# A Equivalence between Adversarial Robustness Models

We show that the perturbation set and perturbation function models are equivalent.

**Theorem A.1** (Equivalence between  $\mathcal{G}$  and  $\mathcal{U}$ ). Let  $\mathcal{X}$  be an arbitrary domain. There exists a perturbation set  $\mathcal{U} : \mathcal{X} \to 2^{\mathcal{X}}$  if and only if there exists a set of perturbation functions  $\mathcal{G}$  such that  $\mathcal{G}(x) = \{g(x) : g \in \mathcal{G}\} = \mathcal{U}(x)$  for all  $x \in \mathcal{X}$ .

*Proof.* We first show that every set of perturbation functions  $\mathcal{G}$  induces a perturbation set  $\mathcal{U}$ . Let  $\mathcal{G}$  be an arbitrary set of perturbation functions  $g : \mathcal{X} \to \mathcal{X}$ . Then, for each  $x \in \mathcal{X}$ , define  $\mathcal{U}(x) := \{g(x) : g \in \mathcal{G}\}$ , which completes the proof of this direction.

Now we will show the converse - every perturbation set  $\mathcal{U}$  induces a point-wise equivalent set  $\mathcal{G}$  of perturbation functions. Let  $\mathcal{U}$  be an arbitrary perturbation set mapping points in  $\mathcal{X}$  to subsets in  $\mathcal{X}$ . Assume that  $\mathcal{U}(x)$  is not empty for all  $x \in \mathcal{X}$ . Let  $\tilde{z}_x$  denote an arbitrary perturbation from  $\mathcal{U}(x)$ . For every  $x \in \mathcal{X}$ , and every  $z \in \mathcal{U}(x)$ , define the perturbation function  $g_z^x(t) = z\mathbbm{1}\{t = x\} + \tilde{z}_t \mathbbm{1}\{t \neq x\}$  for  $t \in \mathcal{X}$ . Observe that  $g_z^x(x) = z \in \mathcal{U}(x)$  and  $g_z^x(x') = \tilde{z}_{x'} \in \mathcal{U}(x')$ . Finally, let  $\mathcal{G} = \bigcup_{x \in \mathcal{X}} \bigcup_{z \in \mathcal{U}(x)} \{g_z^x\}$ . To verify that  $\mathcal{G} = \mathcal{U}$ , consider an arbitrary point  $x' \in \mathcal{X}$ . Then,

$$\begin{aligned} \mathcal{G}(x') &= \bigcup_{x \in \mathcal{X}} \bigcup_{z \in \mathcal{U}(x)} \{g_z^x(x')\} \\ &= \left( \bigcup_{z \in \mathcal{U}(x')} \{g_z^{x'}(x')\} \right) \cup \left( \bigcup_{x \in \mathcal{X} \setminus x'} \bigcup_{z \in \mathcal{U}(x)} \{g_z^x(x')\} \right) \\ &= \left( \bigcup_{z \in \mathcal{U}(x')} \{z\} \right) \cup \left( \bigcup_{x \in \mathcal{X} \setminus x'} \bigcup_{z \in \mathcal{U}(x)} \{\tilde{z}_{x'}\} \right) \\ &= \mathcal{U}(x') \cup \tilde{z}_{x'} \\ &= \mathcal{U}(x'). \end{aligned}$$

as needed.

# **B Proofs for Section 3**

#### **B.1** Proper $\rho$ -Probabilistically Robust PAC Learning for finite G

We show that if  $\mathcal{G}$  is *finite* then VC classes are  $\rho$ -probabilistically robustly learnable.

**Theorem B.1** (Proper  $\rho$ -Probabilistically Robust PAC Learner). For every hypothesis class  $\mathcal{H}$ , threshold  $\rho \in [0, 1)$ , perturbation set  $\mathcal{G}$ , and perturbation measure  $\mu$  such that  $|\mathcal{G}| \leq K$ , there exists a proper learning rule  $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{H}$  such that for every distribution  $\mathcal{D}$  over  $\mathcal{X} \times \mathcal{Y}$ , with probability at least  $1 - \delta$  over  $S \sim \mathcal{D}^n$ , algorithm  $\mathcal{A}$  achieves

$$R^{\rho}_{\mathcal{G},\mu}(\mathcal{A}(S);\mathcal{D}) \leq \inf_{h \in \mathcal{H}} R^{\rho}_{\mathcal{G},\mu}(h;\mathcal{D}) + \epsilon$$

with

$$n(\epsilon, \delta, \rho; \mathcal{H}, \mathcal{G}, \mu) = O\left(\frac{\operatorname{VC}(\mathcal{H})\ln(K) + \ln(\frac{1}{\delta})}{\epsilon^2}\right)$$

samples.

*Proof.* Fix  $\rho \in (0, 1)$ . Our main strategy will be to upper bound the VC dimension of the  $\rho$ -probabilistically robust loss class by some function of the VC dimension of  $\mathcal{H}$ . Then, finite VC dimension of  $\mathcal{H}$  implies finite VC dimension of the loss class, which ultimately implies uniform convergence over the  $\rho$ -probabilistically robust loss. Finally, uniform convergence of  $\ell_{\mathcal{G},\mu}^{\rho}(h,(x,y))$  implies that ERM is sufficient for  $\rho$ -probabilistically robust PAC learning. To that end, let

$$\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho} = \{(x,y) \mapsto \mathbb{1}\{\mathbb{P}_{g \sim \mu} \left( h(g(x)) \neq y \right) > \rho\} : h \in \mathcal{H}\}$$

be the  $\rho$ -probabilistically robust loss class of  $\mathcal{H}$ . Let  $S = \{(x_1, y_1), ..., (x_n, y_n)\} \in (\mathcal{X} \times \mathcal{Y})^n$  be an arbitrary labeled sample of size n. Inflate S to  $S_{\mathcal{G}}$  by adding for each labelled example  $(x, y) \in S$ all possible perturbed examples (g(x), y) for  $g \in \mathcal{G}$ . That is,  $S_{\mathcal{G}} = \bigcup_{(x,y)\in S}\{(g(x), y) : g \in \mathcal{G}\}$ . Note that  $|S_{\mathcal{G}}| \leq nK$ . Let  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}(S)$  denote the set of all possible behaviors of functions in  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}$  on S. Likewise, let  $\mathcal{H}(S_{\mathcal{G}})$  denote the set of all possible behaviors of functions in  $\mathcal{H}$  on the inflated set  $S_{\mathcal{G}}$ . Note that each behavior in  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}(S)$  maps to at least 1 behavior in  $\mathcal{H}$ . Therefore  $|\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}(S)| \leq |\mathcal{H}(S_{\mathcal{G}})|$ . By Sauer-Shelah's lemma,  $|\mathcal{H}(S_{\mathcal{G}})| \leq (nK)^{\operatorname{VC}(\mathcal{H})}$ . Solving for n such that  $(nK)^{\operatorname{VC}(\mathcal{H})} < 2^n$  gives that  $n = O(\operatorname{VC}(\mathcal{H}) \ln(K))$ , ultimately implying that  $\operatorname{VC}(\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}) \leq O(\operatorname{VC}(\mathcal{H}) \ln(K))$  (see Lemma 1.1 in Attias et al.][2021]).

