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Part

Appendices
The appendices are structured as follows. In Section A, we prove Theorem 1. In Section B, we
review an error accumulation result of the Nesterov accelerated gradient with �-inexact gradient. In
Section C, we prove Theorem 2. In Section D, we provide some experimental details; in particular,
the calibration of restarting hyperparameters. In Section E, we compare SRSGD with benchmark
optimization algorithms on some other tasks, including training LSTM and Wasserstein GAN. In
Section F, we provide detailed experimental settings in studying the effects of reducing the number
of epoch in training deep neural networks with SRSGD, and we provide some more experimental
results. In Section G and H, we further study the effects of restarting frequency and training with
less epochs by using SRSGD. In Section I, we visualize the optimization trajectory of SRSGD and
compare it with benchmark methods. A snippet of our implementation of SRSGD in PyTorch and
Keras are available in Section J and K, respectively.
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A UNCONTROLLED BOUND OF NASGD

Consider the following optimization problem

min
w

f(w), (13)

where f(w) is L-smooth and convex.

Start from wk, GD update, with step size 1
r , can be obtained based on the minimization of the

function
Qr(v,wk) := hv � wk

, rf(wk)i +
r

2
kv � wkk2

2. (14)

With direct computation, we can get that

Qr(v
k+1

,wk) � min Qr(v,wk) =
kgk � rf(wk)k2

2r
,

where gk := 1
m

Pm
j=1 rfij (w

k). We assume the variance is bounded, which gives The stochastic
gradient rule, Rs, satisfies E[Qr(vk+1

,wk) � min Qr(v,wk)|�k]  �, with � being a constant and
�

k being the sigma algebra generated by w1
,w2

, · · · ,wk, i.e.,

�
k := �(w1

,w2
, · · · ,wk).

NASGD can be reformulated as

vk+1 ⇡ arg min
v

Qr(v,wk) with rule Rs,

wk+1 = vk+1 +
tk � 1

tk+1
(vk+1 � vk),

(15)

where t0 = 1 and tk+1 = (1 +
p

1 + 4t2k)/2.

A.1 PRELIMINARIES

To proceed, we introduce several definitions and some useful properties in variational and convex anal-
ysis. More detailed background can be found at Mordukhovich (2006); Nesterov (1998); Rockafellar
& Wets (2009); Rockafellar (1970).

Let f be a convex function, we say that f is L-smooth (gradient Lipschitz) if f is differentiable and

krf(v) � rf(w)k2  Lkv � wk2,

and we say f is ⌫-strongly convex if for any w,v 2 dom(f)

f(w) � f(v) + hrf(v),w � vi +
⌫

2
kw � vk2

2.

Below of this subsection, we list several basic but useful lemmas, the proof can be found in Nesterov
(1998).
Lemma 1. If f is ⌫-strongly convex, then for any v 2 dom(f) we have

f(v) � f(v⇤) � ⌫

2
kv � v⇤k2

2, (16)

where v⇤
is the minimizer of f .

Lemma 2. If f is L-smooth, for any w,v 2 dom(f),

f(w)  f(v) + hrf(v),w � vi +
L

2
kw � vk2

2.

15



Under review as a conference paper at ICLR 2021

A.2 UNCONTROLLED BOUND OF NASGD: ANALYSIS

In this part, we denote
ṽk+1 := arg min

v
Qr(v,wk). (17)

Lemma 3. If the constant r > 0, then

E
�
kvk+1 � ṽk+1k2

2|�k
�

 2�

r
. (18)

Proof. Note that Qr(v,wk) is strongly convex with constant r, and ṽk+1 in (17) is the minimizer of
Qr(v,wk). With Lemma 1 we have

Qr(v
k+1

,wk) � Qr(ṽ
k+1

,wk) � r

2
kvk+1 � ṽk+1k2

2. (19)

Notice that

E
⇥
Qr(v

k+1
,wk) � Qr(ṽ

k+1
,wk)

⇤
= E

h
Qr(v

k+1
,wk) � min

v
Qr(v,wk)

i
 �.

The inequality (18) can be established by combining the above two inequalities.

Lemma 4. If the constant satisfy r > L, then we have

E
⇣
f(ṽk+1) +

r

2
kṽk+1 � wkk2

2 � (f(vk+1) +
r

2
kvk+1 � wkk2

2)
⌘

(20)

� �⌧� � r � L

2
E[kwk � ṽk+1k2

2],

where ⌧ = L2

r(r�L) + 1.

Proof. The convexity of f gives us

0  hrf(vk+1),vk+1 � ṽk+1i + f(ṽk+1) � f(vk+1). (21)

From the definition of the stochastic gradient rule Rs, we have

��  E
�
Qr(ṽ

k+1
,wk) � Qr(v

k+1
,wk)

�
(22)

= E
h
hṽk+1 � wk

, rf(wk)i +
r

2
kṽk+1 � wkk2

2

i
�

E
h
hvk+1 � wk

, rf(wk)i +
r

2
kvk+1 � wkk2

2

i
.

With (21) and (22), we have

�� 
⇣
f(ṽk+1) +

r

2
kṽk+1 � wkk2

2

⌘
�
⇣
f(vk+1) +

r

2
kvk+1 � wkk2

2

⌘
+ (23)

Ehrf(wk) � rf(ṽk+1), ṽk+1 � vk+1i.

With the Schwarz inequality ha, bi  kak2
2

2µ + µ
2 kbk2

2 with µ = L2

r�L , a = rf(vk+1) � rf(ṽk+1)

and b = wk � ṽk+1,
hrf(wk) � rf(ṽk+1), ṽk+1 � vk+1i (24)

 (r � L)

2L2
krf(wk) � rf(ṽk+1)k2

2 +
L

2

2(r � L)
kvk+1 � ṽk+1k2

2

 (r � L)

2
kwk � ṽk+1k2

2 +
L

2

2(r � L)
kvk+1 � ṽk+1k2

2.

Combining (23) and (24), we have

��  E
⇣
f(ṽk+1) +

r

2
kṽk+1 � wkk2

2

⌘
� E

⇣
f(vk+1) +

r

2
kvk+1 � wkk2

2

⌘
(25)

+
L

2

2(r � L)
Ekvk+1 � ṽk+1k2

2 +
r � L

2
Ekwk � ṽk+1k2

2.

By rearrangement of the above inequality (25) and using Lemma 3, we obtain the result.
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Lemma 5. If the constants satisfy r > L, then we have the following bounds

E
�
f(vk) � f(vk+1)

�
� r

2
Ekwk � vk+1k2

2 + rEhwk � vk
, ṽk+1 � wki � ⌧�, (26)

E
�
f(v⇤) � f(vk+1)

�
� r

2
Ekwk � vk+1k2

2 + rEhwk � v⇤
, ṽk+1 � wki � ⌧�, (27)

where ⌧ := L2

r(r�L) + 1 and v⇤
is the minimum .

Proof. With Lemma 2, we have

� f(ṽk+1) � �f(wk) � hṽk+1 � wk
, rf(wk)i � L

2
kṽk+1 � wkk2

2. (28)

Using the convexity of f , we have

f(vk) � f(wk) � hvk � wk
, rf(wk)i,

i.e.,
f(vk) � f(wk) + hvk � wk

, rf(wk)i. (29)

According to the definition of ṽk+1 in (14), i.e.,

ṽk+1 = arg min
v

Qr(v,wk) = arg min
v

hv � wk
, rf(wk)i +

r

2
kv � wkk2

2,

and the optimization condition gives

ṽk+1 = wk � 1

r
rf(wk). (30)

Substituting (30) into (29), we obtain

f(vk) � f(wk) + hvk � wk
, r(wk � ṽk+1)i. (31)

Direct summation of (28) and (31) gives

f(vk) � f(ṽk+1) �
✓

r � L

2

◆
kṽk+1 � wkk2

2 + rhwk � vk
, ṽk+1 � wki. (32)

Summing (32) and (20), we obtain the inequality (26)

E
⇥
f(vk) � f(vk+1)

⇤
� r

2
Ekwk � vk+1k2

2 + rEhwk � vk
, ṽk+1 � wki � ⌧�. (33)

On the other hand, with the convexity of f , we have

f(v⇤) � f(wk) � hv⇤ � wk
, rf(wk)i = hv⇤ � wk

, r(wk � ṽk+1)i. (34)

The summation of (28) and (34) results in

f(v⇤) � f(ṽk+1) �
✓

r � L

2

◆
kwk � ṽk+1k2

2 + rhwk � v⇤
, ṽk+1 � wki. (35)

Summing (35) and (20), we obtain

E
�
f(v⇤) � f(vk+1)

�
� r

2
Ekwk � vk+1k2

2 + rEhwk � v⇤
, ṽk+1 � wki � ⌧�, (36)

which is the same as (27).

Theorem 3 (Uncontrolled Bound of NASGD (Theorem 1 with detailed bounded)). Let the constant

r satisfy r < L and the sequence {vk}k�0 be generated by NASGD with stochastic gradient that has

bounded variance. By using any constant step size sk ⌘ s  1/L, then we have

E[f(vk) � min
v

f(v)]  (
2⌧�

r
+ R

2)
4k

3
. (37)
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Proof. We denote
F

k := E(f(vk) � f(v⇤)).

By (26) ⇥ (tk � 1) + (27), we have

2[(tk � 1)F k � tkF
k+1]

r
� tkEkvk+1 � wkk2

2 (38)

+ 2Ehṽk+1 � wk
, tkw

k � (tk � 1)vk � v⇤i � 2⌧ tk�

r
.

