
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

B EXPERIMENTAL SETTINGS

B.1 IMAGE CLASSIFICATION

Table 9: ImageNet-1K training settings.
training config iFormer-T/S/M/L/H

resolution 2242

weight init trunc. normal (0.2)
optimizer AdamW
base learning rate 4e-3 (T/S/M/L) 8e-3
weight decay 0.05
optimizer momentum �1,�2=0.9, 0.999
batch size 4096 [T/S/M/L] 8192 [H]
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise lr decay None
randaugment (9, 0.5)
mixup 0.8
cutmix 1.0
random erasing 0.25
label smoothing 0.1

stochastic depth 0.0 [T/S/M] 0.1 [L] 0.6 [H]
layer scale None [T/S/M/L] 1e-6 [H]
head init scale None
gradient clip None
exp. mov. avg. (EMA) None

We mainly follow the training recipe of ConvNeXt, while removing stochastic depth, layer scale, and
exponential moving average to ensure a fair comparison with prior works. The models are trained
for 300 epochs on 8 NVIDIA GPUs with a total batch size of 4096. We employ the same learning
rate across all models. It is possible to further improve performance by adjusting the learning rates
for different model variants, which we will explore in the future.

For distillation, we use the RegNetY-16GF model as the teacher model and apply a hard distillation
loss, following the approach of DeiT (Touvron et al., 2021a). During inference, the average output
of the classification head and the distillation head is used as the final output.

B.2 OBJECT DETECTION AND SEMANTIC SEGMENTATION

For object detection experiments, we train MaskR-CNN models on the COCO 2017 dataset for 12
epochs using standard training settings from the MMDetection toolkit.

For semantic segmentation experiments, we train Semantic FPN models on the ADE20K dataset
for 40,000 iterations using standard training settings from the MMSegmentation toolkit. The input
images are cropped to a resolution of 512⇥512 during training.

For backbone latency, we keep the same input size as training (i.e., 512⇥512) and measure the
mobile latency on an iPhone 13 compiled by Core ML Tools.

C MORE ABLATION STUDIES

Different Ways for Reducing Latency Here we provide a comparison of different methods for re-
ducing latency, contrasting them with the approach discussed in Sec. 3.3. Specifically, we reduce the
baseline latency to similar latency by directly removing blocks, cutting down FFN expansion width,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and reducing both attention head dimension and FFN expansion dimension simultaneously. From
the results in Table 10, we observe that the removal of a single block in the final stage can lead to a
severe drop in accuracy (-0.7%), indicating that greater depth enhances the model’s capacity. Con-
currently reducing all FFN expansion widths causes a non-trivial performance degradation (-0.6%).

Table 10: Different ways for reducing latency.
Reducing Setting Params (M) GMACs Latency (ms) Top-1 Acc. (%)

Baseline 10.0 1.79 1.15 80.4
Number of Blocks 8.4 1.70 1.07 79.7

FFN Width 8.6 1.62 1.07 79.8
Attn. Head and FFN Width 8.9 1.64 1.10 80.2

In contrast, we observe that
an orchestrated reduction
in both attention head and
FFN expansion dimensions
yields a milder accuracy
decline (-0.2%). These
results demonstrate that a
comprehensive reduction
across different components offers better flexibility and performance.

Depthwise Convlution in FFN Recent works (Cai et al., 2023; Qin et al., 2024) attempt to insert
a depthwise convolution (DW Conv) within the FFN to perform spatial mixing on the expanded
features activations. We hypothesize that implementing more effective spatial mixing before the
FFN diminishes its significance. In our iFormer, depthwise convolution with a kernel size of 7 is
employed for spatial modeling in the early layers, while a powerful SHMA is utilized in the later lay-
ers. This approach provides a significantly enhanced spatial mixing capacity than previous methods.

Table 11: Comparison of FFN with and without depth-
wise convolution.

