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1 Implicitly Constrained Dynamics

In this section, we provide further insight on the EOM of a robot arm in implicit ODE form. The
Lagrangian forward dynamics (FD) of an unconstrained robot arm are given by

q̈′ = M−1Q, (1)
with the generalized unconstrained acceleration q̈′, inertia matrixM(q; θA), and joint-related torques
Q(x; θA). The term ”unconstrained“ refers in the context of a robot arm to its end-effector being
not in contact with a surface. If the end-effector of the robot presses onto a surface, the surface
impresses a force QI onto the robot changing its acceleration (cf. [1, p. 181] and [2]) to

q̈ = M−1 (Qb + P (Q+Qz)) = M−1Qb +M−1P (Q+Qz), (2)

with Qb = AT(AM−1AT)+b, and P = I − AT(AM−1AT)+AM−1. The terms A and b
are obtained by differentiation of the holonomic implicit position-level constraint c(q) = 0 that is
enforced by QI , reading

Aq̈ = b, (3)
with A(q, q̇; θA) : R2nq → Rm×nq , b(q, q̇; θA) : R2nq → Rm, and m < nq .

Remark 1.1 In our implementation of a robot arm multi-body dynamics library in PyTorch, we
formulated the implicit constrained EOM (2) as

q̈ = L b+ TM−1(Q+Qz), (4)

with L = M−1AT(AM−1AT)+ and T = PT = I − LA = I −M−1AT(AM−1AT)+A.

Remark 1.2 Equation (2) denotes the minimum-norm solution to the problem
min ‖q̈ − q̈′‖2M , (5)

subject to A q̈ = b.

Remark 1.2 has been initially observed by Gauß [3] and was subsequently formulated for Lagrangian
multi-body dynamics in terms of the Moore-Penrose pseudo inverse by Udwadia and Kalaba [2].

In the following, the null space of A ∈ Rm×n is defined as N(A) = {q̈ ∈ Rnq : Aq̈ = 0},
its range space as R(A) = {b ∈ Rm : ∃q̈ ∈ Rnq such that b = Aq̈}, and further we have that
Rnq = R(AT)⊕ N(A) and Rm = R(A)⊕ N(AT) [4].

As a consequence of the D’Alembert-Lagrange principle the part of all forces doing virtual work,
Q′ ∈ Q+Qz , must be in Q′ ∈ N(A) while the implicit constraint forces QI doing no virtual work
lie in QI ∈ R(AT) (cf. [5]). Moreover, Qz ∈ N(A).
∗: equal contribution.
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Remark 1.3 T and P are oblique projectors. That is these matrices are idempotent T = T 2 and
P = P 2 but not symmetric T 6= TT and P 6= PT. First, note that it is a projector because

T 2 = I +M−1AT(AM−1AT)+AM−1AT(AM−1AT)+A− 2M−1AT(AM−1AT)+A, (6)

= I −M−1AT(AM−1AT)+A = T, (7)
and analogously also P = P 2. Second, it is straightforward to show that these matrices are not
symmetric.

In the case of a surface constraint, AT expressed in Cartesian coordinates corresponds to a vector
that is perpendicular to the surface while N(A) denotes all vectors that are tangential to the surface.

Table 1: Summary of symbols related to modeling the system’s implicitly constrained forward dy-
namics equations.
Symbol Description

q̈ = M−1(Q+Qz +QI) = M−1Qb +HQ̄
Generalized acceleration of an implicitly
constrained dynamical system

H = M−1
(
In −AT(AM−1AT)+AM−1

)
M Generalized mass matrix

c(q) Implicit constraint equation

A, b Matrices of c̈ = Aq̈ + b

λ = (AM−1AT)+
(
b−AM−1Q

) Lagrangian multiplier of the implicit
constraint forces

FI

Cartesian force that is applied by the surface
constraint onto the end-effector. FI is
always normal to the surface constraint.

Fz

Cartesian dissipative force acting on the
end-effector while being tangential to the
surface constraint.

