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A PROOF OF RESULTS IN SECTION[3]

A.1 PROOF OF THEOREM [3.3](GLOBAL INTEGRATION ERROR, INFINITE TIME VERSION)

Proof. We write the solution of an SDE by x¢, s, (fo + t) when the dependence on initialization
needs highlight. Denote ¢;, = kh and x;, = xj, for better readability.

We will first make an easy observation that contraction and bounded 2nd-moment of the invariant
distribution lead to bounded 2nd-moment of the SDE solution for all time: let ¢, be a random variable
following the invariant distribution of Eq. (I, i.e., y, ~ p, then y, ~ 1 and

E |la;|* <2E |, — y¢||* + 2E |1y, |”
<R |l — | exp(—281) + 2E ||y, |
<4E(|lzo” + llyol*) exp(~261) + 2E ||y, |
=4E [0 || exp(~261) + (2 + 4 exp(—26t)) Eyny ||yl

B ool +6 [ ] du 2 U
R

and then it follows that

E||zy]|* < 2F ||& — xi||” + 2E ||2]|* < 263 + 202 (13)
Denote (x,y) 4 = (Ax, Ay), ||z| 4, = ||Az| and
3
fio={E 2 — 20} } (14)

where A is the non-singular matrix from Equation ). Also denote that largest and smallest singular

Or

values of A by 0.y and oy, respectively, and the condition number of A by k4 = Fmax Recall
, it is easy to see that

e, = E ||a3k — T
Omin€k < fk < Omax€k- (15)
Further, we have the following decomposition
2 _]E = 2
fiev1 FE @p1 — 2oy

2
=E ‘ Tty m,, (k1) — Toyap (ter1) + Tozy (Ter1) — Thp HA

2 2
=E ‘ Tty ,@, (ths1) — T4y 2, (tk+1)HA +E Hwtk,ik (thy1) — Tpg1 HA (16)

0 @

+2B(A (@0, 00, (i) = Tt (tr1) ) A (1.0 (1) = @)

®

Term @ is taken care of the contraction property

2
]E‘ Tiy 20, (Tht1) — Ty, (tk+1)HA < [ exp(—2h). (17

Term @ is dealt with by the bound on local strong error

_ 2 _
E ||$tk,ik(tk+1) - mk+1||A <o2.. (sz + D2E ||:1:kH2> h2P2 (18)
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Term @ requires more efforts to cope with, and by the decomposition in Eq. (3)) we have

E((@ty,2, (k1) — Ty ap (tet1)s Ty (Tht1) — Tot1) a
=E(x) — Tk, Tt, 2, (tir1) — Tig1) A + E(2n(@r, Tk), Toy zp, (Thg1) — Thp1) A
DR (@), — @1, By, o (1) — Bt [Fil) 4 + Elzn (@i, @), @, 2 (1) — 1) a
(44) 3 _ 2\ 3 _ 2
< fi (BE@u e trsn) = el Fl3) " + (Ellzn(@n20ll3)” (Bllzo o thin) = 2o )
(ia9) 3 N N
< Omax Sk (E |El@e, 2, (tot1) — Trs1]Fl| ) + 02 (]E | zn (@, @) )2 (E |21, 2, (trg1) — T | )2

(iv)
< Omax Sk (01 + D1\/E ||:ck.|2> hP' + K AGmaxCo fiVh <02 + Dyy\/E |mk||2) hP2

1
2

(v)
<k ATmax(C1 + CoCa)exh? T2 + kgomax(D1 + CoD2)\/E ||| fuh?> 2 (19)

where (7) uses the tower property of conditional expectation and F is the filtration at k-th iteration,
(i7) uses Cauchy-Schwarz inequality, (¢i%) is due to the relationship between ey and f, (iv) is due to
local weak error, local strong error and Eq. @, and (v) is due to p1 > pa + % and 0 < h < hy < 1.

