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ABSTRACT
With the advent of large language models (LLMs) enhanced by
the chain-of-thought (CoT) methodology, visual reasoning prob-
lem is usually decomposed into manageable sub-tasks and tackled
sequentially with various external tools. However, such a para-
digm faces the challenge of the potential “determining hallucina-
tions” in decision-making due to insufficient visual information
and the limitation of low-level perception tools that fail to provide
abstract summaries necessary for comprehensive reasoning. We
argue that converging visual context acquisition and logical rea-
soning is pivotal for tackling visual reasoning tasks. This paper
delves into the realm of multimodal CoT to solve intricate visual
reasoning tasks with multimodal large language models (MLLMs)
and their cognitive capability. To this end, we propose an innova-
tive multimodal CoT framework, termed Cantor, characterized by
a perception-decision architecture. Cantor first acts as a decision
generator and integrates visual inputs to analyze the image and
problem, ensuring a closer alignment with the actual context. Fur-
thermore, Cantor leverages the advanced cognitive functions of
MLLMs to perform as multifaceted experts for deriving higher-level
information, enhancing the CoT generation process. Our extensive
experiments demonstrate the efficacy of the proposed framework,
showing significant improvements in multimodal CoT performance
across two complex visual reasoning datasets, without necessitating
fine-tuning or ground-truth rationales.

CCS CONCEPTS
• Information systems→ Question answering.

KEYWORDS
Multimodal Chain-of-Thought, Visual Reasoning

1 INTRODUCION
With the development of large language models (LLMs), researchers
have begun to adopt the chain-of-thought (CoT) strategy to improve
the model performance in reason tasks. CoT mimics the gradual
reasoning process of humans, helping models improve their deep
understanding and analytical abilities by constructing a series of
logical steps to solve complex visual reasoning problems. The effec-
tiveness of CoT has been widely validated in language reasoning
tasks. Recently, researchers have naturally extended its applica-
tion to multimodal domains. Visual reasoning tasks [29, 30] are
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Cantor       (with caption)

What is the highest amount this class measures?

Question: Which solution has more particles?  
ObjectQuant Locator (MLLM): The number of 
green particles in both solutions is the same.

Which solution has a higher 
concentration of green particles?

Question: Green particles in Solution A.
Detector: (0.2, 0.3), (0.4, 0.5)

Question: Green particles in Solution B.
Detector: (0.2, 0.3), (0.4, 0.5), (0.6, 0.7), (0.1, 0.2)

(a) Determining Hallucinations 

(b) Perception or Cognition Low-level Specialized Perception Tool

High-level General Cognitive Expert 

Question

Visual
Context

HallucinationsLLM

Cantor

LLM: Could you provide more details about 
'this class' and the measurements? Is it about 
math, physics, programming, or something else?

Cantor (MLLM): The beaker's max volume, 
marked at the top scale, requires identification by 
the VisionIQ Analyst.

Caption: It shows a glass beaker filled with red 
liquid. It's labeled with capacity, glass type ......
Cantor (LLM): The aim is to find the beaker's 
max volume in the image, requiring VisionIQ 
Analyst to spot the beaker's max volume mark.

Cantor       (with image)

GPT-3.5 (wihout visual context)

Reality

Figure 1: (a) Comparison of visual information on decision
generation: Asking GPT-3.5 (without visual context) leads
to “determining hallucinations” due to lacking clarity of the
image. Cantor (with caption) by introducing visual context
through captions, does not encounter this issue. Cantor (with
image) is even more precise, improving the rationality of
task assignment. (b) Comparison of different visual tools:
Low-level specialized perception tools used in traditional ap-
proaches only obtain basic data. High-level general cognitive
expert acted by MLLM obtains object number relationships,
enabling direct and subsequent reasoning.

inherently suited for chain-of-thought (CoT) methodologies. These
tasks necessitate that models not only “perceive” the contents and
contexts within images but also “comprehend” these visual ele-
ments to make coherent inferences and decisions. Consequently,
the exploration of multimodal CoT has significantly expanded in
the research community.

Most existing multimodal CoT methods are divided into two
stages: decision-generation and execution. 1)Decision-Generation.
It is the first step inmultimodal CoTmethods, which involves under-
standing, analyzing, and formulating inference plans for the prob-
lem. The existing determiningmethods include breaking down prob-
lems into sub-problems [53], capturing scene maps in images [32],
finding similarities and differences in related images [49], and so
on [41, 44]. They attempt to simplify the problem at the textual level
or add more contextual information at the visual level. 2) Execu-
tion. In this stage, models perform specific operations scheduled by
the previous determining stage. Specifically, the model transforms
the planning into practical solutions. The existing execution meth-
ods usually rely on various specialized API tools or vision-language
models (VLMs), with the former emphasizing the specificity of task

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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execution [31, 41] and the latter emphasizing the universality of
task execution [44, 53].

Although these multimodal CoT methods have improved the per-
formance in visual reasoning tasks, there are still limitations: Firstly,
when making decisions, existing methods often directly input plain
text into LLMs without considering visual context [17, 44, 53]. In-
tuitively, this increases the divergent thinking of LLMs towards
problems, but in reality, it may lead to “determining hallucinations".
As shown in Fig. 1 (a), if the question itself is not closely related
to the image and only asks “What is the highest amount this class
measures?” based on the text, LLM (GPT-3.5) is not clear about
what “this class” specifically means. It will answer that the pro-
vided information is insufficient and begin to guess whether the
“class” refers to a metric in physics or a class in programming. This
perception uncertainty may lead LLMs to make decisions that are
unrelated to the problem or even incorrect, misleading subsequent
execution and resulting in completely unrelated answers.

