
A Additional Details

Figure 1: Comparison of the three primary architectures used in this work and the relation between
them. The three architectures are vanilla encoder-decoder (VED), encoder-decoder with attention (AED), and
attention only (AO). The encoder RNNs, decoder RNNs, and linear readout layer are showing in orange, purple,
and green, respectively. Recurrent connections between RNNs are shown in blue, attention-based connections
and computational blocks are shown in gold. For AO, the grey circles represent locations where positional
encoding is added to the inputs. Note AED’s linear readout layer takes in both the context vector from attention
as well as the decoder’s output.

In this section we provide additional details regarding the architectures, temporal-input component
decomposition, datasets, RNNs, and training used in this work.

As a reminder, the encoder and decoder hidden states are denoted by hE
t and hD

s , respectively, while
inputs to the encoder and decoder are denoted by xE

t and xD
s .

A.1 Architectures

A summary of the three architectures we focus on—vanilla encoder-decoder, encoder-decoder with
attention, and attention only—in this work is shown in Fig. 1. Intuitively, the architectures are related
as follows: AED has attention and recurrence, VED and AO are the same as AED with the attention
and recurrence removed, respectively (for AO, we also add positional encoding).

Vanilla Encoder Decoder

The encoder and decoder update expression are

hE
t = FE(hE

t−1,x
E
t ) , hD

s = FD(hD
s−1,x

D
s ) , (1)

respectively. Here, FD and FE are the functions that implement the hidden state updates, which in
this work are each one of three modern RNN architectures: LSTMs (Hochreiter & Schmidhuber,
1997), GRUs (Cho et al., 2014), or UGRNNs (Collins et al., 2016). The final encoder hidden state is
the decoder’s initial hidden state, so that hD

0 = hE
T . The decoder hidden states are passed through a

linear layer to get the output logits at each time step, ys = WhD
s + b, with the following decoder

input, xD
s+1, determined by the word corresponding to the maximum output logit, argmax(ys).

Encoder Decoder with Attention

The encoder-decoder with attention architecture is identical to the VED architecture above with a
simple attention mechanism added (Bahdanau et al., 2014; Luong et al., 2015). For time step s of the
decoder, we compute a context vector cs, a weighted sum of encoder hidden states,

cs :=

T∑
t=1

αsth
E
t , αst :=

east∑T
t′=1 e

ast′
. (2)

Here, αt := softmax (a1t, . . . , aSt) is the t-th column of the attention matrix and ast := hD
s · hE

t
the alignment between a given decoder and encoder hidden state. Furthermore, the outputs are now
determined by passing both the decoder hidden state and the context vector through the linear layer,
i.e. ys = W[hD

s , cs] + b, where [·, ·] denotes concatenation Luong et al. (2015).
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Attention Only

Attention only is identical to the AED network above, but simply eliminates the recurrent information
passed from one RNN cell to the next. Since this eliminates any sense of temporal ordering in the
sequences, we also add fixed positional encoding vectors (Vaswani et al., 2017), pE

t and pD
s to the

encoder and decoder inputs. Together, this means the hidden state update expressions are now

hE
t = FE(0,xE

t + pE
t ) , hD

s = FD(0,xD
s + pD

s ) . (3)

Note the RNN functions FE and FD simply act as feedforward networks in this setting. Lastly, the
output logits are now determined solely from the context vector, ys = Wcs + b.

Although using gated RNNs cells as feedforward networks is fairly non-standard, our primary
motivation is to keep the AED and AO architectures as similar as possible in order to isolate the
differences that arise from recurrence and positional encoding. Below we discuss a non-gated
feedforward variant that we also briefly investigate.

Note the elimination of recurrence means the entire encoder hidden states sequence can be computed
in parallel. This architecture is meant to be a simplified model of a Transformer (Vaswani et al.,
2017). The hidden states output by the RNN simultaneous fill the role of the usual keys, queries, and
values of a Transformer. Additionally, there is no self-attention mechanism, only a single “head” of
attention, and no residual connections.