Now plug Eq. (T7), (18) and (T9) in Eq. (16), we obtain
SR IR exp(=28R) + 02 (C3 + DIE [247) B2 + RaGmax(Cr + CoCa) fih™

+ K ACmax(D1 4+ CoD2)\/E || || fuh?2 2

< (1 G0 72+ s (CB 4 DB ) 127 + kaima(Cr + CoCo) fut

+ KAOmax Dl +COD2 V]EHJ?k fkhp2+2

<1 - 5h> fE + KACmax (01 + CyCy +V2U(Dy + CODQ)) frhP2ts 4 252 D2 f2p2P2

+V2RA(Dy + CoDa) fER+h + 02, (C3 + 2D3U% ) 22
(iii) 7 ) 1 38,
< (1= 580) 2+ Kadmax (C1 + CoCa + VEU(D: + CoDy)) fi?* 4 + 2 f2h

+ 0% (CF + 2D3U2) 22

1

= <1 — 2ﬁh> f;? + KAOmax (Cl + COCQ + \/iU(D1 + CQDQ)) fkhp2+%

+ 0% (CF +2D3U% ) 122

2
(i) 1 ﬂ K/1240'12nax (Cl + COC2 + \/§U(D1 + C()DQ))
< <15h) f}?Jrzf;thr 5 h2P2
+ 0% (C3 +2D3U% ) 22
2
1 (Ol + C(06’2 + \@U(Dl + C()DQ))
_ <1 _ 4ﬁh> 24 k2ot - 402 42202 | 2

where () is due to the assumption 0 < h < ﬁ and e™® < 1 -2+ ””2—2 for0 < z < 1,

(ii) is due to the upper bound on E|&;|° in Eq. (T3), (iii) holds provided when h <
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1

1 _1
min (i) o , (ﬁ> 72 % and (#v) is due to Cauchy-Schwarz inequal-

4\/§K,AD2 Sﬁni(Dl—‘rCoDz)
ity.

Unfolding the above inequality gives us

2
A (01 + CyCy +V2U(Dy + COD2)>
f]?-‘rl SBK‘QAO?nax ﬂ + 022 =+ QDSUQ h2p2*1.

Taking square root on both sides and using va? + b% + ¢2 < a+ b+ ¢,Va, b, c > 0 yields

f < 2 . C1 4+ CoCs + \/iU(Dl + C()DQ)
k+1 =~ =~ 5~NMA0Umax
VB NG

Finally using the relationship between ey, and f;, we obtain

lﬁg Cy + CoCa + V22U (Dy + CyD3)
VB A VB

1+ Oy + sz2U> hP2=3

er <

+Cy + \/§D2U> pP2=3

A.2  PROOF OF THEOREM [3.4] (NON-ASYMPTOTIC SAMPLING ERROR BOUND: GENERAL
CASE)

Proof. Lety, ~ pand (2o, y,) are coupled such that E ||lzg — y,|° = W2(Law(x), 1). Denote
the solution of Eq. (I) starting from xg, y, by =+, y, respectively, and t;, = kh. We have

Wa(Law(Zy), ) <Wa(Law(Zy), Law(xy, ) + Wa(Law(xy, ), i)

) 2
<VE|ar -z, " + B e, -y,

(7)
Lo+ \E llzo — yol? exp (~28t)

=ey, + exp (—ft) Wa(Law(xo), )

where (7) is due to the contraction assumption on Eq. (I)). Invoking the conclusion of Theorem
completes the proof. [

A.3  PROOF OF COROLLARY [3.5](UPPER BOUND OF MIXING TIME: GENERAL CASE)

Proof. Given any tolerance € > 0, we know from Theorem that if & is large enough and £ is
small enough such that

€
exp (—pkh) Wa(Law(xg), u) < 5 (20)
ChPa=3 < g @1
we then have Wy (Law (&), 1) < e. Solving Inequality yields
1 2 L
k Z %log WQ( aW(fEO)vU) é kj* (22)

To minimize the lower bound, we want pick step size h as large as possible. Besides & < hq, Eq.
(21)) poses further constraint on h, hence we have

. € p21*%
h < hi, | —
= min 17(20)
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Plug the upper bound of % in Eq. (22)), we have

k* = max{ —

Bhy’ B

1 1(2C)p25 logZI/lfz(LaW(:lso),u)_

€ €

_1
When high accuracy is needed, i.e., € < QC’h{f2 2, we have

@C)=E 1 2Wallaw(@o) ) _ 5 (C7E 1
ﬁ I € 5 T

€P2—3

k* =

B PROOF OF RESULTS IN SECTION [4]