Secondly, during execution, existing methods typically execute
tasks by calling external tools, because MLLMs still fall short of
solving numerous visual reasoning tasks [17, 31, 32, 38, 44]. But
these tools are mostly low-level visual-perception tools (detectors,
recognizer, OCR, etc.) that can only extract low-level visual infor-
mation. As shown in Fig. 1 (b), when comparing the number of
particles in solutions, they only provide the positions of particles
and fail to infer high-level information such as the relationship
between their numbers. They further input these low-level clues
into LLMs for organization and summarization [17, 32, 53]. When
complex clues increase, this undoubtedly increases the burden of
LLMs on long-text reasoning. Meanwhile, with many external tools,
it also increases the complexity of the pipeline.

To address the above limitations, we propose a novel multimodal
CoT framework, Cantor. In decision generation, we enable anMLLM
or an LLM to act as a cantor within the chorus, simultaneously
processing visual and textual context for comprehensive under-
standing, and then assigning specific tasks to “experts" acted by a
single MLLM for high-level logical problem-solving. Specifically,
during the decision generation, we analyze in detail the impor-
tance of visual information in the determining stage. This includes
the quality of determining with or without visual information, as
well as the differences in the impact of detailed or concise visual
information on determining. Ultimately, we conclude that visual
information is crucial during the decision generation stage. When
we use an MLLMmodel (such as Gemini) for the decision generator,
we directly feed images into the model to fully comprehend the
question and deliberate on it. However, when employing an LLM
model (such as GPT-3.5), we find that providing a more detailed
caption of the image is more conducive to understanding the ques-
tion. Furthermore, the decision generator is required to explicitly
provide explanatory decisions, including problem-solving strate-
gies, reasons for expert invocation, and specific task conduction
for each expert. Consequently, it guides an MLLM to act as tailored
experts (such as ObjectQuant Locator, TextIntel Extractor, VisionIQ
Analyst, and ChartSense Expert) to provide conclusive answers
for sub-tasks in the process. As shown in Fig. 1 (a), when using
LLM to make a decision, with detailed caption guidance, the model
knows that it is asking for the maximum volume of the beaker and
makes the correct decision. The decision is clearer when the image

is available to the MLLM, that is, requiring the VisionIQ Analyst to
extract the number at the top of the cup wall.

During execution, we observe that MLLM is an advanced cog-
nitive tool that performs better in directly acquiring high-level
information (e.g., relative position and quantity) than acquiring
low-level visual information like detecting positions. Such high-
level information is superior for multimodal CoT. Instead of using
several external tools, Cantor assigns different tasks to a single
MLLM via different expert identities and task instructions, explor-
ing the professional potential of an MLLM acting as certain experts.
The tailored experts provide high-level professional information
directly, thus reducing the burden of subsequent integrated reason-
ing. As shown in Fig. 1 (b), when comparing the concentration of
green particles, we need to compare the number of particles in the
two bottles first. MLLM acts as an ObjectQuant Locator and directly
compares the quantity variance in the two solutions. Compared
with obtaining the position of particles, MLLM gets the result of
the quantity relationship more accurately. This result is directly
applied to the further inference of the final answer.

Our proposed framework Cantor achieves SOTA results in both
ScinceQA [30] and Mathvista [29]. When Gemini is used as the
decision generator, Cantor obtains an accuracy gain of 4.11% and
5.9%, respectively. Employing GPT-3.5 in Cantor also achieves an
accuracy gain of 2.24% and 9.2%. In all of our experiments, we
use only one MLLM (Gemini) to play the role of multiple experts,
performing different sub-tasks with different requirements. Our
contributions are the following:

• We propose an inspiring multimodal CoT framework named
Cantor, which features a perceptual decision architecture
that effectively integrates visual context and logical reason-
ing to solve visual reasoning tasks.

• We utilize the advanced cognitive abilities of an MLLM to act
as multifaceted experts, obtaining higher-level information
and significantly enhancing CoT generation.

• We demonstrate Cantor’s effectiveness on two challenging
benchmarks, largely surpassing existing counterparts.

2 RELATEDWORK
2.1 Multimodal Large Language Models
Recent researches indicate that the development of Multimodal
Large Language Models (MLLMs) [6, 10, 11, 33, 37, 39, 47, 48] is the
result of combining the advanced reasoning capabilities of Large
Language Models (LLMs) with the capabilities of Vision-Language
models (VLMs). These models have achieved significant perfor-
mance improvements in multimodal tasks by integrating visual and
linguistic information. In particular, significant progress [13, 24,
36]has been made in connecting visual and text representations
with contrastive visual and language models, but they encounter
limitations when dealing with downstream tasks that require gener-
ating components or performing more refined reasoning on visual
and language. To overcome these limitations, MLLM extends the
reasoning and generation capabilities of LLM to the visual domain
by directly inferring embedded visual features [1, 2, 7, 9, 23, 54]. In
addition, MLLMs further improve performance through fine-tuning
visual instructions [28].
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These advances not only demonstrate the ability of MLLM to
handle complex multimodal information but also provide new possi-
bilities for achieving General Artificial Intelligence (AGI) with rich
multimodal information. By integrating the text reasoning ability
of LLM with the image understanding ability of visual language
models, MLLM can achieve deep understanding and expression
in multiple modalities, processing complex tasks such as image
captioning and visual question answering. Open-source MLLMs
such as LLaVA [28] demonstrate these capabilities, while closed-
source models such as GPT4-V [34] and Gemini [40] have taken a
greater step in capturing scene context, reasoning, and creativity.
Although for specific tasks these closed-source models may not be
directly competent or fine-tuning. However, prompt learning can
to some extent overcome these limitations. This paper is dedicated
to exploring the technique of CoT [43] to enhance the ability of
MLLMs to capture the complete context of complex visual scenes,
thereby further strengthening their reasoning capabilities.

