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ABSTRACT

Diffusion Inverse Solvers (DIS) are designed to sample from the conditional distri-
bution with a pre-trained diffusion model an operator and a measurement derived
from an unknown image. Existing DIS estimate the conditional score function by
evaluating operator with an approximated posterior sample. However, most prior
approximations rely on the posterior means, which may not lie in the support of
the image distribution and diverge from the appearance of genuine images. Such
out-of-support samples may significantly degrade the performance of the opera-
tor, particularly when it is a neural network. In this paper, we introduces a novel
approach for posterior approximation that guarantees to generate valid samples
within the support of the image distribution, and also enhances the compatibility
with neural network-based operators. We first demonstrate that the solution of
the Probability Flow Ordinary Differential Equation (PF-ODE) yields an effec-
tive posterior sample with high probability. Based on this observation, we adopt
the Consistency Model (CM), which is distilled from PF-ODE, for posterior sam-
pling. Through extensive experiments, we show that our proposed method for
posterior sample approximation substantially enhance the effectiveness of DIS
for neural network measurement operators (e.g., in semantic segmentation). The
source code is provided in the supplementary material.

1 INTRODUCTION

Figure 1: A visual comparison of DIS with posterior mean as approximation for posterior sample,
and DIS with proposed CM approximation for posterior sample.

Diffusion Inverse Solvers (DIS) are a family of algorithms designed to address the inverse problem
using diffusion priors (Li et al., 2023; Moser et al., 2024). Specifically, given an operator f(.), a
measurement y = f(x′

0) from some unknown image x′
0, and a pre-trained diffusion model pθ(X0),

DIS aims to sample from the conditional distribution X0 ∼ pθ(X0|y). For example, when f(.) is
a down-sampling operator, DIS functions as a perceptual super-resolution algorithm (Menon et al.,
2020); when f(.) is an image segmentation operator, DIS generates an image which has the same
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segmentation map as the given one (Ye et al., 2024; Bansal et al., 2023) (See Figure 1). However,
directly sampling from conditional distribution pθ(X0|y) is intractable. To tackle this challenge,
previous works have adopted a variety of techniques such as linear projection (Wang et al., 2022;
Kawar et al., 2022; Chung et al., 2022b; Lugmayr et al., 2022; Song et al., 2022; Pokle et al., 2024;
Cardoso et al., 2024), variational inference (Feng et al., 2023; Mardani et al., 2023; Janati et al.,
2024), Bayesian filtering (Dou & Song, 2023), sequential Monte Carlo (Wu et al., 2024a; Phillips
et al., 2024), proximal gradient methods (Xu & Chi, 2024) and conditional score estimation (Chung
et al., 2022a; Yu et al., 2023; Zhu et al., 2023; He et al., 2024; Song et al., 2023b; Boys et al., 2023;
Rout et al., 2023; 2024).

Among various DIS techniques, conditional score estimation methods (Chung et al., 2022a; Song
et al., 2023c) are the most widely adopted. These methods are suitable for general non-linear oper-
ators f(.) and are practically efficient. During the diffusion process from XT to X0, they estimate
the conditional score ∇x log pθ(Xt|y) with posterior samples from pθ(X0|Xt). Since the posterior
pθ(X0|Xt) is intractable, various approximations to posterior sampling are proposed based on the
posterior mean. These approximations either directly adopt the posterior mean (Chung et al., 2022a;
Yu et al., 2023; Zhu et al., 2023; He et al., 2024) or construct a Gaussian distribution centered at the
posterior mean (Song et al., 2023b; Boys et al., 2023; Rout et al., 2023; 2024).

However, these posterior mean-based approximations often yield posterior samples that are far from
real images. It is well-known that the mean of a set of noisy images may not lie within the support
of the image distribution (Ledig et al., 2017; Blau & Michaeli, 2018; Zhang et al., 2024). While
these out-of-distribution approximations have been shown to be successful for simple operators f(.)
such as down-sampling and motion blurring, they may fail for more complex operators, especially
when f(.) are neural networks such as segmentation or classification (Ye et al., 2024; Bansal et al.,
2023). This is partially because neural networks are particularly sensitive to out-of-distribution
inputs, which can significantly degrade their performance. On the other hand, consistency models
(CM) (Song et al., 2023c) can effectively produce high quality images with a few steps, while their
relationship to the posterior samples is under-explored.

To address the aforementioned challenges, we propose the following points:

• We propose a novel approach for approximating posterior samples in DIS. Our approxima-
tions are guaranteed to be valid images and perform well with neural network measurement
operators.

• To justify our approximations are effective posterior samples, we first intuitions and exam-
ples on why the solution of the Probability Flow Ordinary Differential Equation (PF-ODE)
might have high density in posterior. Next, we demonstrate that the solution of PF-ODE
has positive density lowerbound in posterior with high probability.

• Empirical results show that utilizing CM for posterior sample approximation significantly
improves the performance of DIS, particularly when the operators are neural networks,
such as semantic segmentation and image captioning.

2 PRELIMINARIES

Diffusion Model The diffusion model is a type of generative model consisting of a T -step Gaussian
Markov chain in continuous space (Sohl-Dickstein et al., 2015). Two widely adopted diffusion
models are the variance-preserving (VP) diffusion and variance-exploding (VE) diffusion models.
In this work, we follow the VE diffusion formulation (Song et al., 2020); for the details on the VP
diffusion, refer to Ho et al. (2020); Kingma et al. (2021). We denote the source image as X0, and
the forward process of VE diffusion can be described as a Markov chain:

q(XT , ..., X1|X0) =

T∏
t=1

q(Xt|Xt−1), where q(Xt|Xt−1) = N (Xt−1, (σ
2
t − σ2

t−1)I), (1)

where σ2
t are hyper-parameters commonly referred to as the variance schedule. The reverse diffu-

sion process is also a Markov chain, with the transition kernel p(Xt−1|Xt) dependent on the score
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function ∇Xt
log p(Xt), which is approximated by a neural network sθ(t,Xt) parameterized by θ:

pθ(X0, ..., XT ) = p(XT )

T∏
t=1

pθ(Xt−1|Xt),

where pθ(Xt−1|Xt) = N (Xt + (σ2
t − σ2

t−1)sθ(t,Xt), (σ
2
t−1/σ

2
t )(σ

2
t − σ2

t−1)I). (2)

