m ≥ min{m∗ + M∗, n + 1}, the set Θ∗(m) is connected, i.e. for any two optimal points
A ̸= A′ ∈ Θ∗(m), there exists a continuous path from A to A′.

Proof. The proof follows from observing that Proposition D.2, Proposition D.3, Proposition D.4,
Proposition D.5, Theorem D.1, Proposition D.7, Proposition D.12, Proposition D.13, Proposi-
tion D.14 holds for interpolation problems too. We can apply the same proof strategy for Proposi-
tion D.2, Proposition D.3, Proposition D.4, Proposition D.5, Theorem D.1, because the description
of the optimal polytope is identical except for which directions the solutions are fixed at. The same
solution map can be applied because it preserves both the fit and the regularization. The continuity
is preserved, and we have Proposition D.12, Proposition D.13, Proposition D.14. The mapping in
Proposition D.7 can also be applied here.

Another implication of the theorem is that for free skip connections, the dual variable has to satisfy
XT ν = 0. The existence of free skip connections constrain freedom on ν, which brings qualitative
difference to the uniqueness of the solution set.
Proposition F.3. The solution set of the optimization problem

min
ui,vi∈Ki

P∑
i=1

∥ui∥2 + ∥vi∥2

subject to

Xu0 +

P∑
i=1

DiX(ui − vi) = y,

is given as

P∗ :=

{
u0 ⊕ (ciūi, div̄i)

P
i=1 | ci, di ≥ 0 ∀i ∈ [P ], Xu0 +

P∑
i=1

DiXūici −DiXv̄idi = y

}
⊆ R2dP ,

where ūi, v̄i are fixed directions found by solving the optimization problem

ūi = argmin
u∈Si

ν∗TDiXu if min
u∈Si

ν∗TDiXu = −1, 0 otherwise,

v̄i = argmin
v∈Si

−ν∗TDiXv if min
v∈Si

−ν∗TDiXv = −1, 0 otherwise.

where ν∗ is the dual optimum that satisfies
ν∗ = argmin⟨ν, y⟩ subject to |νTDiXu| ≤ ∥u∥2 ∀u ∈ Ki, i ∈ [P ], XT ν = 0.

Here, Si = Ki ∩ {u | ∥u∥2 ≤ 1}.
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Proof. Note that if we apply Theorem F.1 to the given problem, we have almost an identical char-
acterization from Proposition F.1, except for the free skip connection. For the skip connection
u0 ∈ Rd, we know that minu0∈Rd⟨XT ν∗, u0⟩ = 0 for all u0 ∈ Rd because u0 is unconstrained.
This means XT ν∗ = 0.

Next we give applications of Theorem F.1 to different architectures. We start by characterizing the
optimal set of a vector-valued neural network with weight decay.
Proposition F.4. The solution set of the convex reformulation of the vector-valued problem given as

min
Vi

1

2
∥

P∑
i=1

DiXVi − Y ∥22 + β

P∑
i=1

∥Vi∥Ki,∗, (25)

where the norm ∥V ∥Ki,∗ is defined as

min t ≥ 0 such that V ∈ tKi,

for Ki = conv{ugT |(2Di− I)Xu ≥ 0, ∥ugT ∥∗ ≤ 1} defined in Vi = span{ugT |(2Di− I)Xu ≥
0, g ∈ Rc}. The optimal solution set of equation 25 is given as

P∗
vec =

{
(ciV̄i)

P
i=1| ci ≥ 0,

P∑
i=1

ciDiXV̄i = Y ∗, V̄i ∈ Zer(F(Ki, X
TDiN

∗,−β, ⟨, ⟩M ))
}
,

where N∗ = Y ∗ − Y is the dual optimum that minimizes ∥N + Y ∥2F subject to

⟨N,DiXA⟩+ β∥A∥Ki,∗ ≥ 0 ∀A ∈ Vi, i ∈ [P ].

Proof. Let’s define Ai as

Ai =

DiX
. . .

DiX

 ,

which is a block matrix in Ai ∈ Rnc×dc. Also, define the flattening operation Fldc : Rd×c → Rdc

and Flnc : Rn×c → Rnc. For optimization variables θi ∈ Rdc, we have the equivalent problem

min
θi

1

2
∥

P∑
i=1

Aiθi − Flnc(Y )∥22 + β

P∑
i=1

∥θi∥Fldc(Ki),∗.

