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A PROOF OF RESULTS IN SECTION 3

A.1 PROOF OF THEOREM 3.3 (GLOBAL INTEGRATION ERROR, INFINITE TIME VERSION)

Proof. We write the solution of an SDE by xt0,xt0
(t0 + t) when the dependence on initialization

needs highlight. Denote tk = kh and xtk = xk for better readability.

We will first make an easy observation that contraction and bounded 2nd-moment of the invariant
distribution lead to bounded 2nd-moment of the SDE solution for all time: let y0 be a random variable
following the invariant distribution of Eq. (1), i.e., y0 ∼ µ, then yt ∼ µ and

E ‖xt‖2 ≤2E ‖xt − yt‖
2

+ 2E ‖yt‖
2

≤2E ‖x0 − y0‖
2

exp(−2βt) + 2E ‖yt‖
2

≤4E(‖x0‖2 + ‖y0‖
2
) exp(−2βt) + 2E ‖yt‖

2

=4E ‖x0‖2 exp(−2βt) +
(
2 + 4 exp(−2βt)

)
Ey∼µ ‖y‖2

≤4E ‖x0‖2 + 6

∫
Rd

‖y‖2 dµ , U2

and then it follows that

E ‖x̄k‖2 ≤ 2E ‖x̄k − xk‖2 + 2E ‖xk‖2 ≤ 2e2
k + 2U2. (13)

Denote 〈x,y〉A = 〈Ax, Ay〉, ‖x‖A = ‖Ax‖ and

fk =
{
E ‖xk − x̄k‖2A

} 1
2

(14)

where A is the non-singular matrix from Equation (4). Also denote that largest and smallest singular
values of A by σmax and σmin, respectively, and the condition number of A by κA = σmax

σmin
. Recall

ek = E ‖xk − x̄k‖, it is easy to see that

σminek ≤ fk ≤ σmaxek. (15)

Further, we have the following decomposition

f2
k+1 =E ‖xk+1 − x̄k+1‖2A

=E
∥∥∥xtk,xtk

(tk+1)− xtk,x̄k
(tk+1) + xtk,x̄k

(tk+1)− x̄k+1

∥∥∥2

A

=E
∥∥∥xtk,xtk

(tk+1)− xtk,x̄k
(tk+1)

∥∥∥2

A︸ ︷︷ ︸
1

+E
∥∥xtk,x̄k

(tk+1)− x̄k+1

∥∥2

A︸ ︷︷ ︸
2

(16)

+ 2E〈A
(
xtk,xtk

(tk+1)− xtk,x̄k
(tk+1)

)
, A
(
xtk,x̄k

(tk+1)− x̄k+1

)
〉︸ ︷︷ ︸

3

.

Term 1 is taken care of the contraction property

E
∥∥∥xtk,xtk

(tk+1)− xtk,x̄k
(tk+1)

∥∥∥2

A
≤ f2

k exp(−2βh). (17)

Term 2 is dealt with by the bound on local strong error

E
∥∥xtk,x̄k

(tk+1)− x̄k+1

∥∥2

A
≤ σ2

max

(
C2

2 +D2
2E ‖x̄k‖

2
)
h2p2 . (18)
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Term 3 requires more efforts to cope with, and by the decomposition in Eq. (5) we have

E〈(xtk,xtk
(tk+1)− xtk,x̄k

(tk+1),xtk,x̄k
(tk+1)− x̄k+1〉A

=E〈xk − x̄k,xtk,x̄k
(tk+1)− x̄k+1〉A + E〈zh(xk, x̄k),xtk,x̄k

(tk+1)− x̄k+1〉A
(i)
=E〈xk − x̄k,E[xtk,x̄k

(tk+1)− x̄k+1|Fk]〉A + E〈zh(xk, x̄k),xtk,x̄k
(tk+1)− x̄k+1〉A

(ii)

≤ fk
(
E
∥∥E[xtk,x̄k

(tk+1)− x̄k+1|Fk]
∥∥2

A

) 1
2

+
(
E
∥∥zh(xk, x̄k)