Since for VC classes, the VC dimension of  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}$  is bounded, by Vapnik's "General Learning", we have that for VC classes the loss function  $\ell_{\mathcal{G},\mu}^{\rho}(h,(x,y))$  enjoys the uniform convergence property. Namely, let  $\mathcal{D}$  be a distribution over  $\mathcal{X} \times \mathcal{Y}$ . For a sample of size  $n \geq O(\frac{\operatorname{VC}(\mathcal{H})\ln(K) + \ln(\frac{1}{\delta})}{\epsilon^2})$ , we have that with probability at least  $1 - \delta$  over  $S \sim \mathcal{D}^n$ , for all  $h \in \mathcal{H}$ 

$$\left|\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}^{\rho}(h,(x,y))\right] - \hat{\mathbb{E}}_{\mathcal{S}}\left[\ell_{\mathcal{G},\mu}^{\rho}(h,(x,y))\right]\right| \leq \epsilon.$$

Standard arguments yield that the proper learning rule  $\mathcal{A}(S) = \arg \min_{h \in \mathcal{H}} \hat{\mathbb{E}}_{S} \left[ \ell^{\rho}_{\mathcal{G},\mu}(h,(x,y)) \right]$  is a  $\rho$ -probabilistically robust PAC learner with sample complexity  $O(\frac{\operatorname{VC}(\mathcal{H})\ln(K) + \ln(\frac{1}{\delta})}{\epsilon^{2}})$ .  $\Box$ 

#### B.2 Proof of Lemma 3.2

*Proof.* Fix  $\rho \in [0, 1)$  and let  $m \in \mathbb{N}$ . Pick m center points  $c_1, ..., c_m$  in  $\mathcal{X}$  such that for all  $i, j \in [m]$ ,  $\mathcal{G}(c_i) \cap \mathcal{G}(c_j) = \emptyset$ . For each center  $c_i$ , consider  $2^{m-1} + 1$  disjoint subsets of its perturbation set  $\mathcal{G}(c_i)$  which do not contain  $c_i$ . Label  $2^{m-1}$  of these subsets with a unique bitstring  $b \in \{0, 1\}^m$  fixing  $b_i = 1$ . Let  $\mathcal{B}_i^b$  denote the subset labeled by bitstring b and let  $\mathcal{B}_i$  denote the single remaining subset that was not labeled. Furthermore, for each  $i \in [m]$  and  $b \in \{\{0, 1\}^m | b_i = 1\}$ , pick  $\mathcal{B}_i$  and  $\mathcal{B}_i^{b^*}$ 's such that  $\mu_{c_i}(\mathcal{B}_i) = \rho$  and  $0 < \mu_{c_i}(\mathcal{B}_i^b) \leq \frac{1-\rho}{2^m}$ . If  $b_i = 0$ , let  $\mathcal{B}_i^b = \emptyset$ . If  $\rho = 0$ , let  $\mathcal{B}_i = \emptyset$  for all  $i \in [m]$ . Finally, define  $\mathcal{B} = \bigcup_{i=1}^m \bigcup_{b \in \{0,1\}^m} \mathcal{B}_i^b \cup \mathcal{B}_i$  as the union of all the subsets. Crucially, observe that for all  $i \in [m]$ ,  $\mu_{c_i} \left(\mathcal{B}_i \cup \left(\bigcup_b \mathcal{B}_i^b\right)\right) \leq \frac{1+\rho}{2} < 1$ .

For bitstring  $b \in \{0, 1\}^m$ , define the hypothesis  $h_b$  as

$$h_b(z) = \begin{cases} -1 & \text{if } z \in \bigcup_{i=1}^m \mathcal{B}_i^b \cup \mathcal{B}_i \\ 1 & \text{otherwise} \end{cases}$$

and consider the hypothesis class  $\mathcal{H} = \{h_b | b \in \{0, 1\}^m\}$  which consists of all  $2^m$  hypothesis, one for each bitstring. We first show that  $\mathcal{H}$  has VC dimension at most 1. Consider two points  $x_1, x_2 \in \mathcal{X}$ . We will show case by case that every possible pair of points cannot be shattered by  $\mathcal{H}$ . First, consider the case where, wlog,  $x_1 \notin \mathcal{B}$ . Then,  $\forall h \in \mathcal{H}, h(x_1) = 1$ , and thus shattering is not possible. Now, consider the case where both  $x_1 \in \mathcal{B}$  and  $x_2 \in \mathcal{B}$ . If either  $x_1$  or  $x_2$  is in  $\bigcup_{i=1}^m \mathcal{B}_i$ , then every hypothesis  $h \in \mathcal{H}$  will label it as -1, and thus these two points cannot be shattered. If  $x_1 \in \mathcal{B}_i^b$  and  $x_2 \in \mathcal{B}_j^b$  for  $i \neq j$ , then  $h_b(x_1) = h_b(x_2) = -1$ , but  $\forall h \in \mathcal{H}$  such that  $h \neq h_b, h(x_1) = h(x_2) = 1$ . If  $x_1 \in \mathcal{B}_i^{b_1}$  and  $x_2 \in \mathcal{B}_j^{b_2}$  for  $b_1 \neq b_2$ , then there exists no hypothesis in  $\mathcal{H}$  that can label  $(x_1, x_2)$  as (-1, -1). Thus, overall, no two points  $x_1, x_2 \in \mathcal{X}$  can be shattered by  $\mathcal{H}$ .

Now we are ready to show that the VC dimension of the loss class is at least m. Specifically, given the sample of labelled points  $S = \{(c_1, 1), ..., (c_m, 1)\}$ , we will show that the loss behavior corresponding to hypothesis  $h_b$  on the sample S is exactly b. Since  $\mathcal{H}$  contains all the hypothesis corresponding to every single bitstring  $b \in \{0, 1\}^m$ , the loss class of  $\mathcal{H}$  will shatter S. In order to prove that the loss behavior of  $h_b$  on the sample S is exactly b, it suffices to show that the probabilistic

loss of  $h_b$  on example  $(c_i, 1)$  is  $b_i$ , where  $b_i$  denotes the *i*th bit of *b*. By definition,

$$\begin{aligned} \ell_{\mathcal{G},\mu}^{\rho}(h_b,(c_i,1)) &= \mathbb{1}\{\mathbb{P}_{g\sim\mu}\left(h_b(g(c_i))\neq 1\right) > \rho\} \\ &= \mathbb{1}\{\mathbb{P}_{z\sim\mu_{c_i}}\left(h_b(z)=0\right) > \rho\} \\ &= \mathbb{1}\{\mathbb{P}_{z\sim\mu_{c_i}}\left(z\in\mathcal{B}_i^b\cup\mathcal{B}_i\right) > \rho\} \\ &= \mathbb{1}\{\mu_{c_i}(\mathcal{B}_i^b\cup\mathcal{B}_i) > \rho\} \\ &= b_i. \end{aligned}$$

Thus, the loss behavior of  $h_b$  on S is b, and the total number of distinct loss behaviors over each hypothesis in  $\mathcal{H}$  on S is  $2^m$ , implying that the VC dimension of the loss class is at least m. This completes the construction and proof of the claim.