B.1 PROOF OF THEOREM [4.1] (NON-ASYMPTOTIC ERROR BOUND: LMC)

Proof. From Lemma [C.T|we know that Langevin dynamics is a member of the family of contractive
SDE, and with a contraction rate of strong-convexity coefficient 5 = m (w.r.t. identity matrix I« ).
Next, we will need to work out the constants Cy, C1, D1, D3, Cs needed in Theorem [3.3] We have
Cy = @, implied from Lemma

The local strong error and local weak error are bounded in Lemma [D.T|and [D.2]respectively. Note

that the coefficient C;/C5 in the bound for local strong/weak error depends on initial value, which
changes from iteration to iteration. Combined with Lemma|D.3| we would obtain C; and C5, namely

1
~ d 2 8d 2 2d 2
<2(L? — +E —+1] <2(L? \/ E 12
G <212 +.6) (o +Elaal + 7 1) <227+ O 2 4Bl +12 €

and

~ 2 2
Cy <2L <d+ n (E lxol|” + 8d>> < 2L\/m\/d +E|xol]* +12 Cs.
2 ™ m

We collect all constants here in the proof for easier reference

1

A=1 LB =m, ho = ——
dxd>ka =1,8=m, hg A

)

2d
Oy = 2(L? +G’)\/m JrIE||a:0||2 +1, D=0

2d
CQ = 2L\/E\/m +E ||a:0||2 + 1, D2 =0.

Then the constant in Theorem [3.3|for LMC algorithm simplifies to

2 Cy + CoCy
C=———+0Csy ),
\/B< i )

2
< 10(L 3+G)

mz2

\/2d+ m (E ||IB()||2 + 1) £ CLMC-

Assuming L, m, G are all constants and independent of d, then clearly Cpyc = O(v/d). Then
applying Theorem [3.4]to LMC, we have

Wy (Law (&), ) < e kR, (Law(xo), i) + Crmch (23)

f0r0<h§4,%L. ]

16



Under review as a conference paper at ICLR 2022

B.2 PROOF OF THEOREM [4.3| (LOWER BOUND OF MIXING TIME)

Proof. If we start from &y = 154 and run LMC for the potential function in Eq. (IT)), we then have

(Tr); = (1= mh)*(@o); + mZ?:l(l —mh)*7H(€);, 1<i<d
T\ (1= L) (o)s + V2R Y1 (1 — Lh)FH(E))s, d+1 < i < 2d

and hence

N ((1 = mh)* #(1—(1—mh)2’“)),1§i§d

_ ' m(2—mh)

(@k); ~ k 2 2k ;
N (1= L0, 2 (1= (L= L)) d+1<i<2d

Clearly, stability requires h < %

The squared 2-Wasserstein distance between the law of the k-th iterate of LMC and target distribution

1S

2
W3 (Law(Zy), 1) =d(1 — mh)?* + % <m 1— (1—mh)2k — 1)
+d(1 — Lh)** + % (@ 1—(1—Lh)? — 1) :

Suppose Wa(Law(Zy), 1) < €, we then must have

d(1 —mh)?* <e?

i(’/zfmh 1—(1—mh)2k—1>

A necessary condition of Eq. (23) is that

Jm 2 (i)\/ 2 \/ e2
1+ Y2es 1— (1—mh)? > 1- <
VA sy (L=mh)* =\ 53— d

where (7) is due to Eq. (24). It follows from Eq. (26) and m = 1 that

4
1+

h < <

=
Sl
Sl%

Revisiting Eq. (29) yields

2k
(i) omh)2\ . G)
> d(1—mh)* > d (1 — 2mh + (mQ)> >’ de4mkh

1 Vd

— k>—1log—

= 2hm 8 e
where (i) is due to mh < 2 < 1 and (ii) is due to e =* <l-z+Z0<z<l

Combine Eq. (27) and (28], we then obtain a lower bound of the mixing time

Vd  Vd, Vd < (Vd

T % log— =9 .
€ €

d
ks Y0 Vd
8me € €

(24)

(25)

(26)

27)

(28)
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C SOME PROPERTIES OF LANGEVIN DYNAMICS

C.1 CONTRACTION OF LANGEVIN DYNAMICS

Lemma C.1. Suppose Assumption[I|holds. Then two copies of overdamped Langevin dynamics have
the following contraction property

{Ely, -2} < {E -2’} exp(-m)

where x,y are the initial values of +,y,.