Song et al. (2020) demonstrated that the reverse diffusion process can be viewed as the discretization
of a reverse stochastic differential equation (SDE) (Anderson, 1982). Furthermore, they introduced
the Probability Flow Ordinary Differential Equation (PF-ODE), which shares the same marginal
distribution pθ(Xt) as the reverse SDE:

reverse SDE: dXt = −
dσ2

t

dt
sθ(t,Xt)dt+

√
dσ2

t

dt
dBt

same pθ(Xt)⇐⇒

PF-ODE: dXt = −
1

2

dσ2
t

dt
sθ(t,Xt)dt, (3)

where Bt is the standard Brownian motion. Therefore, solving either the reverse SDE or the PF-
ODE is equivalent to sampling from the reverse diffusion process. Another useful result is Tweedie’s
formula (Efron, 2011), which offers an efficient estimation of the mean of the posterior pθ(X0|Xt):

E[X0|Xt] = Xt + σ2
t sθ(t,Xt). (4)

Diffusion Inverse Solvers with Conditional Score Estimation Given an operator f(.), a target
measurement y = f(x′

0) from an unknown x′
0, and a diffusion model pθ(X0), Diffusion Inverse

Solvers (DIS) aim to sample from the conditional distribution pθ(X0|y). In this paper, we focus on
DIS that utilize conditional score estimation (Chung et al., 2022a; Song et al., 2023b). Specifically,
this paradigm of DIS attempts to estimate the conditional score ∇Xt log pθ(Xt|y). With this condi-
tional score available, sampling from conditional distribution pθ(X0|y) becomes straightforward by
solving the reverse SDE or the PF-ODE in Eq. 3, replacing sθ(t,Xt) with the conditional score.

More specifically, Chung et al. (2022a); Song et al. (2023c) propose to decompose the conditional
score into an unconditional score and an additional term related to the distance ∆(f(x0|t), y), where
x0|t is a sample from the posterior pθ(X0|Xt) and ∆(., .) represents a distance metric:

∇Xt
log pθ(Xt|y) = ∇Xt

log pθ(y|Xt) +∇Xt
log pθ(Xt),

∇Xt
log pθ(y|Xt) = ∇Xt

logEpθ(X0|Xt)[p(y|X0)] ≈ ∇Xt
log

1

K

i=1,...,K∑
x
(i)

0|t∼pθ(X0|Xt)

pθ(y|X0 = x
(i)
0|t),

pθ(y|X0 = x
(i)
0|t) ∝ exp (−∆(f(x

(i)
0|t), y)). (5)

Under this formulation, an important challenge is how to effectively draw differentiable samples
from the posterior pθ(X0|Xt). Direct ancestral sampling from reverse diffusion is computationally
expensive. Chung et al. (2022a) propose using the posterior mean computed by Tweedie’s formula,
as shown in Eq. 4, as the posterior sample. Song et al. (2022; 2023b) suggest modeling the poste-
rior as a Gaussian distribution, with the mean being the posterior mean and the covariance chosen
as a hyper-parameter. Rout et al. (2023); Boys et al. (2023) improve upon this by estimating the
posterior covariance using the second-order Tweedie’s formula. Several other approaches follow the
conditional score estimation paradigm and rely on these approximations, including Yu et al. (2023);
Chung et al. (2023); Song et al. (2023a); He et al. (2023b); Rout et al. (2024); Meng & Kabashima
(2022); Dou & Song (2023); Chung et al. (2022b); Song et al. (2022); He et al. (2023a).

3 CONSISTENCY MODEL IS AN EFFECTIVE POSTERIOR SAMPLE
APPROXIMATION FOR DIS

3.1 PREVIOUS APPROXIMATIONS ARE OUT-OF-DISTRIBUTION

Most previous approximations to pθ(X0|Xt) either directly use the posterior mean or construct a
uni-modal distribution centered around the posterior mean. However, the posterior mean E[X0|Xt]
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does not necessarily correspond to a valid image (Ledig et al., 2017; Blau & Michaeli, 2018). In
other words, the posterior mean may not lie within the support of the natural image distribution,
resulting in its probability density in both marginal and posterior distributions close to zero:

pθ(X0 = E[X0|Xt = xt]) ≈ 0, pθ(X0 = E[X0|Xt = xt]|Xt = xt) ≈ 0. (6)

Figure 2: Different approximations of posterior sample, and their output after a segmentation f(.).

FID KID

Posterior mean E[X0|Xt] 317.0 31e-2
Posterior mean with Gaussian N (E[X0|Xt], r

2
t I) 353.0 37e-2

PF-ODE Φ(t, xt) 24.87 1.5e-2

Table 1: Sample quality of different approximations.

When the operator is a neural network, such out-of-distribution approximations can significantly
degrade the performance of operator. A visual example is shown in Figure 2. The approximations
using the posterior mean and those using a Gaussian distribution centered at the posterior mean
do not yield valid image samples. Consequently, when these approximations are processed by a
semantic segmentation operator f(.), the outputs are nonsensical.

In Table 1, we quantitatively verify that the posterior mean is not a valid sample. We use two widely
used metrics, FID (Fréchet inception distance) and KID (Kernel-Inception distance), to measure the
quality of the samples. It is shown that the posterior mean and the Gaussian sample centered at
posterior mean produce very high FID and KID scores, which indicates a low sample quality.

3.2 PF-ODE PROVIDES AN EFFECTIVE POSTERIOR SAMPLE APPROXIMATION

It is known that the PF-ODE and reverse SDE, as defined in Eq. 3, share the same marginal distribu-
tion. If the score function is learned perfectly, this marginal distribution of X0 of the reverse process
is the same as the original image distribution p(X0) (Song et al., 2020). Denote the solution of the
PF-ODE given the initial condition Xt = xt as Φ(t, xt). This solution lies within the support of the
natural image distribution, meaning it represents a valid image with non-zero density:

p(X0 = Φ(t, xt)) > 0. (7)

Returning to the example in Figure 2, when using the PF-ODE as the posterior sample approxima-
tion, the semantic segmentation operator f(.) produces a reasonable result. Furthermore, in Table 1,
we quantitatively verify that the result of PF-ODE is a valid image (the sample has low FID and
KID scores). However, knowing that p(X0 = Φ(t, xt)) > 0 is not sufficient. Since we seek a
posterior sample approximation, we need to ensure that the solution Φ(t, xt) has positive density in
the posterior distribution, i.e., p(X0 = Φ(t, xt)|Xt = xt) > 0.

