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11 Mean Prediction and UQ of prediction

a H~ W N

of mean prediction and total uncertainty.

6 1.1 Mean Prediction

We define the mean prediction as E[Z|c, ]
where Z = E[y;]
Now given y; ~ Weibull(k, \)

Z=FEMN+T(1+ %)] =E\)«T(1+ %) (k is known)

B[ = /A Ap(VdA

7 Hence to solve for mean prediction we need to find pdf p(\). Because we know 6 = A

s I'"!(a, 3), we can use change of variable to find pdf of \ [2]].

d\F
p(Aa, B) = po(AF) * |K
«a 1 a+1 X
o 1 a+1 .
_ rﬁ(a)(w exp(—%*m"‘l (given A, k > 0)

Given the main advantage of Deep Evidence Regression over other UQ aware deep learning methods
like Bayesian NN, esembling etc, is due to existence of analytical solution for both predictions and
unceratinty from NN output, without the need for sampling. Hence this section details the derivation
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9 Hence,

« a+1
E[A]/A)\Ifza)()\lk) exp(f%)*mkfld/\

kp> [ 1 I}
= —)dA
() /,\:o Neatk—Fk eXp()\k)
Substituting t = 1/, we get:
dt = —1/\%d),
ke /Oo ka—2 E
E\ = t"T% exp(—Bt7)dt
(Al @ /., (=pt")
By table of integrals at [3]]
0 m+1
/ ymefbykvdy: F( k )
o Lh(m+1)/k
kB« ka—10 1 . 1

10 Hence we get the mean prediction as:

k

B ka-1 1 1 1
_ LAV YN AV

PO+ DT 1) =6

11 1.2 UQ of Prediction

12 We quantify the total uncertainty as Var(Z) with defined as above, i.e. Z = E[y;]

Var(Z) =Var(A«T'(1+ %))
Var(Z|a, B) = Var(\) * T?(1 + %)

= BV~ E) + (14 1)

With F(\) defined as in we only need E(\?)
Similar to approach outlined in [T} we get:
B[N\ = / A2 p(N)dA

A

k6 pka—2) 1 1
I'(«) k ko g

BN =

— E[Z%] =T?(1+ %)ﬁr(a - %) x B/F

13 Similar to approach outlined in[IT] we get:

ka —2 B2k

B0 8] = T(* 1) s

14 Hence we can write
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i 1 ka —2 p%/k ka —1_pY*
Var(Z) =T%(1+ %) * [I( . )]_"(a) — ’ I‘(a)) ] (30)
or
B2/, ka —2 ka—1

Var(Z)ocW o (T)—FQ( : )]

1.3 Validation of proofs

Here we generate a target variable following a Weibull distribution. The target variable is generated
as:

yi =22 + e, ~ Weibull(k = 1.2, = 0.2)
The train set is comprised of = € [0, 3] while test set is = € [0, 4].

y=x Distribution of y

Figure 1: y vs x and Distribution of y(right) for synthetic data

Since our approach assumes known £k, k is estimated from the training set.
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Figure 2: Weibull Fit on Train data

To confirm that analytical calculations outlined above, we have also created the mean prediction
after sampling from the NN outputs. Firstly we sample 6 from I'(«, ). A is then calculated as the
k-th root of § or A = §/*. Finally, the response variable y; can be sampled as Weibull(\, k). The
consistency between the results from sampling and analytical calculations, supports the analytical
calculations in[T8
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Figure 3: Mean prediction using analytical equation(left) vs from sampling (right)
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2 Experiment Code and Results

The code and corresponding dataset is shared alongwith

2.1 Experiments on synthetic data

In the experiment, both approaches utilized an identical neural network architecture consisting of
five hidden layers, with each layer comprising 200 neurons. To enhance the model’s performance,
hyperparameter optimization was conducted on the regularization cost, denoted as ’c.” This opti-
mization involved varying the value of ’c’ within the logarithmic space ranging from 0.000001 to
0.1. For each lambda value, the best model was selected based on the value of ’c¢’ that minimized
the training loss, adhering to the outlined procedure. This approach allowed for fine-tuning the reg-
ularization parameter and ensuring that the chosen models were optimized for the given experiment.

Qualitatively we can see that the benchmark version either captures no uncertainty in prediction or
amplifies it way too much for different ¢ values.

eps=0.2, c= 0.02782559402207126
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Figure 4: Deep evidence regression (left) vs Weibull evidence Regression (right). We see that
uncertainty is much better captured by proposed version.

2.2 Experiments on Recovery data

The dataset under consideration pertains to peer to peer mortgage lending data during the period of
2007 to 2014 sourced from Kaggle [1]. However, the data does not include the loss given default
values. Instead, the recovery rate has been used as a proxy, which is calculated as the ratio of
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recoveries made to the origination amount. The dataset contains approximately 46 variables denoted
as ’x,” which include features such as the time since the loan was issued, debt-to-income ratio (DTI),
joint applicant status, and delinquency status, among others. In total, the dataset comprises around

23,000 rows.

The model architecture for Benchmark model is as follows:

Layer (type)

Output Shape

dense_100

dense_101

dense_102

dense_103

dense_104

dense_105

dense_106

dense_107

dense_108

dense_normal_gamma_5 (Dense

(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)

(Dense)
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(None,
(None,
(None,
(None,
(None,
(None,
(None,
(None,

(None,

1

350)
300)
300)
250)
250)
200)
200)

200)

(None, 4)

700

105300

90300

75250

62750

50200

40200

40200

804

Total params: 465,750
Trainable params: 465,750
Non-trainable params: O

Layer (type)

Output Shape

dense_110
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dense_115

dense_116
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dense_118

(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)
(Dense)

(Dense)

(None,
(None,
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(None,
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(None,
(None,
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dense_weibull_gamma_5 (Dens (None, 2) 402
eWeibullGamma)

Total params: 465,348
Trainable params: 465,348
Non-trainable params: O

Hyperparameter optimization was conducted on the regularization cost, denoted as ’c.” This op-
timization involved varying the value of ’c’ within the linear space ranging from 0.4 to 1.2 for
proposed version and 0.04 to 0.12 for benchmark version. For each lambda value, the best model
was selected based on the value of ’¢’ that minimized the training loss, adhering to the outlined
procedure. This approach allowed for fine-tuning the regularization parameter and ensuring that the
chosen models were optimized for the given experiment. Finally NN is trained for 4 times with the
best ¢ value.

 for benchmark= 0.05263157894736843, proposed = 0.5263157894736843
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Figure 5: Deep evidence regression (left) vs Weibull evidence Regression (right). We see that
uncertainty is much better captured by proposed version.
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