DW Conv in FFN Params (M) GMACs Latency (ms) Top-1 Acc. (%)

with 9.6 1.83 1.43 80.5
w/o. 8.9 1.60 1.10 80.4

As shown in Table 11, enhancing
all FFN with depthwise convolution,
including those within the convolu-
tional blocks, results in a +14% in-
crease in FLOPs and an additional
latency cost of 0.33 ms. This in-
crease is expected since the interme-
diate layers in the FFN possess an
expanded feature dimension. However, the Top-1 accuracy only exhibits a marginal improvement
of +0.1%.

Training for Longer Schedule Another commonly used advanced training is an extended sched-
ule (450 vs. 300). Here we provide additional experiments for both image classification and down-
stream tasks where we train iFormer with distillation for 450 epochs. To ensure a fair comparison
with previous methods, we develop a larger model dubbed as iFormer-L2. We report the image

Table 12: Training with distillation for 450 epochs on ImageNet-1K.
Model Params (M) Latency (ms) Reso. Epochs Top-1 (%)

ConvNeXt-B (2022) 89.0 7.54 224 300 83.8
EfficientFormerV2-L (2023) 26.1 2.40 224 450 83.5

iFormer-L2 24.5 2.30 224 450 83.9

classification results on the ImageNet-1k dataset in Table 12. It shows that training iFormer-L2 for
450 epochs yields improved performance, obtaining a Top-1 accuracy of 83.9%, even surpassing the
ConvNeXt-Base model.

Table 13: Object detection & Semantic segmentation results using backbone pretrained for
450 epochs.

Backbone Param
(M)

Latency #
(ms) Pretrain Epochs Object Detection Instance Segmentation Semantic

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 mIoU

ResNet50 (2016) 25.5 7.20 300 38.0 58.6 41.4 34.4 55.1 36.7 36.7
PoolFormer-S24 (2022) 21.4 12.30 300 40.1 62.2 43.4 37.0 59.1 39.6 40.3

ConvNeXt-T (Liu et al., 2022) 29.0 12.6 300 41.0 62.1 45.3 37.7 59.3 40.4 41.4
EfficientFormer-L3 (2022b) 31.3 8.40 300 41.4 63.9 44.7 38.1 61.0 40.4 43.5

RepViT-M1.5 (2024) 14.0 5.00 300 41.6 63.2 45.3 38.6 60.5 41.5 43.6
PVTv2-B1 (2022) 14.0 27.00 300 41.8 64.3 45.9 38.8 61.2 41.6 42.5

FastViT-SA24 (2023a) 20.6 8.97 300 42.0 63.5 45.8 38.0 60.5 40.5 41.0
EfficientMod-S (2024) 32.6 24.30 300 42.1 63.6 45.9 38.5 60.8 41.2 43.5

Swin-T (2021a) 28.3 Failed 300 42.2 64.4 46.2 39.1 61.6 42.0 41.5
iFormer-L 14.7 6.60 300 42.2 64.2 46.0 39.1 61.4 41.9 44.5

EfficientFormerV2-L (2023) 26.1 12.5 450 44.7 66.3 48.8 40.4 63.5 43.2 45.2
iFormer-L2 24.5 9.06 450 44.6 66.7 49.1 41.1 64.0 44.1 46.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

SHMA (ours)

A
ct

iv
at

io
n

Pr
oj

ec
t

Project Activation

!

"

#

C
%×'×(

)×'×(

)×'×(

Se
lf-

A
tt

en
tio

n

)×
'×

(
C

ha
nn

el
 S

pl
it

Pr
oj

ec
t

C
ha

nn
el

 C
on

ca
t

Project

Project

Project
!

"

#

*)×'×(

Se
lf-

A
tt

en
tio

n

Project

Project

Project
+!