To the best of our knowledge, the relationship between the PF-ODE’s solution Φ(t, xt) given the
initial value Xt = xt and the posterior p(X0|Xt = xt) is still not well understood. In this section,
we provide some intuition and theoretical justification on why the solution of the PF-ODE might
have high density in posterior, and demonstrate that the solution of the PF-ODE has non-zero density
in posterior with high probability, i.e.,

p(X0 = Φ(t, xt)|Xt = xt) > 0 with high probability (w.r.t. xt ∼ p(Xt)). (8)
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Assumption 3.1. We assume the following conditions hold:

• The p(X0) can be approximated by a d-dimensional Gaussian Mixture Model (GMM)
composed of N Gaussians, each with the same small diagonal covariance σ2I and mean
µi:

p(X0) ≈
1

N

N∑
i=1

N (X0|µi, σ2I),where σ <
1√
4πe

. (9)

• The solution Φ(t, xt) and initial value xt are bounded, i.e., ∥Φ(t, xt)∥ < c and ∥xt∥ ≤ c
for some constant c.

Under this assumption, we can rewrite the PF-ODE using the GMM parameters:
Lemma 3.2. The PF-ODE can be written as:

dXt

dt
=

N∑
i=1

wi

2

dσ2
t

dt

(Xt − µi)

σ2 + σ2
t︸ ︷︷ ︸

velocity field vt

, wi = (exp (−∥Xt − µi∥2

2(σ2 + σ2
t )

))/(

N∑
j=1

exp (−∥Xt − µj∥2

2(σ2 + σ2
t )

)). (10)

Figure 3: The PF-ODE’s velocity field of a 5-
GMM.

We can first provide an intuitive analysis of the ve-
locity field vt of the PF-ODE described in Eq. 10.
The velocity field is a sum of vectors pointing to-
wards the centers µi, weighted by a softmax func-
tion wi. When σ2

t is small, wi approximates a
”hard”-max function that selects the closest cen-
ter µ∗ to the initial point xt, causing the veloc-
ity field to always point towards µ∗. This clos-
est center µ∗ corresponds to the highest density
mode in the true posterior (See Appendix A). Due
to this alignment, the solution of the PF-ODE with
Xt = xt approximates the mode with the highest
density in the true posterior distribution.

When σ2
t is not sufficiently small, we can still consider other conditions under which the PF-ODE

will converge to the closest center µ∗. Consider the five-Gaussian Mixture Model (GMM) example
in Figure 3 with the initial point Xt = xt. An intuitive approach is to observe that the normal
plane of the velocity vt divides the space into two regions. In one region, the velocity has a negative
projection in the direction of some centers, while in the other region, the velocity has a positive
projection in the direction of other centers. Consequently, Xt will move away from centers with
negative projections and towards centers with positive projections. Among the centers with positive
projections, if the closest center µ∗ also forms the smallest angle with the velocity vector, it is very
likely that the PF-ODE will eventually converge to this closest center.

Even if the solution of PF-ODE does not converge to the highest density mode of posterior, we can
still show that its density has a non-zero lowerbound with high probability independent of d:
Proposition 3.3. The solution of the PF-ODE has a positive likelihood in the true posterior with
high probability. More precisely, with probability 1−e−0.132d (w.r.t. the randomness of xt ∼ p(Xt)),
the following lower bound holds:

p(X0 = Φ(t, xt)|Xt = xt) ≥
1

N
exp

(
−2c2

σ2
t

)
. (11)

3.3 A TOY EXAMPLE

To better understand the results discussed above, we provide a toy example in R2. As illustrated in
Figure 4, the source distribution p(X0) is modeled as a 5-Gaussian Mixture Model (GMM). Each
Gaussian component is diagonal with a standard deviation of σ0 = 0.1. The centers of the Gaussians
are located at (−1,−1), (−1, 1), (1, 1), (1,−1), and (0, 0). We adopt the VE diffusion model with
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Figure 4: A toy example with 5-GMM.

σT = 4, T = 100, and use the σ schedule proposed by Karras et al. (2022). The score function
∇Xt

log p(Xt) is computed analytically.

As shown in Figure 4 (upper part), starting from xt = (1, 0.4), the posterior p(X0|Xt = xt) has
most of its density concentrated on the two rightmost Gaussians. However, the approximation using
the posterior mean is close to (1, 0.4), a region where the true posterior has almost no density.
Additionally, the approximation using both the posterior mean and covariance also concentrates on
a region with minimal true posterior density.

We also visualize the decision boundary of the highest density mode for both the true posterior and
the PF-ODE starting at different σ2

t values. As shown in Figure 4 (lower part), the decision boundary
for the true posterior is always a Voronoi cell centered at each µi. When σ2

t is small, the solution of
the PF-ODE closely resembles the true posterior. As σ2

t increases, the solution of the PF-ODE starts
to deviate from that of the true posterior. Nonetheless, during this phase, the density becomes more
evenly distributed in the true posterior. Consequently, the solution of the PF-ODE still maintains a
non-zero density.

3.4 IMPLEMENTATION OF PF-ODE APPROXIMATION USING CONSISTENCY MODELS

Directly solving the PF-ODE is also computationally intractable for DIS. Fortunately, the PF-ODE
can be distilled into a Consistency Model (CM) (Song et al., 2023c). Specifically, CM trains a one-
step neural function gθ(t, xt) to approximate the solution of the PF-ODE, Φ(t, xt). Its gradient is
cheap to evaluate. Thus, we can directly replace the step x0|t ∼ pθ(X0|Xt = xt) in Eq. 5 with
x0|t = gθ(t, xt). As this approach is an improvement of diffusion posterior sampling (DPS) (Chung
et al., 2022a) using CM, we name it DPS-CM.

In practice, we find that the Consistency Model (CM) often overfits the operator f(.). Specifically,
the CM-approximated sample x0|t is close to y after being processed by the operator f(.). However,
upon visual inspection, x0|t often appears misaligned with y. (See an example in Figure 6). In fact,
the resulting overfitted sample is an adversarial example (Szegedy et al., 2013), which aligns with
the label y according to the neural network but not according to human perception. To make f(.)
more robust, we propose adding small Gaussian noise to the output of the CM, as suggested in the
literature on adversarial robustness (Li et al., 2019).

x0|t = gθ(t, xt) +N (0, τ2I). (12)
Furthermore, we can also avoid overfitted sample by running CM for multiple steps (Song et al.,
2023c). For example, for CM with K = 2 steps, we have:

x0|t = gθ(τ, gθ(t, xt) +N (0, τ2I)). (13)

6
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To wrap up, we present the final algorithm of DPS-CM in Algorithm 2. For ease of comparison, we
also provide the pseudocode of DPS in Algorithm 1 and the difference is highlighted in brown.