With t
2
k�1 = t

2
k � tk, (38) ⇥ tk yields

2[t2k�1F
k � t

2
kF

k+1]

r
� Ektkv

k+1 � tkw
kk2

2 (39)

+ 2tkEhṽk+1 � wk
, tkw

k � (tk � 1)vk � v⇤i � 2⌧ t
2
k�

r

Substituting a = tkvk+1 � (tk � 1)vk � v⇤ and b = tkwk � (tk � 1)vk � v⇤ into identity

ka � bk2
2 + 2ha � b, bi = kak2

2 � kbk2
2. (40)

It follows that

Ektkv
k+1 � tkw

kk2
2 + 2tkEhṽk+1 � wk

, tkw
k � (tk � 1)vk � v⇤i (41)

= Ektkv
k+1 � tkw

kk2
2 + 2tkEhvk+1 � wk

, tkw
k � (tk � 1)vk � v⇤i

+2tkEhṽk+1 � vk+1
, tkw

k � (tk � 1)vk � v⇤i
=

(40)
Ektkv

k+1 � (tk � 1)vk � v⇤k2
2 � ktkw

k � (tk � 1)vk � v⇤k2
2

+2tkEhṽk+1 � vk+1
, tkw

k � (tk � 1)vk � v⇤i
= Ektkv

k+1 � (tk � 1)vk � v⇤k2
2 � Ektk�1v

k � (tk�1 � 1)vk�1 � v⇤k2
2

+ 2tkEhṽk+1 � vk+1
, tk�1v

k � (tk�1 � 1)vk�1 � v⇤i.

In the third identity, we used the fact tkwk = tkvk + (tk�1 � 1)(vk � vk�1). If we denote
u

k = Ektk�1vk � (tk�1 � 1)vk�1 � v⇤k2
2, (39) can be rewritten as

2t
2
kF

k+1

r
+ u

k+1 
2t

2
k�1F

k

r
+ u

k +
2⌧ t

2
k�

r
(42)

+ 2tkEhvk+1 � ṽk+1
, tk�1v

k � (tk�1 � 1)vk�1 � v⇤i

 2t
2
kF

k

r
+ u

k +
2⌧ t

2
k�

r
+ t

2
k�1R

2
,

where we used

2tkEhvk+1 � ṽk+1
, tk�1v

k � (tk�1 � 1)vk�1 � v⇤i
 t

2
kEkvk+1 � ṽk+1k2

2 + Ektk�1v
k � (tk�1v

k � (tk�1 � 1)vk�1 � v⇤)k2
2

= 2t
2
k�/r + t

2
k�1R

2
.

Denoting

⇠k :=
2t

2
k�1F

k

r
+ u

k
,

then, we have

⇠k+1  ⇠0 + (
2⌧�

r
+ R

2)
kX

i=1

t
2
i = (

2⌧�

r
+ R

2)
k

3

3
. (43)

With the fact, ⇠k � 2t2k�1Fk

r � k
2
F

k
/4, we then proved the result.
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B NAG WITH �-INEXACT ORACLE & EXPERIMENTAL SETTINGS IN SECTION
3.1

In Devolder et al. (2014), the authors defines �-inexact gradient oracle for convex smooth optimization
as follows:
Definition 1 (�-Inexact Oracle). Devolder et al. (2014) For a convex L-smooth function f : Rd ! R.

For 8w 2 Rd
and exact first-order oracle returns a pair (f(w), rf(w)) 2 R ⇥ Rd

so that for

8v 2 Rd
we have

0  f(v) �
�
f(w) + hrf(w),v � wi

�
 L

2
kw � vk2

2.

A �-inexact oracle returns a pair
�
f

�(w), rf
�(w)

�
2 R ⇥ Rd

so that 8v 2 Rd
we have

0  f(v) �
�
f

�(w) + hrf
�(w),v � wi

�
 L

2
kw � vk2

2 + �.

We have the following convergence results of GD and NAG under a �-Inexact Oracle for convex
smooth optimization.
Theorem 4. Devolder et al. (2014)

3
Consider

min f(w), w 2 Rd
,

where f(w) is convex and L-smooth with w⇤
being the minimum. Given access to �-inexact oracle,

GD with step size 1/L returns a point wk
after k steps so that

f(wk) � f(w⇤) = O

✓
L

k

◆
+ �.

On the other hand, NAG, with step size 1/L returns

f(wk) � f(w⇤) = O

✓
L

k2

◆
+ O(k�).

Theorem 4 says that NAG may not robust to a �-inexact gradient. In the following, we will study the
numerical behavior of a variety of first-order algorithms for convex smooth optimizations with the
following different inexact gradients.

Constant Variance Gaussian Noise: We consider the inexact oracle where the true gradient is
contaminated with a Gaussian noise N (0, 0.0012). We run 50K iterations of different algorithms.
For SRNAG, we restart after every 200 iterations. Fig. 2 (b) shows the iteration vs. optimal gap,
f(xk)� f(x⇤), with x⇤ being the minimum. NAG with the inexact gradient due to constant variance
noise does not converge. GD performs almost the same as ARNAG asymptotically, because ARNAG
restarts too often and almost degenerates into GD. GD with constant momentum outperforms the
three schemes above, and SRNAG slightly outperforms GD with constant momentum.

Decaying Variance Gaussian Noise: Again, consider minimizing (8) with the same experimen-
tal setting as before except that rf(x) is now contaminated with a decaying Gaussian noise
N (0, ( 0.1

bt/100c+1 )2). For SRNAG, we restart every 200 iterations in the first 10k iterations, and
restart every 400 iterations in the remaining 40K iterations. Fig. 2 (c) shows the iteration vs. optimal
gap by different schemes. ARNAG still performs almost the same as GD. The path of NAG is
oscillatory. GD with constant momentum again outperforms the previous three schemes. Here
SRNAG significantly outperforms all the other schemes.

Logisitic Regression for MNIST Classification: We apply the above schemes with stochastic
gradient to train a logistic regression model for MNIST classification LeCun & Cortes (2010). We
consider five different schemes, namely, SGD, SGD + (constant) momentum, NASGD, ASGD, and
SRSGD. In ARSGD, we perform restart based on the loss value of the mini-batch training data. In
SRSGD, we restart the NAG momentum after every 10 iterations. We train the logistic regression
model with a `2 weight decay of 10�4 by running 20 epochs using different schemes with batch
size of 128. The step sizes for all the schemes are set to 0.01. Fig. 3 (a) plots the training loss vs.
iteration. In this case, NASGD does not converge, and SGD with momentum does not speed up SGD.
ARSGD’s performance is on par with SGD’s. Again, SRSGD gives the best performance with the
smallest training loss among these five schemes.

3We adopt the result from Hardt (2014).
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C CONVERGENCE OF SRSGD

We prove the convergence of Nesterov accelerated SGD with scheduled restart, i.e., the convergence
of SRSGD. We denote that ✓

k := tk�1
tk+1

in the Nesterov iteration and ✓̂
k is its use in the restart version,

i.e., SRSGD. For any restart frequency F (positive integer), we have ✓̂
k = ✓

k�bk/Fc⇤F . In the restart
version, we can see that

✓̂
k  ✓

F =: ✓̄ < 1.

Lemma 6. Let the constant satisfies r > L and the sequence {vk}k�0 be generated by the SRSGD

with restart frequency F (any positive integer), we have

kX

i=1

kvi � vi�1k2
2  r

2
kR

2

(1 � ✓̄)2
, (44)

where ✓̄ := ✓
F

< 1 and R := supx{krf(x)k2}.

Proof. It holds that

kvk+1 � wkk2 = kvk+1 � vk + vk � wkk2 (45)
� kvk+1 � vkk2 � kvk � wkk2

� kvk+1 � vkk2 � ✓̄kvk � vk�1k2.

Thus,

kvk+1 � wkk2
2 �

�
kvk+1 � vkk2 � ✓̄kvk � vk�1k2

�2
(46)

= kvk+1 � vkk2
2 � 2✓̄kvk � vk�1k2kvk � vk�1k2 + ✓̄

2kvk � vk�1k2
2

� (1 � ✓̄)kvk+1 � vkk2
2 � ✓̄(1 � ✓̄)kvk+1 � vkk2

2.

Summing (46) from k = 1 to K, we get

(1 � ✓̄)2
KX

k=1

kvk � vk�1k2
2 

KX

k=1

kvk+1 � wkk2
2  r

2
KR

2
. (47)

In the following, we denote

A := {k 2 Z
+|Ef(vk) � Ef(vk�1)}.

Theorem 5 (Convergence of SRSGD). (Theorem 2 with detailed bound) Suppose f(w) is L-smooth.

Consider the sequence {wk}k�0 generated by (10) with stochastic gradient that is bounded and has

bound variance. Using any restart frequency F and any constant step size sk := s  1/L. Assume

that
P

k2A
�
Ef(wk+1) � Ef(wk)

�
= R̄ < +1, then we have

min
1kK

�
Ekrf(wk)k2

2

 
 rR

2

(1 � ✓̄)2
L(1 + ✓̃)

2
+

rLR
2

2
+

✓̃R̃

rK
. (48)

If f(w) is further convex and the set B := {k 2 Z+|Ekwk+1 � w⇤k2 � Ekwk � w⇤k2} obeysP
k2B

�
Ef(wk+1) � Ef(wk)

�
= R̂ < +1, then

min
1kK

�
E
�
f(wk) � f(w⇤)

� 
 kw0 � w⇤k2 + R̂

2�k
+

�R
2

2
, (49)

where w⇤
is the minimum of f . To obtain ✏ (8✏ > 0) error, we set s = O(✏) and K = O(1/✏

2).

Proof. Firstly, we show the convergence of SRSGD for nonconvex optimization. L-smoothness of f ,
i.e., Lipschitz gradient continuity, gives us

f(vk+1)  f(wk) + hrf(wk),vk+1 � wki +
L

2
kvk+1 � wkk2

2. (50)
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Taking expectation, we get

Ef(vk+1)  Ef(wk) � rEkrf(wk)k2
2 +

r
2
LR

2

2
. (51)

On the other hand, we have

f(wk)  f(vk) + ✓̂
khrf(vk),vk � vk�1i +

L(✓̂k)2

2
kvk � vk�1k2

2. (52)

Then, we have

Ef(vk+1)  Ef(vk) + ✓̂
kEhrf(vk),vk � vk�1i (53)

+
L(✓̂k)2

2
Ekvk � vk�1k2

2 � rEkrf(wk)k2
2 +

r
2
LR

2

2
.