#### B.3 Proof of Lemma 3.3

*Proof.* (of Lemma 3.3) This proof closely follows Lemma 3 from Montasser et al. [2019]. In fact, the only difference is in the construction of the hypothesis class, which we will describe below.

Fix  $\rho \in [0, 1)$ . Let  $m \in \mathbb{N}$ . Construct a hypothesis class  $\mathcal{H}_0$  as in Lemma 3.2 on 3m centers  $c_1, ..., c_{3m}$  based on  $\rho$ . By the construction in Lemma 3.2, we know that  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H},\rho}$  shatters the sample  $C = \{(c_1, 1), ..., (c_{3m}, 1)\}$ . Instead of keeping all of  $\mathcal{H}_0$ , we will only keep a subset  $\mathcal{H}$  of  $\mathcal{H}_0$ , namely those classifiers that are probabilistically robustly correct on subsets of size 2m of C. More specifically, recall from the construction in Lemma 3.2, that each hypothesis  $h_b \in \mathcal{H}_0$  is parameterized by a bitstring  $b \in \{0, 1\}^{3m}$  where if  $b_i = 1$ , then  $h_b$  is not robust to example  $(c_i, 1)$ . Therefore,  $\mathcal{H} = \{h_b \in \mathcal{H}_0 : \sum_{i=1}^{3m} b_i = m\}$ . Now, let  $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^* \to \mathcal{H}$  be an arbitrary proper learning rule. Consider a set of distributions  $\mathcal{D}_1, ..., \mathcal{D}_L$  where  $L = \binom{3m}{2m}$ . Each distribution  $\mathcal{D}_i$  is uniform over exactly 2m centers in C. Critically, note that by our construction of  $\mathcal{H}$ , every distribution  $\mathcal{D}_i$  is probabilistically robustly realizable by a hypothesis in  $\mathcal{H}$ . That is, for all  $\mathcal{D}_i$ , there exists a hypothesis  $h^* \in \mathcal{H}$  such that  $R_{\mathcal{G},\mu}^{\rho}(h^*; \mathcal{D}_i) = 0$ . Observe that this satisfies the first condition in Lemma 3.3. For the second condition, at a high-level, the idea is to use the probabilistic method to show that there exists a distribution  $\mathcal{D}_i$  where  $\mathbb{E}_{S \sim \mathcal{D}_i^m} \left[ R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S); \mathcal{D}) \right] \geq \frac{1}{4}$  and then use a variant of Markov's inequality to show that with probability at least 1/7 over  $S \sim \mathcal{D}^m, R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S); \mathcal{D}) > 1/8$ .

Let  $S \in C^m$  be an arbitrary set of m points. Let C be a uniform distribution over C. Let  $\mathcal{P}$  be a uniform distribution over  $\mathcal{D}_1, ..., \mathcal{D}_T$ . Let  $E_S$  denote the event that  $S \subset \operatorname{supp}(\mathcal{D}_i)$  for  $\mathcal{D}_i \sim \mathcal{P}$ . Given the event  $E_S$ , we will lower bound the expected probabilistic robust loss of the hypothesis the proper learning rule  $\mathcal{A}$  outputs,

$$\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[R^{\rho}_{\mathcal{G},\mu}(\mathcal{A}(S);\mathcal{D}_i)|E_S\right] = \mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[\mathbb{E}_{(x,y) \sim \mathcal{D}_i}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}\left(\mathcal{A}(S)(g(x)) \neq y\right) > \rho\right\}\right]|E_S\right]$$

Conditioning on the event that  $(x, y) \notin S$ , denoted,  $E_{(x,y)\notin S}$ ,

$$\mathbb{E}_{(x,y)\sim\mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g\sim\mu}\left(\mathcal{A}(S)(g(x))\neq y\right)>\rho\right\}\right]\geq\mathbb{P}_{(x,y)\sim\mathcal{D}_{i}}\left[E_{(x,y)\notin S}\right]\times\mathbb{E}_{(x,y)\sim\mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g\sim\mu}\left(\mathcal{A}(S)(g(x))\neq y\right)>\rho\right\}|E_{(x,y)\notin S}\right]$$

Since  $\mathcal{D}_i$  is supported over 2m points and |S| = m,  $\mathbb{P}_{(x,y)\sim\mathcal{D}_i}\left[E_{(x,y)\notin S}\right] \geq \frac{1}{2}$  since in the worstcase  $S \subset \text{supp}(\mathcal{D}_i)$ . Thus, we obtain the lower bound,

$$\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[R^{\rho}_{\mathcal{G},\mu}(\mathcal{A}(S);\mathcal{D}_i)|E_S\right] \geq \frac{1}{2}\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[\mathbb{E}_{(x,y) \sim \mathcal{D}_i}\left[\mathbb{1}\{\mathbb{P}_{g \sim \mu}\left(\mathcal{A}(S)(g(x)) \neq y\right) > \rho\}|E_{(x,y)\notin S}\right]|E_S\right]$$

Unravelling the expectation over the draw from  $\mathcal{D}_i$  given the event  $E_S$ , we have,

$$\mathbb{E}_{(x,y)\sim\mathcal{D}_i}\left[\mathbbm{1}\{\mathbb{P}_{g\sim\mu}\left(\mathcal{A}(S)(g(x))\neq y\right)>\rho\}|E_{(x,y)\notin S}\right]\geq \frac{1}{m}\sum_{(x,y)\in\mathrm{supp}(\mathcal{D}_i)\backslash S}\mathbbm{1}\{\mathbb{P}_{g\sim\mu}\left(\mathcal{A}(S)(g(x))\neq y\right)>\rho\}$$

Observing that  $\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}} \left[ \mathbb{1}\{(x, y) \in \operatorname{supp}(\mathcal{D}_i)\} | E_S \right] \geq \frac{1}{2}$  yields,

$$\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[\mathbb{E}_{(x,y) \sim \mathcal{D}_i}\left[\mathbbm{1}\left\{\mathbb{P}_{g \sim \mu}\left(\mathcal{A}(S)(g(x)) \neq y\right) > \rho\right\} | E_{(x,y) \notin S}\right] | E_S\right] \ge \frac{1}{2m} \sum_{(x,y) \notin S} \mathbbm{1}\left\{\mathbb{P}_{g \sim \mu}\left(\mathcal{A}(S)(g(x)) \neq y\right) > \rho\right\}$$