Algorithm 1: DPS (Chung et al., 2022a)
1 input T, σt, f(.), y,∆(., .), ζt
2 xT = N (0, σ2

T I)
3 for t = T to 1 do
4 xt−1 ∼ pθ(Xt−1|Xt = xt)
5 x0|t = E[X0|Xt = xt]
6 xt−1 ← xt−1 − ζt∇xt∆(f(x0|t), y)
7 return x0

Algorithm 2: DPS-CM
1 input T, σt, f(.), y,∆(., .), ζt, gθ(., .), τ,K
2 xT = N (0, σ2

T I)
3 for t = T to 1 do
4 xt−1 ∼ pθ(Xt|Xt−1 = xt−1)
5 x0|t = gθ(t, xt)
6 for k = 1 to K do
7 x0|t = x0|t +N (0, τ2I)
8 if K = 1 then
9 break

10 x0|t = gθ(τ, x0|t)
11 xt−1 ← xt−1 − ζt∇xt∆(f(x0|t), y)
12 return x0

3.5 EXTENSION TO LATENT DIFFUSION

DPS-CM can also be extended to diffusion models in latent space in a way similar to how DPS is
extended to latent space. Specifically, latent diffusion models (Rombach et al., 2022) employ an
encoder E(.) to map the image into latent space and a decoder D(.) to map the latent representation
back to the image space. Rout et al. (2024) extend DPS into latent DPS by decoding the posterior
mean x0|t in Algorithm 1 before passing it to f(.) during the DPS update:

xt−1 ← xt−1 − ζt∇xt
∆(f(D(x0|t)), y). (14)

With this simple adaptation, we can run DPS with powerful latent diffusion models such as Stable
Diffusion. To extend DPS-CM to latent diffusion, we can additionally replace the consistency model
in Algorithm. 2 by latent consistency model (LCM) (Luo et al., 2023b). The resulting algorithm can
be described as replacing line 11 of Algorithm. 2 with Eq. 14.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Base Diffusion Models For the pixel space diffusion model, we use the pre-trained the Elucidated
Diffusion Model (EDM) (Karras et al., 2022)—as provided by Song et al. (2023c). For EDM-
related methods, we adopt an ancestral sampler with 1000 Euler steps. For the Consistency Model
(CM) (Song et al., 2023c), we employ the official pre-trained model as provided by Song et al.
(2023c). For latent diffusion model Rombach et al. (2022), we use Stable Diffusion 1.5 (SD1.5)
with Dreamshaper v7 pre-trained weights. For latent consistency model (Luo et al., 2023a), we
adopt the official pre-trained model. The detailed setup is described in Appendix B.

Operators We evaluate all the methods with four different neural network measurement operators:
semantic segmentation, room layout estimation, image captioning, and image classification. For
layout estimation, we adopt the neural network proposed by Lin et al. (2018). For semantic segmen-
tation, we use the network developed by Zhou et al. (2017). For image captioning, we employ the
BLIP model (Li et al., 2022). For image classification, we use ResNet (He et al., 2015). Additionally,
we also evaluate the methods with a non-neural network operator: down-sampling (x4).

Datasets & Metrics Following the evaluation protocols of Song et al. (2023c) and Chung et al.
(2022a), for EDM, we use the first 1000 images from the LSUN Bedroom and LSUN Cat datasets
(Yu et al., 2015) as the test set. All images are resized to 256 by the short edge and cropped into
256×256. For SD1.5, we use the first 100 images from the LSUN Bedroom and LSUN Cat datasets
(Yu et al., 2015) as the test set. Similarly, all images are resized to 512 by the short edge and cropped
into 512× 512. We also tried general images such as ImageNet, but the generation is not successful
for our complex neural network operator without content specific prompt.

7
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Table 2: Results on neural network measurement operators, i.e., layout estimation, segmentation,
caption and classification. Bold: best in diffusion-based DIS.

LSUN Bedroom LSUN Cat

Segmentation Layout Caption Classification

mIOU FID KID mIOU FID KID CLIP FID KID Acc FID KID

Pixel Space (EDM)
DPS 0.27 22.84 1.0e-2 0.54 7.59 1.9e-3 22.57 9.49 2.6-e3 0.79 15.73 7.1e-3
FreeDOM 0.27 21.90 9.1-e3 0.46 15.27 8.1e-3 22.61 28.30 1.8e-2 0.84 32.32 1.7-e2
MPGD 0.24 82.66 6.9e-2 0.73 15.38 8.5-e3 21.49 21.14 1.3e-2 0.37 15.40 7.1e-3
UGD 0.30 13.54 4.2e-2 0.51 7.89 1.7e-3 22.12 9.12 2.7e-3 0.75 14.43 7.2e-3
LGD 0.22 35.69 2.4e-2 0.70 8.07 2.3e-3 22.58 8.38 2.6-e3 0.64 13.35 4.5e-3
STSL 0.27 19.48 7.4e-3 0.52 7.74 2.2e-3 22.39 9.70 2.8e-3 0.78 15.74 6.9e-3
DPS-CM (K=1) 0.34 18.06 8.2e-3 0.78 7.50 2.2e-3 22.63 8.16 2.5-e3 0.90 13.45 3.6e-3
DPS-CM (K=2) 0.31 10.14 3.7e-3 0.76 8.12 2.7e-3 22.34 8.80 2.8e-3 0.93 13.30 1.7e-3
Latent Space (Stable Diffusion)
LDPS 0.28 134.1 6.4e-2 0.40 97.12 3.6e-2 17.23 109.8 3.9e-2 0.76 131.2 4.1e-2
LGD 0.29 111.7 4.5e-2 0.50 99.15 3.6e-2 17.25 96.92 3.4e-2 0.92 131.3 4.5e-2
DPS-CM (K=1) 0.33 104.8 4.4e-2 0.58 93.94 3.2e-2 17.18 90.14 2.9e-2 0.85 127.1 4.0e-2

Table 3: The posterior sample approximation of different
methods.

Approximation of posterior sample Valid image?