We also have

✓̂
khrf(vk),vk � vk�1i  ✓̂

k

✓
f(vk) � f(vk�1) +

L

2
kvk � vk�1k2

2

◆
. (54)

We then get that

Ef(vk+1)  Ef(vk) + ✓̂
k
�
Ef(vk) � Ef(vk�1)

�
� rEkrf(wk)k2

2 + Ak, (55)
where

Ak := EL

2
kvk � vk�1k2

2 +
L(✓̂k)2

2
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2 +
r
2
LR

2

2
.

Summing the inequality gives us

Ef(vK+1)  Ef(v0) + ✓̃

X

k2A

�
Ef(vk) � Ef(vk�1)

�
(56)

� r

KX

k=1

Ekrf(wk)k2
2 +

KX

k=1

Ak.

It is easy to see that
✓̃

X

k2A

�
Ef(vk) � Ef(vk�1)

�
= ✓̃R̃.

We get the result by using Lemma 6

Secondly, we prove the convergence of SRSGD for convex optimization. Let w⇤ be the minimizer of
f . We have

Ekvk+1 � w⇤k2
2 = Ekwk � �rf(wk) � w⇤k2

2 (57)

= Ekwk � w⇤k2
2 � 2�Ehrf(wk),wk � w⇤i + �

2Ekrf(wk)k2
2
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2
R

2
.

We can also derive

Ekwk � w⇤k2 = Ekvk + ✓̂
k(vk � vk�1) � w⇤k2
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= Ekvk � w⇤k2
2 + 2✓̂

kEhvk � vk�1
,vk � w⇤i + (✓̂k)2Ekvk � vk�1k2

2

= Ekvk � w⇤k2
2 + ✓̂

kE
�
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2 + kvk�1 � vkk2
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�
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kE
�
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2 � kvk�1 � w⇤k2
2

�
+ 2(✓̂k)2Ekvk � vk�1k2
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where we used the following identity

(a � b)T (a � b) =
1

2
[ka � dk2

2 � ka � ck2
2 + kb � ck2

2 � kb � dk2
2].
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Then, we have

Ekvk+1 � w⇤k2
2  Ekvk � w⇤k2

2 � 2�Ehrf(wk),wk � w⇤i + 2(✓̂k)2Ekvk � vk�1k2
2 (58)

+ r
2
R

2 + ✓̂
kE(kvk � w⇤k2
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2).

We then get that

2�E
�
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�
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2 (59)
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k
�
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2

�
+ r

2
R

2
.

Summing the inequality gives us the desired convergence result for convex optimization.

C.1 NUMERICAL VERIFICATION OF THE ASSUMPTIONS IN THEOREM 2

In this part, we numerically verify the assumptions in Theorem 2. In particular, we apply SRSGD with
learning rate 0.1 to train LeNet 4 for MNIST classification (we test on MNIST due to extremely large
computational cost). We conduct numerical verification as follows: starting from a given point w0, we
randomly sample 469 mini-batches (note in total we have 469 batches in the training data) with batch
size 128 and compute the stochastic gradient using each mini-batch. Next, we advance to the next step
with each of these 469 stochastic gradients and get the approximated Ef(w1). We randomly choose
one of these 469 positions as the updated weights of our model. By iterating the above procedure, we
can get w1

,w2
, · · · and Ef(w1), Ef(w2), · · · and we use these values to verify our assumptions in

Theorem 2. We set restart frequencies to be 20, 40, and 80, respectively. Figure 6 top panels plot k vs.
the cardinality of the set A := {k 2 Z+|Ef(wk+1) � Ef(wk)}, and Figure 6 bottom panels plot k

vs.
P

k2A
�
Ef(wk+1) � Ef(wk)

�
. Figure 6 shows that

P
k2A

�
Ef(wk+1) � Ef(wk)

�
converges

to a constant R̄ < +1. We also noticed that when the training gets plateaued, E(f(wk)) still
oscillates, but the magnitude of the oscillation diminishes as iterations goes, which is consistent
with our plots that the cardinality of A increases linearly, but R̄ converges to a finite number. These
numerical results show that our assumption in Theorem 2 is reasonable.

Restart	Frequency	=	20 Restart	Frequency	=	40 Restart	Frequency	=	80

Cardinality	of	set	 A := {k 2 Z+|Ef(wk+1) � Ef(wk)}
<latexit sha1_base64="KGxFghypAjXIicc/n/Kwgjn1ES0=">AAACS3icdVDPSxwxGM2s9UfXH13tsZfQRVCEZcaK2oJgWwoeFVyV7qxLkv1mDZPJjMk3rUs6/18vvfTWf6KXHhTpoTPjIm1tHwRe3nsf+fJ4pqRF3//mNaYeTc/Mzj1uzi8sLj1pLa+c2DQ3AroiVak548yCkhq6KFHBWWaAJVzBKY/fVv7pBzBWpvoYxxn0EzbSMpKCYSkNWjxMGF4Iptzrgr7ao6GLQ6lprXLu3hfnG5/ub++KaC1EuEIeuY/FuYs3gmI9HMHl/xLxOg2LQavtd/wa9CEJJqRNJjgctL6Gw1TkCWgUilnbC/wM+44ZlEJB0QxzCxkTMRtBr6SaJWD7ru6ioKulMqRRasqjkdbq7xOOJdaOE14mq53t314l/svr5Rjt9p3UWY6gxd1DUa4oprQqlg6lAYFqXBImjCx3peKCGSawrL9Zl/Cywvb9lx+Sk81O8KKzdbTV3n8zqWOOPCPPyRoJyA7ZJwfkkHSJIJ/Jd3JNbrwv3g/v1vt5F214k5mn5A80pn8Bh6q0eA==</latexit>
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Figure 6: Cardinality of the set A := {k 2 Z+|Ef(wk+1) � Ef(wk)} (Top panels) and the value
of R̄ =

P
k2A

�
Ef(wk+1) � Ef(wk)

�
(Bottom panels). We notice that when the training gets

plateaued, E(f(wk)) still oscillates, but the magnitude of the oscillation diminishes as iterations
goes, which is consistent with our plots that the cardinality of A increases linearly, but R̄ converges
to a finite number under different restart frequencies. These results confirm that our assumption in
Theorem 2 is reasonable.

4We used the PyTorch implementation of LeNet at https://github.com/activatedgeek/LeNet-5.
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D DATASETS AND IMPLEMENTATION DETAILS

D.1 CIFAR

The CIFAR10 and CIFAR100 datasets Krizhevsky et al. (2009) consist of 50K training images and
10K test images from 10 and 100 classes, respectively. Both training and test data are color images
of size 32 ⇥ 32. We run our CIFAR experiments on Pre-ResNet-110, 290, 470, 650, and 1001 with
5 different seeds He et al. (2016b). We train each model for 200 epochs with batch size of 128 and
initial learning rate of 0.1, which is decayed by a factor of 10 at the 80th, 120th, and 160th epoch. The
weight decay rate is 5 ⇥ 10�5 and the momentum for the SGD baseline is 0.9. Random cropping and
random horizontal flipping are applied to training data. Our code is modified based on the Pytorch
classification project Yang (2017),5 which was also used by Liu et al. Liu et al. (2020). We provide
the restarting frequencies for the exponential and linear scheme for CIFAR10 and CIFAR100 in
Table 7 below. Using the same notation as in the main text, we denote Fi as the restarting frequency
at the i-th learning rate.

Table 7: Restarting frequencies for CIFAR10 and CIFAR100 experiments

CIFAR10 CIFAR100

Linear schedule F1 = 30, F2 = 60, F3 = 90, F4 = 120 (r = 2) F1 = 50, F2 = 100, F3 = 150, F4 = 200 (r = 2)

Exponential schedule F1 = 40, F2 = 50, F3 = 63, F4 = 78 (r = 1.25) F1 = 45, F2 = 68, F3 = 101, F4 = 152 (r = 1.50)

D.2 IMAGENET

The ImageNet dataset contains roughly 1.28 million training color images and 50K validation color
images from 1000 classes Russakovsky et al. (2015). We run our ImageNet experiments on ResNet-
50, 101, 152, and 200 with 5 different seeds. Following He et al. (2016a;b), we train each model for
90 epochs with a batch size of 256 and decrease the learning rate by a factor of 10 at the 30th and 60th
epoch. The initial learning rate is 0.1, the momentum is 0.9, and the weight decay rate is 1 ⇥ 10�5.
Random 224 ⇥ 224 cropping and random horizontal flipping are applied to training data. We use the
official Pytorch ResNet implementation Paszke et al. (2019),6 and run our experiments on 8 Nvidia
V100 GPUs. We report single-crop top-1 and top-5 errors of our models. In our experiments, we set
F1 = 40 at the 1st learning rate, F2 = 80 at the 2nd learning rate, and F3 is linearly decayed from 80
to 1 at the 3rd learning rate (see Table 8).

Table 8: Restarting frequencies for ImageNet experiments

ImageNet

Linear schedule F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 30 epochs

D.3 TRAINING IMAGENET IN FEWER NUMBER OF EPOCHS:

Table 9 contains the learning rate and restarting frequency schedule for our experiments on training
ImageNet in fewer number of epochs, i.e. the reported results in Table 6 in the main text. Other
settings are the same as in the full-training ImageNet experiments described in Section D.2 above.

Additional Implementation Details: Implementation details for the ablation study of error rate vs.
reduction in epochs and the ablation study of impact of restarting frequency are provided in Section F
and G below.