+
+

+"

*)×'×(

(1 − *))×'×(

*)
×'

×(

)×'×(

)×
'×

(

SHA in SHViT

Figure 5: Comparison of SHMA and SHA in SHViT. In SHViT, rC channels are utilized for
spatial attention, where r is set to 1

4.67 . SHMA projects the input into a higher dimension of 1
2C

(i.e., R=2) and avoids split and concatenation operations.
Furthermore, we integrate iFormer-L2 into the Mask-RCNN and Semantic FPN framework for
downstream tasks. As anticipated, the model with the more powerful iFormer-L2 backbone achieves
SOTA performance, obtaining a significant enhancement over models pretrained for 300 epochs. It
also outperforms its EfficientFormerV2-L counterpart by +0.7% in APmask and +1.0% in mIoU,
while being 1.4⇥ faster. These experiments collectively show that advanced training strategies can
be easily employed to improve the performance of iFormers.

D RELATION TO SHVIT

We clarify the difference between SHA in iFormer and its counterpart in SHViT (Yun & Ro, 2024)
from the following two aspects: First, in terms of motivation, iFormer explores efficient attention
mechanisms specifically tailored for the on-device environment, whereas SHViT is geared towards
general-purpose GPUs, which may exhibit different hardware characteristics. Second, in terms of
methodology, as shown in Fig. 5, we utilize single head attention with more channels (R is set to 2.),
while SHViT employs fewer than 1/4 of channels for attention. The reduced number of channels can
result in a lower rank of the attention matrix, potentially degrading its expressiveness. Additionally,
the split and concatenate operations in SHViT introduce extra runtime. We also conduct a more fair

Table 14: Process of converting SHA in iFormer towards SHViT. Intermediate models are only
measured by latency.

Modification Params(M) GMACs Latency (ms) Top-1(%)
SHA Baseline without Modulation 9.9M 1758M 1.12ms 79.4
+ split 9.9M 1758M 1.18ms -
+ attention on 1/4 channels 8.3M 1547M 1.02ms -
+ concat 8.7M 1579M 1.11ms 79.5

comparison with SHViT. We start from the SHA baseline referenced in Table 1, specifically denoted
as ’SHA’ in Figure 2. The transition to SHViT involves the following steps: 1) splitting the input into
two smaller tensors, X1 and X2, along the channel dimension; 2) applying single head attention to
the tensor X1, which contains fewer than 1/4 of channels present in the original input tensor; and 3)
concatenating the attention output with the residual input X2. As summarized in Table 14, split and
concatenate operations introduce additional runtime. Furthermore, the performance of the SHA in
the SHViT exhibits a decline compared to its counterpart in iFormer under similar latency conditions
(79.8 v.s. 79.5). This degraded performance may be attributed to the reduced number of channels in
the attention mechanism.

E ARCHITECTURE DETAILS

In Table 15, we show the different architecture configurations of the iFormer model variants.

F IFORMER FOR HIGHER RESOLUTION

Self-attention exhibits quadratic complexity with respect to the number of tokens, i.e., the resolution
of the input image. This issue is exacerbated in dense prediction tasks, which usually require high-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 15: iFormer architecture configurations. BN stands for Batch Normalization. SHMA
stands for Singe-Head Modulation Attention. DW stands for Depthwise convolution. s and d means
the stride and output dimension in convolution. hd denotes the head dimension in SHMA and the
number of attention heads in all variants is 1. r means the expansion ratio in FFN.

Output Size
(Downs. Rate) iFormer-T iFormer-S iFormer-M iFormer-L

Stem 56⇥56
(4⇥)

⇥
Conv-BN-GELU 5⇥5 s2 d16

⇤
⇥ 1

⇥
Conv-BN-GELU 5⇥5 s2 d16

⇤
⇥ 1

⇥
Conv-BN-GELU 5⇥5 s2 d24

⇤
⇥ 1

⇥
Conv-BN-GELU 5⇥5 s2 d24

⇤
⇥ 1


Conv-BN-GELU 5⇥5 s2 d64

Conv-BN 1⇥1 s1 d32

�
⇥ 1


Conv-BN-GELU 5⇥5 s2 d64

Conv-BN 1⇥1 s1 d32

�
⇥ 1


Conv-BN-GELU 5⇥5 s2 d96

Conv-BN 1⇥1 s1 d48

�
⇥ 1


Conv-BN-GELU 5⇥5 s2 d96

Conv-BN 1⇥1 s1 d48

�
⇥ 1

Stage 1 56⇥56
(4⇥)