Positional Encoding For a d-dimensional embedding dimension at time t, we add the vector pE
t

with i = 0, . . . , d− 1 components:

pE
t,i =

{
sin
(

t
τ i/d

)
i even

cos
(

t
τ(i−1)/d

)
i odd

(4)

with τ some temporal scale that should be related to the phrase length. This is the same positional
encoding used in Vaswani et al. (2017), and we use the same encoding for both the encoder (pE

t ) and
decoder ( pD

t ).

Non-Gated Variant As mentioned above, we use a gated-RNN with its recurrence cut as a feed-
forward network. Since this is fairly non-standard, we also verify some of our results on non-gated
feedforward architectures. The non-gated variant of AO uses a the following hidden-state updates

hE
t = F ′E(xE

t ) := tanh
(
WExE

t + bE) , (5a)

hD
s = F ′D(xD

s ) := tanh
(
WDxD

s + bD) , (5b)

with tanh acting pointwise. This architecture is identical to the version of AO used above, but the
hidden state updates are now

hE
t = F ′E(xE

t + pE
t ) , hD

s = F ′D(xD
s + pD

s ) . (6)

Below, we show that we find the qualitative results of this network are the same as the gated
version, and thus our results do not seem to be dependent upon the gating mechanisms present in the
feedforward networks of the AO architecture.

A.2 Temporal and Input Components

We define the temporal components to be the average hidden state at a given time step. In practice,
we estimate such averages using a test set of size M , so that the temporal components are given by

µE
t ≈

∑M
α=1 1≤EoS,αh

E
t,α∑M

β=1 1≤EoS,β
, (7a)

µD
s ≈

∑M
α=1 1≤EoS,αh

D
s,α∑M

β=1 1≤EoS,β
, (7b)

with hE
t,α the encoder hidden state of the αth sample and 1≤EoS,α is a mask that is zero if the αth

sample is beyond the end of sentence. Next, we define the encoder input components to be the average
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of hE
t − µE

t for all hidden states that immediately follow a given input word (and similarly for the
decoder input components). Once again, we estimate the input components using a test set of size M ,

χE (xt,α) ≈

∑M
β=1

∑T
t′=1 1xt,α,xt′,β

(
hE
t′,β − µE

t′

)
∑M
γ=1

∑T
t′′=1 1xt,α,xt′′,γ

, (8a)

χD (xs,α) ≈

∑M
β=1

∑S
s′=1 1xs,α,xs′,β

(
hD
s′,β − µD

s′

)
∑M
γ=1

∑S
s′′=1 1xs,α,xs′′,γ

, (8b)

where 1xt,α,xt′,β is a mask that is zero if xt,α 6= xt′,β and we have temporally suppressed the
superscripts on the inputs for brevity. With the above definitions, we can decompose encoder and
decoder hidden states resulting from the αth sample as

hE
t,α = µE

t + χE (xE
t,α

)
+ ∆hE

t,α , (9a)

hD
s,α = µD

s + χD (xD
s,α

)
+ ∆hD

s,α , (9b)
with the delta components defined to be whatever is leftover in the hidden state after subtracting out
the temporal and input components,

∆hE
t,α := hE

t,α − µE
t − χE (xE

t,α

)
, (10a)

∆hD
s,α := hD

s,α − µD
s − χD (xD

s,α

)
. (10b)

In the main text we use the shorthand χE
x = χE

(
xE
t,α

)
and χD

y = χD
(
xD
s,α

)
(since for the decoder,

the previous time step’s output, ys−1 is passed as the next input). We will often suppress the batch
index, so altogether the decomposition is written in the main text as

hE
t = µE

t + χE
x + ∆hE

t , (11a)

hD
s = µD

s + χD
y + ∆hD

s . (11b)

The intuition behind this decomposition is that it is an attempt to isolate the temporal and input
behavior of the network’s hidden state updates FE and FD. This partially motivated by the fact that, if
FE were linear, then the encoder hidden state update for AO could be written as

hE
t = FE(0,xE

t + pE
t ) = FE(0,xE

t ) + FE(0,pE
t ) . (12)

Notably, the first term is only dependent upon the input and the second term is only dependent upon
the sequence index (through the positional encoding). In this case, the temporal and input component
would exactly capture the time and input dependence of the hidden states, respectively. Of course, FE
is not in general linear, but we still find such a decomposition useful for interpretation.