Since  $\mathcal{A}(S) \in \mathcal{H}$ , by construction of  $\mathcal{H}$ , there are at least m points in C where  $\mathcal{A}$  is not probabilistically robustly correct. Therefore,

$$\frac{1}{2m}\sum_{(x,y)\notin S}\mathbbm{1}\{\mathbb{P}_{g\sim\mu}\left(\mathcal{A}(S)(g(x))\neq y\right)>\rho\}\geq \frac{1}{2},$$

from which we have that,  $\mathbb{E}_{\mathcal{D}_i \sim \mathcal{P}}\left[R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S);\mathcal{D}_i)|E_S\right] \geq \frac{1}{4}$ . By the law of total expectation, we have that

$$\mathbb{E}_{\mathcal{D}_{i}\sim\mathcal{P}}\left[\mathbb{E}_{S\sim\mathcal{D}_{i}^{m}}\left[R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S);\mathcal{D}_{i})\right]\right] = \mathbb{E}_{S\sim\mathcal{C}}\left[\mathbb{E}_{\mathcal{D}_{i}\sim\mathcal{P}\mid E_{S}}\left[R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S);\mathcal{D}_{i})\right]\right]$$
$$= \mathbb{E}_{S\sim\mathcal{C}}\left[\mathbb{E}_{\mathcal{D}_{i}\sim\mathcal{P}}\left[R_{\mathcal{G},\mu}^{\rho}(\mathcal{A}(S);\mathcal{D}_{i})|E_{S}\right]\right]$$
$$\geq 1/4$$

Since the expectation over  $\mathcal{D}_1, ..., \mathcal{D}_T$  is at least 1/4, there must exist a distribution  $\mathcal{D}_i$  where  $\mathbb{E}_{S \sim \mathcal{D}_i^m} \left[ R_{\mathcal{G}, \mu}^{\rho}(\mathcal{A}(S); \mathcal{D}_i) \right] \ge 1/4$ . Using a variant of Markov's inequality, gives

$$\mathbb{P}_{S \sim \mathcal{D}_i^m} \left[ R^{\rho}_{\mathcal{G}, \mu}(\mathcal{A}(S); \mathcal{D}_i) > 1/8 \right] \ge 1/7$$

which completes the proof.

#### B.4 Proof of Theorem 3.1

*Proof.* (of Theorem 3.1) Fix  $\rho \in [0, 1)$ . Let  $(C_m)_{m \in \mathbb{N}}$  be an infinite sequence of disjoint sets such that each set  $C_m$  contains 3m distinct center points from  $\mathcal{X}$ , where for any  $c_i, c_j \in \bigcup_{m=1}^{\infty} C_m$  such that  $c_i \neq c_j$ , we have  $\mathcal{G}(c_i) \cap \mathcal{G}(c_j) = \emptyset$ . For every  $m \in \mathbb{N}$ , construct  $\mathcal{H}_m$  on  $C_m$  as in Lemma 3.2. In addition, a key part of this proof is to ensure that the hypothesis in  $\mathcal{H}_m$  are non-robust to points in  $C_{m'}$  for all  $m' \neq m$ . To do so, we will need to adjust each hypothesis  $h_b \in \mathcal{H}_m$  carefully. By definition, for every  $m \in \mathbb{N}$ ,  $\mathcal{H}_m$  consists of  $2^{3m}$  hypothesis of the form

$$h_b(z) = \begin{cases} -1 & \text{if } z \in \bigcup_{i=1}^{3m} \mathcal{B}_i^b \cup \mathcal{B}_i \\ 1 & \text{otherwise} \end{cases}$$

for each bitstring  $b \in \{0,1\}^{3m}$ . Note that the same set  $\bigcup_{i=1}^{3m} \mathcal{B}_i$  is shared across every hypothesis  $h_b \in \mathcal{H}_m$ . For each  $m \in \mathbb{N}$ , let  $\mathcal{B}^m = \bigcup_{i=1}^{3m} \mathcal{B}_i$  be exactly the union of these 3m sets. Next, from the construction in Lemma 3.2] for every center  $c_i \in C_m$ ,  $\mu_{c_i} (\mathcal{B}_i \cup (\bigcup_b \mathcal{B}_i^b)) \leq \frac{1+\rho}{2} < 1$ . Thus, there exists a set  $\tilde{\mathcal{B}}_i \subset \mathcal{G}(c_i)$  such that  $\mu_{c_i}(\tilde{\mathcal{B}}_i) > 0$  and  $\tilde{\mathcal{B}}_i \cap (\mathcal{B}_i \cup (\bigcup_b \mathcal{B}_i^b)) = \emptyset$ . Consider one such subset  $\tilde{\mathcal{B}}_i$  from each of the 3m centers in  $C_m$  and let  $\tilde{\mathcal{B}}^m = \bigcup_{i=1}^{3m} \tilde{\mathcal{B}}_i$ . Finally, make the following adjustment to each  $h_b \in \mathcal{H}_m$ ,

$$h_b(z) = \begin{cases} -1 & \text{if } z \in \bigcup_{i=1}^{3m} \mathcal{B}_i^b \cup \mathcal{B}_i \text{ or } z \in \mathcal{B}^{m'} \cup \tilde{\mathcal{B}}^{m'} \text{ for } m' \neq m \\ 1 & \text{otherwise} \end{cases}$$

One can verify that every hypothesis in  $\mathcal{H}_m$  has a non-robust region (i.e.  $\mathcal{B}^{m'} \cup \tilde{\mathcal{B}}^{m'}$  for  $m' \neq m$ ) with mass strictly bigger than  $\rho$  in every center in  $C_{m'}$  for every  $m' \neq m$ . Thus, the hypotheses in  $\mathcal{H}_m$  are non-robust to points in  $C_{m'}$  for all  $m' \neq m$ . Finally, as we did in Lemma [3.3] for each m, we only keep the subset of hypothesis  $\mathcal{H}'_m = \{h_b \in \mathcal{H}_m : \sum_{i=1}^{3m} b_i = m\}$ . Note that for each  $m \in \mathbb{N}$ , the hypothesis class  $\mathcal{H}'_m$  behaves exactly like the hypothesis class from Lemma [3.3] on  $C_m$ .