Here, we are merely flattening each Vi s to make it into a vector-input optimization problem. When
we apply Theorem F.1 to the flattened problem, we have the optimal set

P∗
flat =

{
(ciθ̄i)

P
i=1| ci ≥ 0,

P∑
i=1

ciAiθ̄i = Flnc(Y
∗), θ̄i ∈ Zer(F(Si, A

T
i ν

∗,−β, ⟨, ⟩))
}
,

where
Si = {u| ∥u∥Fldc(Ki),∗ ≤ 1} = Fldc(Ki),

ν∗ being the minimizer of f∗(ν) where f = LF ( · , F lnc(Y )), subject to ⟨AT
i ν

∗, s⟩ +
β∥s∥Fldc(Ki),∗ ≥ 0. We know that ν∗ = Flnc(Y

∗) − Flnc(Y ) for the optimal model fit Y ∗.
Write N∗ = Fl−1

nc (ν
∗).

Now we use Fl−1
dc , F l−1

nc to go back to the original solution space and recover P∗
vec. First, we know

that Aiθ̄i = Flnc(DiXFl−1
dc (θ̄i)). Hence, the constraint

∑P
i=1 ciAiθ̄i = Flnc(Y

∗) is equivalent to

P∑
i=1

ciDiXFl−1
dc (θ̄i) = Y ∗. (26)

Also, consider the set

F(Fldc(Ki), A
T
i ν

∗,−β, ⟨, ⟩) = Fldc(Ki) ∩ {u | ⟨AT
i ν

∗, u⟩ = −β}.
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When we use block notation (ν∗)T = [(ν∗1 )
T , (ν∗2 )

T , · · · (ν∗c )T ], uT = [(u1)
T , (u2)

T , · · · , (uc)
T ]

for ν∗ ∈ Rnc, u ∈ Rdc, we can see that

(ν∗)TAiu =

c∑
j=1

(ν∗j )
TDiXuj = ⟨Fl−1

nc (ν
∗), DiXFl−1

dc (u)⟩M ,

using notations for matrix inner product. Hence, we can see that

Fl−1
dc (F(Fldc(Ki), A

T
i ν

∗,−β, ⟨, ⟩M )) = Ki ∩ {U | ⟨Fl−1
nc (ν

∗), DiXU⟩ = −β}
= F(Ki, X

TDiN
∗,−β, ⟨, ⟩M ),

and for (θi)
P
i=1 ∈ P∗

flat, Fl−1
dc (θi) satisfies equation 26 and we also have the fact that

Fl−1
dc (θ̄i) ∈F(Ki, X

TDiN
∗,−β, ⟨, ⟩M ). Hence we arrive at the desired result.

Proposition F.5. Assume m ≥ m∗ so that the nonconvex problem in equation 11 and its convex
reformulation in equation 25 are equivalent. The solution set of the vector-valued problem

min
{wi,zi}m

i=1

1

2
∥

m∑
i=1

(Xwi)+z
T
i − Y ∥22 +

β

2

m∑
i=1

∥wi∥22 + ∥zi∥22,

where wi ∈ Rd×1, zi ∈ Rc×1 is given as

S =
{
(wi, zi)

m
i=1 | ϕ((wi, zi)

m
i=1) ∈ P∗

vec,R((wi, zi)
m
i=1) = ∥ϕ((wi, zi)

m
i=1)∥Ki,∗,

∥wi∥2 = ∥zi∥2, ∀i ∈ [m]
}
,

where

ϕ((wi, zi)
m
i=1) = (Vi)

P
i=1 := Vp =

{
0 if ∄ wi s.t. Dp = diag(1(Xwi ≥ 0))∑tp

j=1 waj
zTaj

if Dp = diag(1(Xwaj
≥ 0)) for j ∈ [tp],

R((wi, zi)
m
i=1) = (Ri)

P
i=1 := Rp =

{
0 if ∄ wi s.t. Dp = diag(1(Xwi ≥ 0))∑tp

j=1∥waj
∥2∥zaj

∥2 if Dp = diag(1(Xwaj
≥ 0)) for j ∈ [tp],

and P∗
vec is defined in Proposition F.4.