Alignment Using the above decomposition, we can write the alignment as a sum of nine terms:
ast =

(
µD
s + χD

y + ∆hD
s

)
·
(
µE
t + χE

x + ∆hE
t

)
= µD

s · µE
t + µD

s · χE
x + µD

s ·∆hE
t

+ χD
y · µE

t + χD
y · χE

x + χD
y ·∆hE

t

+ ∆hD
s · µE

t + ∆hD
s · χE

x + ∆hD
s ·∆hE

t (13a)

:=

9∑
I=1

a
(I)
st , (13b)

with a(I)st for I = 1, . . . , 9 defined as the nine terms which sequentially appear after the second
equality (i.e. a(1)st := µD

s · µE
t , a(2)st := µD

s · χE
x, and so on).

In the main text, we measure the breakdown of the alignment scores from each of the nine terms.
Define the contributions from one of the nine terms as

A
(I)
st :=

∣∣∣a(I)st ∣∣∣∑9
J=1

∣∣∣a(J)st

∣∣∣ , (14)

where the absolute values are necessary because contributions to the dot product alignment can be
positive or negative.
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Input Phrase Output Phrase
run 〈.〉 jump 〈.〉 walk 〈.〉 RUN 〈.〉 JUMP 〈.〉WALK 〈.〉
run left 〈.〉 LTURN RUN 〈.〉
run twice 〈.〉 jump 〈.〉 RUN RUN 〈.〉 JUMP 〈.〉
run and jump 〈.〉 RUN JUMP 〈.〉

Table 1: Extended SCAN example phrases.

A.3 Datasets

One-to-One Dataset This is a simple sequence to sequence task consisting variable length phrases
with input and output words that are in one-to-one correspondence. At each time step, a word from a
word bank of size N is randomly chosen (uniformly), and as such there is no correlation between
words at different time steps. The length of a given input phrase is predetermined and also drawn a
uniform distribution. After an input phrase is generated, the corresponding output phrase is created by
individually translating each word. All input words translate to a unique output word and translations
are solely dependent upon the input word. An example one-to-one dataset would be converting a
sequence of letters to their corresponding position in the alphabet, {B,A,C,A,A} → {2, 1, 3, 1, 1}.
Note the task of simply repeating the input phrase as the output is also one-to-one.

Due to the small vocabulary size, one-hot encoding is used for input phrases. Train and test sets are
generated dynamically.

Extended SCAN Extended SCAN (eSCAN) is a modified version of the SCAN dataset Lake &
Baroni (2018). The SCAN dataset is a sequence-to-sequence task consisting of translating simple
input commands into output actions. SCAN consists of roughly 20,000 phrases, with a maximum
input and output phrase lengths of 9 and 49, respectively. A few relevant example phrases of eSCAN
are shown in Table 1.

The eSCAN dataset modifies SCAN in two ways:

1. It takes only a subset of SCAN in which input phrases solely consist of a chosen subset
of SCAN words. This allows us to isolate particular behaviors present in SCAN as well
as eliminate certain word combinations that would require far-from diagonal attention
mechanisms (e.g. it allows us to avoid the input subphrase ‘run around thrice’ that yields an
output subphrase of length 24).

2. After a subset of SCAN phrases has been chosen, phrases are randomly drawn (uniformly)
and concatenated together until a phrase of the desired length range is created. Individual
SCAN phrases are separated by a special word token (a period). This allows us to generate
phrases that are much longer than the phrases encountered in the SCAN dataset and also
control the variance of phrase lengths.

The eSCAN dataset allows us to gradually increase a phrase’s complexity while having control over
phrase lengths. At its simplest, eSCAN can also be one-to-one if one restricts to input phrases with
some combination of the words ‘run’, ‘walk’, ‘jump’, and ‘look’.