QC , QG, QD, Qu
Generalized bias, gravitational,
dissipative and actuation forces

Q = QD +Qu +QG +QC
Generalized forces acting on the
unconstrained system

QI = ATλ = AT(AM−1AT)+
(
b−AM−1Q

) FI being transformed into the
generalized coordinate space.

Qz
Fz being transformed into the
generalized coordinate space.

Qb = AT(AM−1AT)+b

Q̄ = Q+Qz = QK +QU

QK , QU Known und unknown generalized forces of Q̄

2 Multi-output Gaussian Processes

A Gaussian process defines a collection of random variables such that every finite set of these random
variables are being normally distributed [6]. More concretely, we can model the FD f = [f1 . . . fn]T

as a multi-task GP, writing f̂ ∼ GP(m(x),K(x,x′)), where m(x) denotes a vector-valued mean
function and K(x,x′) a matrix-valued kernel (covariance function), such that

m(x) =
[
m1(x) . . . mn(x)

]T
, K(x,x′) =

k1,1(x,x′) · · · k1,n′(x,x′)
...

. . .
...

kn,1(x,x′) · · · kn,n′(x,x′)

 , (8)
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where mj(x) is the scalar mean function of fj(x) and ki,j(x,x′) corresponds to the scalar kernel
between fi(x) and fj(x′). A multi-task GP defines a multivariate normal distribution on a given in-
put data set X as f̂(X) ∼ N (µX ,ΣX,X), with the mean vector and covariance matrix respectively

µX =
[
m(x1)T . . . m(xN )T

]T
, ΣX,X? =

K(x1,x
′
1) · · · K(x1,x

′
N′)

...
. . .

...
K(xN ,x′1) · · · K(xN ,x′N′)

 . (9)

For X , (??) reads Y (X) = f̂(X) + εY , with εY ∼ N (0 , ΣY ), with ΣY = IN ⊗Σy . In turn, with
the prediction locations X ′ = [x

′T
1 . . . x

′T
NP

]T, the joint distribution of Y (X) and f̂(X ′) reads[
f̂(X?)
Y (X)

]
∼ N

([
µX?

µX

]
,

[
ΣX?,X? ΣX?,X

ΣX,X? ΣX,X + ΣY

])
. (10)

Conditioning on the observations yields the predictive posterior distribution

f̂(X?)|D,ΣY ∼ N (µ?,Σ?),
µ? = µX? + ΣX?,X (ΣX,X + ΣY )−1 (y − µX),
Σ? = ΣX?,X? − ΣX?,X (ΣX,X + ΣY )−1 ΣX,X? .

(11)

3 Linearly Transformed GPs and Implicitly Constrained Dynamics

In what follows, we use two useful properties of GPs.

Remark 3.1 A GP f ∼ GP(m(x),K(x, x′)) is closed under a linear transformation B (cf. [6]),
writing

Bf ∼ GP
(
B(x)m(x), B(x)K(x,x′)BT(x′)

)
. (12)

Remark 3.2 The sum of GPs fi ∼ GP(mi(x),Ki(x, x
′)) also yields a GP (cf. [7]), as

f ∼ GP
(∑

mi(x),
∑

Ki(x, x
′)
)
. (13)

Now, recall that the proposed framework places a GP prior on the forces of the FD EOM as

ˆ̄Q ∼ GP(mQ̄(x; θA), kQ̄(x, x′; θM)), (14)

in which mQ̄(x; θA)=̂QK denotes an analytical model prior for Q̄ while kQ̄(x, x′; θM) denotes an
appropriately chosen kernel function. Then by inserting (14) into (2), a structured GP model is
obtained as

ˆ̈q ∼ GP(mq̈, kq̈), (15)

with mq̈ = M−1Qb + HQK and kq̈ = HkQUH
T. In the case of (15), B=̂H is a priori known

transformation in terms of {A, b,M−1}.