Proof. Let’s note the solution set of equation 11 as Θ∗. We will prove that Θ∗ = S. First, find a
point (w∗

i , z
∗
i )

m
i=1 in Θ∗. When ϕ((w∗

i , z
∗
i )

m
i=1) = (V ∗

i )
P
i=1, we know that

m∑
i=1

(Xw∗
i )+(z

∗
i )

T =

P∑
i=1

DiXV ∗
i ,

hence the l2 error is the same for both parameters. Also, we have that
∑P

i=1∥V ∗
i ∥Ki,∗ ≤∑m

i=1∥w∗
i ∥2∥z∗i ∥2 = 1

2

∑m
i=1∥w∗

i ∥22 + ∥z∗i ∥22, Thus, when we note Lnoncvx as the loss function
of equation 11 and note Lcvx as the loss function of equation 25, we have that

Lnoncvx((w
∗
i , z

∗
i )

m
i=1) ≥ Lcvx(ϕ((w

∗
i , z

∗
i )

m
i=1)), (27)

holds in general. As the minimal value of Lnoncvx and Lcvx is the same, we have that
ϕ((w∗

i , z
∗
i )

m
i=1) ∈ P∗

vec. Also, the inequality in equation 27 is actually an equality, and we have
R((wi, zi)

m
i=1) = (∥Vi∥Ki,∗)

P
i=1.

Now we take a point (wi, zi)
m
i=1 in S. We know that Lcvx(ϕ((wi, zi)

m
i=1)) is the optimal value.

Also, we know that Lnoncvx((wi, zi)
m
i=1) = Lcvx(ϕ((wi, zi)

m
i=1)) because R((wi, zi)

m
i=1) =

(∥ϕ((wi, zi)
m
i=1)∥Ki,∗)

P
i=1 and ∥wi∥2 = ∥zi∥2∀i ∈ [m]. At last, the fact that as m ≥ m∗ and

the two optimal values are the same implies that (wi, zi)
m
i=1 ∈ Θ∗.

Theorem F.2. Consider a L - layer neural network

fθ(X) = ((((XW1)+W2)+ · · · )WL−1)+WL
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where Wi ∈ Rdi−1×di , d0 = d and θ = (Wi)
L
i=1. Consider the training problem

min
θ

L(fθ(X), y) +
β

2

L∑
i=1

∥Wi∥2F ,

and denote its optimal set as Θ∗. We can characterize a subset of Θ∗, namely the set

Θ∗
k−1,k(Y

′,W ′
1,W

′
2, · · · ,W ′

k−2,W
′
k+1, · · ·W ′

L)

:=
{
θ = (W ′

i )
k−2
i=1 ⊕ (Wk−1,Wk)⊕ (W ′

i )
L
i=k+1 | θ ∈ Θ∗, (X̃Wk−1)+Wk = Y ′

}
.

Here, X̃ = ((((XW ′
1)+W

′
2)+) · · ·W ′

k−2)+.

The expression of Θ∗
k−1,k(Y

′,W ′
1,W

′
2, · · · ,W ′

k−2,W
′
k+1, · · ·W ′

L) is given as{
θ =(W ′

i )
k−2
i=1 ⊕ (Wk−1,Wk)⊕ (W ′

i )
L
i=k+1 | θ ∈ Θ∗, ϕdk

(Wk−1,Wk) ∈ P∗
vec,intp,

Rdk
(Wk−1,Wk) = ∥ϕdk

(Wk−1,Wk)∥Ki,∗, ∥(Wk−1)·,i∥2 = ∥(Wk)i,·∥2 ∀i ∈ [dk]
}
,

where ϕm(A,B) = ϕ((A·,i, Bi,·)
m
i=1),Rm(A,B) = R((A·,i, Bi,·)

m
i=1) for ϕ defined in Proposi-

tion F.5, and P∗
vec,intp is defined as

P∗
vec,intp =

{
(ciV̄i)

P
i=1| ci ≥ 0,

P∑
i=1

ciDiXV̄i = Y ′, V̄i ∈ Zer(F(Ki, X
TDiN

∗,−1, ⟨, ⟩M ))
}
,

for the dual optimum N∗ ∈ Rn×c that minimizes ⟨N,Y ⟩M subject to

⟨N,DiXA⟩+ β∥A∥Ki,∗ ≥ 0 ∀A ∈ Rd×c, i ∈ [P ].