D.4 DETAILS ON RESTARTING HYPER-PARAMETERS SEARCH

In our CIFAR10 and CIFAR100 experiments, for both linear and exponential schedule, we conduct
hyperparameter searches over the restarting frequencies using our smallest model, Pre-ResNet-110,

5Implementation available at https://github.com/bearpaw/pytorch-classification
6Implementation available at https://github.com/pytorch/examples/tree/master/imagenet
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Table 9: Learning rate and restarting frequency schedule for ImageNet short training, i.e. Table 6 in
the main text.

ImageNet

ResNet-50 Decrease the learning rate by a factor of 10 at the 30th and 56th epoch. Train for a total of 80 epochs.

F1 = 60, F2 = 105, F3: linearly decayed from 105 to 1 in the last 24 epochs

ResNet-101 Decrease the learning rate by a factor of 10 at the 30th and 56th epoch. Train for a total of 80 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 24 epochs

ResNet-152 Decrease the learning rate by a factor of 10 at the 30th and 51th epoch. Train for a total of 75 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 24 epochs

ResNet-200 Decrease the learning rate by a factor of 10 at the 30th and 46th epoch. Train for a total of 60 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 14 epochs

making choices based on final validation performance. The same chosen restarting frequencies are
applied for all models including Pre-ResNet-110, 290, 470, 650, and 1001. In particular, we use
10,000 images from the original training set as a validation set. This validation set contains 1,000 and
100 images from each class for CIFAR10 and CIFAR100, respectively. We first train Pre-ResNet-110
on the remaining 40,000 training images and use the performance on the validation set averaged over
5 random seeds to select the initial restarting frequency F1 and the growth rate r. Both F1 and r

are selected using grid search from the sets of {20, 25, 30, 35, 40, 45, 50} and {1, 1.25, 1.5, 1.75, 2},
respectively. We then train all models including Pre-ResNet-110, 290, 470, 650, and 1001 on all
50,000 training images using the selected values of F1 and r and report the results on the test set
which contains 10,000 test images. The reported test performance is averaged over 5 random seeds.
We also use the same selected values of F1 and r for our short training experiments in Section 4.3.

For ImageNet experiments, we use linear scheduling and sweep over the initial restarting frequency
F1 and the growth rate r in the set of {20, 30, 40, 50, 60} and {1, 1.25, 1.5, 1.75, 2}, respectively. We
select the values of F1 = 40 and r = 2 which have the highest final validation accuracy averaged
over 5 random seeds. Same as in CIFAR10 and CIFAR100 experiments, we select F1 and r using
our smallest model, ResNet-50, and apply the same selected hyperparameter values for all models
including ResNet-50, 101, 152, and 200. We also use the same selected values of F1 and r for our
short training experiments in Section 4.3. However, for ResNet-50, we observe that F1 = 60 and
r = 1.75 yields better performance in short training. All reported results are averaged over 5 random
seeds.

E SRSGD VS. SGD AND SGD + NM ON IMAGENET CLASSIFICATION AND
OTHER TASKS

E.1 COMPARING WITH SGD WITH NESTEROV MOMENTUM ON IMAGENET CLASSIFICATION

In this section, we compare SRSGD with SGD with Nesterov constant momentum (SGD + NM) in
training ResNets for ImageNet classification. All hyper-parameters of SGD with constant Nesterov
momentum used in our experiments are the same as those of SGD described in section D.2. We list
the results in Table 10. Again, SRSGD remarkably outperforms SGD + NM in training ResNets for
ImageNet classification, and as the network goes deeper the improvement becomes more significant.

E.2 LONG SHORT-TERM MEMORY (LSTM) TRAINING FOR PIXEL-BY-PIXEL MNIST

In this task, we examine the advantage of SRSGD over SGD and SGD with Nesterov Momentum in
training recurrent neural networks. In our experiments, we use an LSTM with different numbers of
hidden units (128, 256, and 512) to classify samples from the well-known MNIST dataset LeCun &
Cortes (2010). We follow the implementation of Le et al. (2015) and feed each pixel of the image into
the RNN sequentially. In addition, we choose a random permutation of 28 ⇥ 28 = 784 elements at
the beginning of the experiment. This fixed permutation is applied to training and testing sequences.
This task is known as permuted MNIST classification, which has become standard to measure the
performance of RNNs and their ability to capture long term dependencies.
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Table 10: Single crop validation errors (%) on ImageNet of ResNets trained with SGD + NM and
SRSGD. We report the results of SRSGD with the increasing restarting frequency in the first two
learning rates. In the last learning rate, the restarting frequency is linearly decreased from 70 to 1.
For baseline results, we also include the reported single-crop validation errors He et al. (2016c) (in
parentheses).

Network # Params SGD + NM SRSGD Improvement
top-1 top-5 top-1 top-5 top-1 top-5

ResNet-50 25.56M 24.27 ± 0.07 7.17 ± 0.07 23.85 ± 0.0923.85 ± 0.0923.85 ± 0.09 7.10 ± 0.097.10 ± 0.097.10 ± 0.09 0.42 0.07

ResNet-101 44.55M 22.32 ± 0.05 6.18 ± 0.05 22.06 ± 0.1022.06 ± 0.1022.06 ± 0.10 6.09 ± 0.076.09 ± 0.076.09 ± 0.07 0.26 0.09

ResNet-152 60.19M 21.77 ± 0.14 5.86 ± 0.09 21.46 ± 0.0721.46 ± 0.0721.46 ± 0.07 5.69 ± 0.035.69 ± 0.035.69 ± 0.03 0.31 0.17

ResNet-200 64.67M 21.98 ± 0.22 5.99 ± 0.20 20.93 ± 0.1320.93 ± 0.1320.93 ± 0.13 5.57 ± 0.055.57 ± 0.055.57 ± 0.05 1.05 0.42

Implementation and Training Details: For the LSTM model, we initialize the forget bias to 1 and
other biases to 0. All weights matrices are initialized orthogonally except for the hidden-to-hidden
weight matrices, which are initialized to be identity matrices. We train each model for 350 epochs
with the initial learning rate of 0.01. The learning rate was reduced by a factor of 10 at epoch 200
and 300. The momentum is set to 0.9 for SGD with standard and Nesterov constant momentum. The
restart schedule for SRSGD is set to 90, 30, 90 . The restart schedule changes at epoch 200 and 300.
In all experiments, we use batch size 128 and the gradients are clipped so that their L2 norm are at
most 1. Our code is based on the code from the exponential RNN’s Github.7

Results: Our experiments corroborate the superiority of SRSGD over the two baselines. SRSGD
yields much smaller test error and converges faster than SGD with standard and Nesterov constant
momentum across all settings with different number of LSTM hidden units. We summarize our
results in Table 11 and Figure 7.

Table 11: Test errors (%) on Permuted MNIST of trained with SGD, SGD + NM and SRSGD. The
LSTM model has 128 hidden units. In all experiments, we use the initial learning rate of 0.01, which
is reduced by a factor of 10 at epoch 200 and 300. All models are trained for 350 epochs. The
momentum for SGD and SGD + NM is set to 0.9. The restart schedule in SRSGD is set to 90, 30,
and 90.

Network No. Hidden Units SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
LSTM 128 10.10 ± 0.57 9.75 ± 0.69 8.61 ± 0.308.61 ± 0.308.61 ± 0.30 1.49/1.14

LSTM 256 10.42 ± 0.63 10.09 ± 0.61 9.03 ± 0.239.03 ± 0.239.03 ± 0.23 1.39/1.06

LSTM 512 10.04 ± 0.35 9.55 ± 1.09 8.49 ± 1.598.49 ± 1.598.49 ± 1.59 1.55/1.06

Beyond	DNNs:	Training	LSTM	on	PMNIST		
Table 10: Test errors (%) on Permuted MNIST of trained with SGD, SGD + NM and SRSGD. The
LSTM model has 128 hidden units. In all experiments, we use the initial learning rate of 0.01, which
is reduced by a factor of 10 at epoch 200 and 300. All models are trained for 350 epochs. The
momentum for SGD and SGD + NM is set to 0.9. The restart schedule in SRSGD is set to 90, 30,
and 90.

Network No. Hidden Units SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
LSTM 128 10.10 ± 0.57 9.75 ± 0.69 8.61 ± 0.308.61 ± 0.308.61 ± 0.30 1.49/1.14
LSTM 256 10.42 ± 0.63 10.09 ± 0.61 9.03 ± 0.239.03 ± 0.239.03 ± 0.23 1.39/1.06
LSTM 512 10.04 ± 0.35 9.55 ± 1.09 8.49 ± 1.598.49 ± 1.598.49 ± 1.59 1.55/1.06
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Figure 6: Training loss vs. training iterations of LSTM trained with SGD (red), SGD + NM (green),
and SRSGD (blue) for PMNIST classification tasks.

We evaluate our models using the discriminator’s loss, i.e. the Earth Moving distance estimate, since572

in WGAN lower discriminator loss and better sample quality are correlated [2].573

Implementation and Training Details: The detailed implementations of our generator and discrim-574

inator are given below. For the generator, we set latent dim to 100 and d to 32. For the discriminator,575

we set d to 32. We train each model for 350 epochs with the initial learning rate of 0.01. The learning576

rate was reduced by a factor of 10 at epoch 200 and 300. The momentum is set to 0.9 for SGD with577

standard and Nesterov constant momentum. The restart schedule for SRSGD is set to 60, 120, 180.578

The restart schedule changes at epoch 200 and 300. In all experiments, we use batch size 64. Our579

code is based on the code from the Pytorch WGAN-GP Github.8580

i m p o r t t o r c h581

i m p o r t t o r c h . nn as nn582

583

c l a s s G e n e r a t o r ( nn . Module ) :584

d e f i n i t ( s e l f , l a t e n t d i m , d =32) :585

s u p e r ( ) . i n i t ( )586

s e l f . n e t = nn . S e q u e n t i a l (587

nn . ConvTranspose2d ( l a t e n t d i m , d ⇤ 8 , 4 , 1 , 0 ) ,588

nn . BatchNorm2d ( d ⇤ 8) ,589

nn . ReLU( True ) ,590

591

nn . ConvTranspose2d ( d ⇤ 8 , d ⇤ 4 , 4 , 2 , 1 ) ,592

nn . BatchNorm2d ( d ⇤ 4) ,593

nn . ReLU( True ) ,594

595

nn . ConvTranspose2d ( d ⇤ 4 , d ⇤ 2 , 4 , 2 , 1 ) ,596

nn . BatchNorm2d ( d ⇤ 2) ,597

nn . ReLU( True ) ,598

599

nn . ConvTranspose2d ( d ⇤ 2 , 1 , 4 , 2 , 1 ) ,600

8Implementation available at https://github.com/arturml/pytorch-wgan-gp
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Figure 7: Training loss vs. training iterations of LSTM trained with SGD (red), SGD + NM (green),
and SRSGD (blue) for PMNIST classification tasks.