A considerable practical challenge forms the fast computation of the covariance matrix Σq̈
X,X′ over

two input data sets X = [x1, x2, ..., xN ] with X ∈ Rnq̈×N and X ′ = [x′1, x
′
2, ..., x

′
N ] with X ′ ∈

Rnq̈×N ′
. In our implementation of the structured GP, the line of code that computes Σq̈

X,X′ is found
in the ”SGPKernel“ class and reads

# Mulitask covariance linear transformation --> T1 * Cov * T2^\transp
cov_quant1_quant2 = torch.einsum(’iab,ijbc,jdc->ijad’,

linearoperator1,
covar_F_F,
linearoperator2

)
return cov_quant1_quant2

Here, we used torch’s ”Einsum“ function as it resulted in a fast computation of Σq̈
X,X′ . Figure

1 illustrates how the above code computes the matrix Σq̈
X,X′ . Here, Σq̈

X,X′ is stored as a four
dimensional tensor of size N × N ′ × nq̈ × nq̈ which can be interpreted as a N × N ′ matrix of
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nq̈ × nq̈ matrices that depend on the respective i-th and j-th input points. This matrix is computed
using the tensors ”linearoperator1“ of size N × a × b and ”linearoperator2“ of size N ′ × c × d
as well as the covariance matrix prior ”covar F F“ of size N × N ′ × b × c. Note that in Figure
1, ”linearoperator1“ denotes the three-dimensional array [[H(x1)], [H(x2)], ..., [H(xN )]] as in this
example we compute Σq̈

X,X′ . However, the above computation of a structured covariance matrix
allows to transform a force prior covariance matrix by any analytical tensor of appropriate size.

Figure 1: Illustration of the computation of the structured GP’s covariance matrix Σq̈
X,X′ .

Other unknown dynamical quantities can also be expressed as a linear transformation of known
analytical functions. For example, the Lagrange multipliers are described analytically as

λ = (AM−1AT)+
(
b−AM−1Q

)
, (16)

and subsequently the surface normal force reads

QI = ATλ. (17)

Also, the acceleration of the unconstrained system q̈′ is obtained as q̈′ = M−1Q.

Assuming Assumption 1 & 2 of the main manuscript apply to the robot, the unknown forces
are potentially QU=̂Qz + Q which by using Remark 13 can be modelled via two separate GPs
Q̂ ∼ GP(mQ(x),KQ(x, x′)) and Q̂z ∼ GP(mz(x),Kz(x, x′)) as

ˆ̄Q ∼ GP(mQ̄(x),KQ̄(x, x′)), (18)

with mQ̄ = mQ +mz and KQ̄ = KQ +Kz . General nonlinear processes are rarely the result of the
sum of two latent processes. Yet, for the case of rigid body mechanics it is an axiomatic truth that
the sum of force functions results again in a force function.

Therefore, with (18), the joint distribution between q̈, q̈′, and λ reads λ̂ˆ̈q′
ˆ̈q

 ∼ GP
(AM−1AT)+b− LmQ

M−1mQ

M−1Qb +HmQ̄

 ,
 LkQL

T LkQ[M−1]T LkQH
T

M−1kQL
T M−1kQ[M−1]T M−1kQH

T

HkQL
T HkQ[M−1]T HkQ̄H

T

 .

(19)
In addition, we can also denote the joint distribution between Q, Qz , and q̈ as Q̂Q̂z

ˆ̈q

 ∼ GP
 mQ

mz

M−1Qb +HmQ̄

 ,
 kQ 0 kQH

T

0 kz kzH
T

HkQ Hkz HkQ̄H
T

 . (20)

Albeit, the off-diagonal terms of the joint-distribution between Q and Qz are zero and hence the
processes are uncorrelated.