2

4
Conv-BN 7⇥7 s1 d32

Conv-BN-GELU 1⇥1 s1 d96
Conv-BN 1x1 s1 d32

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1 d32

Conv-BN-GELU 1⇥1 s1 d128
Conv-BN 1x1 s1 d32

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1d48

Conv-BN-GELU 1⇥1 s1 d192
Conv-BN 1x1 s1 d48

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1 d48

Conv-BN-GELU 1⇥1 s1 d192
Conv-BN 1x1 s1 d48

3

5 ⇥ 2

Stage 2 28⇥28
(8⇥)

⇥
Conv-BN 3⇥3 s2 d64

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d64

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d96

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d96

⇤
⇥ 1

2

4
Conv-BN 7⇥7 s1 d64

Conv-BN-GELU 1⇥1 s1 d192
Conv-BN 1x1 s1 d64

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1 d64

Conv-BN-GELU 1⇥1 s1 d256
Conv-BN 1x1 s1 d64

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1 d96

Conv-BN-GELU 1⇥1 s1 d384
Conv-BN 1x1 s1 d96

3

5 ⇥ 2

2

4
Conv-BN 7⇥7 s1 d96

Conv-BN-GELU 1⇥1 s1 d384
Conv-BN 1x1 s1 d96

3

5 ⇥ 2

Stage 3 14⇥14
(16⇥)

⇥
Conv-BN 3⇥3 s2 d128

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d176

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d192

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d256

⇤
⇥ 1

2

4
Conv-BN 7⇥7 s1 d128

Conv-BN-GELU 1⇥1 s1 d384
Conv-BN 1⇥1 s1 d128

3

5 ⇥ 6

2

4
Conv-BN 7⇥7 s1 d176

Conv-BN-GELU 1⇥1 s1 d704
Conv-BN 1x1 s1 d176

3

5 ⇥ 9

2

4
Conv-BN 7⇥7 s1 d192

Conv-BN-GELU 1⇥1 s1 d768
Conv-BN 1x1 s1 d192

3

5 ⇥ 9

2

4
Conv-BN 7⇥7 s1 d256

Conv-BN-GELU 1⇥1 s1 d1024
Conv-BN 1x1 s1 d256

3

5 ⇥ 8

2

4
CPE 3⇥3

SHMA hd64
FFN r2

3

5 ⇥ 3

2

4
CPE 3⇥3

SHMA hd88
FFN r3

3

5 ⇥ 3

2

4
CPE 3⇥3

SHMA hd96
FFN r3

3

5 ⇥ 4

2

4
CPE 3⇥3

SHMA hd128
FFN r3

3

5 ⇥ 8

2

4
Conv-BN 7⇥7 s1 d128

Conv-BN-GELU 1⇥1 s1 d384
Conv-BN 1x1 s1 d128

3

5 ⇥ 1

2

4
Conv-BN 7⇥7 s1 d176

Conv-BN-GELU 1⇥1 s1 d704
Conv-BN 1⇥1 s1 d176

3

5 ⇥ 1

2

4
Conv-BN 7⇥7 s1 d192

Conv-BN-GELU 1⇥1 s1 d768
Conv-BN 1⇥1 s1 d192

3

5 ⇥ 1

2

4
Conv-BN 7⇥7 s1 d256

Conv-BN-GELU 1⇥1 s1 d1024
Conv-BN 1⇥1 s1 d256

3

5 ⇥ 1

Stage 4 7⇥7
(32⇥)

⇥
Conv-BN 3⇥3 s2 d256

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d320

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d384

⇤
⇥ 1

⇥
Conv-BN 3⇥3 s2 d384

⇤
⇥ 1

2

4
CPE 3⇥3

SHMA hd64
FFN r2

3

5 ⇥ 2

2

4
CPE 3⇥3

SHMA hd80
FFN r3

3

5 ⇥ 2

2

4
CPE 3⇥3

SHMA hd96
FFN r3

3

5 ⇥ 2

2

4
CPE 3⇥3

SHMA hd96
FFN r3

3

5 ⇥ 2

Params (M) 2.9 6.5 8.9 14.7

GMacs 0.53 1.09 1.64 2.63

Table 16: Comparison of different attention designs in iFormer-M. For the sake of simplicity, we
exclude other blocks that are not related to attention. ws is the window size for window attention.