Here Ki = conv{ugT | (2Di − I)Xu ≥ 0, ∥ugT ∥∗ ≤ 1}, where Di denotes all possible arrange-
ments diag(1(Xh ≥ 0)).

Proof. The result is an application of Theorem F.1 to the vector-valued interpolation problem

dk∑
i=1

∥ui∥22 + ∥vi∥22,

subject to
dk∑
i=1

(Xui)+v
T
i = Y ′,

where ui ∈ Rdk−1×1, vi ∈ Rdk+1×1, and then applying Proposition F.5.

The characterization enables us to extend the connectivity result to vector-valued networks.
Theorem F.3. Consider the optimization problem

min
{wi,zi}m

i=1

1

2
∥

m∑
i=1

(Xwi)+z
T
i − Y ∥22 +

β

2

m∑
i=1

∥wi∥22 + ∥zi∥22, (28)

where wi ∈ Rd, zi ∈ Rc for i ∈ [m], and Y ∈ Rn×c. If m ≥ nc+ 1, the solution set in parameter
space Θ∗ ⊆ Rm(d+c) is connected.

Proof. Let’s take two solutions (wi, zi)
m
i=1, (w

′
i, z

′
i)

m
i=1 ∈ Θ∗. We write w̄ as the direction of w, i.e.

w/∥w∥2 for w ̸= 0.
The first claim we prove is that for given {(Xw̄ai

)+z̄
T
ai
}m1
i=1 and {(Xw̄′

bi)+z̄
′T
bi}

m2
i=1, consider the

conic combination that satisfies
m1∑
i=1

ci(Xw̄ai
)+z̄

T
ai

+

m2∑
i=1

di(Xw̄′
bi)+z̄

′T
bi = Y ∗,

49



Published as a conference paper at ICLR 2025

for the optimal model fit Y ∗. Then (
√
ciw̄ai

,
√
ciz̄ai

)m1
i=1⊕(

√
diw̄′

bi ,
√
diz̄′bi)

m2
i=1⊕(0, 0)m−m1−m2

is an optimal solution of equation 28 when m1 +m2 ≤ m, given that wai
, w′

bi
̸= 0.

To see this, we first see that for the dual variable N∗, ⟨N∗, (Xw̄i)+z̄
T
i ⟩ = −β for all wi ̸= 0. Sup-

pose Dp = diag(1(Xwai ≥ 0)) for i ∈ [tp], the same notation as in the statement of Proposition F.5,
and without loss of generality assume a1 = i. As (wi, zi)

m
i=1 ∈ S, we know R((wi, zi)

m
i=1) =

(∥Vi∥Ki,∗)
P
i=1. Hence, when we write Vp = cpV̄p for some V̄p ∈ F (Kp, X

TDpN
∗,−β, ⟨, ⟩M ),

we first know that Vp =
∑tp

j=1∥waj∥2∥zaj∥2w̄aj z̄
T
aj

. We can find such Vp because if Vp = 0, we
could set all wai = 0 and it will strictly decrease the objective. Note that ∥V̄p∥Kp,∗ = 1, yielding
cp = ∥Vp∥Kp,∗ =

∑tp
j=1∥waj

∥2∥zaj
∥2, and V̄p is a convex combination of w̄aj

z̄Taj
. Now, let

V̄p =

tp∑
j=1

λjw̄aj
z̄Taj

,

where λj s sum up to 1. We know that ⟨N∗, DpXV̄p⟩ = −β and N∗ satisfy

min
A∈Kp

⟨N∗, DpXA⟩ ≥ −β.

Hence, for all w̄aj
z̄Taj

, we have that

⟨N∗, DpXw̄aj
z̄Taj

⟩ = −β,

for j ∈ [tp]. This implies for all i ∈ [m], we have that when wi ̸= 0,

⟨N∗, (Xw̄i)+z̄
T
i ⟩ = −β,

and same for w′
i ̸= 0. Now we are ready to prove the claim. We first know that the regression error

is the same, as we have the same model fit Y ∗. The regularization error is given as

β
( m1∑

i=1

ci +

m2∑
i=1

di

)
= −⟨N∗, Y ∗⟩.