E.3 WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS (WGAN) TRAINING ON MNIST

We investigate the advantage of SRSGD over SGD with standard and Nesterov momentum in training
deep generative models. In our experiments, we train a WGAN with gradient penalty Gulrajani

7Implementation available at https://github.com/Lezcano/expRNN
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et al. (2017) on MNIST. We evaluate our models using the discriminator’s loss, i.e. the Earth
Moving distance estimate, since in WGAN lower discriminator loss and better sample quality are
correlated Arjovsky et al. (2017).

Implementation and Training Details: The detailed implementations of our generator and discrim-
inator are given below. For the generator, we set latent dim to 100 and d to 32. For the discriminator,
we set d to 32. We train each model for 350 epochs with the initial learning rate of 0.01. The learning
rate was reduced by a factor of 10 at epoch 200 and 300. The momentum is set to 0.9 for SGD with
standard and Nesterov constant momentum. The restart schedule for SRSGD is set to 60, 120, 180.
The restart schedule changes at epoch 200 and 300. In all experiments, we use batch size 64. Our
code is based on the code from the Pytorch WGAN-GP Github.8

i m p o r t t o r c h
i m p o r t t o r c h . nn as nn

c l a s s G e n e r a t o r ( nn . Module ) :
d e f i n i t ( s e l f , l a t e n t d i m , d =32) :

s u p e r ( ) . i n i t ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . ConvTranspose2d ( l a t e n t d i m , d ⇤ 8 , 4 , 1 , 0 ) ,
nn . BatchNorm2d ( d ⇤ 8) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ⇤ 8 , d ⇤ 4 , 4 , 2 , 1 ) ,
nn . BatchNorm2d ( d ⇤ 4) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ⇤ 4 , d ⇤ 2 , 4 , 2 , 1 ) ,
nn . BatchNorm2d ( d ⇤ 2) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ⇤ 2 , 1 , 4 , 2 , 1 ) ,
nn . Tanh ( )

)
d e f f o r w a r d ( s e l f , x ) :

r e t u r n s e l f . n e t ( x )

c l a s s D i s c r i m i n a t o r ( nn . Module ) :
d e f i n i t ( s e l f , d =32) :

s u p e r ( ) . i n i t ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . Conv2d ( 1 , d , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d , d ⇤ 2 , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ⇤ 2) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d ⇤ 2 , d ⇤ 4 , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ⇤ 4) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d ⇤ 4 , 1 , 4 , 1 , 0 ) ,
)

d e f f o r w a r d ( s e l f , x ) :
o u t p u t s = s e l f . n e t ( x )
r e t u r n o u t p u t s . s q u e e z e ( )

Results: Our SRSGD is still better than both the baselines. SRSGD achieves smaller discriminator
loss, i.e. Earth Moving distance estimate, and converges faster than SGD with standard and Nesterov
constant momentum. We summarize our results in Table 12 and Figure 8. We also demonstrate the

8Implementation available at https://github.com/arturml/pytorch-wgan-gp
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digits generated by the trained WGAN in Figure 9. By visually evaluation, we observe that samples
generated by the WGAN trained with SRSGD look slightly better than those generated by the WGAN
trained with SGD with standard and Nesterov constant momentum.

Table 12: Discriminator loss (i.e. Earth Moving distance estimate) of the WGAN with gradient
penalty trained on MNIST with SGD, SGD + NM and SRSGD. In all experiments, we use the initial
learning rate of 0.01, which is reduced by a factor of 10 at epoch 200 and 300. All models are trained
for 350 epochs. The momentum for SGD and SGD + NM is set to 0.9. The restart schedule in
SRSGD is set to 60, 120, and 180.

Task SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
MNIST 0.71 ± 0.10 0.58 ± 0.03 0.44 ± 0.060.44 ± 0.060.44 ± 0.06 0.27/0.14

Beyond	DNNs:	Training	WGAN	on	MNIST
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Results: Our SRSGD is still better than both the baselines. SRSGD achieves smaller discriminator627

loss, i.e. Earth Moving distance estimate, and converges faster than SGD with standard and Nesterov628

constant momentum. We summarize our results in Table 11 and Figure 7. We also demonstrate the629

digits generated by the trained WGAN in Figure 8. By visually evaluation, we observe that samples630

generated by the WGAN trained with SRSGD look slightly better than those generated by the WGAN631

trained with SGD with standard and Nesterov constant momentum.

Table 11: Discriminator loss (i.e. Earth Moving distance estimate) of the WGAN with gradient
penalty trained on MNIST with SGD, SGD + NM and SRSGD. In all experiments, we use the initial
learning rate of 0.01, which is reduced by a factor of 10 at epoch 200 and 300. All models are trained
for 350 epochs. The momentum for SGD and SGD + NM is set to 0.9. The restart schedule in
SRSGD is set to 60, 120, and 180.

Task SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
MNIST 0.71 ± 0.10 0.58 ± 0.03 0.44 ± 0.060.44 ± 0.060.44 ± 0.06 0.27/0.14

632

F Error Rate vs. Reduction in Training Epochs633

F.1 Implementation Details634

CIFAR10 (Figure 4, left, in the main text) and CIFAR100 (Figure 10 in this Appendix): Except635

for learning rate schedule, we use the same setting described in Section D.1 above and Section 4.1 in636

the main text. Table 12 contains the learning rate schedule for each number of epoch reduction in637

Figure 4 (left) in the main text and Figure 10 below.638

ImageNet (Figure 4, right, in the main text): Except for the total number of training epochs, other639

settings are similar to experiments for training ImageNet in fewer number of epochs described in640

Section D.3. In particular, the learning rate and restarting frequency schedule still follow those in641

Table 8 above. We examine different numbers of training epochs: 90 (0 epoch reduction), 80 (10642

epochs reduction), 75 (15 epochs reduction), 70 (20 epochs reduction), 65 (25 epochs reduction), and643

60 (30 epochs reduction).644

F.2 Additional Experimental Results645

Figure 9 shows error rate vs. reduction in epochs for all models trained on CIFAR10 and ImageNet.646

It is a more complete version of Figure 4 in the main text. Table 13 and Table 14 provide detailed test647

errors vs. number of training epoch reduction reported in Figure 4 and Figure 9 . We also conduct an648
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Figure 8: Earth Moving distance estimate (i.e. discriminator loss) vs. training epochs of WGAN with
gradient penalty trained with SGD (red), SGD + NM (green), and SRSGD (blue) on MNIST.

SGD SGD + NM SRSGD
Figure 9: MNIST digits generated by WGAN trained with gradient penalty by SGD (left), SGD +
NM (middle), and SRSGD (right).

F ERROR RATE VS. REDUCTION IN TRAINING EPOCHS

F.1 IMPLEMENTATION DETAILS

CIFAR10 (Figure 4, left, in the main text) and CIFAR100 (Figure 11 in this Appendix): Except
for learning rate schedule, we use the same setting described in Section D.1 above and Section 4.1 in
the main text. Table 13 contains the learning rate schedule for each number of epoch reduction in
Figure 4 (left) in the main text and Figure 11 below.

ImageNet (Figure 4, right, in the main text): Except for the total number of training epochs, other
settings are similar to experiments for training ImageNet in fewer number of epochs described in
Section D.3. In particular, the learning rate and restarting frequency schedule still follow those in
Table 9 above. We examine different numbers of training epochs: 90 (0 epoch reduction), 80 (10
epochs reduction), 75 (15 epochs reduction), 70 (20 epochs reduction), 65 (25 epochs reduction), and
60 (30 epochs reduction).
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Table 13: Learning rate (LR) schedule for the ablation study of error rate vs. reduction in training
epochs for CIFAR10 experiments, i.e. Figure 4 in the main text and for CIFAR100 experiments, i.e.
Figure 11 in this Appendix.

#of Epoch Reduction LR Schedule

0 Decrease the LR by a factor of 10 at the 80th, 120th and 160th epoch. Train for a total of 200 epochs.

15 Decrease the LR by a factor of 10 at the 80th, 115th and 150th epoch. Train for a total of 185 epochs.

30 Decrease the LR by a factor of 10 at the 80th, 110th and 140th epoch. Train for a total of 170 epochs.

45 Decrease the LR by a factor of 10 at the 80th, 105th and 130th epoch. Train for a total of 155 epochs.

60 Decrease the LR by a factor of 10 at the 80th, 100th and 120th epoch. Train for a total of 140 epochs.

75 Decrease the LR by a factor of 10 at the 80th, 95th and 110th epoch. Train for a total of 125 epochs.

90 Decrease the LR by a factor of 10 at the 80th, 90th and 100th epoch. Train for a total of 110 epochs.

100 Decrease the LR by a factor of 10 at the 80th, 90th and 95th epoch. Train for a total of 100 epochs.

Table 14: Classification test error (%) of SGD short training (100 epochs), SGD full training (200
epochs), SRSGD short training (100 epochs), and SRSGD full training (200 epochs) on CIFAR10.
SGD short training yields much worse test errors than the others while SRSGD short training yields
either comparable or even better results than SGD full training.