Attention SHMA Hybrid SHMA Chunk Hybrid SHMA

Stage 3 14⇥14
(16⇥)

2

64

CPE 3⇥3
Window Partitioning, ws16
Window SHMA hd96, ws16

FFN r3

3

75 ⇥ 1

2

64

CPE 3⇥3
Chunk Window Partitioning, ws16

Window SHMA hd96, ws16
FFN r3

3

75 ⇥ 1

2

4
CPE 3⇥3

SHMA hd96
FFN r3

3

5 ⇥ 4

2

4
CPE 3⇥3

Window SHMA hd96, ws16
FFN r3

3

5 ⇥ 2

2

4
CPE 3⇥3

Window SHMA hd96, ws16
FFN r3

3

5 ⇥ 2

2

64

CPE 3⇥3
Window Reversing, ws16

SHMA hd96
FFN r3

3

75 ⇥ 1

2

64

CPE 3⇥3
Chunk Window Reversing, ws16

SHMA hd96
FFN r3

3

75 ⇥ 1

Stage 4 7⇥7
(32⇥)

2

64

CPE 3⇥3
Window Partitioning, ws16

Window SHMA hd96
FFN r3

3

75 ⇥ 1

2

64

CPE 3⇥3
Chunk Window Partitioning, ws16

Window SHMA hd96
FFN r3

3

75 ⇥ 1

2

4
CPE 3⇥3

SHMA hd64
FFN r2

3

5 ⇥ 2

2

64

CPE 3⇥3
Window Reversing, ws16

SHMA hd64
FFN r3

3

75 ⇥ 1

2

64

CPE 3⇥3
Chunk Window Reversing, ws16

SHMA hd64
FFN r3

3

75 ⇥ 1

resolution input such as 512⇥512 in semantic segmentation and generate a large amount of 1024
image tokens even in the third stage. Consequently, this will cause huge memory and computation
costs in mobile devices.

Table 17: Latency comparison of different attention
mechanisms.

Attention Resolution Latency (ms)
SHMA 224 1.10
SHMA 512 Failed

Hybrid SHMA 512 11.46
CC Hybrid SHMA 512 4.0

To mitigate these issues, we resort
to window attention as proposed in
Swin (Liu et al., 2021a). How-
ever, default window attention only per-
forms local self-attention within win-
dows, thus lacking interactions between
tokens from different windows which
will impair modeling capacity. Swin
introduces shifted window attention to
alleviate this limitation. Unfortunately,
the shifting operation inevitably incurs additional memory costs. In contrast to Swin, we implement

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

a hybrid attention design. Specifically, we compute window attention within windows, except for
the last attention block in each stage. This approach enables iFormer to capture more global fea-
tures essential for dense prediction tasks. At the same time, since window partitioning and reversing
also incur memory access costs, we minimize the usage of them to once per stage. We replace the
standard SHMA in iFormer with a hybrid window SHMA, as shown in Table 16.

From the latency comparison in Table 17, we see that simply applying SHMA will encounter a
memory bottleneck on mobile devices. Instead, our hybrid SHMA can significantly reduce memory
access costs, achieving a mobile latency of 11.46 ms.

However, hybrid SHMA still lags much behind the recent FastViT-SA12, which has a latency of
5.27 ms. We identify the speed bottleneck as stemming from the window partitioning and reversing
operations, even though we only implement them once in each stage. As the feature map size in-
creases, the reshaping involved in these operations demands considerable memory, thereby slowing
inference in resource-constrained mobile devices.