2.2 Tool-Augmented Language Models
In recent years, despite the impressive performance of Large Lan-
guage Models (LLMs), they are not without their inherent lim-
itations. These include challenges such as obtaining up-to-date
information [21], the inability to employ specific tools [31, 38],
and difficulties in executing complex reasoning processes [29, 30].
Meanwhile, researchers are increasingly interested in using exter-
nal tools and modular methods to enhance LLM through prompting
and in-context learning. These enhanced LLMs can utilize different
external tools to provide LLMs with more functionality and gain
more knowledge. Some works [5, 12, 17, 19] utilized prompts to
generate complex programs that can be executed by computers,
calling different tools to more effectively perform logical reasoning
tasks. For example, PaLI-X-VPD [17] extracted the reasoning abil-
ity of LLM by generating multiple candidate programs, executing
programs through external tools, and verifying their correctness.
It transformed each correct program into a language description
of reasoning steps to form a CoT. In addition, some works pro-
posed benchmarks (such as API Bank [25], ToolQA [55], and Meta-
Tool [18]) to evaluate the effectiveness of LLM tool use. This article
mainly emphasizes enhancing the tool usage ability of MLLM.

2.3 Multi-modal CoT Reasoning
LLMs and MLLMs are becoming increasingly popular. Although
their own abilities are becoming stronger, good prompt methods are
still the key to fully unleashing their abilities. Chain-of-thought (CoT)
is a method to improve LLM’s reasoning ability, and the core of CoT
is to encourage LLM to clarify their reasoning in a human think-
ing way, specifically by adding logical thinking processes before
obtaining answers. In the field of NLP, CoT has received extensive
research [8, 15, 42, 51]. Jason Wei et al. [43] significantly improved
LLM’s reasoning ability by simply adding problem-solving ideas
directly to in-context examples. Subsequently, researchers mainly
focused on how to automate the construction of CoT to reduce
manual annotation and more complex structures such as Tree-of-
Thought (ToT) [45] and Graph-of-Thought (GoT) [3, 22, 46].

Meanwhile, surprising progress has been made in multimodal
CoT. MM-CoT [52] firstly proposed a two-stage reasoning frame-
work by using text and image pairs as input, generating rationale
first and then generating answers. Subsequent works [14, 14, 41, 53]
are mostly based on this framework, focusing on designing special
vision-language feature fusion mechanisms to enhance multimodal
information interaction. However, these CoT prompting methods
need to fine-tune on ground truth of natural language reasoning,
which requires both annotation and computation costly. Based on
this issue, researchers have proposed other CoT methods that do
not require manual annotation and training. On the one hand, they
fully tap into textual information. For example, DD-CoT [53] fur-
ther refined the process of generating the CoT. Without introducing
visual information, it used LLM to break down the problem into
multiple related sub-questions and then answer each sub-question
one by one to form the CoT. On the other hand, researchers are com-
mitted to enhancing visual information through various means. For
example, CoCoT [49] captured image characteristics by comparing
the similarities and differences between images, while CCoT [32]
obtained scene maps by disassembling the targets and attributes
in the images to assist in rationale generation. The key difference
between our method and these methods is that when mining text
information, we introduce visual information in advance to make
decisions more reasonable and factual. In addition, we enhance
visual information more comprehensively by calling multiple ex-
perts. Last, Cantor is also a method that does not require training or
manual annotation, so it has strong universality and convenience.
This paper emphasizes enhancing the expert usage capability of
MLLM. Considering that MLLM has multimodal universal capabili-
ties, it is naturally suitable to serve as various experts. Therefore,
this paper will endow MLLM with various identities and explore
its expert-playing abilities.

3 METHOD
To address the limitations of multimodal CoT in solving visual
reasoning tasks, we propose Cantor, which introduces visual in-
formation to make correct decisions and uses a single MLLM to
act as multiple experts to adapt to a wide range of problems. We
describe the framework of Cantor (Section 3.1). Then, we provide a
detailed introduction to our two-step approach: the first is Decision-
Generation (Section 3.2), and the second is Execution (Section 3.3).

3.1 Preliminaries
Cantor consists of two stages: Decision-Generation and Execution,
as shown in Fig. 2. During the Decision-Generation stage in Can-
tor, Cantor’s input consists of 𝑋 = {𝐼 ,𝑇 , 𝑃𝑖𝑛}, where 𝐼 denotes
the visual input (image or a caption), 𝑇 signifies the text input,
which represents the concatenation of the problem statement and
its context, and 𝑃𝑖𝑛 represents the prompt for generating decisions.
Formally, given an input query 𝑋 , a decision 𝑃 is generated as fol-
lows: 𝑃𝑜𝑢𝑡 = 𝐹 (𝑋 ), where 𝐹 denotes the decision generator (an LLM
or MLLM). Specially, 𝑃𝑜𝑢𝑡 = {𝑅,𝑂, 𝑆𝑡 }, where 𝑅 denotes Principle
Analysis, 𝑂 denotes Module Selection & Reason, and 𝑆𝑡 denotes
the tasks assigned to expert modules. For specific examples, please
refer to the blue section in the middle of Fig. 2.
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Compare the average kinetic energies of the 
particles in each sample. Which sample has 
the higher temperature?
(A) Sample A          (B) Sample B
(C) neither; their concentrations are the same    

Rationale:
The temperature of particles in a substance is directly 
proportional to its average kinetic energy. The 
formula for kinetic energy of an particle is 1/2mv^2.

Decision Generator

Detector

A: Mass: 44 u  Speed: 1,400 m/s
B: Mass: 46 u  Speed: 1,400 m/s

Their numbers are the same.

Answer Generator

Rationale:
With equal speeds in two samples, the one with 
heavier particles, sample B, has more kinetic energy 
and thus a higher temperature.