Throughout the main text, we use the subset of SCAN that contains the words ‘run’, ‘walk’, ‘jump’,
‘and’, ‘left’, and ‘twice’ with lengths ranging from 10 to 15. Furthermore, we omit combinations that
require a composition of rules, e.g. the phrase ‘jump left twice’ that requires the network to both
understand the reversing of ‘jump left’ and the repetition of ‘twice’. Although it would be interesting
to study if and how the network learns such compositions, we leave such studies for future work.
This results in 90 distinct subphrases prior to concatenation, with a maximum input and output length
of 5 and 4, respectively. Post concatenation, there are over a million distinct phrases for phrases of
length 10 to 15. Once again, one-hot encoding is used for the input and output phrases and train/test
sets are generated dynamically.

Translation Dataset Our natural-language translation dataset is the ParaCrawl Corpus, or Web
Scale Parallel Corpora for European Languages (Bañón et al., 2020); we train models to translate
between English and French, using the release of the dataset available in TensorFlow Datasets. This
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release of ParaCrawl features 31,374,161 parallel English/French sentences; as we train our models
for 30,000 steps using a batch size of 64, we do not encounter all examples during training.

To aid interpretability, we tokenize the dataset at the word level, by first converting all characters
to lowercase, separating punctuation from words, and splitting on whitespace. Using 10 million
randomly chosen sentences from the dataset, we build a vocabulary consisting of the 30,000 most
commonly occurring words. We filter sentences which are longer than 15 tokens.

A.4 Recurrent Neural Networks

The three types of RNNs we use in this work are specified below. W and b represent trainable
weight matrices and bias parameters, respectively, and ht denotes the hidden state at timestep t
(representing either the encoder or decoder). All other vectors (ct,gt, rt, it, ft) represent intermediate
quantities at time step t; σ(·) represents a pointwise sigmoid nonlinearity; and f(·) is the pointwise
tanh nonlinearity.

Gated Recurrent Unit (GRU) The hidden state update expression for the GRU Cho et al. (2014)
is given by

ht = gt · ht−1 + (1− gt) · ct , (15a)

with

ct = f
(
Wch(r · ht−1) + Wcxxt + bc) , (15b)

gt = σ
(
Wghht−1 + Wgxxt + bg) , (15c)

rt = σ
(
Wrhht−1 + Wrxxt + br) , (15d)

Update-Gate RNN (UGRNN) The hidden state update expression for the UGRNN Collins et al.
(2016) is given by

ht = gt · ht−1 + (1− gt) · ct , (16a)

with

ct = f
(
Wchht−1 + Wcxxt + bc) , (16b)

gt = σ
(
Wghht−1 + Wgxxt + bg) , (16c)

Long-Short-Term-Memory (LSTM) Unlike the GRU and the UGRNN, the LSTM Hochreiter &
Schmidhuber (1997) transfers both a “hidden state” and a cell state from one time step to the next. In
order to cast the LSTM update expressions into the same form as the GRU and UGRNN, we define
its hidden state to be

ht =
[
ct, h̃t

]
, (17a)

with the update expression given by

h̃t = f(ct) · σ
(
Whhht−1 + Whxxt + bh) , (17b)

ct = ft · ct−1 + i · σ
(
Wchh̃t−1 + Wcxxt + bc

)
, (17c)

it = σ
(
Wihht−1 + Wixxt + bi) , (17d)

ft = σ
(
Wfhht−1 + Wfxxt + bf) . (17e)

For the LSTM, we only use h̃E
t and h̃D

s for the determination of the context vector and as the decoder
output that is passed to the readout. That is, for AED, ys = W[h̃D

s , cs] + b with cs the same as (2)
with all hE

t → h̃E
t and the alignment ast := h̃D

s · h̃E
t .