To address this issue, we propose a method called “Channel Chunking” (CC). Formally, given a
2D input feature map x 2 RC⇥H⇥W , the standard window partitioning divides the feature map
into H

P
⇥ W

P
non-overlapped regions, each corresponding to a window that contains P ⇥ P feature

vectors. This step is accomplished by reshaping x as xP 2 R
HW

P2 ⇥C⇥P⇥P . Then we apply SHMA
within each window.

To reduce the memory requirements associated with reshaping, we propose to split the feature map
x along the channel dimension into a series of smaller chunks as follows:

xS
1 , ...,x

S
n = Chunking(x), (4)

where K is the chunk size, n = C

K
is the number of chunks. We set n=16 for the input image

of 512⇥512 in our object detection and semantic segmentation experiments. Then we apply win-
dow partitioning sequentially to these smaller chunks and concatenate them. This process can be
mathematically expressed as follows:

xP = Concat(xP
i , ...,x

P
n),

where xP
i = WindowPartitioning(xS

i),
(5)

These smaller chunks can be processed rapidly. As shown in Table 17, the chunking strategy allows
the model to achieve 2.9⇥ speed up in inference speed. Correspondingly, the window reversing
operation is performed by reshaping multiple windows xP 2 R

HW

P2 ⇥C⇥P⇥P into a 2D feature map
x 2 RC⇥H⇥W . These results demonstrate that our proposed Channel Chunking Hybrid SHMA
significantly enhances the iFormer’s ability to process high-resolution images efficiently.

Computation Complexity Given an input x 2 RC⇥H⇥W and a window size of P ⇥ P, as detailed
in Section E, the computational complexity of iFormer is as follows:

⌦(SHMA) =4HWC
2(QKV and output projection)+

HWC(element-wise product of modulation)+

2P 2
HWC(self-attention),

(6)

⌦(FFN) = 8HWC
2
. (7)

In image classification, we do not utilize window attention since the feature size is 14⇥ 14 in stage
3 (it equals to the window attention when P=14). In downstream tasks, we adopt a window size of
P=16.

G COMPREHENSIVE COMPARISON

In Table 18, we provide a more comprehensive comparison between iFormer and other lightweight
models on ImageNet-1k classification.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 18: Comprehensive comparison between iFormer and the previously proposed models
on ImageNet-1K. Failed indicated that the model runs too long to report latency by the Core ML,
often caused by excessive memory access.

Model Params (M) GMACs Latency #
(ms) Reso. Epochs Top-1 (%)

MobileNetV2 1.0x (2018) 3.4 0.30 0.73 224 500 72.0
SHViT-S1 (2024) 6.3 0.24 0.74 224 300 72.8

MobileNetV3-Large 0.75x (2019) 4.0 0.16 0.67 224 600 73.3
MNV4-Conv-S (2024) 3.8 0.20 0.60 224 500 73.8

iFormer-T 2.9 0.53 0.60 224 300 74.1
ShuffleNetV2 1.0× (2018) 2.3 0.15 0.74 224 300 69.4
MobileNetV2 1.4x (2018) 6.9 0.59 1.02 224 500 74.7

MobileNetV3-Large 1.0x (2019) 5.4 0.22 0.76 224 600 75.2
SwiftFormer-XS (2023) 3.5 0.60 0.95 224 300 75.7
SBCFormer-XS (2024) 5.6 0.70 0.79 224 300 75.8

GhostNetV3 1.0x† (2024) 6.1 0.17 0.99 224 600 77.1
EfficientNet-B0 (2019) 5.3 0.39 0.89 224 350 77.1
MobileOne-S2 (2023b) 7.8 1.30 0.92 224 300 77.4
LowFormer-B0 (2024) 14.1 0.94 1.45 224 300 78.4
CAS-ViT-XS (2024) 3.2 0.56 0.85 224 300 77.5

