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A SUPPLEMENTARY MATERIAL

A.1 EXPERIMENT IMPLEMENT DETAILS

In our experiments on CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), and STL-10
Coates et al. (2011) datasets, we utilize the AdamW optimizer Loshchilov & Hutter (2017) with a
weight decay factor of 1e-4 for ViT-B, ViT-L Dosovitskiy et al. (2021), ResNet-32, and ResNet-110
He et al. (2016). We employ batch sizes of 1024 for CIFAR-10 Krizhevsky et al. (2009), SVHN
Netzer et al. (2011), and STL-10 Coates et al. (2011). The training duration spans 250 epochs,
starting with initial learning rates of 0.01, following a cosine annealing scheduler Loshchilov &
Hutter (2016).

For ImageNet Deng et al. (2009), We use the AdamW optimizer Loshchilov & Hutter (2017) with
a weight decay factor of 1e-4. Different hyperparameters are used for each architecture: batch size
is 128 for ViT-B Dosovitskiy et al. (2021) and ResNet-34 He et al. (2016), and batch size is 32 for
ResNet-101 and ResNet-152 He et al. (2016). Training lasts 100 epochs with initial learning rates of
0.04 for ViT-B Dosovitskiy et al. (2021) and ResNet-34 He et al. (2016), and 0.01 for ResNet-101
and ResNet-152 He et al. (2016).

We recognize that in the Transformer Encoder of the ViT Dosovitskiy et al. (2021) architecture,
one layer consists of an MLP and a Multi-Head Attention. When freezing layers, we freeze only
the gradients of the Multi-Head Attention, without altering the gradient descent of the MLP during
forward propagation. For the ResNet He et al. (2016) architecture, we refer to each residual block as
a layer, where each layer is composed of two convolutions. The entire layer is frozen during gradient
freezing, with the parameters derived from the parameter integration mechanism entering the next
layer via the residual connection.

A.2 GENERALIZATION STUDY

In this section, we aim to investigate the generalization performance of our proposed Replace-
ment Learning. To evaluate its effectiveness, we utilize the checkpoints trained on the CIFAR-10
Krizhevsky et al. (2009) and test them on the STL-10 Coates et al. (2011), taking inspiration from
previous work Qu et al. (2021).

As shown in Table 1, with the usage of our Replacement Learning, we witness a significant im-
provement in test accuracy, surpassing all backbones’ end-to-end training Rumelhart et al. (1985).
These findings emphasize the efficacy of our Replacement Learning in improving the generalization

Table 1: Generalization study. Checkpoints are trained on the CIFAR-10 and tested on the STL-10.
The data in the table represents the test accuracy.

Backbone Test Accuracy Backbone Test Accuracy

ResNet-32 36.88 ViT-B 28.31
ResNet-32* 37.95 (↑ 1.07) ViT-B* 30.14 (↑ 1.83)
ResNet-110 39.19 ViT-L 26.25

ResNet-110* 39.76 (↑ 0.57) ViT-L* 28.02 (↑ 1.77)
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capabilities of supervised learning, ultimately leading to enhanced overall performance in the image
classification task.

A.3 ALGOTITHM

Algorithm 1 Replace Learning
1: Initialize θl for all layers l = 1 to n
2: Set k as the interval for freezing layers
3: Define frozen layer indices F = { l | l mod k = 0 }
4: Initialize learnable parameters al and bl for l ∈ F
5: for each mini-batch (x, y) do
6: h0 ← x
7: for l = 1 to n do
8: if l ∈ F then
9: θl ← al × θl−1 + bl × θl+1

10: hl ← fl(hl−1; θl)
11: else
12: hl ← fl(hl−1; θl)
13: end if
14: end for
15: Compute loss L ← L(hn, y)
16: Backpropagate to compute gradients
17: for l = n down to 1 do
18: if l ∈ F then
19: Compute gradients ∂L

∂al
and ∂L

∂bl

20: Update al ← al − η × ∂L
∂al

21: Update bl ← bl − η × ∂L
∂bl

22: else
23: Compute gradient ∂L

∂θl

24: Update θl ← θl − η × ∂L
∂θl

25: end if
26: end for
27: end for
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