DPS x0|t = E[X0|Xt] ✗
FreeDOM x0|t = E[X0|Xt] ✗
MDPG x0|t = E[X0|Xt] ✗
UGD x0|t = E[X0|Xt] ✗
LGD x0|t ∼ N (E[X0|Xt], r

2
t I) ✗

STSL x0|t ∼ N (E[X0|Xt],Cov(X0|Xt)) ✗
DPS-CM x0|t = gθ(t,Xt) ✓

Table 4: Temporal and spatial complex-
ity of different methods.

Time (s) VRAM (GB)

DPS 150 5.35
DPS-CM (K=1) 218 6.32
DPS-CM (K=2) 340 10.2

To evaluate sample quality, we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017)
and Kernel Inception Distance (KID) (Binkowski et al., 2018). To evaluate the consistency with the
constraint, we use mIOU for segmentation and layout, CLIP score for captioning, and accuracy for
classification. For neural network measurement operators f(.), we use different models for DIS and
testing to avoid over-fitting (see Appendix B). For down-sampling, we use image restoration metrics
such as LPIPS (Zhang et al., 2018) and Peak Signal-to-Noise Ratio (PSNR).

Previous State-of-the-Art DIS We compare DPS-CM with previously published DIS methods that
can handle neural network measurement operators f(.). For methods that directly use the posterior
mean as the posterior sample, we include DPS (Chung et al., 2022b), FreeDOM Yu et al. (2023),
MPGD (He et al., 2024) and UGD (Bansal et al., 2023). For methods that construct an approx-
imated posterior distribution with the posterior mean as the mode, we include LGD (Song et al.,
2023b) and STSL (Rout et al., 2023) (see Table 3). We implement all these methods with the EDM
and Euler ancestral sampler (see details in Appendix B). We acknowledge that there are other very
competitive works designed for linear operators or those that do not provide open-source imple-
mentations (Chung et al., 2023; Song et al., 2023a; He et al., 2023b; Rout et al., 2024; Meng &
Kabashima, 2022; Dou & Song, 2023; Chung et al., 2022b; Song et al., 2022; Boys et al., 2023; He
et al., 2023a). However, our focus is currently on neural network measurement operators f(.), and
therefore, we have not included these methods for comparison.

4.2 MAIN RESULTS

Results on neural network measurement operators We evaluate our DPS-CM on four neural net-
work measurement operators: segmentation, layout estimation, image captioning, and classification.
As shown in Table 2, Figure 1, Figure 5, Figure 11, and Figure 12, both quantitatively and visually,
our DPS-CM (Sec. 3.4) achieves significant improvements in both consistency (e.g., mIOU) and
sample quality (e.g., FID) compared to the baseline DPS (Chung et al., 2022a). The superiority of
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our approximation over other posterior-mean-based approximations is clear, which is attributed to
the sensitivity of neural network measurement operators f(.) to out-of-distribution inputs.

Figure 5: Visual results on neural network measurement operators such as segmentation, caption
and classification.

Results on Non-neural network measurement operators In addition to neural network measure-
ment operators, we also verify that DPS-CMes work well for non-neural network measurement
operators such as down-sampling. Results are summarized in Table 7 and Figure 6 (lower part). Our
DPS-CM performs comparably to DPS for simple operators. This is because non-neural network
measurement operators f(.) are not as sensitive to out-of-distribution approximations.

Result on Latent Diffusion In addition to pixel diffusion (EDM), we also evaluate our DPS-CM
on latent diffusion, using Stable Diffusion and latent consistency model. As shown in Table 2 and
Table 9, when operator f(.) is neural network, DPS-CM outperforms DPS in latent space. And
when operator f(.) is simple linear operators, DPS-CM is comparable to DPS in latent space.

4.3 ABLATION STUDY

We evaluate the effect of using CM for posterior approximation in our DPS-CM (Sec. 3.4) and
adding randomness to CM in Table 5. More specifically, we demonstrate that using CM to replace
the posterior mean reduces the distance to the measurement y in terms of mIOU and improves
sample quality as measured by FID. Additionally, adding randomness further enhances mIOU and
reduces FID.

Table 5: Ablation study of DPS-CM. Bold:
Method with best performance.

CM K Rand mIOU FID

DPS-CM

✗ - ✗ 0.27 22.84
✓ 1 ✗ 0.31 19.29
✓ 1 ✓ 0.34 18.06
✓ 2 ✓ 0.31 10.14

Table 6: Ablation study of randomness and data
augmentation with segmentation.

Rand mIOU

Model A Model A + DA Model B

✗ 0.57 0.43 0.31
✓ 0.51 0.54 0.34

We hypothesize that CM benefits from added randomness because it avoids overfitting the operator
f(.), or it enhances f(.)’s robustness to adversarial examples (Li et al., 2019). To test this hypothesis,
we use Model A for f(.) during DIS training. During evaluation, we compare the results using
Model A, Model A with data augmentation (DA), and a separate Model B. In Table 6, we show that
when tested with Model A, DIS without randomness outperforms DIS with randomness. However,
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Figure 6: upper. An example of over-fitting an opera-
tor f(.). lower. Visual results on linear operators such
as down-sampling.

Table 7: Results on non-neural network mea-
surement operators such as super-resolution.

Bedroom Down-sampling (x4/x8)

KID FID LPIPS PSNR

Pixel Space (EDM)
DPS 1.4e-3 4.82 0.11 26.69
FreeDOM 1.1e-3 4.84 0.11 26.70
MPGD 2.0e-3 43.36 0.38 22.84
LGD 2.8e-3 7.10 0.14 26.51
STSL 1.2e-3 4.80 0.12 26.65
DPS-CM (K=1) 1.9e-3 5.67 0.12 26.91
Latent Space (Stable Diffusion)
LDPS 1.9e-2 77.36 0.27 28.63
LGD 5.1e-2 107.2 0.30 28.72
DPS-CM (K=1) 2.8e-2 86.66 0.27 28.98

when tested with Model A with DA and Model B, DIS with randomness outperforms DIS without
randomness. This indicates that DIS without randomness overfits Model A. An example of such
overfitting is presented in Figure 6 (upper part).

4.4 COMPLEXITY

In Table 4, we show that our DPS-CM has comparable temporal and spatial complexity to DPS
(Chung et al., 2022a). DPS-CM with K = 1 brings around 25% more running time and 20% more
memory consumption. While DPS-CM with K = 2 takes around twice more time and memory.