TextIntel Extractor: Extract the mass 
and speed of each particle in sample A 
and sample B.

Rationale:
If two samples have same speed, the heavier one, 
sample B, will have more kinetic energy and be hotter.
Answer: Sample B

1. TextIntel Extractor is 
required to extract mass m and 
speed v.
2. ObjectQuant Locator is  
needed to compare the number 
of particles in two samples.

Expert Modules

Module Selection & Reason

Principle Analysis

Task Allocation

ObjectQuant 
Locator

TextIntel 
Extractor

ObjectQuant Locator:  Which sample 
has more particles? 

Execution-
Modularization

TextIntel 
Extractor

ObjectQuant
Locator

VisionIQ
Analyst

ChartSense
Expert

VisionIQ
Analyst

Execution-Synthesis

Decision-
Generation

Mass of each particle: 44u
Average particle speed: 1,400m/s

Mass of each particle: 46u
Average particle speed: 1,400m/s

Sample A Sample B Pin Pout

S, E

Figure 2: Overview of Cantor and a specific example. Cantor analyzes the image and problem through the Decision Generator,
offering the principle analysis of the questions, and providing module selection & Reason, as well as specific task allocation.
Subsequently, MLLM acts as various expert modules to execute sub-tasks. Finally, Cantor synthesizes and contemplates through
the Answer Generator, providing the final answer.

In the execution-modularization stage, multiple sub-tasks 𝑆𝑡 =
{𝑠𝑡1, 𝑠𝑡2 ...𝑠𝑡𝑛} derived from the decision 𝑃𝑜𝑢𝑡 and image 𝐼 are jointly
sent to the corresponding expert module to obtain the sub-answers
𝑆𝑎 = {𝑠𝑎1, 𝑠𝑎2, ..., 𝑠𝑎𝑛}. The process is as follows: 𝑆𝑎 = 𝐺 (𝑆𝑡 , 𝐼 ),
where 𝐺 denotes various experts (an MLLM). This process corre-
sponds to the Execution-Modularization stage in the purple section
at the bottom right of Fig. 2. Then in Execution-Synthesis stage, we
concatenate the sub-tasks and sub-answers to form supplementary
information 𝑆 = {𝑆𝑡 , 𝑆𝑎}, and design an answer generation prompt
𝐸. Finally, feed the updated input𝑋 ′ = {𝐼 ,𝑇 , 𝑆, 𝐸} and infer the final
answer 𝐴 = 𝐹 (𝑋 ′), where 𝐹 denotes the answer generator (an LLM
or MLLM), as shown in the upper right corner of Fig. 2.

3.2 Step 1: Decision-Generation
Our first step is to generate decision 𝑃𝑜𝑢𝑡 which considers and
deploys the problem. Please note that we are studying unsupervised
visual reasoning tasks, which involve having the model generate
corresponding decisions for the problem without ground truth
[44, 49]. Additionally, for standardization and accuracy, we adopt a
few-shot setting in prompt to provide a decision generation prompt
𝑃𝑖𝑛 for the model, which includes the requirements for decision
generation, the characteristics of callable modules, and several
manually written decision examples.

Let’s provide a detailed introduction to the Decision-Generation
process of Cantor and the specific components of the prompt 𝑃𝑖𝑛 :

1. Acting as Decision Generator. We prompt the LLM or
MLLM with "You are an advanced question-answering agent re-
quired with four specialized modules to aid in the analysis and
responding to queries about images" enabling it to function as a
decision generator in Cantor.

2. Expert Modules Unveiled. As shown in the Expert Modules
of Fig. 2. We provide detailed information on the characteristics
of each expert module for Cantor, with the aim to allocate tasks
to each expert module based on the principle of addressing the
problem during the Decision-Generation phase, as follows: TextIn-
tel Extract: This module extracts and converts text within images
into editable text format. It’s particularly useful for images con-
taining a mix of text and graphic elements. ObjectQuant Locator:
This module identifies and locates objects within an image. It’s
advanced at comparing quantities and recognizing spatial relation-
ships. VisionIQ Analyst: This module processes and interprets
visual data, enabling you to ask any queries related to the image’s
content. ChartSense Expert: This module specializes in analyzing
and interpreting information from charts and graphs. It can extract
data points, understand trends, and identify key components such
as titles, axes, labels, and legends within a chart.

3. Principle Analysis and Module Selection & Reason. We
prompt Cantor "Provide a rationale for your approach to answering
the question, explaining how you will use the information from the
image and the modules to form a comprehensive answer", perform-
ing an overall assessment and modular analysis of the question.

4. Task Allocation.We prompt "Assign specific tasks to each
module as needed, based on their capabilities, to gather additional
information essential for answering the question accurately.", re-
quiring Cantor to select the necessary modules and assign their
corresponding specific tasks.

5. Contextual Insights and Practical Applications.We intro-
duce some in-context examples to enhance Cantor’s comprehension
of our prompts, ensuring its responses adhere to the desired format.
Detailed instances are provided in the supplementary materials for
further reference. Then, we input the particular problem that needs
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addressing, along with its contextual details, enabling Cantor to
formulate nuanced decisions. The blue part on the left half of Fig. 2
shows a specific example of decision generation.

The above five parts are combined to form the final decision
generation prompt 𝑃𝑖𝑛 . Subsequently, 𝑃𝑖𝑛 together with visual input
𝐼 and text input 𝑇 , constitutes the complete input for the first stage
of Cantor, prompting Cantor to deliver a deliberate decision 𝑃𝑜𝑢𝑡 .