Let  $\mathcal{H} := \bigcup_{m=1}^{\infty} \mathcal{H}'_m$  and  $\mathcal{G}(C_m) := \bigcup_{i=1}^{3m} \mathcal{G}(c_i)$ . Since we have modified the hypothesis class, we need to reprove that its VC dimension is still at most 1. Consider two points  $x_1, x_2 \in \mathcal{X}$ . If either  $x_1$  or  $x_2$  is not in  $\bigcup_{m=1}^{\infty} \mathcal{G}(C_m)$  and not in  $\bigcup_{m=1}^{\infty} \mathcal{B}^m \cup \tilde{\mathcal{B}}^m$ , then all hypothesis predict  $x_1$  or  $x_2$  as 1. If both  $x_1$  and  $x_2$  are in  $\mathcal{B}^m \cup \tilde{\mathcal{B}}^m$  for some  $m \in \mathbb{N}$ , then:

- if either  $x_1$  or  $x_2$  are in  $\mathcal{B}^m$ , every hypothesis in  $\mathcal{H}$  labels either  $x_1$  or  $x_2$  as -1.
- if both x<sub>1</sub> and x<sub>2</sub> are in *B̃<sup>m</sup>*, we can only get the labeling (1, 1) from hypotheses in *H<sub>m</sub>* and the labeling (-1, -1) from the hypotheses in *H<sub>m'</sub>* for m' ≠ m.

In the case both  $x_1$  and  $x_2$  are in  $\mathcal{G}(C_m) \setminus (\mathcal{B}^m \cup \tilde{\mathcal{B}}^m)$ , then, they cannot be shattered by Lemma 3.2. In the case  $x_1 \in \mathcal{B}^m \cup \tilde{\mathcal{B}}^m$  and  $x_2 \in \mathcal{G}(C_m) \setminus (\mathcal{B}^m \cup \tilde{\mathcal{B}}^m)$ :

- if  $x_1$  is in  $\mathcal{B}^m$ , every hypothesis in  $\mathcal{H}$  labels  $x_1$  as -1.
- if  $x_1$  is in  $\tilde{\mathcal{B}}^m$  then, we can never get the labeling (-1, -1).

If  $x_1 \in \mathcal{B}^i \cup \tilde{\mathcal{B}}^i$  and  $x_2 \in \mathcal{B}^j \cup \tilde{\mathcal{B}}^j$  for  $i \neq j$ , then:

- if either  $x_1$  or  $x_2$  are in  $\mathcal{B}^i$  or  $\mathcal{B}^j$  respectively, every hypothesis in  $\mathcal{H}$  labels either  $x_1$  or  $x_2$  as -1.
- if both  $x_1$  and  $x_2$  are in  $\tilde{\mathcal{B}}^i$  and  $\tilde{\mathcal{B}}^j$  respectively, we can never get the labeling (1,1).

In the case  $x_1 \in \mathcal{B}^i \cup \tilde{\mathcal{B}}^i$  and  $x_2 \in \mathcal{G}(C_j) \setminus (\mathcal{B}^j \cup \tilde{\mathcal{B}}^j)$  for  $j \neq i$ , then we cannot obtain the labeling (1, -1). If  $x_1 \in \mathcal{G}(C_i) \setminus (\mathcal{B}^i \cup \tilde{\mathcal{B}}^i)$  and  $x_2 \in \mathcal{G}(C_j) \setminus (\mathcal{B}^j \cup \tilde{\mathcal{B}}^j)$  for  $i \neq j$ , then we cannot obtain the labeling (-1, -1). Since we shown that for all possible  $x_1$  and  $x_2$ ,  $\mathcal{H}$  cannot shatter them,  $VC(\mathcal{H}) \leq 1$ .

We now use the same reasoning in Montasser et al.] [2019], to show that no proper learning rule works. By Lemma 3.3] for any proper learning rule  $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^* \to \mathcal{H}$  and for any  $m \in \mathbb{N}$ , we can construct a distribution  $\mathcal{D}$  over  $C_m$  (which has 3m points from  $\mathcal{X}$ ) where there exists a hypothesis  $h^* \in \mathcal{H}'_m$  that achieves  $R^{\rho}_{\mathcal{G},\mu}(h^*;\mathcal{D}) = 0$ , but with probability at least 1/7 over  $S \sim \mathcal{D}^m$ ,  $R^{\rho}_{\mathcal{G},\mu}(\mathcal{A}(S);\mathcal{D}) > 1/8$ . Note that it suffices to only consider hypothesis in  $\mathcal{H}'_m$  because, by construction, all hypothesis in  $\mathcal{H}'_{m'}$  for  $m' \neq m$  are not probabilistically robust on  $C_m$ , and thus always achieve loss 1 on all points in  $C_m$ . Thus, rule  $\mathcal{A}$  will do worse if it picks hypotheses from these classes. This shows that the sample complexity of properly probabilistically robustly PAC learning  $\mathcal{H}$  is arbitrarily large, allowing us to conclude that  $\mathcal{H}$  is not properly learnable.

# C Proofs for Section 4

### C.1 Proof of Theorem 4.2

*Proof.* (of Theorem 4.2) Let  $VC(\mathcal{H}) = d$  and  $S = \{(x_1, y_1), ..., (x_m, y_m)\}$  an i.i.d. sample of size m from  $\mathcal{D}$ . Consider the learning algorithm  $\mathcal{A}(S) = \arg\min_{h \in \mathcal{H}} \mathbb{E}_S [\ell_{\mathcal{G},\mu}(h, (x, y))]$ . Note that  $\mathcal{A}$  is a proper learning algorithm. Let  $\hat{h} = \mathcal{A}(S)$  denote hypothesis output by  $\mathcal{A}$  and  $h^* = \inf_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}} [\ell_{\mathcal{G},\mu}(h, (x, y))]$ .

We now show that if the sample size  $m = O\left(\frac{dL^2 \ln(\frac{L}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon^2}\right)$ , then  $\hat{h}$  achieves the stated generalization bound with probability  $1 - \delta$ . By Lemma 4.1 if  $m = O\left(\frac{dL^2 \ln(\frac{L}{\delta}) + \ln(\frac{1}{\delta})}{\epsilon^2}\right)$ , we have that with probability  $1 - \delta$ , for all  $h \in \mathcal{H}$  simultaneously,

$$\left| \mathbb{E}_{\mathcal{D}} \left[ \ell_{\mathcal{G},\mu}(h,(x,y)) \right] - \hat{\mathbb{E}}_{S} \left[ \ell_{\mathcal{G},\mu}(h,(x,y)) \right] \right| \leq \frac{\epsilon}{2}.$$

This means that both  $\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] - \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] \leq \frac{\epsilon}{2} \text{ and } \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(h^{*},(x,y))\right] - \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(h^{*},(x,y))\right] \leq \frac{\epsilon}{2}.$  By definition of  $\hat{h}$ , note that  $\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] \leq \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(h^{*},(x,y))\right].$  Putting these observations together, we have that  $\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] - \left(\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(h^{*},(x,y))\right] + \frac{\epsilon}{2}\right) \leq \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] - \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(h^{*},(x,y))\right] \leq \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] - \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] \leq \frac{\epsilon}{2},$ 

from which we can deduce that

$$\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(\hat{h},(x,y))\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G},\mu}(h,(x,y))\right] \le \epsilon.$$

Thus,  $\mathcal{A}$  achieves the stated generalization bound with sample complexity  $m = O\left(\frac{dL^2 \ln(\frac{L}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon^2}\right)$ , completing the proof.