∥∥2

A

) 1
2
(
E
∥∥xtk,x̄k

(tk+1)− x̄k+1

∥∥2

A

) 1
2

(iii)

≤ σmaxfk

(
E
∥∥E[xtk,x̄k

(tk+1)− x̄k+1|Fk]
∥∥2
) 1

2

+ σ2
max

(
E
∥∥zh(xk, x̄k)

∥∥2
) 1

2
(
E
∥∥xtk,x̄k

(tk+1)− x̄k+1

∥∥2
) 1

2

(iv)

≤ σmaxfk

(
C1 +D1

√
E ‖x̄k‖2

)
hp1 + κAσmaxC0fk

√
h

(
C2 +D2

√
E ‖x̄k‖2

)
hp2

(v)

≤κAσmax(C1 + C0C2)ekh
p2+ 1

2 + κAσmax(D1 + C0D2)

√
E ‖x̄k‖2fkhp2+ 1

2 (19)

where (i) uses the tower property of conditional expectation and Fk is the filtration at k-th iteration,
(ii) uses Cauchy-Schwarz inequality, (iii) is due to the relationship between ek and fk, (iv) is due to
local weak error, local strong error and Eq. (5), and (v) is due to p1 ≥ p2 + 1

2 and 0 < h ≤ h0 ≤ 1.

Now plug Eq. (17), (18) and (19) in Eq. (16), we obtain

f2
k+1 ≤f2

k exp(−2βh) + σ2
max

(
C2

2 +D2
2E ‖x̄k‖

2
)
h2p2 + κAσmax(C1 + C0C2)fkh

p2+ 1
2

+ κAσmax(D1 + C0D2)

√
E ‖x̄k‖2fkhp2+ 1

2

(i)

≤
(

1− 7

8
βh

)
f2
k + σ2

max

(
C2

2 +D2
2E ‖x̄k‖

2
)
h2p2 + κAσmax(C1 + C0C2)fkh

p2+ 1
2

+ κAσmax(D1 + C0D2)

√
E ‖x̄k‖2fkhp2+ 1

2

(ii)

≤
(

1− 7

8
βh

)
f2
k + κAσmax

(
C1 + C0C2 +

√
2U(D1 + C0D2)

)
fkh

p2+ 1
2 + 2κ2

AD
2
2f

2
kh

2p2

+
√

2κ2
A(D1 + C0D2)f2

kh
p2+ 1

2 + σ2
max

(
C2

2 + 2D2
2U

2
)
h2p2

(iii)

≤
(

1− 7

8
βh

)
f2
k + κAσmax

(
C1 + C0C2 +

√
2U(D1 + C0D2)

)
fkh

p2+ 1
2 +

3β

8
f2
kh

+ σ2
max

(
C2

2 + 2D2
2U

2
)
h2p2

=

(
1− 1

2
βh

)
f2
k + κAσmax

(
C1 + C0C2 +

√
2U(D1 + C0D2)

)
fkh

p2+ 1
2

+ σ2
max

(
C2

2 + 2D2
2U

2
)
h2p2

(iv)

≤
(

1− 1

2
βh

)
f2
k +

β

4
f2
kh+

κ2
Aσ

2
max

(
C1 + C0C2 +

√
2U(D1 + C0D2)

)2

β
h2p2

+ σ2
max

(
C2

2 + 2D2
2U

2
)
h2p2

=

(
1− 1

4
βh

)
f2
k + κ2

Aσ
2
max


(
C1 + C0C2 +

√
2U(D1 + C0D2)

)2

β
+ C2

2 + 2D2
2U

2

h2p2

where (i) is due to the assumption 0 < h ≤ 1
4β and e−x ≤ 1 − x + x2

2 for 0 < x < 1,

(ii) is due to the upper bound on E ‖x̄k‖2 in Eq. (13), (iii) holds provided when h ≤

14
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min

( √
β

4
√

2κAD2

) 1

p2− 1
2 ,

(
β

8
√

2κ2
A(D1+C0D2)

) 1

p2− 1
2

 and (iv) is due to Cauchy-Schwarz inequal-

ity.