The decision generation method represents a core novel contri-
bution of our work. Initially, the LLM or MLLM is employed as a
decision generator, serving as the brain. Next, a suite of specialized
expert modules is integrated, augmenting the decision generating
with diverse capabilities analogous to the limbs. This integration en-
sures that decision-generating is both comprehensive and granular,
leveraging the strengths of each module. Thereafter, the decision
generator tailors tasks for selected expert modules based on in-
sights gained from principle analyses. This dynamic task allocation
enhances Cantor’s efficiency and effectiveness. Ultimately, the in-
troduction of in-context examples enables the MLLM to learn and
reference, thereby further improving the accuracy and adaptabil-
ity of decision generation. Notably, we introduce visual context
in advance during the Decision-Generation stage, rather than the
Execution stage, effectively alleviating determining hallucinations.

3.3 Step 2: Execution
In Cantor, the execution stage can be divided into two stages,
Execute-Modularization and Execute-Synthesis. The former com-
pletes the sub-tasks assigned during the Decision- Generation stage
by calling various expert modules and providing supplementary
information. The latter summarizes various supplementary infor-
mation from the execute-modularization stage and generates the
final answer through rational and detailed thinking.

Execute-Modularization.We call the expert module to execute
the various sub-tasks assigned during the Decision-Generation
stage. Specially, we first extract sub-tasks 𝑆𝑡 = {𝑠𝑡1, 𝑠𝑡2 ...𝑠𝑡𝑛} from
𝑃𝑜𝑢𝑡 . Next, we find the expert module corresponding to the sub-
task 𝑠𝑡𝑖 in sequence, and input the sub-task 𝑠𝑡𝑖 as the prompt into
the expert, such as "ObjectQuant Locator: Which sample has more
particles?". Subsequently, we obtain the sub-task answer 𝑠𝑎𝑖 , such
as "Their numbers are the same", as shown in the lower right part
of Fig. 2.

Symbolically, we input the experts played by MLLM, sub-task
𝑠𝑡𝑖 , and image 𝐼 , and MLLM provides the execution results of the
sub-task. The process is as follows: 𝑠𝑎𝑖 = 𝐺 (𝐼 , 𝑠𝑡𝑖 ), where 𝐺 (·)
represents MLLM acting as experts, and 𝑠𝑎𝑖 represents the sub-
task’s answer. When executing sub-tasks, we only use one MLLM
to act as different expert modules. This not only simplifies the
pipeline of the method but also aims to fully utilize the advanced
cognitive abilities of MLLM.

Execute-Synthesis. We concatenate and summarize the ob-
tained sub-tasks and sub-tasks answers to obtain supplementary
material 𝑆 for auxiliary reasoning, as follows: 𝑆 = {[𝑠𝑡1, 𝑠𝑎1] ·
[𝑠𝑡2, 𝑠𝑎2] · ... · [𝑠𝑡𝑛, 𝑠𝑎𝑛]}. Notably, in the answer generation stage,
we introduce the answer generation prompt 𝐸, which includes the
prompt and the formatting requirement for generating answers,
as follows: "You are a knowledgeable and skilled information in-
tegration science expert. Please gradually think and answer the

questions based on the given questions, options, and supplemen-
tary information. Please note that we not only need answers but
more importantly, we need rationales for obtaining answers. Please
combine your knowledge and supplementary information to obtain
reasoning and answers. Please prioritize using your knowledge to
answer questions. If unable to answer, maintain critical thinking
and select effective information to assist you in selecting the most
correct option as the answer. Furthermore, please do not rely solely
on supplementary information, as the provided supplementary
information may not always be effective."

This includes three key points. Firstly, we use prompts to have
Cantor play the role of an answer generator who is knowledgeable
and skilled at integrating information. This not only ensures its
professionalism and ability to make basic judgments on questions
but also ensures that it can better integrate information obtained
during the Execute-Modularization stage. Secondly, to increase
interpretability, demonstrate the thinking process of Cantor, and
improve its thinking ability, we require Cantor to answer the basic
principles first, and then generate the corresponding options, as
shown in the pink box in Fig. 2. Finally, we request that Cantor
remain rational and critical, ensuring it does not solely rely on the
information obtained from the Execute-Modularization stage. This
approach promotes a more balanced and comprehensive execute-
synthesis process.

4 EXPERIMENTS
In this section, we evaluate the proposed Cantor on two visual
reasoning datasets: ScienceQA [30] and MathVista [29]. The exper-
imental results show that Cantor outperforms existing baselines
in these tasks. Additionally, we analyze the importance of visual
information in visual reasoning tasks. Finally, we conduct a detailed
analysis of Cantor’s key components.

4.1 Datasets
We evaluate our method on two visual reasoning task benchmarks.

ScienceQA [30]: It is the first multimodal scientific question-and-
answer dataset annotated with detailed explanations. The problems
with datasets are systematically divided into three main scientific
disciplines: natural sciences (NAT), social sciences (SOC), and lan-
guage sciences (LAN). We only use the ScienceQA test set, which
contains 4241 questions and answers, of which 2,017 samples are
attached with images.

MathVista [29]: It is a dataset that combines the challenges of
various mathematical and visual tasks. It requires high levels of
model granularity, deep visual understanding, and combinatorial
reasoning ability, making it a challenging dataset for current basic
models. In the experiment, we used Mathvista testmini, which
includes 1000 text and image pairs for Q&A.

4.2 Models
We use twomodels to evaluate our method, GPT-3.5 and Gemini Pro
1.0, by calling their official API. Firstly, we use GPT-3.5 to evaluate
the impact of introducing high-level perceptual information on
LLM inference ability and explore the linkage ability between LLM
and MLLM. Secondly, we use Gemini Pro 1.0, an advanced MLLM.
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Table 1: Accuracy scores (%) on ScienceQA [30], where bold entries indicate the best results, underlines indicate the second-best.
We compare the performance of our system with various baseline models including supervised models and unsupervised
models. Question classes: NAT = natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image
context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.