In the main manuscript we only resorted to the GP conditioning formula for predicting the
same process at different input locations X and X?. In a similar fashion, if two GPs f a ∼
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GP(ma(x),Kaa(x, x′)) and f b ∼ GP(mb(x),Kbb(x, x′)) a correlated to each other by a joint
distribution [

f a

f b

]
∼ GP

([
ma(x)
mb(x)

]
,

[
Kaa(x, x′) Kab(x, x′)
Kba(x, x′) Kbb(x, x′)

])
, (21)

one can predict f b(X?) given measurements Y = f a(X) + εY with Y ∼ N (0,ΣY ) as

f b(X?) | D,ΣY ∼ N (µb,?,Σb,?), (22)

µb,? = µb
X? + Σba

X?,X (Σaa
X,X + ΣY )−1 (Y − µa

X), (23)

Σb,? = Σbb
X?,X? − Σba

X?,X (Σaa
X,X + ΣY )−1 Σab

X,X? . (24)

Remark 3.3 From the joint distributions (19) and (20) it follows that with (22) one can use the
proposed framework to predict {q̈, q̈′, λ, QI , QU, Q, Qz} using measurements of {q̈, q̈′, λ, QI , QU,
Q, Qz}.

Also Remark 3.3 assumes that during optimization the two GPs Q̂ and Q̂z only learn the latent
function Q or Qz , respectively. If the hyper-parameter estimates of Q̂ are strongly influenced by
the errors arising from Qz , predictions made using Remark 3.3 can be erroneous. It remains an
open question how one can ensure that a force GP prior which models a specific force function is
not influenced by the errors that arise from other forces. However, one can solve this problem also
methodically by first estimating the hyper-parameters of Q̂ on data of the unconstrained system, and
afterwards, training the hyper-parameters of Q̂z on data of the constrained system while keeping the
hyper-parameters of Q̂ fixed.

time [s]

0.0002

0.0000
c(q)

0 2 4 6 8 10
time [s]

0

100

Figure 2: Top: Surface equation error in simulation. Bottom: Prediction of Lagrange multiplier λ
by a structured GP model after conditioning on acceleration measurements.

For the sake of brevity, in the main manuscript, we modelled the forces inside the analytical model
as a single GP such that the force prior (18) is set to µQU=̂QK and kQU denotes a diagonal matrix
of squared-exponential kernels as in (31). With (19) and (22), one can predict the model’s Lagrange
multipliers as

λ̂(X?)|D, θ = µb
X? + Σba

X?,X (Σaa
X,X + ΣY )−1 (Y − µa

X), (25)

with µb = (AM−1AT)+b − LQK , µa = M−1Qb + HQK, Σba = L(X?)ΣQ̄
X?,XH

T(X) and
Σaa

X,X = H(x)kQ̄(X,X)HT(X). Figure 2 illustrates the prediction of λ by conditioning on D
via (25) using the proposed structured GP model. As expected, the Lagrange multiplier remains
positive, meaning that the end-effector is impressing a positive force on the surface, which is indeed
what was observed during the simulation. The prediction of a loss of contact with structured GPs is
left to future work. The estimation of the Lagrange multipliers as well as the surface normal force
QI is useful for impedance control as commonly used in legged robotics.

4 Long-term Trajectory Predictions and Baumgarte Stabilization

Compared to differential-algebraic formulations of the EOM, the EOM (2) has the advantage that
numerical ODE solvers can be used to compute a trajectory given initial conditions {q0, q̇0}. More-
over, it is particularly straightforward to combine data-driven modeling with analytical equations.
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Yet, (2) only respects the acceleration-level constraints explicitly. In turn, a trajectory prediction in
the absence of measurement noise only lies on the position level-constraint c(q) = 0 if the initial
state {q0, q̇0} lies on the position-level constraint. In practice, a numerical integration method in-
evitably makes errors on the system’s acceleration which causes the predicted position and velocity
to drift. This integration drift is additionally aggravated by the noise in the state observations.