### C.2 Proof of Theorem 4.3

For the proof in this section, it will be useful to define the  $(\mathcal{G}, \mu)$ -smoothed hypothesis class  $\mathcal{H}$ :

$$\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}} := \{ \mathbb{E}_{g \sim \mu} \left[ h(g(x)) \right] : h \in \mathcal{H} \}$$

*Proof.* (of Theorem 4.3) Let  $\mathcal{X} = \mathbb{R}$  and  $\mathcal{H} = \{ sign(sin(\omega x)) : \omega \in \mathbb{R} \}$ . Without loss of generality, assume sign(sin(0)) = 1. For every  $x \in \mathcal{X}$  and  $c \in [-1, 1]$ , define  $g_c(x) = cx$ . Then, let  $\mathcal{G} = \{ g_c : c \in [-1, 1] \}$  and  $\mu$  be uniform over  $\mathcal{G}$ . First,  $VC(\mathcal{H}) = \infty$  as desired. Next, to show learnability, it suffices to show that the loss

$$\ell_{\mathcal{G},\mu}(h,(x,y)) = \ell(y \mathbb{E}_{g \sim \mu} \left[ h(g(x)) \right]).$$

enjoys the uniform convergence property despite VC( $\mathcal{H}$ ) =  $\infty$ . By Theorem 2.1 and similar to the proof of Lemma 4.1, it suffices upperbound the Rademacher complexity of the loss class  $\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H}} = \{(x,y) \mapsto \ell_{\mathcal{G},\mu}(h,(x,y)) : h \in \mathcal{H}\}$ . Since for every fixed  $y, \ell_{\mathcal{G},\mu}(h,(x,y))$  is *L*-Lipschitz with respect to the real-valued function  $\mathbb{E}_{g\sim\mu}[h(g(x))]$ , by Ledoux-Talagrand's contraction principle  $\hat{\Re}_m(\mathcal{L}_{\mathcal{G},\mu}^{\mathcal{H}}) \leq L \cdot \hat{\Re}_m(\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}})$  where  $\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}}$  is the  $(\mathcal{G},\mu)$ -smoothed hypothesis classed defined previously. Thus, it suffices to upper-bound  $\hat{\Re}_m(\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}})$  by a sublinear function of m to show that  $\ell_{\mathcal{G},\mu}(h,(x,y))$ enjoys the uniform convergence property. But for every  $h_\omega \in \mathcal{H}$ ,

$$\mathbb{E}_{g \sim \mu} \left[ h_{\omega}(g(x)) \right] = \mathbb{E}_{c \sim \text{Unif}(-1,1)} \left[ \text{sign}(\sin(\omega(cx))) \right] = \frac{1}{2} \int_{-1}^{1} \text{sign}(\sin(c(\omega x))) dc.$$

Since  $\sin(ax)$  is an odd function,  $\operatorname{sign}(\sin(ax))$  is also odd, from which it follows that for all  $h_{\omega} \in \mathcal{H}$ :

$$\mathbb{E}_{g \sim \mu} \left[ h_{\omega}(g(x)) \right] = \begin{cases} 0 & \text{if } x \neq 0 \text{ and } \omega \neq 0 \\ 1 & \text{otherwise} \end{cases}.$$

Therefore,  $\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}} = \{f_1, f_2\}$  where  $f_1(x) = 1$  for all  $x \in \mathbb{R}$  and  $f_2(x) = 1$  if x = 0 and  $f_2(x) = 0$  if  $x \neq 0$ . Since  $\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}}$  is finite, by Massart's Lemma Mohri et al. [2018],  $\hat{\mathfrak{R}}_m(\mathcal{F}_{\mathcal{G},\mu}^{\mathcal{H}})$  is upper-bounded by a sublinear function of m such that  $\ell_{\mathcal{G},\mu}(h, (x, y))$  enjoys the uniform convergence property with sample complexity  $O(\frac{L^2 + \ln(\frac{1}{\delta})}{\epsilon^2})$ . Therefore,  $(\mathcal{H}, \mathcal{G}, \mu)$  is PAC learnable with respect to  $\ell_{\mathcal{G},\mu}(h, (x, y))$  by the learning rule  $\mathcal{A}(S) = \arg\min_{h \in \mathcal{H}} \hat{\mathbb{E}}_S \left[\ell_{\mathcal{G},\mu}(h, (x, y))\right]$  with sample complexity that scales according to  $O(\frac{L^2 + \ln(\frac{1}{\delta})}{\epsilon^2})$ .



Figure 1: Comparison of probabilistic robust *ramp* loss to probabilistic robust losses of hypothesis h on example (x, y). The probabilistic robust losses at  $\rho$  and  $\rho^*$  sandwich the probabilistic robust ramp loss at  $\rho$ ,  $\rho^*$ .

# **D Proofs for Section 5**

## D.1 Proof of Theorem 5.2

*Proof.* (of Theorem 5.2) Fix  $0 \le \rho^* < \rho < 1$  and let  $\mathcal{H}$  be a hypothesis class with VC( $\mathcal{H}$ ) = d. Let  $(\mathcal{G}, \mu)$  be an arbitrary perturbation set and measure,  $\mathcal{D}$  be an arbitrary distribution over  $\mathcal{X} \times \mathcal{Y}$ , and  $S = \{(x_1, y_1), ..., (x_m, y_m)\}$  an i.i.d. sample of size m. Let  $\mathcal{A}(S) = \text{PRERM}(S; (\mathcal{G}, \mu), \rho^*)$ .

By Lemma 5.1, it suffices to show that there exists a loss function  $\ell(h, (x, y))$  such that  $\ell^{\rho}_{\mathcal{G},\mu}(h, (x, y)) \leq \ell(h, (x, y)) \leq \ell^{\rho^*}_{\mathcal{G},\mu}(h, (x, y))$  and  $\ell(h, (x, y))$  enjoys the uniform convergence property with sample complexity  $n = O\left(\frac{\frac{d}{(\rho-\rho^*)^2}\ln(\frac{1}{(\rho-\rho^*)^c})+\ln(\frac{1}{\delta})}{\epsilon^2}\right)$ . Consider the probabilistically robust ramp loss:

$$\ell_{\mathcal{G},\mu}^{\rho,\rho^*}(h,(x,y)) = \min(1,\max(0,\frac{\mathbb{P}_{g\sim\mu}\left[h(g(x))\neq y\right]-\rho^*}{\rho-\rho^*})).$$

Figure 1 visually showcases how the probabilistic robust losses at  $\rho$  and  $\rho^*$  sandwich the probabilistic ramp loss at  $\rho$ ,  $\rho^*$ .