Methods Supervised IMG NAT SOC LAN TXT NO G1-6 G7-12 Avg

Random Chance ✗ 40.08 40.28 46.13 29.25 47.45 33.66 39.35 40.67 39.83
Human Average [30] ✗ 87.50 90.23 84.97 87.48 89.60 88.10 91.59 82.42 88.40
UnifiedQA [20] ✓ 61.38 68.16 69.18 74.91 63.78 77.84 72.98 65.00 70.12
UnifiedQA (CoT) [20] ✓ 66.53 71.00 76.04 78.91 66.42 81.81 77.06 68.82 74.11
Multimodal-CoT [52] ✓ 82.90 87.52 77.17 85.82 87.88 86.83 84.65 85.37 84.91
LLaMA-Adapter [50] ✓ 80.32 84.37 88.30 84.36 83.72 86.90 85.83 84.05 85.19
LLaVa [28] ✓ 88.00 90.36 95.95 88.00 89.49 90.66 90.93 90.90 90.92
LLaVA (GPT-4) [28] ✓ 88.99 91.56 96.74 91.09 90.62 93.52 92.73 92.16 92.53
LLaMA-SciTune (CTOM) [16] ✓ 86.67 89.30 95.61 87.00 93.08 91.75 84.37 91.30 90.03
GPT-3 (zero-shot) [4] ✗ 65.74 75.04 66.59 78.00 74.24 79.58 76.36 69.87 74.04
GPT-3.5 (CoT) (AE) [35] ✗ 66.09 76.60 65.92 77.55 75.51 79.58 78.49 67.63 74.61
GPT-3.5 (CoT) (ALE) [35] ✗ 67.43 75.44 70.87 78.09 74.68 79.93 78.23 69.68 75.17
GPT-3.5 CoT [33] ✗ 67.92 78.82 70.98 83.18 77.37 86.13 80.72 74.03 78.31
QVix(GPT-3.5) [44] ✗ 55.00 - - - - - - - -
Chameleon (GPT-3.5) [31] ✗ 70.80 81.62 70.64 84.00 79.77 86.62 81.86 76.53 79.93
DD-CoT(GPT-3) [53] ✗ 69.96 78.60 73.90 80.45 77.27 82.93 80.65 73.50 78.09
DD-CoT(GPT3.5) [53] ✗ 72.53 80.15 76.72 82.82 78.89 85.02 82.86 75.21 80.15
Cantor(GPT-3.5) ✗ 77.54 80.37 85.49 84.00 77.27 86.83 85.61 76.60 82.39
Gemini ✗ 76.85 79.13 85.26 80.82 76.93 83.83 83.81 75.54 80.85
Cantor(Gemini) ✗ 82.40 84.24 87.85 84.09 82.11 86.97 88.18 79.17 84.96

We desire to fully tap into the multimodal ability of MLLM and
improve its reasoning ability.

4.3 Implementation Details
We implement two versions of Cantor based on GPT-3.5 and Gem-
ini. Cantor(GPT-3.5) uses both GPT-3.5 as the Decision Genera-
tor and Answer Generator during the Decision-Generation and
Execute-Synthesis stage. Differently, Cantor(Gemini) uses Gemini
in these two stages. For the Execute-Modularization stage, due to
the need for multimodality, we use Gemini as the MLLM in both
versions, playing various roles as experts. For the captions required
for Cantor(GPT-3.5) in the Decision-Generation stage, we generated
them through Gemini Pro 1.0, with the prompt "Please provide the
detailed title of this image as much as possible". In terms of models’
prompts, although the two models have different preferences for
prompts, we use the same prompt for the sake of method univer-
sality in Decision-Genetation stage and Execute-Synthesis stage.
The prompt in Execute-Modularization stage is generated by the
Cantor itself. For different datasets’ prompts, we design different
in-context examples based on their characteristics, and the rest of
the prompts are the same.

4.4 Main Results
ScienceQA. Tab. 1 shows the results of existing baselines compared
to our method Cantor on ScienceQA. Using GPT-3.5 as the base
LLM to decision and answer, Cantor achieves an accuracy of 82.39%,
which is an improvement of 4.08% over the chain-of-thought (CoT)
prompted GPT-3.5 [33]. Furthermore, with Gemini as the decision

Table 2: Accuracy scores (%) on ScienceQA for the IMG class,
which includes image context.

Method Subject Grade Average
NAT SOC LAN G1-6 G7-12

LLaVA 37.0 61.5 33.3 52.3 30.5 46.2
MiniGPT 45.2 51.5 38.1 50.6 39.1 47.4
InstructBLIP 43.9 58.1 47.6 53.1 39.4 49.3
QVix (GPT-3.5) 48.0 67.1 38.1 60.6 40.5 55.0
Qwen-VL-Chat - - - - - 68.85
mPLUG-Ow12 - - - - - 68.75
Chameleon (GPT-3.5) - - - - - 70.8
SPHINX-2k - - - - - 70.6
LLaVA1.5 - - - - - 71.6

GPT-3.5 (+Caption) 70.14 62.43 68.18 78.59 52.32 67.18
Cantor (GPT-3.5) 73.45 83.38 88.64 84.31 66.55 77.54

Gemini 71.55 84.29 93.18 80.90 67.01 76.85
Cantor (Gemini) 79.49 86.39 93.18 86.98 71.26 82.40

generator and answer generator, Cantor reaches an accuracy of
84.96%, significantly surpassing all training-free methods, and even
outperforming fine-tuned methods like UnifiedQA (CoT) [52] and
MM-CoT [52]. This not only demonstrates the generality of Cantor
but also shows that Cantor starts with perception-based information
for making better decisions. Moreover, by invoking various expert
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Table 3: Accuracy scores (%) on the testmini subset of MathVista, where bold entries indicate the best results, underlines indicate
the second-best. Input: 𝑄 : question, 𝐼 : image, 𝐼𝑐 : image caption, 𝐼𝑡 : OCR text detected in the image. Task types: FQA: figure
question answering, GPS: geometry problem solving, MWP: math word problem, TQA: textbook question answering, VQA:
visual question answering. Mathematical reasoning types: ALG: algebraic reasoning, ARI: arithmetic reasoning, GEO: geometry
reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI: scientific reasoning, STA: statistical reasoning. ALL:
overall accuracy. The performance results in the table come from [29].