A.5 Training

For the one-to-one and eSCAN datasets, we train networks with the ADAM optimizer (Kingma & Ba,
2014) and an exponentially-decaying learning rate schedule with an initial learning rate of η = 0.1

5



and a decay rate of 0.9997 every step (with the exception of the VED networks, in which case we
used a decay rate of 0.9999). Cross-entropy loss with `2 regularization was used and gradients were
clipped at a maximum value of 10. Both datasets used a batch size of 128 and each dynamically
generated dataset was trained over two epochs. For the AED and VED architectures, a hidden
dimension size of n = 128 was used, while for the AO we used n = 256 (for LSTM cells, both the
hidden-state h̃t and the memory ct are n-dimensional). For these synthetic experiments, we do not
add a bias term to this linear readout layer for the purposes of simplicity and ease of interpretation.
All training for these tasks was performed on GPUs and took at most 20 minutes.

As mentioned above, due to the small vocabulary size of one-to-one and eSCAN, we simply pass
one-hot encoded inputs in the RNN architectures, i.e. we use no embedding layer. For the AO
architecture, the input dimension was padded up 50 and 100 for the one-to-one and eSCAN tasks,
respectively. Positional encoding vectors were rotated by a random orthonormal matrix so they
were misaligned with the one-hot-encoded input vectors. Finally, we found performance improved
when positional encoding time-scale τ was chosen to be of order the phrase length: τ = 50 for the
one-to-one tasks and τ = 100 for the eSCAN tasks.

For the natural translation datasets, each token was mapped to an embedded vector of dimension
128 using a learned embedding layer. Both the AED and AO architectures used GRU cells, with
hidden dimension size of n = 128. As in the synthetic datasets, we train using the ADAM optimizer
for 30,000 steps using a batch size of 64; we use an exponential learning rate schedule with initial
η = 0.01 and a decay rate of 0.99995. Gradients are clipped to a maximum value of 30.

B Additional Results

In this section, we discuss several additional results that supplement those discussed in the main text.

B.1 LSTM and UGRNN Cells

In the main text, all plots used a GRU RNN for the cells in the encoder and decoder. For the UGRNN
and LSTM we find qualitatively similar results on the one-to-one task. Summaries of our results for
the two RNN cells are shown in Fig. 2 and Fig. 3, respectively. For all types of cells, the networks
achieve 100% test accuracy on the one-to-one task.

Notably, for the AED architecture, we observe that the LSTM has a slightly different attention matrix
than that of the GRU and UGRNN. Namely, for the first few decoder time steps, the LSTM appears
to attend to hE

T of a given phrase. This means that the network is transferring information about
the first few inputs all the way to the final encoder hidden state. As such, it appears that the AED
architecture with LSTM cells relies more on recurrence to solve the one-to-one task relative to its
GRU and UGRNN counterparts. Similar to our findings for the VED architecture in the main text,
we find the input-delta components to be significantly less clustered around their corresponding
input components when this occurs (Fig. 3b). In contrast, the AO architecture with LSTM cells is
qualitatively similar to that with the GRU or UGRNN cells.

We also train the AO architecture with LSTM and UGRNN cells on eSCAN. We again see qualitatively
similar behavior to what we saw in the main text for AO with GRU cells (Fig. 4). For both types
of cells, we see the temporal components align to form an approximately diagonal attention matrix
(Fig. 4b,e). Once again, we see the input-delta components to be closely clustered around their
corresponding input components, and said input components are close to their respective readouts,
implementing the translation dictionary (Fig. 4c,f).

B.2 Autonomous Dynamics and Temporal Components

When the temporal components are the leading-order behavior in alignment scores (e.g. in the
one-to-one and eSCAN tasks), we find them to be well approximated the hidden states resulting from
the network having zero input, i.e. xE

t = 0 for all t. In the case of AED and VED, this means the
encoder RNNs are driven solely by their recurrent behavior. For AO, the encoder RNNs are driven by
only the positional encoding vectors. Since in all three cases this results network outputting hidden
states independent of the details of the input, we call this the autonomous dynamics of the network.
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Figure 2: Summary of dynamics for all three architectures on the one-to-one task with UGRNN cells.
All three architectures trained on an N = 3 one-to-one task of variable length ranging from 15 to 20. (a) For
AED, the path formed by the temporal components of the encoder (orange) and decoder (purple), µE

t and µD
s .