5 RELATED WORK

An important branch of DIS focuses on linear operators f(.) using projection or pseudo-inverse
techniques (Wang et al., 2022; Kawar et al., 2022; Chung et al., 2022b; Lugmayr et al., 2022; Song
et al., 2022; Dou & Song, 2023; Pokle et al., 2024; Cardoso et al., 2024). For general, non-linear
f(.), various approaches have been proposed, including Monte Carlo methods (Wu et al., 2024a;
Phillips et al., 2024), proximal gradient methods (Xu & Chi, 2024), and variational inference (Feng
et al., 2023; Mardani et al., 2023; Janati et al., 2024). Among these paradigms, conditional score
estimation methods are the most widely adopted as they are scalable to practically large images with
reasonable runtime (Chung et al., 2022a; Yu et al., 2023; Zhu et al., 2023; He et al., 2024; Song et al.,
2023b; Boys et al., 2023; Rout et al., 2023; 2024; Bansal et al., 2023). Following this paradigm, we
propose to approximate the posterior sample using the PF-ODE, which improves results for neural
network measurement operators f(.). After the submission of this paper, we notice that Wang et al.
(2024); Wu et al. (2024b) also solve the DIS for general noisy operator. And Zhao et al. (2024) also
leverage CM to solve DIS.

6 DISCUSSION & CONCLUSION

One limitation of this paper is that we only consider simple image datasets such as LSUN Bedroom
and LSUN Cat. Training-free generation with conditions such as segmentation can be very challeng-
ing on complicated image datasets like ImageNet. Consequently, most previous works have focused
on simpler images, such as faces and dogs (Yu et al., 2023; Bansal et al., 2023). Therefore, we also
focus on simple image datasets and leave the generation of more complex images as future work.

To conclude, we show that the solution of PF-ODE is an effective posterior sample. Built upon this,
we propose to use CM as a high-quality approximation to posterior sample. Further, we propose a
new family of DIS using only CM. Experimental results show that our DPS-CM perform well for
neural network measurement operators.
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A PROOF OF MAIN RESULTS

We first derive some basic properties of the GMM model. More specifically, we have

p(X0) =
1

N

N∑
i=1

N (X0|µi, σ2I), (15)

p(Xt|X0) = N (Xt|X0, σ
2
t I), (16)

p(Xt) =
1

N

N∑
i=1

N (Xt|µi, (σ2 + σ2
t )I), (17)

p(X0|Xt) =
p(Xt|X0)p(X0)

p(Xt)
=

N∑
i=1

p(Xt|X0)∑N
j=1N (Xt|µj , (σ2 + σ2

t )I)
N (X0|µi, σ2I)

=

N∑
i=1

uiN (X0|µi, σ2I),

where ui = (exp−∥X0 −Xt∥2

2σ2
t

)/(

N∑
j=1

1√
(1 + σ2/σ2

t )
d
exp (−∥Xt − µi∥2

2(σ2 + σ2
t )

)). (18)

For true posterior p(X0|Xt = xt), we know that X0 eventually converges to the vicinity of one of
the µi with high probability (for small σ). Therefore, the µ∗ closest to Xt has highest weighting
ui. Thus no matter what is the value of σ2

t , the highest density mode of true posterior is always the
mode µ∗ that is closest to the initial point xt. The decision boundary is always the Voronoi diagram
centered at µi.

Lemma 3.3 The PF-ODE can be written as:

dXt

dt
=

N∑
i=1

wi

2

dσ2
t

dt

(Xt − µi)

σ2 + σ2
t︸ ︷︷ ︸

velocity field vt

, wi = (exp (−∥Xt − µi∥2

2(σ2 + σ2
t )

))/(

N∑
j=1

exp (−∥Xt − µj∥2

2(σ2 + σ2
t )

)).

Proof. We need to compute the score function first:

∇ log p(Xt = xt) =
∇p(Xt = xt)

p(Xt = xt)

=
1

p(Xt = xt)
∇(

N∑
i=1

1

N
(N (Xt = xt | µi, (σ2 + σ2

t )I)))

=
1

p(Xt = xt)

N∑
i=1

1

N
N (Xt = xt | µi, (σ2 + σ2

t ))(−
(x− µi)

σ2 + σ2
t

)

=

N∑
i=1

((exp (−∥xt − µi∥2

2(σ2 + σ2
t )
))/(

N∑
j=1

exp (−∥xt − µj∥2

2(σ2 + σ2
t )
)))(− x− µi

σ2 + σ2
t

). (19)

Combining with the PF-ODE in Eq. 3, we can obtain the result.

With those basic properties, we can show that the solution of PF-ODE with initial value Xt = xt

has non-zero density in true posterior p(X0|Xt). Prior to that, we need an extra lemma:

Lemma A.1. As PF-ODE is margin preserving, the solution of PF-ODE concentrate inside a ball
centered at µi with radius

√
dσ i.e., ∃k, s.t.∥Φ(t, xt)− µk∥2 ≤ 2dσ2 with probability 1− e−0.134d

∀xt ∼ p(Xt).
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Proof. We can use the Proposition 4.3 of Yang et al. (2024), which states that for a d-dimensional
diagonal Gaussian variable x,

Pr(∥x− µ∥2 ≥ dσ2 + 2dσ2(ϵ+
√
ϵ)) ≤ e−dϵ. (20)

Then we can simply let ϵ+
√
ϵ = 1

2 , which leads to the choice ϵ = 0.134.

Proposition 3.2 The solution of the PF-ODE has a positive likelihood in the true posterior with high
probability. More precisely, with probability 1 − e−0.132d (w.r.t. the randomness of xt ∼ p(Xt)),
the following lower bound holds:

p(X0 = Φ(t, xt)|Xt = xt) ≥
1

N
exp

(
−2c2

σ2
t

)
. (21)

Proof.

p(X0 = Φ(t, xt) | Xt = xt) =
p(Xt|X0)p(X0)

p(Xt)

=
p(Xt|X0)p(X0)∑
Xt

p(Xt|X0)p(X0)

(a)
=

N∑
i=1

p(Xt|X0)∑N
j=1N (Xt|µj , (σ2 + σ2

t )I)
N (X0|µi, σ2I)

=

N∑
i=1

uiN (X0 = Φ(t, xt)|µi, σ2I)

≥ ujN (X0 = Φ(t, xt)|µj , σ2I),∀j

where (a) holds due to Eq 18. We let k = mini{∥µi − Φ(t, xt)∥}, by Lemma. A.1, we have
∥Φ(t, xt)− µk∥ ≤ 2dσ2 with probability 1− e−0.132d.

p(X0 = Φ(t, xt)|Xt = xt) ≥ uk
1√

(2πσ2)d
exp (−∥µ

k − Φ(t, xt)∥2

2σ2
)