EMO-5M (2023) 5.1 0.90 Failed 224 300 78.4
RepViT-M1.0 (2024) 6.8 1.10 0.85 224 300 78.6

iFormer-S 6.5 1.09 0.85 224 300 78.8
ShuffleNetV2 1.5× (2018) 3.5 0.30 1.16 224 300 72.6

EdgeViT-XXS (2022) 4.1 0.60 1.41 224 300 74.4
SHViT-S2 (2024) 11.4 0.37 1.10 224 300 75.2

EfficientMod-xxs (2024) 4.7 0.60 1.29 224 300 76.0
SBCFormer-S (2024) 8.5 0.90 1.02 224 300 77.7

MobileOne-S3 (2023b) 10.1 1.90 1.16 224 300 78.1
SwiftFormer-S (2023) 6.1 1.00 1.12 224 300 78.5

GhostNetV3 1.3x† (2024) 8.9 0.27 1.24 224 600 79.1
EfficientNet-B1 (2019) 7.8 0.70 1.29 240 350 79.1
FastViT-T12 (2023a) 6.8 1.40 1.12 256 300 79.1
RepViT-M1.1 (2024) 8.2 1.30 1.04 224 300 79.4
RepNeXt-M3 (2024) 7.8 1.30 1.04 224 300 79.4
FastViT-S12 (2023a) 8.8 1.80 1.26 256 300 79.8

MNV4-Conv-M (2024) 9.2 1.00 1.08 256 500 79.9
iFormer-M 8.9 1.64 1.10 224 300 80.4

MobileViT-XXS (2021) 1.3 0.40 2.12 256 300 69.0
MobileViTV2-0.5 (2022) 1.4 0.50 9.47 256 300 70.2
ShuffleNet v2 2.0× (2018) 7.4 0.59 1.94 224 300 74.9

EdgeViT-XS (2022) 6.7 1.10 1.79 224 300 77.5
Mobile-Former-294M (2022b) 11.4 0.29 2.66 224 450 77.9

MobileViTV2-1.0 (2022) 4.9 1.80 Failed 256 300 78.1
EfficientMod-xs (2024) 6.6 0.80 2.13 224 300 78.3

MobileViT-S (2021) 5.6 2.00 3.55 256 300 78.4
CMT-Ti (2022) 11.3 687 Failed 160 300 79.2

Mobile-Former-508M (2022b) 14 0.51 3.33 224 450 79.3
SHViT-S4 (2024) 16.5 0.99 1.48 224 300 79.4

EfficientViT-B1-r224 (2023) 9.1 0.52 2.38 224 350 79.4
MobileOne-S4 (2023b) 14.8 2.98 1.74 224 300 79.4
LowFormer-B1 (2024) 17.9 1.41 1.90 224 300 79.9
SBCFormer-B (2024) 13.8 1.60 1.44 224 300 80.0

EfficientNet-B2 (2019) 9.2 1.00 1.69 260 350 80.1
CAS-ViT-S (2024) 5.8 0.93 1.82 224 300 80.2

GhostNetV3 1.6x† (2024) 12.3 0.40 1.49 224 600 80.4
EfficientViT-B1-r288 (2023) 9.1 0.86 3.87 288 450 80.4

FastViT-SA12 (2023a) 10.9 1.90 1.50 256 300 80.6
MNV4-Hybrid-M (2024) 10.5 1.20 1.75 256 500 80.7
SwiftFormer-L1 (2023) 12.1 1.60 1.60 224 300 80.9
EfficientMod-s (2024) 12.9 1.40 2.57 224 300 81.0
SBCFormer-L (2024) 18.5 2.70 1.89 224 300 81.1
RepViT-M1.5 (2024) 14.0 2.30 1.64 224 300 81.2

LowFormer-B1.5 (2024) 33.9 2.57 3.02 224 300 81.2
RepNeXt-M4 (2024) 13.3 2.30 1.47 224 300 81.2
CAS-ViT-M (2024) 12.4 1.89 2.46 224 300 81.4

iFormer-L 14.7 2.63 1.60 224 300 81.7

21