Unfolding the above inequality gives us

f2
k+1 ≤

4

β
κ2
Aσ

2
max


(
C1 + C0C2 +

√
2U(D1 + C0D2)

)2

β
+ C2

2 + 2D2
2U

2

h2p2−1.

Taking square root on both sides and using
√
a2 + b2 + c2 ≤ a+ b+ c,∀a, b, c ≥ 0 yields

fk+1 ≤
2√
β
κAσmax

(
C1 + C0C2 +

√
2U(D1 + C0D2)√
β

+ C2 +
√

2D2U

)
hp2−

1
2 .

Finally using the relationship between ek and fk, we obtain

ek ≤
2√
β
κ2
A

(
C1 + C0C2 +

√
2U(D1 + C0D2)√
β

+ C2 +
√

2D2U

)
hp2−

1
2 .

A.2 PROOF OF THEOREM 3.4 (NON-ASYMPTOTIC SAMPLING ERROR BOUND: GENERAL
CASE)

Proof. Let y0 ∼ µ and (x0,y0) are coupled such that E ‖x0 − y0‖
2

= W 2
2 (Law(x0), µ). Denote

the solution of Eq. (1) starting from x0,y0 by xt,yt respectively, and tk = kh. We have

W2(Law(x̄k), µ) ≤W2(Law(x̄k),Law(xtk)) +W2(Law(xtk), µ)

≤
√
E
∥∥x̄k − xtk∥∥2

+

√
E
∥∥∥xtk − ytk∥∥∥2

(i)

≤ek +

√
E ‖x0 − y0‖

2
exp (−2βtk)

=ek + exp (−βtk)W2(Law(x0), µ)

where (i) is due to the contraction assumption on Eq. (1). Invoking the conclusion of Theorem 3.3
completes the proof.

A.3 PROOF OF COROLLARY 3.5 (UPPER BOUND OF MIXING TIME: GENERAL CASE)

Proof. Given any tolerance ε > 0, we know from Theorem 3.4 that if k is large enough and h is
small enough such that

exp (−βkh)W2(Law(x0), µ) ≤ ε

2
. (20)

Chp2−
1
2 ≤ ε

2
(21)

we then have W2(Law(x̄k), µ) ≤ ε. Solving Inequality (20) yields

k ≥ 1

βh
log

2W2(Law(x0), µ)

ε
, k? (22)

To minimize the lower bound, we want pick step size h as large as possible. Besides h ≤ h1, Eq.
(21) poses further constraint on h, hence we have

h ≤ min

h1,

(
ε

2C

) 1

p2− 1
2

 .
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Plug the upper bound of h in Eq. (22), we have

k? = max

 1

βh1
,

1

β

(
2C

ε

) 1

p2− 1
2

 log
2W2(Law(x0), µ)

ε
.

When high accuracy is needed, i.e., ε < 2Ch
p2− 1

2
1 , we have

k? =
(2C)

1

p2− 1
2

β

1

ε
1

p2− 1
2

log
2W2(Law(x0), µ)

ε
= Õ

C 1

p2− 1
2

β

1

ε
1

p2− 1
2

 .

B PROOF OF RESULTS IN SECTION 4

B.1 PROOF OF THEOREM 4.1 (NON-ASYMPTOTIC ERROR BOUND: LMC)

Proof. From Lemma C.1 we know that Langevin dynamics is a member of the family of contractive
SDE, and with a contraction rate of strong-convexity coefficient β = m (w.r.t. identity matrix Id×d).

Next, we will need to work out the constants C0, C1, D1, D2, C2 needed in Theorem 3.3. We have
C0 =

√
m
2 , implied from Lemma C.3.

The local strong error and local weak error are bounded in Lemma D.1 and D.2 respectively. Note
that the coefficient C̃1/C̃2 in the bound for local strong/weak error depends on initial value, which
changes from iteration to iteration. Combined with Lemma D.3, we would obtain C1 and C2, namely

C̃1 ≤ 2(L2 +G)

(
d

4κL
+ E ‖x0‖2 +

8d

7m
+ 1

) 1
2

≤ 2(L2 +G)

√
2d

m
+ E ‖x0‖2 + 1 , C1

and

C̃2 ≤ 2L

(
d+

m

2

(
E ‖x0‖2 +

8d

7m

)) 1
2

≤ 2L
√
m

√
2d

m
+ E ‖x0‖2 + 1 , C2.