We denote the first and last temporal component by a square and star, respectively, and the color of said path is
lighter for earlier times. The inset shows the softmaxed alignment scores for µD

s · µE
t , which we find to be a

good approximation to the full alignment for the one-to-one task. (b) The input-delta components of the encoder
(light) and decoder (dark) colored by word (see labels). The encoder input components, χE

x are represented by a
dark colored ‘X’. The solid lines are the readout vectors (see labels on (d)). (c, d) The same plots for the AO
network. (e, f) The same plots for the VED network (with no attention inset).

Figure 3: Summary of dynamics for all three architectures on the one-to-one translation task with LSTM
cells. All three architectures trained on an N = 3 one-to-one translation task with inputs of variable length
ranging from 15 to 20. (a) For AED, the path formed by the temporal components of the encoder (orange) and
decoder (purple), µE

t and µD
s . We denote the first and last temporal component by a square and star, respectively,

and the color of said path is lighter for earlier times. The inset shows the softmaxed alignment scores for
µD

s · µE
t , which we find to be a good approximation to the full alignment for the one-to-one task. (b) The

input-delta components of the encoder (light) and decoder (dark) colored by word (see labels). The encoder
input components, χE

x are represented by a dark colored ‘X’. The solid lines are the readout vectors (see labels
on (d)). (c, d) The same plots for the AO network. (e, f) The same plots for the VED network (with no attention
inset).
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Figure 4: Summary of dynamics for AO architectures with LSTM and UGRNN cells trained on eSCAN.
(a) Example attention matrix for the AED architecture. (b) AED network’s temporal components, with the inset
showing the attention matrix from said temporal components. Once again, encoder and decoder components are
orange and purple, respectively. (c) AED network’s input-delta components, input components, and readouts, all
colored by their corresponding input/output words (see labels). (d, e, f) The same plots for UGRNN cells.

Figure 5: Autonomous dynamics versus temporal components for architectures trained on one-to-one
translation. All three architectures are trained on an N = 3 one-to-one translation task with inputs of variable
length ranging from 15 to 20. (a) For AED, the path formed by the temporal components of the encoder (orange),
µE

t . Also plotted in green are the null hidden states, hE,0
t . We denote the first and last hidden state of each of

these by a square and star, respectively. The inset shows the quantitative difference between the two states,
‖hE

t − hE,0
t ‖2/‖hE

t‖2, as a function of encoder time step, t. (b) The same plot but for the decoder temporal
components (purple) and the decoder null hidden states (red). (c, d) The same plots for the AO network. (e, f)
The same plots for the VED network.
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Denote the encoder and decoder hidden states resulting from no input by hE,0
t and hD,0

s , respectively.
For AED and VED, they are

hE,0
t = FE(hE,0

t−1,0) , hD,0
s = FD(hD,0

s−1,0) . (18)

For the AO network, we still add the positional encoding vectors to the inputs,

hE,0
t = FE(0,pE

t ) , hD,0
s = FD(0,pD

s ) . (19)

Plotting the resulting hidden states along with the temporal components, we find for all three
architectures the two quantities are quite close at all time steps of the encoder and decoder (Fig. 5).
We quantify the degree to which the null hidden states approximate the temporal components via
‖hE

t −hE,0
t ‖2/‖hE

t ‖2 and ‖hD
s −hD,0

s ‖2/‖hD
s ‖2 where ‖·‖2 denotes the `2-norm. For the AO network,

we find the average of this quantity across the entire encoder and decoder phrases to be about 0.07
and 0.08, respectively, while for AED we find it to be 0.07 for the encoder and 0.19 for the decoder.

We also find the null hidden states to be close to the temporal components of eSCAN (Fig. 6). Again,
averaging our difference measure across the entire encoder and decoder phrases, for AO we find 0.11
and 0.15 and for AED 0.21 and 0.17, respectively.

This result gives insight into the network dynamics that drive the behavior of the temporal components.
In AED and VED, each RNN cell is driven by two factors: the recurrent hidden state and the input.
The AO architecture is similar, but the recurrence is replaced by temporal information through the
positional encoding. The absence of input eliminates the input-driven behavior in the RNN cells.
Since the network’s hidden states still trace out paths very close to the temporal components, this is
evidence that it is the recurrent dynamics (in the case of AED and VED) or the positional encoding
vectors that drive the network’s temporal component behavior.