Hence, the cost of the problem is the same for any choice of the conic combination, and
(
√
ciw̄ai

,
√
ciz̄ai

)m1
i=1 ⊕ (

√
diw̄′

bi ,
√
diz̄′bi)

m2
i=1 is optimal when m1 +m2 ≤ m.

At last, suppose m ≥ nc + 1. Note that the vectors {(Xwi)+z
T
i }mi=1 and {(Xw′

i)+z
′T
i }mi=1are

matrices in nc - dimensional subspace. As any conic combination that sums up to Y ∗ makes a
solution, we can first prune both solutions to make them linearly independent, and then connect the
two using the same idea introduced in Theorem D.1.

Corollary F.1. (Corollary 4 of the paper) Consider the optimization problem in equation 11. Sup-
pose m ≥ nc+ 1 and denote the optimal set of equation 11 as Θ∗(m). For any θ := (wi, zi)

m
i=1 ∈

R(d+c)m, there exists a continuous path from θ to any point θ∗ ∈ Θ∗(m) with nonincreasing loss.

Proof. The proof is identical to that of Corollary 2. From Haeffele & Vidal (2017), we know that
when m ≥ nc + 1, the vector-valued training problem in equation 11 has no strict local minimum,
i.e. all local minima are global. Now from any θ, move to a local minimum using a path with
nonincreasing loss, then the local minimum is global. As Θ∗(m) is connected, we know that we can
arrive at any global minimum using a path with nonincreasing loss.

Finally, we extend our theory to parallel neural networks with depth 3. We have an optimal polytope
characterization that states the first-layer weights have a finite set of fixed possible directions.
Theorem F.4. (Theorem 3 of the paper) Consider the training problem

min
m,{W1i,w2i,αi}m

i=1

1

3

(
m∑
i=1

∥W1i∥3F + ∥w2i∥32 + |αi|3
)

subject to
m∑
i=1

((XW1i)+w2i)+αi = y.
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Here, W1i ∈ Rd×m1 , w2i ∈ Rm1 and αi ∈ R for i ∈ [m]. Then, there are only finitely many
possible values of the direction of the columns of W ∗

1i. Moreover, when y ̸= 0, the directions are
determined by solving the dual problem

max
∥W1∥F≤1,∥w2∥2≤1

|(ν∗)T ((XW1)+w2)+|

Proof. We can see the problem is equivalent to

min
m,{∥W1i∥2≤1,∥w2i∥2≤1,αi}m

i=1

m∑
i=1

|αi|,

subject to
m∑
i=1

((XW1i)+w2i)+αi = y,

from Wang et al. (2021a). Furthermore, when we write

QX =
{
((XW1)+w2)+ | W1 ∈ Rd×m1 , w2 ∈ Rm1 , ∥W1∥F ≤ 1, ∥w2∥2 ≤ 1

}
,

the problem is equivalent to

min t ≥ 0 subject to y ∈ t Conv(QX ∪ −QX).

Now we find a cone-constrained linear expression of ((XW1)+w2)+. Let’s denote D = {Di}P1
i=1

as the set of all possible arrangement patterns diag(1(Xh ≥ 0)) and D(m1) denote all possi-
ble

(
P1

m1

)
size m1 tuples of elements in D. Let’s note Di(m1) = (Di1, Di2, · · ·Dim1), where

Di1, Di2, · · ·Dim1
∈ D. i runs from 1 to

(
P1

m1

)
. Also, let’s fix s ∈ {1,−1}m1 .

Given Di(m1), s, we define the set D′ = {D′
j}

P2(i)
j=1 as the set of all possible arrangements of

diag(1(X̃h ≥ 0)), where X̃ = [Di1X|Di2X| · · · |Dim1
X] ∈ Rn×m1d.

When Di(m1), s,D
′
j are fixed, and (W1)·,i (which denote the i - th column of W1), w2i are fixed in

sets:
(2Dik − I)X(W1)·,k ≥ 0, skw2k ≥ 0 ∀k ∈ [m1],

(2D′
j − I)(

m1∑
k=1

DikX(W1)·,kw2k) ≥ 0,

the ReLU expression becomes

((XW1)+W2)+ =

m1∑
k=1

D′
jDikX(W1)·,kw2k.