Network SGD short training SGD full training SRSGD short training SRSGD full training

Pre-ResNet-110 6.36 ± 0.12 5.25 ± 0.14 5.43 ± 0.18 4.93 ± 0.13

Pre-ResNet-290 5.81 ± 0.10 5.05 ± 0.23 4.83 ± 0.11 4.37 ± 0.15

Pre-ResNet-470 5.59 ± 0.19 4.92 ± 0.10 4.64 ± 0.17 4.18 ± 0.09

Table 15: Classification test error (%) of SGD short training (100 epochs), SGD full training (200
epochs), SRSGD short training (100 epochs), and SRSGD full training (200 epochs) on CIFAR100.
SGD short training yields worse test errors than the others while SRSGD short training yields either
comparable or even better results than SGD full training.

Network SGD short training SGD full training SRSGD short training SRSGD full training

Pre-ResNet-110 24.34 ± 0.21 23.75 ± 0.20 23.85 ± 0.19 23.49 ± 0.23

Pre-ResNet-290 22.70 ± 0.25 21.78 ± 0.21 21.77 ± 0.43 21.49 ± 0.27

Pre-ResNet-470 22.43 ± 0.18 21.43 ± 0.30 21.42 ± 0.19 20.71 ± 0.32

F.2 SHORT TRAINING ON CIFAR10/CIFAR100 USING SGD

For better comparison between SRSGD training using fewer epochs and SGD full training, we also
conduct experiments with SGD training using fewer epochs on CIFAR10 and CIFAR100. Table 14
and 15 compares SRSGD short training using 100 epoch, SGD short training using 100 epochs,
SRSGD full training using 200 epochs, and SGD full training using 200 epochs for Pre-ResNet-110,
290, and 470 on CIFAR10 and CIFAR100, respectively. The learning rate schedule for SGD short
training using 100 epochs is the same as the learning rate schedule for SRSGD short training using
100 epoch given in Section 4 and in Table 13 above. In particular, for both SGD and SRSGD training
using 100 epochs, we decrease the learning rate by a factor of 10 at the 80th, 90th, and 95th epoch.
We observe that SGD short training has the worst performance compared to the others while SRSGD
short training yields either comparable or even better results than SGD full training.

F.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure 10 shows error rate vs. reduction in epochs for all models trained on CIFAR10 and ImageNet.
It is a more complete version of Figure 4 in the main text. Table 16 and Table 17 provide detailed test
errors vs. number of training epoch reduction reported in Figure 4 and Figure 10 . We also conduct an
additional ablation study of error rate vs. reduction in epochs for CIFAR100 and include the results
in Figure 11 and Table 18 below.
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Figure 10: Test error vs. number of training epochs. Dashed lines are test errors of SGD trained
in 200 epochs for CIFAR10 and 90 epochs for ImageNet. For CIFAR, SRSGD with fewer epochs
achieves comparable results to SRSGD with 200 epochs. For ImageNet, training with less epochs
slightly decreases the performance of SRSGD but still achieves comparable results to 200-epoch
SGD.

Table 16: Test error vs. number of training epochs for CIFAR10

Network 110 (90 less) 125 (75 less) 140 (60 less) 155 (45 less) 170 (30 less) 185 (15 less) 200 (full trainings)

Pre-ResNet-110 5.37 ± 0.11 5.27 ± 0.17 5.15 ± 0.09 5.09 ± 0.14 4.96 ± 0.14 4.96 ± 0.13 4.93 ± 0.134.93 ± 0.134.93 ± 0.13

Pre-ResNet-290 4.80 ± 0.14 4.71 ± 0.13 4.58 ± 0.11 4.45 ± 0.09 4.43 ± 0.09 4.44 ± 0.11 4.37 ± 0.154.37 ± 0.154.37 ± 0.15

Pre-ResNet-470 4.52 ± 0.16 4.43 ± 0.12 4.29 ± 0.11 4.33 ± 0.07 4.23 ± 0.12 4.18 ± 0.094.18 ± 0.094.18 ± 0.09 4.18 ± 0.094.18 ± 0.094.18 ± 0.09

Pre-ResNet-650 4.35 ± 0.10 4.24 ± 0.05 4.22 ± 0.15 4.10 ± 0.15 4.12 ± 0.14 4.02 ± 0.05 4.00 ± 0.074.00 ± 0.074.00 ± 0.07

Pre-ResNet-1001 4.23 ± 0.19 4.13 ± 0.12 4.08 ± 0.15 4.10 ± 0.09 3.93 ± 0.11 4.06 ± 0.14 3.87 ± 0.073.87 ± 0.073.87 ± 0.07

Table 17: Top 1 single crop validation error vs. number of training epochs for ImageNet

Network 60 (30 less) 65 (25 less) 70 (20 less) 75 (15 less) 80 (10 less) 90 (full trainings)

ResNet-50 25.42 ± 0.42 25.02 ± 0.15 24.77 ± 0.14 24.38 ± 0.01 24.30 ± 0.21 23.85 ± 0.0923.85 ± 0.0923.85 ± 0.09

ResNet-101 23.11 ± 0.10 22.79 ± 0.01 22.71 ± 0.21 22.56 ± 0.10 22.44 ± 0.03 22.06 ± 0.1022.06 ± 0.1022.06 ± 0.10

ResNet-152 22.28 ± 0.20 22.12 ± 0.04 21.97 ± 0.04 21.79 ± 0.07 21.70 ± 0.07 21.46 ± 0.0721.46 ± 0.0721.46 ± 0.07

ResNet-200 21.92 ± 0.17 21.69 ± 0.20 21.64 ± 0.03 21.45 ± 0.06 21.30 ± 0.03 20.93 ± 0.1320.93 ± 0.1320.93 ± 0.13

Table 18: Test error vs. number of training epochs for CIFAR100

Network 110 (90 less) 125 (75 less) 140 (60 less) 155 (45 less) 170 (30 less) 185 (15 less) 200 (full trainings)

Pre-ResNet-110 24.06 ± 0.26 23.82 ± 0.24 23.82 ± 0.28 23.58 ± 0.18 23.69 ± 0.21 23.73 ± 0.34 23.49 ± 0.2323.49 ± 0.2323.49 ± 0.23

Pre-ResNet-290 21.96 ± 0.45 21.77 ± 0.21 21.67 ± 0.37 21.56 ± 0.33 21.38 ± 0.4421.38 ± 0.4421.38 ± 0.44 21.47 ± 0.32 21.49 ± 0.27

Pre-ResNet-470 21.35 ± 0.17 21.25 ± 0.17 21.21 ± 0.18 21.09 ± 0.28 20.87 ± 0.28 20.81 ± 0.32 20.71 ± 0.3220.71 ± 0.3220.71 ± 0.32

Pre-ResNet-650 21.18 ± 0.27 20.95 ± 0.13 20.77 ± 0.31 20.61 ± 0.19 20.57 ± 0.13 20.47 ± 0.07 20.36 ± 0.2520.36 ± 0.2520.36 ± 0.25

Pre-ResNet-1001 20.27 ± 0.17 20.03 ± 0.13 20.05 ± 0.22 19.74 ± 0.18 19.71 ± 0.22 19.67 ± 0.2219.67 ± 0.2219.67 ± 0.22 19.75 ± 0.11

G IMPACT OF RESTARTING FREQUENCY FOR IMAGENET AND CIFAR100

G.1 IMPLEMENTATION DETAILS

For the CIFAR10 experiments on Pre-ResNet-290 in Figure 5 in the main text, as well as the
CIFAR100 and ImageNet experiments in Figure 14 and 15 in this Appendix, we vary the initial
restarting frequency F1. Other settings are the same as described in Section D above.
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Figure 11: Test error vs. number of epoch reduction in CIFAR100 training. The dashed lines are
test errors of the SGD baseline. For CIFAR100, SRSGD training with fewer epochs can achieve
comparable results to SRSGD training with full 200 epochs. In some cases, such as with Pre-ResNet-
290 and 1001, SRSGD training with fewer epochs achieves even better results than SRSGD training
with full 200 epochs.
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Figure 12: Training loss (left) and test error (right) of Pre-ResNet-110 trained on CIFAR10 with
different growth rate r (linear schedule). Here, we fix the initial restarting frequency F1 = 30 for all
trainings. Increasing the restarting frequency during training yields better results than decreasing the
restarting frequency, but increasing the restarting frequency too fast and too much also diminishes the
performance of SRSGD.

G.2 IMPACT OF THE GROWTH RATE r

We do an ablation study for the growth rate r to understand its impact on the behavior of SRSGD. We
choose a case study of training a Pre-ResNet-110 on CIFAR10 using SRSGD with a linear schedule
scheme for the restarting frequency. We fix the initial restarting frequency F1 = 30 and vary the
growth rate r. We choose r from the set of {0.7, 1.0, 2.0, 10.0}. These values of r represent four
different scenarios. When r = 0.7, the restarting frequency decreases every time the learning rate is
reduced by a factor of 10. When r = 1.0, the restarting frequency stays constant during the training.
When r = 2.0, the restarting frequency increases every time the learning rate is reduced by a factor
of 10. Finally, when r = 10.0, it is similar to when r = 2.0, but the restarting frequency increases
much faster and to larger values. Figure 12 summarizes the results of our ablation study. We observe
that for CIFAR10, decreasing the restarting frequency or keeping it constant during training yields
worse results than increasing the restarting frequency. However, increasing the restarting frequency
too much also diminishes the performance of SRSGD.
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G.3 ADDITIONAL EXPERIMENTAL RESULTS