Model Input FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA ALL

Heuristics baselines

Random chance - 18.2 21.6 3.8 19.6 26.3 21.7 14.7 20.1 13.5 8.3 17.2 16.3 17.9
Frequent guess - 22.7 34.1 20.4 31.0 24.6 33.1 18.7 31.4 24.3 19.4 32.0 20.9 26.3

Large Language Models (LLMs)

Zero-shot GPT-3.5 𝑄 only 21.9 26.9 9.1 38.6 23.5 27.7 15.9 25.7 21.6 9.9 41.5 20.5 23.5
Zero-shot GPT-4 𝑄 only 22.3 37.0 7.0 39.2 27.4 33.6 17.4 35.6 16.2 9.2 45.8 19.5 26.1
Zero-shot Claude-2 𝑄 only 21.9 34.1 13.4 36.1 29.1 32.8 20.4 33.3 13.5 12.1 36.4 20.5 26.4

Augmented Large Language Models (Augmented-LLMs)

2-shot CoT GPT-3.5 𝑄 , 𝐼𝑐 , 𝐼𝑡 27.5 29.3 36.0 49.4 29.1 31.0 32.9 31.0 16.2 17.4 50.8 37.2 33.2
2-shot CoT GPT-4 𝑄 , 𝐼𝑐 , 𝐼𝑡 27.9 31.7 31.2 51.9 28.5 33.5 30.9 32.2 13.5 12.5 58.2 37.9 33.2

2-shot PoT GPT-3.5 𝑄 , 𝐼𝑐 , 𝐼𝑡 24.5 26.4 23.7 33.5 27.9 27.8 26.1 28.0 18.9 13.2 33.6 29.9 26.8
2-shot PoT GPT-4 𝑄 , 𝐼𝑐 , 𝐼𝑡 30.1 39.4 30.6 39.9 31.3 37.4 31.7 41.0 18.9 20.1 44.3 37.9 33.9

GPT-3.5 𝑄 , 𝐼𝑐 26.0 31.7 35.5 48.1 30.2 32.4 32.3 33.0 16.2 17.4 54.9 36.2 33.2
Cantor (GPT-3.5) 𝑄 , 𝐼𝑐 45.7 31.8 40.9 55.1 44.1 34.5 42.2 33.9 13.5 36.1 55.0 55.5 43.1

Multimodal Large Language Models (MLLMs)

IDEFICS-9B-Instruct 𝑄 , 𝐼 21.6 21.1 6.5 25.9 24.0 22.1 15.0 19.8 18.9 9.9 24.6 18.1 19.8
mPLUG-Owl-LLaMA-7B 𝑄 , 𝐼 22.7 23.6 10.2 27.2 27.9 23.6 19.2 23.9 13.5 12.7 26.3 21.4 22.2
miniGPT4-LLaMA-2-7B 𝑄 , 𝐼 18.6 26.0 13.4 30.4 30.2 28.1 21.0 24.7 16.2 16.7 25.4 17.9 23.1
LLaMA-Adapter-V2-7B 𝑄 , 𝐼 21.2 25.5 11.3 32.3 31.8 26.3 20.4 24.3 24.3 13.9 29.5 18.3 23.9
LLaVAR 𝑄 , 𝐼 21.9 25.0 16.7 34.8 30.7 24.2 22.1 23.0 13.5 15.3 42.6 21.9 25.2
InstructBLIP-Vicuna-7B 𝑄 , 𝐼 23.1 20.7 18.3 32.3 35.2 21.8 27.1 20.7 18.9 20.4 33.0 23.1 25.3
LLaVA-LLaMA-2-13B 𝑄 , 𝐼 26.8 29.3 16.1 32.3 26.3 27.3 20.1 28.8 24.3 18.3 37.3 25.1 26.1
Multimodal Bard 𝑄 , 𝐼 26.0 47.1 29.6 48.7 26.8 46.5 28.6 47.8 13.5 14.9 47.5 33.0 34.8

Gemini 𝑄 , 𝐼 37.1 29.3 38.1 57.5 36.3 36.0 35.7 31.4 24.3 25.7 50.0 41.9 38.8
Cantor (Gemini) 𝑄 , 𝐼 50.2 39.4 39.8 49.4 43.8 42.0 41.5 41.4 10.8 30.8 46.7 59.5 44.7

modules, it can introduce richer contextual information to both
LLMs and MLLMs, aiding in problem-solving.

Particularly noteworthy is that Cantor advances in the multi-
modal domain. As shown in Tab. 2, we further present the accuracy
of various methods on ScienceQA for the IMG class, which includes
image context. It can be seen that Cantor based on GPT-3.5 sig-
nificantly surpasses the baseline in various problems, and even
surpasses well-known MLLMs such as SPHINX [26] and LLaVA-
1.5 [27]. This indicates that clear perceptual decisions can trigger
the reasoning ability of language models toward dense image infor-
mation. At the same time, the experiment on Gemini also shows
that we further stimulate the visual reasoning ability of MLLM.