We collect all constants here in the proof for easier reference

A = Id×d, κA = 1, β = m, h0 =
1

4κL
, C0 =

√
m

2
,

C1 = 2(L2 +G)

√
2d

m
+ E ‖x0‖2 + 1, D1 = 0

C2 = 2L
√
m

√
2d

m
+ E ‖x0‖2 + 1, D2 = 0.

Then the constant in Theorem 3.3 for LMC algorithm simplifies to

C =
2√
β

(
C1 + C0C2√

β
+ C2

)
,

≤ 10(L2 +G)

m
3
2

√
2d+m

(
E ‖x0‖2 + 1

)
, CLMC.

Assuming L,m,G are all constants and independent of d, then clearly CLMC = O(
√
d). Then

applying Theorem 3.4 to LMC, we have

W2(Law(x̄k), µ) ≤ e−mkhW2(Law(x0), µ) + CLMCh (23)

for 0 < h ≤ 1
4κL .
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B.2 PROOF OF THEOREM 4.3 (LOWER BOUND OF MIXING TIME)

Proof. If we start from x0 = 12d and run LMC for the potential function in Eq. (11), we then have

(x̄k)i =

{
(1−mh)k(x0)i +

√
2h
∑k
l=1(1−mh)k−l(ξl)i, 1 ≤ i ≤ d

(1− Lh)k(x0)i +
√

2h
∑k
l=1(1− Lh)k−l(ξl)i, d+ 1 ≤ i ≤ 2d

and hence

(x̄k)i ∼

N
(

(1−mh)k, 2
m(2−mh)

(
1− (1−mh)2k

))
, 1 ≤ i ≤ d

N
(

(1− Lh)k, 2
L(2−Lh)

(
1− (1− Lh)2k

))
, d+ 1 ≤ i ≤ 2d

Clearly, stability requires h < 2
L .

The squared 2-Wasserstein distance between the law of the k-th iterate of LMC and target distribution
is

W 2
2 (Law(x̄k), µ) =d(1−mh)2k +

d

m

(√
2

2−mh

√
1− (1−mh)2k − 1

)2

+d(1− Lh)2k +
d

L

(√
2

2− Lh

√
1− (1− Lh)2k − 1

)2

.

Suppose W2(Law(x̄k), µ) ≤ ε, we then must have

d(1−mh)2k ≤ε2 (24)

d

m

(√
2

2−mh

√
1− (1−mh)2k − 1

)2

≤ε2. (25)

A necessary condition of Eq. (25) is that

1 +

√
m√
d
ε ≥

√
2

2−mh

√
1− (1−mh)2k

(i)

≥
√

2

2−mh

√
1− ε2

d
(26)

where (i) is due to Eq. (24). It follows from Eq. (26) and m = 1 that

h ≤ 4

1 + ε√
d

ε√
d
≤ 4ε√

d
. (27)

Revisiting Eq. (24) yields

ε2 ≥ d(1−mh)2k
(i)

≥ d

(
1− 2mh+

(2mh)2

2

)2k
(ii)

≥ de−4mkh

⇐⇒ k ≥ 1

2hm
log

√
d

ε
(28)

where (i) is due to mh < 2
κ <

1
2 and (ii) is due to e−x ≤ 1− x+ x2

2 , 0 < x < 1.

Combine Eq. (27) and (28), we then obtain a lower bound of the mixing time

k ≥
√
d

8mε
log

√
d

ε
=

√
d

8ε
log

√
d

ε
= Ω̃

(√
d

ε

)
.
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C SOME PROPERTIES OF LANGEVIN DYNAMICS

C.1 CONTRACTION OF LANGEVIN DYNAMICS

Lemma C.1. Suppose Assumption 1 holds. Then two copies of overdamped Langevin dynamics have
the following contraction property

{
E ‖yt − xt‖

2
} 1

2 ≤
{
E ‖y − x‖2

} 1
2

exp(−mt)

where x,y are the initial values of xt,yt.