The violation of position-level constraints by trajectory predictions forms a caveat of expressing
constraint forces through implicit constraint equations as in (2) compared to the elimination of con-
straint forces from the EOM through a transformation to a minimal set of generalized coordinates
as e.g., in (1). Arguably, one could wonder why for a robotic arm it is a good choice to use implicit
constraint equations combined with a set of redundant generalized coordinates instead of resorting
to a minimum number of independent generalized coordinates. Such dubiety is alleviated, if we
consider that through the use of implicit constraint equations the system’s unconstrained dynamics
(1) and constrained dynamics (2) only differ by the addition of the forces QI and Qz while all other
quantities such as q orM remain untouched. As pointed out in Section 3, as in both cases we use the
same generalized coordinates, one can train force kernel priors both from data of the unconstrained
as well as constrained system. To ensure that trajectory predictions converge to the position-level
surface constraint one can resort to Baumgarte stabilization.

Baumgarte stabilization forms a common technique in multi-body dynamics to ensure that the trajec-
tory predictions made with an explicit ODE form of EOM fulfill implicit position level-constraints.
In what follows, we assume the implicit constraint equations are holonomic such that ∂c

∂t = Aq̇ = 0.
Given a measured/predicted state-acceleration pair {q′, q̇′, t, q̈′}, the error made in the position-,
velocity-, and acceleration-level constraints amounts to

ec = c(q′), (26)

eċ = A(q′)q̇′, (27)

ec̈ = A(q′)q̈′ − b(q′, q̇′). (28)
In this case, Baumgarte [8] suggests to extend the error dynamics to yield a stable damped oscillator
equation for ec as

ec̈ + 2ωn,q̈ξn,q̈ ėc + ω2
n,q̈ec = 0, (29)

with the natural frequency ωn,q̈ > 0 and damping ratio ξn,q̈ > 0. Usually ξn,q̈ is chosen to be
unitary, such that the constraint error dynamics are critically damped. By inserting (26), (27), and
(28) into (29) one obtains

Aq̈′ = b̃, (30)
with b̃ = b+ 2ωn,q̈ξn,q̈Aq̇

′ + ω2
n,q̈eq̈c(q

′).

Remark 4.1 Substituting b in (2) with b̃ ensures that for long trajectory predictions, ec converges
to zero at the cost of introducing a small error to the predictions of q̈.

5 Further Details on the Simulation

5.1 Robot Arm Simulation

For the robot arm simulation, we used PyBullet. In addition, we implemented a recursive dynamics
library in PyTorch. The correctness of the PyBullet simulated dynamics and our PyTorch dynamics
implementation is ensured by carefully comparing the simulated states, that is position, velocity,
and acceleration. Then, instead of relying on the contact dynamics model provided by PyBullet,
we compute the surface normal force QI using our PyTorch dynamics library which is then fed to
the PyBullet simulation during data collection. The computation of QI is done using Baumgarté
Stabilization as detailed in Section 4 to ensure that the end-effector does not leave the surface during
the simulation due to small numerical errors. Moreover, we compute a viscous friction force Fz that
is being applied to the end-effector, reading Fz = −θvṗE with the friction coefficient θv and the
Cartesian end-effector velocity ṗE. By use of our multibody library, Qz is computed using Fz and
subsequently integrated into the PyBullet simulation. The parameter of the friction function is set
such that it significantly alters the motion of the robot arm. Without Fz , the analytical regression
model matches the above discussed analytical simulation model. In turn, the effect of Fz on the
robot dynamics can be seen in the error between the analytical regression model and the simulated
acceleration as depicted in Figure 5a.
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5.2 Data Collection

After the simulation and test environments are set up, running the experiment requires defining
trajectory planning and control algorithms.

Trajectory planning While the robot is sliding its end-effector over the surface, we want to col-
lect informative data for training different regression models. Therefore, we uniformly sample end-
effector positions inside a rectangular region on the contact plane being inside the end-effector reach-
able space. We then coordinate the robot end-effector to sequentially connect the points following
a straight-line trajectory, ensuring therefore that the end-effector remains always in contact with the
surface. Between each pair of points, a task-space trapezoidal velocity profile is generated for the
end-effector position. At each point, the arriving and starting velocities are zero. In addition, this
profile allows setting a travel time and a maximum task-space acceleration between points which is
used to avoid exceeding the actuator limits. The generated end-effector task-space position, velocity
and acceleration trajectories are depicted in Figure 3. While the end-effector position-trajectory is
given by the trapezoidal profile, the desired orientation is set to a constant such that the rounded tip
remained perpendicular to the surface.
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Task-space Trajetory Planning

Figure 3: Task space trajectory of the robot arm’s end-effector during data collection.