MathVista. MathVista [29] is a challenging dataset that inte-
grating a variety of mathematical reasoning tasks with visual tasks.
Tab. 3 compares different method performances. We also conduct
experiments using GPT-3.5 and Gemini as baselines. From general
visual question answering to professional math word problems,

Table 4: The impact of different levels of visual information
on model’s performance.

Analysis ScienceQA MathVista

No Visual Information 65.69 25.70
+ Rough Caption 63.21 25.10
+ Detailed Caption 74.37 33.20
+ Image 78.85 38.00

Cantor has greatly surpassed the baseline in almost all types of
problems. This indicates that correct decision and modular experts
can stimulate their fine-grained, in-depth visual understanding and
combinatorial reasoning abilities. It is worth noting that Cantor
(GPT-3.5) even surpasses GPT-4 based on CoT and PoT.
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Figure 3: Proportions of Cantor’s invocation of expert mod-
ules across three types of questions on ScienceQA.

4.5 Quantitative Analysis
Analsis Visual Cues for Decision Generation. We conduct a
detailed analysis of the impact of visual information on Gemini’s
decision generation on ScienceQA and MathVista, with the prompt
"think step by step". The results are shown in Tab. 4. When we do
not input any form of visual information (including images and
captions) in the experiment, only the text of the question is input.
It can be seen that even without any visual information, MLLMs
like Gemini still possess strong logical reasoning ability in pure lan-
guage modal, demonstrating its superiority as a decision generator.
Then we step by step explore the impact of incorporating visual
information on Gemini. Firstly, we add rough captions, such as "A
photo of a black and white cat." Gemini’s performances unexpect-
edly decline on both datasets. This indicates that overly simplistic
captions not only fail to promote MLLM, but can even mislead them
into making incorrect decisions. Next, we enrich the description of
captions to fully reproduce the image scene as much as possible. It
can be seen that with the addition of detailed captions, Gemini’s
performance has significantly improved compared to those without
visual information or rough captions. This indicates that visual
information is indispensable for complex visual reasoning tasks.
Finally, we replace captions with images, and it can be seen that
Gemini’s performance increased by 4.48% and 4.8% on both datasets,
achieving the best performance at the same time. This is also in line
with intuition, as the generation of captions is uncontrollable and
may not necessarily contain key information for solving problems,
but images themselves must have complete information. Therefore,
in complex visual reasoning tasks, using images instead of captions
to obtain visual information is a better solution for MLLM.

Expert Module Use Planning. The proportion of Cantor call-
ing various expert modules on ScienceQA is shown in Fig. 3. We
find that GPT-3.5 and Gemini exhibit different decision-generating
behaviors. GPT-3.5 has a strong preference for using Object Quant
Locator, with usage rates exceeding 80% in both Social Science and
Language Science subjects, far exceeding other expert modules. We
speculate that this is because GPT-3.5 is heavily influenced by in-
context examples. On the other hand, Gemini is relatively balanced
in expert module calls and does not exhibit any particular prefer-
ences. In addition, the usage ratio of both modules for ChartSense
Expert is very low, especially for the Language Science subject
where the number of calls is 0. This is because the proportion of
questions related to table content is very small in ScienceQA, and
there is even no question about table content in Language Science.

Table 5: Performance increase with enabled modules and per-
formance drop with disabled modules on ScienceQA, where
"Enable Only" only just this module is on, others off. "Disable
Only" means just this module is off, others on. In the last
line, "Gemini/Cantor" denotes the original Gemini baseline
and the fully implemented version of Cantor.

Module Enable Only Disable Only

TextIntel Extractor 80.91(+4.06) 80.86(-1.54)
ObjectQuant Locator 80.27(+3.42) 81.01(-1.39)
VisionIQ Analyst 80.22(+3.37) 81.51(-0.89)
ChartSense Expert 79.13(+2.28) 81.71(-0.69)

Gemini / Cantor 76.85 82.40

This demonstrates the rationality of the decisions made by the
two models. For different types of problems, the Language Science
subject focuses more on the language meaning behind the image
rather than being limited to the combination of target numbers or
positions. Therefore, the two models call VisionIQ Analyst more
frequently, reducing the use of ObjectQuant Locator.

Ablation Study with Modules.We use Gemini as the MLLM
to investigate the impact of enabling and disabling expert modules
on the performance of ScienceQA. The results are shown in Tab. 5.
The results show that the use of each expert module results in a
gain (maximum 4.06%, minimum 2.28%), indicating that all expert
modules play a crucial role. The TextIntel Extractor is the most
important among all modules, with the most significant gains and
decreases in performance. At the same time, we can also find that
enabling a module has a greater impact on model performance
than disabling it. We believe that the effective high-level informa-
tion obtained by an expert module(MLLM) is more generalized,
compared with lower-level visual-information (such as coordinates,
color, attributes, etc.). This higher-level information assists in the
execution of other module tasks. In our method, even if a module is
disabled, MLLM playing the role of other experts can to some extent
compensate for the lack of that module, as they are not operating
in isolation. We have also added some results in the supplementary
material to support this view.

5 CONCLUSION
In this paper, we introduce an inspiringmultimodal chain-of-thought
framework named Cantor, designed to enhance the determining
capabilities of MLLMs. By delving into the pivotal role of visual in-
formation in the decision-generating process, this paper highlights
the importance of integrating visual cues at the decision stage, ef-
fectively mitigating the hallucination issues that may arise in LLMs.
The novelty of the Cantor framework also lies in its ability to enable
an MLLM to emulate the roles of domain-specific experts, acquiring
high-level information, and thereby facilitating more rational and
in-depth reasoning processes. Demonstrated on the challenging
benchmarks of ScienceQA and MathVista involving complex vi-
sual reasoning tasks, Cantor has shown remarkable adaptability
and efficacy, proving its strong potential in addressing real-world
reasoning problems across various domains.
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