Proof. First assume x,y are deterministic. Suppose xt,yt are respectively the solutions to

dxt =−∇f(xt)dt+
√

2dBt

dyt =−∇f(yt)dt+
√

2dBt

whereBt is a standard d-dimensional Brownian motion. Denote Lt = 1
2E ‖yt − xt‖

2 and take time
derivative, we obtain

d

dt
Lt = −E〈yt − xt,∇f(yt)−∇f(xt)〉

(i)

≤ −mE ‖yt − xt‖
2

= −2mLt

where (i) is due to the strong-convexity assumption made on f . We then obtain Lt ≤ L0 exp(−2mt)
and it follows by Gronwall’s inequality that

{
E ‖yt − xt‖

2
} 1

2 ≤ ‖y − x‖ exp(−mt).

When x,y are random, by the conditioning version of the above inequality and Jensen’s inequality,
we have

E

[
E ‖yt − xt‖

2

∣∣∣∣x,y
]

1
2

≤
{
E ‖y − x‖2 exp(−2mt)

} 1
2

=
{
E ‖y − x‖2

} 1
2

exp(−mt).

C.2 GROWTH BOUND OF LANGEVIN DYNAMICS

Lemma C.2. Suppose Assumption 1 holds, then when 0 ≤ h ≤ 1
4κL , the solution of overdamped

Langevin dynamics xt satisfies

E ‖xh − x‖2 ≤ 6

(
d+

m

2
E ‖x‖2

)
h

where x is the initial value at t = 0.

18
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Proof. We have

E ‖xh − x‖2 =E

∥∥∥∥∥−
∫ h

0

∇f(xt)dt+
√

2

∫ h

0

dBt

∥∥∥∥∥
2

≤2E

∥∥∥∥∥
∫ h

0

∇f(xt)dt

∥∥∥∥∥
2

+ 4E

∥∥∥∥∥
∫ h

0

dBt

∥∥∥∥∥
2

(i)
=2E

∥∥∥∥∥
∫ h

0

∇f(xt)dt

∥∥∥∥∥
2

+ 4hd

≤2E

(∫ h

0

∥∥∇f(xt)−∇f(x)
∥∥ dt+

∫ h

0

∥∥∇f(x)
∥∥ dt)2

+ 4hd

≤2E

(L∫ h

0

‖xt − x‖ dt+ h
∥∥∇f(x)

∥∥)2
+ 4hd

≤4E

L2

(∫ h

0

‖xt − x‖ dt

)2

+ h2
∥∥∇f(x)

∥∥2

+ 4hd

(ii)

≤ 4hd+ 4h2E
∥∥∇f(x)

∥∥2
+ 4L2h

∫ h

0

E ‖xt − x‖2 dt

where (i) is due to Ito’s isometry, (ii) is due to Cauchy-Schwarz inequality. By Gronwall’s inequality,
we obtain

E ‖xh − x‖2 ≤ 4h
(
d+ hE

∥∥∇f(x)
∥∥2
)

exp
{

4L2h2
}
.

Since
∥∥∇f(x)

∥∥ =
∥∥∇f(x)−∇f(0)

∥∥ ≤ L ‖x‖, when 0 < h ≤ 1
4κL , we finally reach at

E ‖xh − x‖2 ≤ 4e
1
4

(
d+ 2hL2E ‖x‖2

)
h ≤ 6

(
d+

m

2
E ‖x‖2

)
h.