In other words, when we denote K(Di(m1), s,D
′
j) as

K(Di(m1), s,D
′
j) =

{
(W1, w2) | (2Dik − I)X(W1)·,k ≥ 0, skw2k ≥ 0 ∀k ∈ [m1],

(2D′
j − I)(

m1∑
k=1

DikX(W1)·,kw2k) ≥ 0
}
,

QX =

(P1
m1

)⋃
i=1

⋃
s∈{−1,1}m1

P2(i)⋃
j=1

{ m1∑
k=1

D′
jDikX(W1)·,kw2k | (W1, w2) ∈K(Di(m1), s,D

′
j),

∥W1∥F ≤ 1, ∥w2∥ ≤ 1
}
.
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Now we consider the change of variables, where we write (W1)·,kw2k = vk ∈ Rd. The norm
constraint becomes

∑m1

k=1∥vk∥2 ≤ 1. To show this, we show that

{((W1)·,kw2k)
m1

k=1 | ∥W1∥F ≤ 1, ∥w2∥2 ≤ 1} = {(vk)m1

k=1 |
m1∑
k=1

∥vk∥2 ≤ 1}.

First, for ∥W1∥F ≤ 1, ∥w2∥2 ≤ 1, assume the column weights are a1, a2, · · · am1
. Then we

have a21 + · · · a2m1
≤ 1, w2

21 + w2
22 + · · · + w2

2m1
≤ 1, and use Cauchy-Schwartz to see that∑m1

k=1 ak|w2k| ≤ 1. To prove the latter, choose W1 = [v1/
√

∥v1∥2| · · · |vm1/
√
∥vm1∥2], w2 =

[
√

∥v1∥2, · · · ,
√
∥vm1∥2]T .

With change of variables, the cones are written as

Kv(Di(m1), s,D
′
j) =

{
(vk)

m1

k=1 | (2Dik − I)skXvk ≥ 0, ∀k ∈ [m1],

(2D′
j − I)

m1∑
k=1

DikXvk ≥ 0
}
,

which is a fixed cone in Rd. Hence, QX can be rewritten as

QX =

(P1
m1

)⋃
i=1

⋃
s∈{−1,1}m1

P2(i)⋃
j=1

{ m1∑
k=1

D′
jDikXvk | (vk)m1

k=1 ∈Kv(Di(m1), s,D
′
j),

m1∑
k=1

∥vk∥2 ≤ 1
}
.

As a result, we have found a piecewise linear expression of QX . When y = 0, we know that the
optimal weights are all zeros. If not, we know that the problem

minimize t ≥ 0 subject to y ∈ tC

has a dual variable ν∗ that satisfies: if y = t∗(
∑m

i=1 λici) for some ci ∈ C, all ci s are minimizers
of (ν∗)T c subject to c ∈ C. To see this fact, consider the supporting hyperplane on y. We can find a
vector that satisfies ⟨ν∗, y⟩ ≤ ⟨ν∗, t∗c⟩ for all c ∈ C and ⟨ν∗, y⟩/t∗ ≤ ⟨ν∗, c⟩ for all c ∈ C. Write
y = t∗(

∑m
i=1 λici) and apply inner product with ν∗ to see the wanted result. More specifically,

we have that λi⟨ν∗, y⟩ ≤ λi⟨ν∗, t∗ci⟩ for all i ∈ [m], and add them to see that the inequalities are
actually an equality, and ⟨ν∗, y⟩ = ⟨ν∗, t∗ci⟩ for all i ∈ [m].