Task space inverse dynamics control and nullspace control To track the task-space reference
trajectories with the robot arm, we use a task-space inverse dynamics controller [9, p. 347]. The task
of controlling a manipulator consists of finding a time history of the generalized control forces Qu,
that are created by the actuators control input u.

The robot arm has 7 degrees of freedom while we want to track a six dimensional end-effector tra-
jectory (3D position and 3 Euler angles). In turn, we can achieve the same reference with more
than one configuration by changing the arm’s elbow elevation. The question arises of how to con-
trol this extra degree of freedom. In this work, we additionally use null-space control. The idea
underlying nullspace control is to modify the desired joint-space acceleration, such that the error
dynamics remains untouched, but introducing an acceleration in some subspace that achieves a sec-
ondary goal. This subspace is in our case the null-space of a Jacobian matrix that follows from the
robot’s differential kinematics.

5.3 Data Selection

Sampling at 240 Hz generates quickly a huge amount of data points. Yet, during training, the compu-
tational complexity of GPs scales cubically with the number of data points which requires reducing
the size of the initially large data set. Another problem arises when points in the training data set
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(a) Analytical Model
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(b) Feed-forward NN
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(c) GP
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(d) S-GP with zero mean
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(e) S-GP with analytical mean

Figure 4: Acceleration predictions of different forward dynamics models. The black line depicts
the system’s noisy acceleration over time, the purple line the predicted mean and light purple – if
available – the ±2 std. confidence region. Note that the scaling of the y-axis for each model differs
between the output dimensions.

lie to close to each other inside the input space. This results in an almost singular covariance matrix
potentially causing numerical problems during the computation of its Cholesky decomposition. A
more detailed discussion on this issue is given in [10]. This problem can be avoided by selecting suf-
ficiently distinct data set points in order to guarantee a numerically well-behaved covariance matrix.
One practical way to select distinct data points is clustering or smart sampling techniques. In this
work, we used a clustering algorithm to divide the initial large amount of training points in similar
clusters and only keep a single point per cluster. However, the standard clustering techniques such
as K-means clustering are computationally too slow for our data set size. Therefore, we used the
Farthest Point Sampling algorithm (FPS) which has been used for Deep Learning with PointNet++
[11] for selecting a subset of relevant and informative points from a point cloud in a fast and efficient
manner. The sampled points are chosen as the training dataset, while the removed points are left to
the test dataset.

5.4 Assumptions on the Regression Models and Optimization Settings

In the following, we discuss the regression models and corresponding optimization settings that are
used for the experiments of the main manuscript as well as to create the additional figures being
discussed in Section 6. All models use as input the full state of the robot, that is, seven joint angles,
seven joint velocities, and seven control inputs in joint space coordinates and give as output the seven
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(a) Analytical Model
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(b) Feed-forward NN
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(c) GP
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(d) S-GP with zero mean
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(e) S-GP with analytical mean

Figure 5: Error in the acceleration prediction of different forward dynamics models. The black
line depicts the system’s noisy acceleration over time, the purple line the predicted mean and light
purple – if available – the ±2 std. confidence region. Note that the scaling of the vertical axis of the
analytical model’s plots differs from the other models’ plots.

joint accelerations. Before training the regression models, Gaussian noise with a standard deviation
of σy = 0.1 is being added to the acceleration observations.

Analytical regression model The analytical regression model is given by our PyTorch implemen-
tation of the EOM as denoted in (2). This model accurately depicts the simulated dynamics except
that it does not include a model for the surface friction force Qz . The analytical parameters are
randomly initialized in a large parameter window set around the true parameter values and then
trained on 10 thousand data point by minimization of a mean-squared loss function via automatic
differentiation with an ADAM optimizer [12].