Proof. First assume x, y are deterministic. Suppose x;, y, are respectively the solutions to

dxy = — Vf(x)dt + V2dB;
dy, = — Vf(y,)dt + V2dB,

where B, is a standard d-dimensional Brownian motion. Denote L; = 1E ||y, — x; ||* and take time
derivative, we obtain

d (4)
Lt = "By — 2, Vf(y) = V(@) < —mE |y, — || = —2mL,

where (i) is due to the strong-convexity assumption made on f. We then obtain L; < Lg exp(—2mt)
and it follows by Gronwall’s inequality that

1
{Elly. @’} < ly - @] exp(—m).

When z, y are random, by the conditioning version of the above inequality and Jensen’s inequality,
we have

wy] <{Ely - ol exp(-2mt)}" = {Blly ~ 2/} exp(-m).

[N

E

2
Elly, — |

C.2 GROWTH BOUND OF LANGEVIN DYNAMICS

Lemma C.2. Suppose Assumption holds, then when 0 < h < ﬁ, the solution of overdamped
Langevin dynamics x; satisfies

E |z, — 2| <6 (d+ SE ||x||2> h

where x is the initial value at t = 0.
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Proof. We have

2
h h
E|x, — z|* =E —/ Vf(a:t)dt+¢§/ dB,
0 0

h 2
/ dB,
0

<9E +4E

/Oh Vf(x)dt

2

h
Do / Vf(a)dt| +4hd
0

s h 2
<2E (/0 ||Vf(a:t)—Vf(m)||dt+/0 ||Vf(ac)||dt> + 4hd

- . ,
<2F (L/ ||:cta:||dt+h||Vf(w)H> + 4hd
0

h 2
<ARE | L2 (/ mtm|dt> + B2 ||V f(@)|*| + 4hd
0

i h
Cind + 407K 1V f(a)|)* + 4L2h/ E|z; — x| dt
0

where () is due to Ito’s isometry, (i¢) is due to Cauchy-Schwarz inequality. By Gronwall’s inequality,
we obtain

E|a) — o <4h<d+hEHVf )*) exp {42202} .

Since ||V f()|| = ||V f() (0)|| < L |||, when 0 < h < 11, we finally reach at

E |z, — z|? < de7 (d+ 2hL*E ||a:||2) h<6 <d+ %E ||:1c||2> h

C.3 BOUND ON EVOLVED DEVIATION

Lemma C.3. Suppose Assumption[l| holds. Let z,y, be two solutions of overdamped Langevin
dynamics starting from x,y respectively, for 0 < h < we have the following representation

4nL’
Th—Yp =T Ytz
with
Bllz|* < TE |z -yl h.

Proof. Letz = (xp, —yp,) — (x —y) = — foh Vf(xs) — Vf(y,)ds. Ito’s lemma readily implies
that

h
Ellon ~ yul* B~ 9”28 [ (@~ 9, Vf(@) - VHy)ds
0

(@) 9 h 9
<Ele-yl* - 2m | Ele. -y, ds
0

<E |z - y|”
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where (7) is due to strong-convexity of f. We then have that

2

h
/0 Vf<ws>—w<ys>ds]

< ( [ |5t - vrw]| ds)

h h 2
<[ vas [ |94 - Vs as

2
Ellz]" = |E

h
<h /0 E||[Vf(z,) — V(y,)||* ds

h

§L2h/ E |z, — |2 ds
0

<L’E |z — y* h?

()m

2 o~y h

where (i) is due to h < 1. O

D SoOME PROPERTIES OF LMC ALGORITHM

D.1 LocAL STRONG ERROR

Lemma D.1. Suppose Assumption[I|holds. Denote the one-step iteration of LMC algorithm with
step size h by &1 and the solution of overdamped Langevin dynamics at time t = h by x;,. Both the
discrete algorithm and the continuous dynamics start from the same initial value x. If 0 < h < ﬁ,
then the local strong error of LMC algorithm satisfies