To complete our study on the impact of restarting frequency in Section 5.2 in the main text, we
examine the case of CIFAR100 and ImageNet in this section. We summarize our results in Figure 14
and 15 below. Also, Figure 13 is a more detailed version of Figure 5 in the main text.
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Figure 13: Training loss (left) and test error (right) of Pre-ResNet-290 trained on CIFAR10 with
different initial restarting frequencies F1 (linear schedule). SRSGD with small F1 approximates
SGD without momentum, while SRSGD with large F1 approximates NASGD.The training loss curve
and test accuracy of NASGD are shown in red and confirm the result of Theorem 1 that NASGD
accumulates error due to the stochastic gradients.
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Figure 14: Training loss and test error of Pre-ResNet-290 trained on CIFAR100 with different
initial restarting frequencies F1 (linear schedule). SRSGD with small F1 approximates SGD without
momentum, while SRSGD with large F1 approximates NASGD. The training loss curve and test
accuracy of NASGD are shown in red and confirm the result of Theorem 1 that NASGD accumulates
error due to the stochastic gradients.
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Figure 15: Training loss and test error of ResNet-101 trained on ImageNet with different initial
restarting frequencies F1. We use linear schedule and linearly decrease the restarting frequency to
1 at the last learning rate. SRSGD with small F1 approximates SGD without momentum, while
SRSGD with large F1 approximates NASGD.
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H FULL TRAINING WITH LESS EPOCHS AT THE INTERMEDIATE LEARNING
RATES

We explore SRSGD full training (200 epochs on CIFAR and 90 epochs on ImageNet) with less
number of epochs at the intermediate learning rates and report the results in Table 19, 20, 21 and
Figure 16, 17, 18 below. The settings and implementation details here are similar to those in Section F,
but using all 200 epochs for CIFAR experiments and 90 epochs for ImageNet experiments.
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Figure 16: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR10. We still train in full 200 epochs in this experiment. On the x-axis, 10,
for example, means we reduce the number of training epochs by 10 at each intermediate learning rate,
i.e. the 2nd and 3rd learning rate. The dashed lines are test errors of the SGD baseline.

Table 19: Test error when using new learning rate schedules with less training epochs at the 2nd
and 3rd learning rate for CIFAR10. We still train in full 200 epochs in this experiment. In the table,
80-90-100, for example, means we reduce the learning rate by factor of 10 at the 80th, 90th, and
100th epoch.

Network 80 - 90 - 100 80 - 95 - 110 80 - 100 - 120 80 - 105 - 130 80 - 110 - 140 80 - 115 - 150 80 - 120 - 160

Pre-ResNet-110 5.32 ± 0.14 5.24 ± 0.17 5.11 ± 0.13 5.04 ± 0.15 4.92 ± 0.154.92 ± 0.154.92 ± 0.15 4.95 ± 0.12 4.93 ± 0.13

Pre-ResNet-290 4.73 ± 0.13 4.67 ± 0.12 4.53 ± 0.10 4.40 ± 0.11 4.42 ± 0.09 4.42 ± 0.10 4.37 ± 0.154.37 ± 0.154.37 ± 0.15

Pre-ResNet-470 4.48 ± 0.16 4.34 ± 0.10 4.25 ± 0.12 4.28 ± 0.10 4.19 ± 0.10 4.14 ± 0.074.14 ± 0.074.14 ± 0.07 4.18 ± 0.09

Pre-ResNet-650 4.25 ± 0.13 4.12 ± 0.06 4.13 ± 0.09 4.03 ± 0.11 4.04 ± 0.11 4.04 ± 0.04 4.00 ± 0.074.00 ± 0.074.00 ± 0.07

Pre-ResNet-1001 4.14 ± 0.18 4.06 ± 0.12 4.04 ± 0.15 4.08 ± 0.09 3.92 ± 0.13 4.05 ± 0.14 3.87 ± 0.073.87 ± 0.073.87 ± 0.07

Table 20: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR100. We still train in full 200 epochs in this experiment. In the table,
80-90-100, for example, means we reduce the learning rate by factor of 10 at the 80th, 90th, and
100th epoch.

Network 80 - 90 - 100 80 - 95 - 110 80 - 100 - 120 80 - 105 - 130 80 - 110 - 140 80 - 115 - 150 80 - 120 - 160

Pre-ResNet-110 23.65 ± 0.14 23.96 ± 0.26 23.97 ± 0.31 23.53 ± 0.13 23.57 ± 0.36 23.68 ± 0.24 23.49 ± 0.2323.49 ± 0.2323.49 ± 0.23

Pre-ResNet-290 21.94 ± 0.44 21.71 ± 0.27 21.55 ± 0.40 21.44 ± 0.31 21.37 ± 0.4521.37 ± 0.4521.37 ± 0.45 21.47 ± 0.32 21.49 ± 0.27

Pre-ResNet-470 21.29 ± 0.11 21.21 ± 0.14 21.17 ± 0.18 20.99 ± 0.28 20.81 ± 0.22 20.80 ± 0.31 20.71 ± 0.3220.71 ± 0.3220.71 ± 0.32

Pre-ResNet-650 21.11 ± 0.24 20.91 ± 0.17 20.66 ± 0.33 20.52 ± 0.18 20.51 ± 0.16 20.43 ± 0.10 20.36 ± 0.2520.36 ± 0.2520.36 ± 0.25

Pre-ResNet-1001 20.21 ± 0.15 20.00 ± 0.11 19.86 ± 0.19 19.55 ± 0.1919.55 ± 0.1919.55 ± 0.19 19.69 ± 0.21 19.60 ± 0.17 19.75 ± 0.11
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Figure 17: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR100. We still train in full 200 epochs in this experiment. On the x-axis,
10, for example, means we reduce the number of training epochs by 10 at each intermediate learning
rate, i.e. the 2nd and 3rd learning rate. The dashed lines are test errors of the SGD baseline.
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Figure 18: Test error when using new learning rate schedules with less training epochs at the 2nd
learning rate for ImageNet. We still train in full 90 epochs in this experiment. On the x-axis, 10, for
example, means we reduce the number of training epochs by 10 at the 2nd learning rate. The dashed
lines are test errors of the SGD baseline.

Table 21: Top 1 single crop validation error when using new learning rate schedules with less training
epochs at the 2nd learning rate for ImageNet. We still train in full 90 epochs in this experiment. In
the table, 30-40, for example, means we reduce the learning rate by factor of 10 at the 30th and 40th
epoch.

Network 30 - 40 30 - 45 30 - 50 30 - 55 30 - 60

ResNet-50 24.44 ± 0.16 24.06 ± 0.15 24.05 ± 0.09 23.89 ± 0.14 23.85 ± 0.0923.85 ± 0.0923.85 ± 0.09

ResNet-101 22.49 ± 0.09 22.51 ± 0.05 22.24 ± 0.01 22.20 ± 0.01 22.06 ± 0.1022.06 ± 0.1022.06 ± 0.10

ResNet-152 22.02 ± 0.01 21.84 ± 0.03 21.65 ± 0.14 21.55 ± 0.06 21.46 ± 0.0721.46 ± 0.0721.46 ± 0.07

ResNet-200 21.65 ± 0.02 21.27 ± 0.14 21.12 ± 0.02 21.07 ± 0.01 20.93 ± 0.1320.93 ± 0.1320.93 ± 0.13

I VISUALIZATION OF SRSGD’S TRAJECTORY

Here we visualize the training trajectory through bad minima of SRSGD, SGD with constant momen-
tum, and SGD. In particular, we train a neural net classifier on a swiss roll data as in Huang et al.
(2019) and find bad minima along its training. Each red dot in Figure 19 represents the trained model
after each 10 epochs in the training. From each red dot, we search for nearby bad local minima,
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which are the blue dots. Those bad local minima achieve good training error but bad test error. We
plots the trained models and bad local minima using PCA Wold et al. (1987) and t-SNE Maaten &
Hinton (2008) embedding. The blue color bar is for the test accuracy of bad local minima; the red
color bar is for the number of training epochs.

SGD + MomentumSGD SRSGD

PCA Embedding of the Trajectory

SGD + MomentumSGD SRSGD

t-SNE Embedding of the Trajectory

Figure 19: Trajectory through bad minima of SGD, SGD with constant momentum, and SRSGD
during the training: we train a neural net classifier and plot the iterates of SGD after each ten epoch
(red dots). We also plot locations of nearby “bad” minima with poor generalization (blue dots). We
visualize these using PCA and t-SNE embedding. The blue color bar is for the test accuracy of bad
local minima while the red color bar is for the number of training epochs. All blue dots for SGD with
constant momentum and SRSGD achieve near perfect train accuracy, but with test accuracy below
59%. All blue dots for SGD achieves average train accuracy of 73.11% and with test accuracy also
below 59%. The final iterate (yellow star) of SGD, SGD with constant momentum, and SRSGD
achieve 73.13%, 99.25%, and 100.0% test accuracy, respectively.