Its not too hard to see that  $\ell_{\mathcal{G},\mu}^{\rho}(h,(x,y)) \leq \ell_{\mathcal{G},\mu}^{\rho,\rho^*}(h,(x,y)) \leq \ell_{\mathcal{G},\mu}^{\rho^*}(h,(x,y))$ . Furthermore, since  $\ell_{\mathcal{G},\mu}^{\rho,\rho^*}(h,(x,y))$  is  $O(\frac{1}{\rho-\rho^*})$ -Lipschitz in  $y\mathbb{E}_{g\sim\mu}[h(g(x))\neq y]$ , by Lemma 4.1, we have that  $\ell_{\mathcal{G},\mu}^{\rho,\rho^*}(h,(x,y))$  enjoys the uniform convergence property with sample complexity  $O\left(\frac{\frac{d}{(\rho-\rho^*)^2}\ln(\frac{1}{(\rho-\rho^*)\epsilon})+\ln(\frac{1}{\delta})}{\epsilon^2}\right)$ . This completes the proof, as the conditions for Lemma 5.1 have been met, and therefore the learning rule  $\mathcal{A}(S) = \operatorname{PRERM}(S; \mathcal{G}, \rho^*)$  enjoys the stated generalization guarantee with the specified sample complexity.  $\Box$ 

## D.2 Proof of Theorem 5.3

*Proof.* (of Theorem 5.3) Fix  $0 < \rho$  and let  $\mathcal{H}$  be a hypothesis class with  $VC(\mathcal{H}) = d$ . Let  $\mathcal{G}$  be an arbitrary perturbation set,  $\mathcal{D}$  be an arbitrary distribution over  $\mathcal{X} \times \mathcal{Y}$ , and  $S = \{(x_1, y_1), ..., (x_m, y_m)\}$  an i.i.d. sample of size m. Let  $\mathcal{A}(S) = \text{RERM}(S; \mathcal{G})$ .

Fix a measure  $\mu$  over  $\mathcal{G}$ . By Lemma 5.1 it suffices to show that there exists a loss function  $\ell(h, (x, y))$  such that  $\ell^{\rho}_{\mathcal{G}, \mu}(h, (x, y)) \leq \ell(h, (x, y)) \leq \ell_{\mathcal{G}}(h, (x, y))$  and  $\ell(h, (x, y))$  enjoys the

uniform convergence property with sample complexity  $n = O\left(\frac{\frac{d}{\rho^2}\ln(\frac{1}{\rho\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon^2}\right)$ . Recall the probabilistically robust ramp loss:

$$\ell_{\mathcal{G},\mu}^{\rho,\rho^*}(h,(x,y)) = \min(1, \max(0, \frac{\mathbb{P}_{g \sim \mu} \left[h(g(x)) \neq y\right] - \rho^*}{\rho - \rho^*})).$$

Letting  $\rho^* = 0$ , its not too hard to see that  $\ell^{\rho}_{\mathcal{G},\mu}(h,(x,y)) \leq \ell^{\rho,0}_{\mathcal{G},\mu}(h,(x,y)) \leq \ell_{\mathcal{G}}(h,(x,y))$ ). Furthermore, since  $\ell^{\rho,0}_{\mathcal{G},\mu}(h,(x,y))$  is  $O(\frac{1}{\rho})$ -Lipschitz in  $y\mathbb{E}_{g\sim\mu}[h(g(x))\neq y]$ , by Lemma 4.1 we have that  $\ell^{\rho,0}_{\mathcal{G},\mu}(h,(x,y))$  enjoys the uniform convergence property with sample complexity  $O\left(\frac{\frac{d}{\rho^2}\ln(\frac{1}{\rho\epsilon})+\ln(\frac{1}{\delta})}{\epsilon^2}\right)$ . This completes the proof, as the conditions for Lemma 5.1 have been met, and therefore the learning rule  $\mathcal{A}(S)$  enjoys the stated generalization guarantee with the specified sample complexity.

## D.3 Proof of Theorem 5.4

*Proof.* (of Theorem 5.4) Assume that there exists a subset  $\mathcal{G}' \subset \mathcal{G}$ , that is *r*-Nice with respect to  $\mathcal{H}$ . By Lemma 5.1, it is sufficient to find a perturbation set  $\tilde{\mathcal{G}}$  such that (1)  $\ell_{\mathcal{G}'}(h,(x,y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x,y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x,y))$  and (2)  $\ell_{\tilde{\mathcal{G}}}(h,(x,y))$  enjoys the uniform convergence property with sample complexity  $O\left(\frac{\operatorname{VC}(\mathcal{H})\log(\mathcal{N}_r(\mathcal{G}'_{2r},d))\ln(\frac{1}{c})+\ln(\frac{1}{\delta})}{c^2}\right)$ . Let  $\tilde{\mathcal{G}} \subset \mathcal{G}$  be the minimal *r*-cover of  $\mathcal{G}'_{2r}$  with cardinality  $\mathcal{N}_r(\mathcal{G}'_{2r},d)$ . By Lemma 1.1 of Attias et al. [2021], the loss class  $\mathcal{L}^{\tilde{\mathcal{G}}}_{\mathcal{H}}$  has VC dimension at most  $O(\operatorname{VC}(\mathcal{H})\log(|\tilde{\mathcal{G}}|)) = O(\operatorname{VC}(\mathcal{H})\log(\mathcal{N}_r(\mathcal{G}'_{2r})))$ , implying that  $\ell_{\tilde{\mathcal{G}}}(h,(x,y))$  enjoys the uniform convergence property with the previously stated sample complexity  $O\left(\frac{\operatorname{VC}(\mathcal{H})\log(\mathcal{N}_r(\mathcal{G}'_{2r},d))\ln(\frac{1}{c})+\ln(\frac{1}{\delta})}{c^2}\right)$ . Now, it remains to show that for our choice of  $\tilde{\mathcal{G}}$ , we have  $\ell_{\mathcal{G}'}(h,(x,y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x,y)) \leq \ell_{\mathcal{G}}(h,(x,y))$ . Since,  $\tilde{\mathcal{G}} \subset \mathcal{G}$ , the upperbound is trivial. Thus, we only focus on proving the lowerbound,  $\ell_{\mathcal{G}'}(h,(x,y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x,y))$  for all  $h \in \mathcal{H}$  and  $(x,y) \in \mathcal{X} \times \mathcal{Y}$ . Fix  $h \in \mathcal{H}$  and  $(x,y) \in \mathcal{X} \times \mathcal{Y}$ . If  $\ell_{\mathcal{G}'}(h,(x,y)) = 1$ , then there exists a  $g \in \mathcal{G}'$  such that  $h(g(x)) \neq y$ . Let g denote one such perturbation function. By the r-Niceness property of  $\mathcal{G}'$  with respect to  $\mathcal{H}$ , there must exist  $B_r(g^*)$  centered at some  $g^* \in \mathcal{G}$  such that  $g \in B_r(g^*)$  and h(g(x)) = h(g'(x)) for all  $g' \in B_r(g^*)$ . This implies that  $h(g'(x)) \neq y$  for all  $g' \in B_r(g^*)$ . Furthermore, since  $B_{2r}(g)$  is the union of all balls of radius r that contain g, we have that  $B_r(g^*) \subset B_{2r}(g)$ . From here, its not too hard to see that  $B_r(g^*) \subset \mathcal{G}'_{2r}$  by definition. Finally, since  $\tilde{\mathcal{G}}$  is an r-cover of  $\mathcal{G}'_{2r}$ , it must contain at least one function from  $B_r(g^*)$ . This completes the proof as we have shown that there exists a perturbation fu