1

{Bllz:—2ul?}” < Cont

[N

with Cy = 2L <d+ mg ||m||2> .
Proof. We have for 0 < h < -,

2
E|z1 — zu|* =E

h
A V(2.) — Vf(x)ds

h 2
<E (/O [V£(xs) = V() ds)

h 2
<I’E (/ |z — ds>
0

W, " )
‘L h/ E |z, — o] ds
0

)
<312 (d + %]E ||w||2> B3

where (i) is due to Cauchy-Schwartz inequality and (77) is due to Lemma|C.2] Taking square roots
on both side completes the proof. O
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D.2 LocCAL WEAK ERROR

Lemma D.2. Suppose Assumption[l|and2|hold. Denote the one-step iteration of LMC algorithm
with step size h by &1 and the solution of overdamped Langevin dynamics at time t = h by xy,.
Both the dlscrete algorithm and the continuous dynamics start from the same initial value x. If
0<h< then the local weak error of LMC algorithm satisfies

|EZ, — Eap | < Cyh?

4L’

with Cy = 2L + G) (5 +E 2> +1) .
Proof. By Ito’s lemma, we have

AV f (1) = —V2f(wt)Vf(wt)dt+V(Af(:ct))dt+\/§/0 V2 f(2,)dB:.

It follows that

h
|Ez; — Exp|| = ||E [ Vf(xs)— Vf(x)ds
0

h s h s
- IE{/O /O v f(acr)Vf(m,.)+V(Af(sc,.))drds+\/§/o /O v f(:c,.)dB,.ds}

—|E { / ' / V(@) V() + V(Af(wr))drdé‘}

</ ' | &2 @)v st |aras+ [ ' [ eIV s dras

<L/ / E||Vf(z, Hdrds—&-/ / E||V(Af(x,))|| drds

é(L2+G/ /E||mr||drds+Gh2

2 h? G
<(L*+G) JEHxT—a:Hdrds—&—fEHwH +<h
(i4) h ps 2
<(L*+G) (/ / \/E||wr—:v||2drds+h2Ew|> +§h2
0o Jo

(#i1) h s B2
e (/ / \/6 <d+ mIE|:c||2) rdrds+]E||:c||) + G2
A 2 2 2

46 m 1 G
72 avo m 2 1 2, U9
=(L*+ G (15 <d+2IE||:1:||>h+2]E||:c||)h +2h

)
(w) 1
< (L% + G)h? \/(d+ OE ||a:||2> Bt SE|le)? + %hQ

(v)

<(L* + G)h* | — d +E || +Gh2
4kL

<(L*+G) [y — d +E |z +1 | h?

= 4KL

d 3
<9(L? E 1 2
<2( +G)(4L+ |m||+)h
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where (i) is due to Assumption[2] () is due to Jensen’s inequality, (iii) is due to Lemma[C.2} (iv) is
due to \/a + vb < v/2v/a? + b2 and (v) is due to h < - It is worth noting in the third equation
that the Ito’s correction term VA f can also be written as AV f as the two operators commute for C3
functions. O

D.3 BOUNDEDNESS OF LMC ALGORITHM

Lemma D.3. Suppose Assumption|l|holds. Denote the iterates of LMC by x. If 0 < h < ﬁ we
then have the iterates of LMC algorithm are uniformly upper bounded by

8d
El&x|* <Ellzol® + ——, Vk>0
m
Proof. We have
2
E |z | =E |25 — bV f(@0) + VIR,

Y |2k + h2E ||V f(@y)||” + 2hd — 28E (25, V f (k)
=E | &> + BE||Vf(@1) — V(O)|” + 2hd — 2hE(zx, V £ (21))

(41)

<E||z||* + h2L2E ||z1||* + 2hd — 2hE(zy, V f (1))
(#4d)
< E||@4]* + h2LE ||Z]|* + 2hd — 2mhE |24

(iv)
< (1 - th> E [|2Z4||* + 2hd

where (i) is due to the independence between ;. , ; and &y, (i) is due to Assumptionm (#4) is due to
the property of mn-strongly-convex functions, (V f(y) — Vf(x),y — ) > m |y — z||* Ve, y € R?,
and (iv) uses the assumption h < 1.

Unfolding the inequality, we obtain

7 7 7 8d
E[&]° < (1 - th)’“E [Zo|* + 2hd (1 +qmht (mh)k_1> < E x| + -

4 m

O
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