(a)

≥ uk
1√

(2πσ2)d
exp (−2dσ2

2σ2
)

=
exp (−∥Φ(t,xt)−xt∥2

2σ2
t

)∑N
j=1

√
(1 + σ2/σ2

t )
d exp (−∥xt−µi∥2

2(σ2+σ2
t )
)

1√
(2πσ2)d

exp (−d)

(b)

≥
exp (− 4c2

2σ2
t
)

√
2d

∑N
j=1 exp (0)

1√
(2πσ2)d

exp (−d)

=
1

N

1√
(4πσ2)d

exp (−2c2

σ2
t

− d)

=
1

N
exp ((log

1√
4πσ2

)d− d− 2c2

σ2
t

)

(a) holds due to Lemma. A.1. (b) holds due to ∥Φ(t, xt) − xt∥ ≤ ∥Φ(t, xt)∥ + ∥xt∥. As they are
both bounded by c, ∥Φ(t, xt)− xt∥2 is bounded by 4c2. And 1 + σ2

σ2
t
≤ 2. Then, we can set a small

enough σ, such as

σ <
1√
4πe

, log
1√
4πσ2

> 1. (22)

Then we have

p(X0 = Φ(t, xt)|Xt = xt) ≥
1

N
exp (−2c2

σ2
t

) > 0, (23)

which completes the proof.
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We can study the PF-ODE in Eq. 10 informally when σ2
t is rather small or large. When σ2

t is small,
the soft-max wi becomes a ”hard”-max. Denote k = mini{∥µi − Φ(t, xt)∥} and the PF-ODE at
that time can be written as

dXt

dt
= −1

2

dσ2
t

dt
(− (Xt − µk)

σ2 + σ2
t

). (24)

At that time, the PF-ODE is first order separable. And we can solve it with initial value Xt = xt as

Φ(t, xt)− µk

xt − µk
= eh(t), (25)

where h(.) is some function of t related to the dσ2
t /dt.

Let’s assume a simple σ2
t schedule such as σ2

t = t2. In that case, we have

Φ(t, xt) = µk + (xt − µk)e
1
2 ln σ2

σ2+t2 . (26)

The solution has the form of µk with an offset term weighted by an exponential term. When σ2 is
small, the exponential term goes to 0 very fast. And therefore Φ(t, xt) ≈ µk at that time.

B ADDITIONAL EXPERIMENT SETUP

B.1 IMPLEMENTATION DETAILS

All the experiments are implemented in Pytorch, and run in a computer with AMD EPYC 7742 CPU
and Nvidia A100 GPU.

Table 8: The model specification used for different non-linear operators.

Model A Model B

Segmentation MobileNet + C1 ResNet50 + PPM
Layout Lin et al. (2018) Lin et al. (2018) + DA
Caption BLIP CLIP
Classification ResNet50 VITB16

As we have shown, using the same model for f(.) causes overfitting for neural network based f(.).
Therefore, we adopt different model for f(.) in DIS and testing, and the details are shown in Table 8.

Table 9: Metrics for DIS loss and evaluation.

d(., .) for DIS metric for Test

Segmentation Cross Entropy mIOU
Layout Cross Entropy mIOU
Caption Cross Entropy CLIP score
Classification Cross Entropy Accuracy
Downsample MSE MSE

For different operators, we also have different d(., .) to evaluate the distance d(f(x0|t), y) during
the DIS process. For all four non-linear operators, the cross entropy are used for d(., .). While for
down-sample, we adopt MSE. To evaluate how consistent the generated samples are to y, we use y-
metrics. Or to say, the metrics computed with input measurement y and f(x0|t). More specifically,
for Segmentation and Layout, we evaluate consistency by y-mIOU. For image caption, we evaluate
consistency by CLIP score (Hessel et al., 2021). For classification, we evaluate consistency by
accuracy. And for down-sample, we evaluate consistency by MSE. Note that the d(., .) used during
DIS follows the convention of training corresponding f(.), and the y-metric used for testing also
follows the convention of testing corresponding f(.).

For latent diffusion, we set the prompt to be ”A high quality image of a bedroom” for LSUN bedroom
dataset, and ”A high quality image of a cat” for the LSUN cat dataset.
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B.2 DETAILS OF DIS ALGORITHM

Below we provide the detailed algorithm of different DIS methods including the ones we compare
to and our own.

Algorithm 3: FreeDOM (Yu et al., 2023)
1 procedure

FreeDOM(pθ(.|.), q(.|.),T, f(.), y, d(., .), ζt, r,K)

2 xT = N (0, T 2I)
3 for t = T to 1 do
4 for t′ = K to 1 do
5 xt−1 ∼ pθ(Xt−1|Xt = xt)
6 x0|t = E[X0|Xt = xt]
7 xt−1 ← xt−1−ζt∇xt∆(f(x0|t), y)
8 if t′ ̸= 1, t ∈ r then
9 xt = q(Xt|Xt−1 = xt−1)

10 else
11 break
12 return x0

Algorithm 4: MPGD (He et al., 2024)
1 procedure

MPGD(qθ(.|., .), T, f(.), y, d(., .), ζt)
2 xT = N (0, T 2I)
3 for t = T to 1 do
4 x0|t = E[X0|Xt = xt]
5 x0|t ← x0|t − ζt∇xt

∆(f(x0|t), y)
6 xt−1 ← q(Xt−1|Xt = xt, Xt = x0|t)
7 return x0

Algorithm 5: UGD (Bansal et al., 2023)
1 input T, σt, f(.), y,∆(., .), ζt, ηt
2 xT = N (0, σ2

T I)
3 for t = T to 1 do
4 xt−1 ∼ pθ(Xt−1|Xt = xt)
5 x0|t = E[X0|Xt = xt]
6 x′

0|t = x0|t − ηt∇X0|t∆(f(x0|t), y)

7 xt−1 ← xt−1 − ζt∇xt∆(f(x0|t), y)
8 xt−1 ← xt−1 + (x′

0|t − x0|t)

9 return x0

Algorithm 6: LGD (Song et al., 2023b)
1 procedure

LGD(pθ(.|.), T, f(.), y, d(., .), ζt, rt)
2 xT = N (0, T 2I)
3 for t = T to 1 do
4 xt−1 ∼ pθ(Xt−1|Xt = xt)
5 x0|t = E[X0|Xt = xt] +N (0, r2t I)
6 xt−1 ← xt−1 − ζt∇xt∆(f(x0|t), y)
7 return x0