One can use this information to postulate other behaviors in the network. For instance, given the lack
of correlation between inputs in the one-to-one translation task, in the AO network one may wonder
how much of the decoder’s dynamics are driven by recurrent versus input behavior. We already know
the decoder’s primary job in this network is to align its temporal components with that of the encoder,
and the results above suggest said behavior is driven primarily by the positional encoding vectors and
not the inputs. To test this, we compare the accuracies of a trained network with and without inputs
into the decoder RNN. We still achieve 100% word accuracy when xD

s = 0 for all decoder time steps.

B.3 Learned Attention

In addition to the dot-product attention considered throughout the main text, we have implemented
and analyzed new architectures that are identical to the AED and AO architectures that use a learned-
attention mechanism. These networks use a scaled-dot product attention in the form of queries, keys,
and value matrices similar to the original Transformer Vaswani et al. (2017). More specifically, the
context vector cs and alignment ast are now determined by the expressions

cs :=

T∑
t=1

αstvt , ast := qs · vt . (20)

In these expressions, the vectors vt, qs, and kt are product of the learned weight matrices V ∈ Rn×n,
Q ∈ Rn′×n, and K ∈ Rn′×n and the hidden states,

vt := VhE
t , qs := QhD

s , kt := KhE
t , (21)

with vt ∈ Rn (i.e. the same dimension as hidden state space) and qs,kt ∈ Rn′ , with n′ the dimension
of the query/key space.

After training these networks on our one-to-one and eSCAN tasks, we find very similar results to that
of dot-product attention. In particular, temporal components of the encoder and decoder continue to
align with one another after being projected through the respective key/query matrix (for AO, see
Fig. 7a). Input-delta components cluster along the respective readouts, after being projected through
the value matrix (Fig. 7b). Decomposing the alignment scores for these networks, we continue to
find them to be dominated by the temporal component term (i.e. µD

sQ
TKµE

t ).

This gives us additional confidence that the analysis techniques can be applied to modern architectures
that use attention. For instance, in a multi-headed attention setting, such a decomposition could be
used on each head separately to characterize the dynamics behind each of the heads.
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Figure 6: Autonomous dynamics versus temporal components for architectures trained on eSCAN. (a)
For AED, the path formed by the temporal components of the encoder (orange), µE

t . Also plotted in green
are the null hidden states, hE,0

t . We denote the first and last hidden state of each of these by a square and star,
respectively. The inset shows the quantitative difference between the two states, ‖hE

t − hE,0
t ‖2/‖hE

t‖2, as a
function of encoder time step, t. (b) The same plot but for the decoder temporal components (purple) and the
decoder null hidden states (red). (c, d) The same plots for the AO network.

B.4 Attention Only with Non-Gated Feedforward

The AO architecture’s feedfoward networks are created by zeroing the recurrent part of various RNNs.
Although this does result in a feedforward network, the presence of the gating mechanisms in the
RNN cells we use in this work make this non-standard feedforward network. To verify our qualitative
results hold beyond a gated feedfoward network, we investigated if our results differed when using a
standard fully connected layer followed by a tanh readout.

We find the non-gated AO network trains well on both the one-to-one and eSCAN tasks, achieving
100% and 98.8% word accuracy, respectively. Again performing the temporal and input component
decomposition on the network’s hidden states, we find the qualitative dynamics of this network are
the same as its RNN counterparts (Fig. 8). For example, in the one-to-one translation task we find
the temporal components of the encoder and decoder again mirror one another in order to from a
diagonal attention matrix (Fig. 8a). The input components of the encoder align with the readouts to
implement the translation dictionary (Fig. 8b).

B.5 Encoder-Decoder with Attention Readouts

The AED network’s linear readout takes into account both the decoder hidden state output and the
context vector, i.e. ys = W[hD

s , cs]. As such, each output’s readout can be viewed as two vectors
in hidden state space: one which acts on the context vector and the other which acts on the decoder
hidden state output. Here we elaborate on our comment in the main text regarding the effects of the
decoder readouts being negligible.