(CONTINUED NEXT PAGE)
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J SRSGD IMPLEMENTATION IN PYTORCH

i m p o r t t o r c h
from . o p t i m i z e r i m p o r t Op t imize r , r e q u i r e d

c l a s s SRSGD( O p t i m i z e r ) :
”””
Schedu led R e s t a r t SGD .
Args :

params ( i t e r a b l e ) : i t e r a b l e o f p a r a m e t e r s t o o p t i m i z e
o r d i c t s d e f i n i n g p a r a m e t e r g ro ups .

l r ( f l o a t ) : l e a r n i n g r a t e .
w e i g h t d e c a y ( f l o a t , o p t i o n a l ) : w e i g h t decay ( L2 p e n a l t y ) (

d e f a u l t : 0 )
i t e r c o u n t ( i n t e g e r ) : c o u n t t h e i t e r a t i o n s mod 200

Example :
>>> o p t i m i z e r = t o r c h . opt im . SRSGD( model . p a r a m e t e r s ( ) , l r = 0 . 1 ,

w e i g h t d e c a y =5e �4, i t e r c o u n t =1)
>>> o p t i m i z e r . z e r o g r a d ( )
>>> l o s s f n ( model ( i n p u t ) , t a r g e t ) . backward ( )
>>> o p t i m i z e r . s t e p ( )
>>> i t e r c o u n t = o p t i m i z e r . u p d a t e i t e r ( )

Formula :
v { t +1} = p t � l r ⇤ g t
p { t +1} = v { t +1} + ( i t e r c o u n t ) / ( i t e r c o u n t +3) ⇤ ( v { t +1} � v t )

”””
d e f i n i t ( s e l f , params , l r = r e q u i r e d , w e i g h t d e c a y = 0 . ,

i t e r c o u n t =1 , r e s t a r t i n g i t e r =100) :
i f l r i s n o t r e q u i r e d and l r < 0 . 0 :

r a i s e V a l u e E r r o r ( ” I n v a l i d l e a r n i n g r a t e : {} ” . f o r m a t ( l r ) )
i f w e i g h t d e c a y < 0 . 0 :

r a i s e V a l u e E r r o r ( ” I n v a l i d w e i g h t d e c a y v a l u e : {} ” . f o r m a t (
w e i g h t d e c a y ) )

i f i t e r c o u n t < 1 :
r a i s e V a l u e E r r o r ( ” I n v a l i d i t e r c o u n t : {} ” . f o r m a t ( i t e r c o u n t ) )

i f r e s t a r t i n g i t e r < 1 :
r a i s e V a l u e E r r o r ( ” I n v a l i d i t e r t o t a l : {} ” . f o r m a t (

r e s t a r t i n g i t e r ) )

d e f a u l t s = d i c t ( l r = l r , w e i g h t d e c a y = w e i g h t d e c a y , i t e r c o u n t =
i t e r c o u n t ,

r e s t a r t i n g i t e r = r e s t a r t i n g i t e r )
s u p e r (SRSGD, s e l f ) . i n i t ( params , d e f a u l t s )

d e f s e t s t a t e ( s e l f , s t a t e ) :
s u p e r (SRSGD, s e l f ) . s e t s t a t e ( s t a t e )

d e f u p d a t e i t e r ( s e l f ) :
i d x = 1
f o r group i n s e l f . pa r am g roups :

i f i d x == 1 :
group [ ’ i t e r c o u n t ’ ] += 1
i f group [ ’ i t e r c o u n t ’ ] >= group [ ’ r e s t a r t i n g i t e r ’ ] :

g roup [ ’ i t e r c o u n t ’ ] = 1
i d x += 1

r e t u r n group [ ’ i t e r c o u n t ’ ] , g roup [ ’ r e s t a r t i n g i t e r ’ ]

d e f s t e p ( s e l f , c l o s u r e =None ) :
”””
Per fo rm a s i n g l e o p t i m i z a t i o n s t e p .
Arguments : c l o s u r e ( c a l l a b l e , o p t i o n a l ) : A c l o s u r e t h a t

r e e v a l u a t e s t h e model and r e t u r n s t h e l o s s .
”””
l o s s = None
i f c l o s u r e i s n o t None :
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l o s s = c l o s u r e ( )

f o r group i n s e l f . pa r am g roups :
w e i g h t d e c a y = group [ ’ w e i g h t d e c a y ’ ]
momentum = ( group [ ’ i t e r c o u n t ’ ] � 1 . ) / ( group [ ’ i t e r c o u n t ’ ] +

2 . )
f o r p i n group [ ’ params ’ ] :

i f p . g r ad i s None :
c o n t i n u e

d p = p . g r ad . d a t a
i f w e i g h t d e c a y ! = 0 :

d p . add ( w e i g h t d e c a y , p . d a t a )

p a r a m s t a t e = s e l f . s t a t e [ p ]

i f ’ momentum buffer ’ n o t i n p a r a m s t a t e :
buf0 = p a r a m s t a t e [ ’ momentum buffer ’ ] = t o r c h . c l o n e ( p

. d a t a ) . d e t a c h ( )
e l s e :

buf0 = p a r a m s t a t e [ ’ momentum buffer ’ ]

buf1 = p . d a t a � group [ ’ l r ’ ]⇤ d p
p . d a t a = buf1 + momentum⇤ ( buf1 � buf0 )
p a r a m s t a t e [ ’ momentum buffer ’ ] = buf1

i t e r c o u n t , i t e r t o t a l = s e l f . u p d a t e i t e r ( )

r e t u r n l o s s

K SRSGD IMPLEMENTATION IN KERAS

i m p o r t numpy as np
i m p o r t t e n s o r f l o w as t f
from k e r a s i m p o r t backend as K
from k e r a s . o p t i m i z e r s i m p o r t O p t i m i z e r
from k e r a s . l e g a c y i m p o r t i n t e r f a c e s
i f K. backend ( ) == ’ t e n s o r f l o w ’ :

i m p o r t t e n s o r f l o w as t f

c l a s s SRSGD( O p t i m i z e r ) :
””” Schedu led R e s t a r t S t o c h a s t i c g r a d i e n t d e s c e n t o p t i m i z e r .
I n c l u d e s s u p p o r t f o r N e s t e r o v momentum
and l e a r n i n g r a t e decay .
# Arguments

l e a r n i n g r a t e : f l o a t >= 0 . L e a r n i n g r a t e .
”””

d e f i n i t ( s e l f , l e a r n i n g r a t e = 0 . 0 1 , i t e r c o u n t =1 , r e s t a r t i n g i t e r
=40 , ⇤⇤ kwargs ) :
l e a r n i n g r a t e = kwargs . pop ( ’ l r ’ , l e a r n i n g r a t e )
s e l f . i n i t i a l d e c a y = kwargs . pop ( ’ decay ’ , 0 . 0 )
s u p e r (SRSGD, s e l f ) . i n i t (⇤⇤ kwargs )
wi th K. name scope ( s e l f . c l a s s . n a m e ) :

s e l f . i t e r a t i o n s = K. v a r i a b l e ( 0 , d t y p e = ’ i n t 6 4 ’ , name= ’
i t e r a t i o n s ’ )

s e l f . l e a r n i n g r a t e = K. v a r i a b l e ( l e a r n i n g r a t e , name= ’
l e a r n i n g r a t e ’ )

s e l f . decay = K. v a r i a b l e ( s e l f . i n i t i a l d e c a y , name= ’ decay ’ )
# f o r s r s g d
s e l f . i t e r c o u n t = K. v a r i a b l e ( i t e r c o u n t , d t y p e = ’ i n t 6 4 ’ , name=

’ i t e r c o u n t ’ )
s e l f . r e s t a r t i n g i t e r = K. v a r i a b l e ( r e s t a r t i n g i t e r , d t y p e = ’

i n t 6 4 ’ , name= ’ r e s t a r t i n g i t e r ’ )
s e l f . n e s t e r o v = n e s t e r o v
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@ i n t e r f a c e s . l e g a c y g e t u p d a t e s s u p p o r t
@K. sy m b o l i c
d e f g e t u p d a t e s ( s e l f , l o s s , params ) :

g r a d s = s e l f . g e t g r a d i e n t s ( l o s s , params )
s e l f . u p d a t e s = [K. u p d a t e a d d ( s e l f . i t e r a t i o n s , 1 ) ]

momentum = (K. c a s t ( s e l f . i t e r c o u n t , d t y p e =K. d t y p e ( s e l f . decay ) ) �
1 . ) / ( K. c a s t ( s e l f . i t e r c o u n t , d t y p e =K. d t y p e ( s e l f . decay ) ) + 2 . )

l r = s e l f . l e a r n i n g r a t e
i f s e l f . i n i t i a l d e c a y > 0 :

l r = l r ⇤ ( 1 . / ( 1 . + s e l f . decay ⇤ K. c a s t ( s e l f . i t e r a t i o n s ,
K. d t y p e ( s e l f . decay )

) ) )
# momentum
s h a p e s = [K. i n t s h a p e ( p ) f o r p i n params ]

moments = [K. v a r i a b l e ( v a l u e =K. g e t v a l u e ( p ) , d t y p e =K. d t y p e ( s e l f .
decay ) , name= ’ moment ’ + s t r ( i ) )

f o r ( i , p ) i n enumera t e ( params ) ]

s e l f . w e i g h t s = [ s e l f . i t e r a t i o n s ] + moments + [ s e l f . i t e r c o u n t ]
f o r p , g , m i n z i p ( params , g rads , moments ) :

v = p � l r ⇤ g
new p = v + momentum ⇤ ( v � m)
s e l f . u p d a t e s . append (K. u p d a t e (m, v ) )

# Apply c o n s t r a i n t s .
i f g e t a t t r ( p , ’ c o n s t r a i n t ’ , None ) i s n o t None :

new p = p . c o n s t r a i n t ( new p )

s e l f . u p d a t e s . append (K. u p d a t e ( p , new p ) )

c o n d i t i o n = K. a l l (K. l e s s ( s e l f . i t e r c o u n t , s e l f . r e s t a r t i n g i t e r ) )
n e w i t e r c o u n t = K. s w i t c h ( c o n d i t i o n , s e l f . i t e r c o u n t + 1 , s e l f .

i t e r c o u n t � s e l f . r e s t a r t i n g i t e r + 1)
s e l f . u p d a t e s . append (K. u p d a t e ( s e l f . i t e r c o u n t , n e w i t e r c o u n t ) )

r e t u r n s e l f . u p d a t e s

d e f g e t c o n f i g ( s e l f ) :
c o n f i g = { ’ l e a r n i n g r a t e ’ : f l o a t (K. g e t v a l u e ( s e l f . l e a r n i n g r a t e ) )

,
’ decay ’ : f l o a t (K. g e t v a l u e ( s e l f . decay ) ) ,
’ i t e r c o u n t ’ : i n t (K. g e t v a l u e ( s e l f . i t e r c o u n t ) ) ,
’ r e s t a r t i n g i t e r ’ : i n t (K. g e t v a l u e ( s e l f . r e s t a r t i n g i t e r

) ) }
b a s e c o n f i g = s u p e r (SRSGD, s e l f ) . g e t c o n f i g ( )
r e t u r n d i c t ( l i s t ( b a s e c o n f i g . i t e m s ( ) ) + l i s t ( c o n f i g . i t e m s ( ) ) )
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