Algorithm 7: STSL (Rout et al., 2023)
1 procedure

STSL(pθ(.|.), T, f(.), y, d(., .), ζt, ηt)
2 xT = N (0, T 2I)
3 for t = T to 1 do
4 x0|t = E[X0|Xt = xt]
5 xt ← xt − ζt∇xt∆(f(x0|t), y)
6 ϵ ∼ N (0, I)
7 xt ←

xt − ηt∇xt
(ϵT (sθ(t, xt + ϵ)− sθ(t, xt)))

8 xt−1 ∼ pθ(Xt−1|Xt = xt)
9 return x0

FreeDOM Yu et al. (2023) propose to adopt the time-travel that is designed specifically for in-
painting (Lugmayr et al., 2022) to general operator f(.). (See Algorithm. 3) More specifically, it
proposes an inner loop that goes forward after a backward step with forward kernel q(.|.). The new
hyper-parameters are time-travel steps K and time-travel range r.

MPGD He et al. (2024) propose to perform the gradient ascent directly on posterior mean instead
of on xt. And the posterior mean after gradient ascent is used to correct the score function (See
Algorithm. 4). They claim that their approach is able to converge faster and outperform DPS when
T = 20, 100. However, as we use T = 1000, the advantage of their approach is not clearly shown
in our experiments.
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UGD Bansal et al. (2023) further improve DPS by introducing a backward guidance. More specif-
ically, after the DPS step, UGD additionally performs K MPGD update step, and optimizes the
posterior mean directly,

LGD Song et al. (2023b) adopt a Gaussian approximation to posterior sample (See Algorithm. 6).
More specifically, they use an additive of Gaussian noise and posterior mean as an approximation
of Gaussian sample. And the mean of approximated sample is the same as real posterior sample.
This approach is later improved by Boys et al. (2023); Rout et al. (2023) to second order. Or to
say, they estimate the covariance of Gaussian using second order Tweedie’s formula. And the mean
and covariance of approximated sample is the same as real posterior sample. The authors of LGD
further propose a multi-sample approach to reduce gradient variance. However, we only use LGD
with sample size n = 1 for fair comparison. The new hyper-parameters is variance τ .

STSL Rout et al. (2023) propose to improve Song et al. (2023b) by estimating the posterior as Gaus-
sian distribution with posterior mean and posterior covariance. As directly estimating the posterior
covariance using second order Tweedie’s formula is expensive, they propose a Monte Carlo estima-
tion and the resulting algorithm is shown in Algorithm. 7. However, we only use STSL with sample
size n = 1 for fair comparison.

B.3 HYPER-PARAMETERS

Segmentation Layout Caption Classification Down-sampling

DPS ζ = 256.0 ζ = 7.2 ζ = 24.0 ζ = 8.0 ζ = 14.4

LGD ζ = 256.0 ζ = 7.2 ζ = 24.0 ζ = 8.0 ζ = 14.4
K = 1, τ = 0.2

FreeDOM ζ = 256.0 ζ = 7.2 ζ = 24.0 ζ = 8.0 ζ = 14.4
K = 2, r = [100, 200]

MPGD ζ = 2560.0 ζ = 72.0 ζ = 240.0 ζ = 80.0 ζ = 144.0

Proposed ζ = 256.0 ζ = 7.2 ζ = 24.0 ζ = 8.0 ζ = 14.4
τ = 0.2

Table 10: The hyper-parameters of other DIS and DPS-CM.

Figure 7: Comparison of different inner-loop range for FreeDOM.

We list the detailed hyper-parameters of DPS, LGD, FreeDOM, MPGD (Chung et al., 2022a; Song
et al., 2023b; Yu et al., 2023; He et al., 2024) and two of our DPS-CM in Table 10. For all the
methods, one common hyper-parameter is the step size ζ used in gradient descent. For LGD and
our DPS-CM, an additional hyper-parameter is the additional additive noise τ = 0.2. We do not
use the multi-sample LGD as it is significantly slower than all other approaches. For FreeDOM,
the additional parameters are time-travel steps K, and time-travel range r. We set K = 2 for fair
comparison, as a large K make FreeDOM significantly slower than all other approaches. We set
r = [100, 200] instead of r = [200, 500] in original paper (Yu et al., 2023). This is because we find
that setting r = [200, 500] in VE-diffusion has significant negative effect on sample quality. The
visual comparison is in Figure 7.
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B.4 DETAILS OF TABLE 1

In Table 1, we compare the sample quality of different posterior sample approximation methods.
More specifically, we adopt 1000 step EDM (Karras et al., 2022). We start from t = 900 and
attempt to sample from p(X0|X900). We compare posterior mean, posterior mean with Gaussian
and the result of CM (PF-ODE) by FID and KID.

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADDITIONAL VISUAL RESULTS

We present more visual results for non-linear operators in Figure 11 and 12. We can see that our
DPS-CM has the best consistency with measurement y and the best sample quality for most in-
stances.

We present more visual results of down-sampling in Figure 8. It is shown that our DPS-CM works
as good as DPS.

We present visual results of latent diffusion in Figure 9. It is shown that our DPS-CM also works
well in latent space.

Figure 8: Additional visual results on image down-sampling.
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Figure 9: Additional visual results of latent diffusion.

C.2 FAILURE CASES

When the measurement y is too far from diffusion prior, DPS-CMes and other DIS approaches fail.
An example of such failure is shown in Figure 10. The input measurement y describes a woman.
However, human is not a part of LSUN bedroom dataset. And none-of the DIS approaches is able
to generate a woman. And the samples generated by DIS look like unconditional sample.

D ADDITIONAL DISCUSSION

D.1 REPRODUCIBILITY STATEMENT

The proof of all theoretical results are shown in Appendix. A. For experiments, all two datasets
are publicly available. In Appendix. B, we provide additional implementation details of all other
DIS that we compare to. Further, detailed hyper-parameters of all baselines and our DPS-CM are
presented. Besides, we provide source code for reproducing empirical results as supplementary
material.

D.2 BROADER IMPACT

The approach proposed in this paper allows conditional generation without training a new model.
This saves the energy of training conditional generative diffusion model and reduces the carbon
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Figure 10: Visual results of a failure case.

emission. Potential negative impact is the same as other conditional generative model, such as
trustworthiness brought by generating fake image.
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Figure 11: Additional visual results on image segmentation and layout estimation.
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Figure 12: Additional visual results on image captioning and image classification.
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