Recall that after training the AED network, we found the context vector readouts align with the
encoder input components, yielding the translation dictionary for a given task. We find the the decoder
readouts to be close to orthogonal to the context vector readouts (Fig. 9). Furthermore, we find the
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Figure 7: Dynamics for AO with learned attention. (a) The path formed by the temporal components of the
encoder (orange) and decoder (purple) multiplied by the key and query matrices, respectively, i.e. KµE

t and
QµD

s . We denote the first and last temporal component by a square and star, respectively, and the color of said
path is lighter for earlier times. The inset shows the softmaxed alignment scores for qs · kt, which we find to be
a good approximation to the full alignment for the one-to-one translation task. (b) The input-delta components
of the encoder (light) and decoder (dark) colored by word (see labels), after being multiplied by value matrix,
V. The encoder input components, VχE

x are represented by a dark colored ‘X’. The solid lines are the readout
vectors.

readouts for all words other than the ‘eos’ character to be closely aligned. Omitting the ‘eos‘ effect,
this results in the decoder readouts contributing roughly equal values to all logit values. Since the
logit values are passed through a softmax function, it is their differences that ultimately matter when
it comes to classifying a given output as a word. In contrast, we found the context vector readouts to
align with the vertices of an (N − 1)-simplex and the logit value contributions to vary significantly
more with the hidden state. Indeed, comparing the difference between the largest and second largest
logit contribution of each set of readouts, we find the difference due to the context vector readouts to
be several times larger than that of the decoder readouts. For AED trained on eSCAN, we again find
the differences in the context vector logit contributions to be several times larger than that due to the
decoder hidden states.

B.6 Vanilla Encoder-Decoder Dynamics

In the main text, we briefly discussed the dynamics of the VED architecture, and here we provide
some additional details. After training the VED architecture on the one-to-one translation task, we
found that the encoder and decoder hidden states belonging to the same time step formed clusters,
and said clusters are closest to those corresponding to adjacent time steps. Additionally, since the
VED arhcitecture has no attention, the encoder and decoder hidden states have to carry all relevant
information from preceding steps. To facilitate this, the dynamics of the encoder’s hidden state space
organizes itself into a tree structure to encode the input phrases (Fig. 10). Starting from the encoder’s
initial hidden state, the hidden states of a given input phrase traverse the branches of said tree as the
phrase is read in, ultimately arriving at one of the tree’s leaves at time T . The distinct leaves represent
the different final encoder hidden states, hE

T , that must encode the input phrase’s words and their
ordering.

Since the decoder receives no additional input, the encoder must place hE
T in a location of hidden

state space for the decoder’s dynamics to produce the entire output phrase. Although the network
does indeed learn to do this, we do not observe the reversal of the tree structure learned by the
encoder. That is, any two phrases that have the same output sequence for any time s ≥ s′ could
occupy the same decoder hidden states h̃s for s ≥ s′. This would result in the temporal mirror of the
tree structure seen in the encoder. However, such a structure is not observed and the decoder instead
seems to arrive at a solution where all output paths are kept distinct.
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Figure 9: Decoder hidden state behavior in AED trained on one-to-one translation. The input-delta
components of the encoder (light) and decoder (dark) colored by word. The encoder input components, χE

x

are represented by a dark colored ‘X’. The solid lines are the readout vectors, with those corresponding to the
context vector colored dark (and labeled by ‘RO’) and those corresponding to the decoder hidden state readout
colored light (and labeled by ‘Dec RO’).

Figure 10: Tree-like structure of encoder hidden states in VED. The encoder hidden states of the VED
architecture trained on the one-to-one translation task for the first five time steps. Note the hidden states organize
themselves in five distinct clusters along PC 0. Also shown are the paths in hidden state space various input
phrases take as a given input phrase is read. Said paths are colored from red to black by similarity starting from
latest time, i.e. {B,A,C,A,C} and {B,A,C,A,B} are similarly colored but {C,A,C,A,C} is not.
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