C.3 BOUND ON EVOLVED DEVIATION

Lemma C.3. Suppose Assumption 1 holds. Let xt,yt be two solutions of overdamped Langevin
dynamics starting from x,y respectively, for 0 < h ≤ 1

4κL , we have the following representation

xh − yh = x− y + z

with

E ‖z‖2 ≤ m

4
E ‖x− y‖2 h.

Proof. Let z = (xh − yh)− (x− y) = −
∫ h

0
∇f(xs)−∇f(ys)ds. Ito’s lemma readily implies

that

E ‖xh − yh‖
2

=E ‖x− y‖2 − 2E
∫ h

0

〈xs − ys,∇f(xs)−∇f(ys)〉ds

(i)

≤E ‖x− y‖2 − 2m

∫ h

0

E ‖xs − ys‖
2
ds

≤E ‖x− y‖2
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where (i) is due to strong-convexity of f . We then have that

E ‖z‖2 =

∥∥∥∥∥∥E
[∫ h

0

∇f(xs)−∇f(ys)ds

]∥∥∥∥∥∥
2

≤

(∫ h

0

∥∥∥E [∇f(xs)−∇f(ys)
]∥∥∥ ds)2

≤
∫ h

0

12ds

∫ h

0

∥∥∥E [∇f(xs)−∇f(ys)
]∥∥∥2

ds

≤h
∫ h

0

E
∥∥∇f(xs)−∇f(ys)

∥∥2
ds

≤L2h

∫ h

0

E ‖xs − ys‖
2
ds

≤L2E ‖x− y‖2 h2

(i)

≤m
4
E ‖x− y‖2 h

where (i) is due to h ≤ 1
4κL .

D SOME PROPERTIES OF LMC ALGORITHM

D.1 LOCAL STRONG ERROR

Lemma D.1. Suppose Assumption 1 holds. Denote the one-step iteration of LMC algorithm with
step size h by x̄1 and the solution of overdamped Langevin dynamics at time t = h by xh. Both the
discrete algorithm and the continuous dynamics start from the same initial value x. If 0 ≤ h ≤ 1

4κL ,
then the local strong error of LMC algorithm satisfies{

E ‖x̄1 − xh‖2
} 1

2 ≤ C̃2h
3
2

with C̃2 = 2L
(
d+ m

2 E ‖x‖
2
) 1

2

.

Proof. We have for 0 ≤ h ≤ 1
4κL ,

E ‖x̄1 − xh‖2 =E

∥∥∥∥∥
∫ h

0

∇f(xs)−∇f(x)ds

∥∥∥∥∥
2

≤E

(∫ h

0

∥∥∇f(xs)−∇f(x)
∥∥ ds)2

≤L2E

(∫ h

0

‖xs − x‖ ds

)2

(i)

≤L2h

∫ h

0

E ‖xs − x‖2 ds

(ii)

≤ 3L2

(
d+

m

2
E ‖x‖2

)
h3

where (i) is due to Cauchy-Schwartz inequality and (ii) is due to Lemma C.2. Taking square roots
on both side completes the proof.
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D.2 LOCAL WEAK ERROR

Lemma D.2. Suppose Assumption 1 and 2 hold. Denote the one-step iteration of LMC algorithm
with step size h by x̄1 and the solution of overdamped Langevin dynamics at time t = h by xh.
Both the discrete algorithm and the continuous dynamics start from the same initial value x. If
0 ≤ h ≤ 1

4κL , then the local weak error of LMC algorithm satisfies

‖Ex̄1 − Exh‖ ≤ C̃1h
2

with C̃1 = 2(L2 +G)
(

d
4κL + E ‖x‖2 + 1

) 1
2

.

Proof. By Ito’s lemma, we have

d∇f(xt) = −∇2f(xt)∇f(xt)dt+∇(∆f(xt))dt+
√

2

∫ t

0

∇2f(xt)dBt.

It follows that

‖Ex̄1 − Exh‖ =

∥∥∥∥∥E
∫ h

0

∇f(xs)−∇f(x)ds

∥∥∥∥∥
=

∥∥∥∥∥∥E
{∫ h

0

∫ s

0

−∇2f(xr)∇f(xr) +∇(∆f(xr))drds+
√

2

∫ h

0

∫ s

0

∇2f(xr)dBrds

}∥∥∥∥∥∥
=

∥∥∥∥∥∥E
{∫ h

0

∫ s

0

−∇2f(xr)∇f(xr) +∇(∆f(xr))drds

}∥∥∥∥∥∥
≤
∫ h

0

∫ s

0

E
∥∥∥∇2f(xr)∇f(xr)