Neural network As a baseline, we trained a neural network on 10 thousand data point by min-
imization of a mean-squared loss function via automatic differentiation with an ADAM optimizer
[12]. We trained three different neural networks consisting of a single hidden layer with 80 neurons,
two hidden layers á 30 and 20 neurons, and four hidden layers á 200 neurons. Each hidden layer
is combined with a sigmoid-activation layer. For the limited amount of data, we considered in this
work we found that the single hidden layer neural network had the lowest mean absolute prediction
error.

Gaussian process baseline As an additional baseline, each acceleration dimension is modeled
by a one-dimensional zero-mean GP with squared exponential kernel. The input x to each kernel
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consist of the robots joint angles, velocities, and control inputs such that with seven joints x is 21
dimensional. In turn, all seven GPs have in total 147 length-scale parameters (per output dimension
one for each input) and 7 signal variances. In turn, θM consists of 154 hyper-parameters. The noise
variance is set to σy = 0.1, and added to the likelihood function during optimization of the GP
models.

Structured Gaussian processes In the structured GP model, the same GP as described in the
above GP baseline is used as prior force model Q̂U. That is, the i-th dimension of the GP force prior
Q̂U is modeled through an independent squared exponential kernel kSE

i (x, x′; θM) such that

kQU = diag(kSE
1 , kSE

2 , ..., kSE
nq

). (31)

In turn, kQU has 154 hyper-parameters. This GP force prior is then transformed by the analytical
operator H = M−1P to yield a structured kernel on the acceleration level as

kq̈ = HkQUH
T. (32)

In the experiments of the main manuscript as well as Section 6 we compared two different GP
models. Here, ”S-GP“ denotes the GP ˆ̈q ∼ GP(0, kq̈) where the mean is set to zero and subsequently
the GP must approximate all force functions. In comparison, ”S-GP with analytical mean“ denotes
the GP ˆ̈q ∼ GP(M−1Qb + H(QC + QG + Qu), kq̈) such that the difference between the data
and the GP’s mean is the end-effector friction force Qz . In turn, ”S-GP with analytical mean“ uses
additional analytical knowledge on the forces acting on the system such that the GP is only required
to approximate the change in the acceleration due to Qz .

Our framework allows optimizing either the GP hyper-parameters θM, the analytical model’s param-
eters θA, or both simultaneously by using two independent ADAM [12] optimizer. During training,
the noise variance is set to σy = 0.1, and added to the likelihood function. The starting learning rate
of the optimizer is set to 0.2 for θM and 0.2 for θA and learning is performed until convergence.

6 Additional Simulation Results

Figure 4 shows different acceleration predictions of all seven robot arm joints over a three-second
long trajectory made with the regression models discussed in Section 5.4. The same models were
used as for the results in Figure 2b of the main manuscript. Figure 5 shows the error between simu-
lated acceleration and the acceleration predicted by the models. The analytical model’s predictions
as shown in Figure 4a and 5a contain large errors especially in the last three joints that are close
to the surface. This is not surprising as the unmodeled surface friction force Qz affects the motion
of the last joints especially. The NN with 10 thousand data points has a similar prediction accu-
racy as the GP baseline that has been trained on one thousand data points. The S-GP provides the
smallest error as the GP directly approximates the unknown forces and is then transformed into
acceleration-space using the analytical knowledge H . If in addition, an analytical mean function
µq̈=M

−1Qb + H(QC + QG + Qu) is added to the S-GP the GP force prior must only approxi-
mate the unknown friction force QD. Subsequently, it can be observed that the prediction accuracy
significantly improves through the inclusion of analytical knowledge into a data-driven regression
algorithm.

References
[1] F. Udwadia and R. Kalaba. Analytical dynamics: a new approach. Cambridge University

Press, 2007.

[2] F. E. Udwadia and R. E. Kalaba. On the foundations of analytical dynamics. International
Journal of non-linear mechanics, 37(6):1079–1090, 2002.
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