Hence, noting C as Conv(QX ∪−QX), there exists a dual variable ν∗ where the optimal (W1, w2)
must lie in the set argmax∥W1∥F≤1,∥w2∥2≤1 |(ν∗)T ((XW1)+w2)+|. For each constraint set

(vk)
m1

k=1 ∈ Kv(Di(m1), s,D
′
j),

m1∑
k=1

∥vk∥2 ≤ 1,

we are optimizing a linear function over this set (as the ReLU expression is a linear function of
(vk)

m1

k=1). If there exists two different maximizers of the problem (vk)
m1

k=1, (v′k)
m1

k=1, the average of
the two will still be in the cone and satisfy the norm constraint strictly. Say (v′′k )

m1

k=1 is the average
of the two solutions - the cost function (which is either (ν∗)T

∑m1

k=1 D
′
jDi1Xvk or its negation)

value will be the same, but
∑m1

k=1∥v′′k∥2 < 1. Multiplying 1/
∑m1

k=1∥v′′k∥2 leads to a contradiction
in the optimality. Hence, for fixed cone Kv(Di(m1), s,D

′
j), the optimal (vk)m1

k=1 are fixed. As
vk = (W1)·,kw2k, the direction of the columns of W1 are fixed to a finite set of values.
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G ADDITIONAL DISCUSSIONS

In this section, we discuss the geometrical intuition of the dual optimum, non-unique solutions, and
also explain why the assumption in Simsek et al. (2021) might not hold in our case.

The specific problem of interest is interpolating the dataset {(−
√
3, 1), (

√
3, 1)} with a two-layer

neural network with bias. We want to find a minimum-norm interpolator, where the cost function
also includes regularizing the bias. We can write the problem as

min
m,{wi,αi}m

i=1

1

2

( m∑
i=1

∥wi∥22 + |αi|2
)

subject to
m∑
i=1

(X̄wi)+αi = y.

Here, X̄ =

[
−
√
3 1√
3 1

]
and y = [1, 1]T . The last column of X̄ denotes the bias term.

The problem is equivalent to

min
m,{wi,αi}m

i=1

m∑
i=1

|αi|,

subject to
m∑
i=1

(X̄wi)+αi = y, ∥wi∥2 ≤ 1.

See Pilanci & Ergen (2020) for a similar “scaling trick”.

In other words, when we denote QX̄ = {(X̄u)+ | ∥u∥2 ≤ 1}, the problem becomes Pilanci & Ergen
(2020)

min t ≥ 0 subject to y ∈ tConv(QX̄ ∪ −QX̄).

Figure 9 shows the shape of QX̄ and its convex hull.

(a) {Xu | ∥u∥2 ≤ 1} (b) {(Xu)+| ∥u∥2 ≤ 1} (c) Conv(QX ∪ −QX)

Figure 9: The shape of Conv(QX ∪−QX). We can see that the line x+ y = 2 is tangent to the set
{Xu | ∥u∥2 ≤ 1}, and meets with two points (2, 0), (0, 2) on the set QX . Hence, Conv(QX∪−QX)
is exactly the diamond |x|+ |y| ≤ 2.

One thing to notice is that in Figure 9b, the line x + y = 2 meets with QX̄ with three points, and
the convex hull Conv(QX̄ ∪ −QX̄) is a diamond. The intuition of the dual variable is that it is the
normal vector of a face where the optimal fit exists. In our case, y = [1, 1]T lies on the exact line
x+y = 2. Hence the dual optimum is ν∗ = [1, 1]T . We can also construct different minimum-norm
interpolators by linear combinations of the three green points in Figure 9b: we can express y by only
using the middle point (1, 1) - here, the interpolator becomes y = 1. We can use two points (2, 0)
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and (0, 2) to express (1, 1) - here, we have another interpolator that has two breakpoints. We can use
three points - where there will be infinitely many ways to express (1, 1), that leads to a continuum
of interpolators.

The assumption in Simsek et al. (2021) that there exists a unique model with zero loss and minimal
width does not work here. We can adapt it to the regularized case, and assume that there exists a
unique interpolator with minimal width and a solution to

min
m,{wi,αi}m

i=1

1

2

( m∑
i=1

∥wi∥22 + |αi|2
)

subject to
m∑
i=1

(X̄wi)+αi = y.

Here, X̄ = [x | 1] ∈ Rn×2. Now choose x = [−
√
3,
√
3] as before, but choose y = [1/2, 3/2].

Then, there exist two ways to express y as a conic combination of (2, 0), (1, 1), and (0, 2) with two
points. As y is not parallel to [2, 0], [1, 1], [0, 2], we can see that m∗ = 2 is minimal. Hence we don’t
have uniqueness of the smallest model in this case, and the results in Simsek et al. (2021) will not
apply in general.
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