∥∥∥ drds+

∫ h

0

∫ s

0

E
∥∥∇(∆f(xr))

∥∥ drds
≤L

∫ h

0

∫ s

0

E
∥∥∇f(xr)

∥∥ drds+

∫ h

0

∫ s

0

E
∥∥∇(∆f(xr))

∥∥ drds
(i)

≤(L2 +G)

∫ h

0

∫ s

0

E ‖xr‖ drds+
G

2
h2

≤(L2 +G)

(∫ h

0

∫ s

0

E ‖xr − x‖ drds+
h2

2
E ‖x‖

)
+
G

2
h2

(ii)

≤ (L2 +G)

(∫ h

0

∫ s

0

√
E ‖xr − x‖2drds+

h2

2
E ‖x‖

)
+
G

2
h2

(iii)

≤ (L2 +G)

∫ h

0

∫ s

0

√
6

(
d+

m

2
E ‖x‖2

)
rdrds+

h2

2
E ‖x‖

+
G

2
h2

=(L2 +G)

4
√

6

15

√(
d+

m

2
E ‖x‖2

)
h+

1

2
E ‖x‖

h2 +
G

2
h2

(iv)

≤ (L2 +G)h2

√(
d+

m

2
E ‖x‖2

)
h+

1

2
E ‖x‖2 +

G

2
h2

(v)

≤ (L2 +G)h2

√
d

4κL
+ E ‖x‖2 +

G

2
h2

≤(L2 +G)

(√
d

4κL
+ E ‖x‖2 + 1

)
h2

≤2(L2 +G)

(
d

4κL
+ E ‖x‖2 + 1

) 1
2

h2
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where (i) is due to Assumption 2, (ii) is due to Jensen’s inequality, (iii) is due to Lemma C.2, (iv) is
due to

√
a+
√
b ≤
√

2
√
a2 + b2 and (v) is due to h ≤ 1

4κL . It is worth noting in the third equation
that the Ito’s correction term ∇∆f can also be written as ∆∇f as the two operators commute for C3

functions.

D.3 BOUNDEDNESS OF LMC ALGORITHM

Lemma D.3. Suppose Assumption 1 holds. Denote the iterates of LMC by x̄k. If 0 ≤ h ≤ 1
4κL we

then have the iterates of LMC algorithm are uniformly upper bounded by

E ‖x̄k‖2 ≤ E ‖x0‖2 +
8d

7m
, ∀k ≥ 0

Proof. We have

E ‖x̄k+1‖2 =E
∥∥∥x̄k − h∇f(x̄k) +

√
2hξk+1

∥∥∥2

(i)
=E ‖x̄k‖2 + h2E

∥∥∇f(x̄k)
∥∥2

+ 2hd− 2hE〈x̄k,∇f(x̄k)〉

=E ‖x̄k‖2 + h2E
∥∥∇f(x̄k)−∇f(0)

∥∥2
+ 2hd− 2hE〈x̄k,∇f(x̄k)〉

(ii)

≤ E ‖x̄k‖2 + h2L2E ‖x̄k‖2 + 2hd− 2hE〈x̄k,∇f(x̄k)〉
(iii)

≤ E ‖x̄k‖2 + h2L2E ‖x̄k‖2 + 2hd− 2mhE ‖x̄k‖2

(iv)

≤
(

1− 7

4
mh

)
E ‖x̄k‖2 + 2hd

where (i) is due to the independence between ξk+1 and x̄k, (ii) is due to Assumption 1, (iii) is due to
the property of m-strongly-convex functions, 〈∇f(y)−∇f(x),y−x〉 ≥ m ‖y − x‖2 ∀x,y ∈ Rd,
and (iv) uses the assumption h ≤ 1

4κL .

Unfolding the inequality, we obtain

E ‖x̄k‖2 ≤ (1− 7

4
mh)kE ‖x̄0‖2 + 2hd

(
1 +

7

4
mh+ · · ·+ (

7

4
mh)k−1

)
≤ E ‖x0‖2 +

8d

7m
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