## **D.4** $\ell_p$ balls are *r*-Nice perturbation sets for linear classifiers

In this section, we give a concrete example of a hypothesis class  $\mathcal{H}$  and metric space of perturbation functions  $(\mathcal{G}, d)$  for which there exists an *r*-nice perturbation subset  $\mathcal{G}' \subset \mathcal{G}$ . Let  $\mathcal{X} = \mathbb{R}^q$  and fix  $r \in \mathbb{R}_{\geq 0}$ . For the hypothesis class, consider the set of homogeneous halfspaces,  $\mathcal{H} = \{h_w | w \in \mathbb{R}^q\}$ , where  $h_w(x) = w^T x$ . Let  $\hat{\mathcal{G}} = \{g_\delta : \delta \in \mathbb{R}^q, ||\delta||_p \leq 3r\}$  where  $g_\delta(x) = x + \delta$  for all  $x \in \mathcal{X}$  and consider *any* perturbation set  $\mathcal{G}$  such that  $\mathcal{G} \supset \hat{\mathcal{G}}$ . That is,  $\hat{\mathcal{G}}(x) = \{g(x) : g \in \hat{\mathcal{G}}\}$  induces a  $\ell_p$  ball of radius 3r around x. We will accordingly consider the distance metric  $d(g_{\delta_1}, g_{\delta_2}) = \sup_{x \in \mathcal{X}} ||g_{\delta_1}(x) - g_{\delta_2}(x)||_p$ . Restricted to the set  $\hat{\mathcal{G}}$ , this distance metric reduces to  $d(g_{\delta_1}, g_{\delta_2}) = ||\delta_1 - \delta_2||_p = \ell_p(\delta_1, \delta_2)$  for  $g_{\delta_1}, g_{\delta_2} \in \hat{\mathcal{G}}$ . Finally, consider  $\mathcal{G}' = \{g_\tau : \tau \in \mathbb{R}^q, ||\tau||_p \leq r\} \subset \hat{\mathcal{G}} \subset \mathcal{G}$  which induces an  $\ell_p$  ball of radius r around x.

We will now show that  $\mathcal{G}'$  is *r*-nice perturbation set with respect to  $\mathcal{H}$ . Let  $x \in \mathcal{X}$ ,  $h_w \in \mathcal{H}$ , and  $g_\tau \in \mathcal{G}'$ . Let  $c = h(g_\tau(x)) \in \{\pm 1\}$ . Consider the function  $g_{\tau + \frac{crw}{||w||_p}}$ . By definition, we have that  $g_\tau \in B_r(g_{\tau + \frac{crw}{||w||_p}}) \subset \hat{\mathcal{G}} \subset \mathcal{G}$ . To see this, observe that  $||\tau + \frac{crw}{||w||_p}||_p \leq 2r$  by the triangle inequality. Finally, it remains to show that for every  $g' \in B_r(g_{\tau + \frac{crw}{||w||_p}}) = \{g_{\tau + \frac{crw}{||w||_p} + \kappa} \in \mathbb{R}^d, ||\kappa||_p \leq r\}$ ,  $h_w(g'(x)) = h_w(g_\tau(x)) = c$ . Let c = +1 and consider the function  $g'_{\tau + \frac{crw}{||w||_p} + \kappa} \in B_r(g_{\tau + \frac{rw}{||w||_p}})$ .

Note that  $w^T(x + \tau + \frac{rw}{||w||_p} + \kappa) = w^T(x + \tau) + r||w||_p + w^T\kappa$ . By Cauchy-Schwartz, we can lower bound  $w^T\kappa \ge -||w||_p||\kappa||_p \ge -r||w||_p$ . Therefore, we have that  $w^T(x + \tau + \frac{rw}{||w||_p} + \kappa) \ge w^T(x + \tau) > 0$ , where the last inequality comes from the fact that  $+1 = c = h_w(g_\tau) = \operatorname{sign}(w^T(x + \tau))$ . Therefore,  $h(g'_{\tau + \frac{rw}{||w||_p} + \kappa}(x)) = \operatorname{sign}(w^T(x + \tau + \frac{rw}{||w||_p} + \kappa)) = \operatorname{sign}(w^T(x + \tau)) = h(g_\tau(x))$  as desired. A similar proof holds when c = -1. Therefore, we have shown that  $\mathcal{G}'$  is a *r*-nice perturbation set with respect to  $\mathcal{H}$ .

We now can use Theorem 5.4 to provide sample complexity guarantees on Tolerantly Robust PAC Learning with  $\mathcal{G}'$  and  $\mathcal{G}$ . The main quantity of interest is  $\log(\mathcal{N}_r(\mathcal{G}'_{2r}, d))$ . However, note that  $\mathcal{G}'_{2r} = \hat{\mathcal{G}}$ . Therefore, we just need to compute  $\log(\mathcal{N}_r(\hat{\mathcal{G}}, d)) = \log(\mathcal{N}_r(\{g_{\delta} : \delta \in \mathbb{R}^q, ||\delta||_p \leq 3r\}, d))$ . However, this is equal to  $\log(\mathcal{N}_r(\{\delta \in \mathbb{R}^q : ||\delta||_p \leq 3r\}, \ell_p))$  using the  $\ell_p$  distance metric since  $g_{\delta}$  maps one-to-one to  $\delta$ . Using standard arguments,  $\log(\mathcal{N}_r(\{\delta \in \mathbb{R}^q : ||\delta||_p \leq 3r\}, \ell_p)) = \log(\mathcal{N}_{\frac{1}{3}}(\{\delta \in \mathbb{R}^q : ||\delta||_p \leq 1\}, \ell_p)) = O(q)$  (Bartlett [2013]). Thus, overall,  $\mathcal{H}$  is tolerantly PAC learnable with respect to  $(\mathcal{G}, \mathcal{G}')$  with sample complexity close to what one would require in the standard PAC setting.