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Abstract

In this paper, we propose Describe-and-Dissect
(DnD), a novel method to describe the roles of
hidden neurons in vision networks. DnD utilizes
recent advancements in multimodal deep learn-
ing to produce complex natural language descrip-
tions, without the need for labeled training data
or a predefined set of concepts to choose from.
Additionally, DnD is training-free, meaning we
don’t train any new models and can easily lever-
age more capable general purpose models in the
future. We have conducted extensive qualitative
and quantitative analysis to show that DnD out-
performs prior work by providing higher quality
neuron descriptions. Specifically, our method on
average provides the highest quality labels and is
more than 2× as likely to be selected as the best
explanation for a neuron than the best baseline.

1. Introduction
Recent advancements in Deep Neural Networks (DNNs)
within machine learning have enabled unparalleled devel-
opment in multimodal artificial intelligence. While these
models have revolutionized domains across image recog-
nition and natural language processing, they haven’t seen
much use in various safety-critical applications, such as
healthcare or ethical decision-making. This is in part due to
their cryptic “black box” nature, where the internal workings
of complex neural networks have remained beyond human
comprehension. This makes it hard to place appropriate
trust in the models and additional insight in their workings
is needed to reach wider adoption.

Previous methods have gained a deeper understanding of
DNNs by examining the functionality (also known as con-
cepts) of individual neurons1. This includes works based

*Equal contribution, work done during internship. 1UC San
Diego. Correspondence to: Tsui-Wei Weng <lweng@ucsd.edu>.

1We conform to prior works’ notation and use ”neuron” to
describe a channel in CNNs.

on manual inspection (Erhan et al., 2009; Zhou et al., 2015;
Olah et al., 2020; Goh et al., 2021), which can provide high
quality description at the cost of being very labor inten-
sive. Alternatively, Network Dissection (Bau et al., 2017)
automated this labeling process by creating the pixelwise
labeled dataset, Broden, where fixed concept set labels serve
as ground truth binary masks for corresponding image pix-
els. The dataset was then used to match neurons to a label
from the concept set based on how similar their activation
patterns and the concept maps were. While earlier works,
such as Network Dissection, were restricted to an anno-
tated dataset and a predetermined concept set, CLIP-Dissect
(Oikarinen & Weng, 2023) offered a solution by no longer
requiring labeled concept data, but still requires a predeter-
mined concept set as input. By utilizing OpenAI’s CLIP
model, CLIP-Dissect matches neurons to concepts based
on their activations in response to images, allowing for a
more flexible probing dataset and concept set compared to
previous works.

However, these methods still share a major limitation: Con-
cepts detected by certain neurons, especially in intermediate
layers, prove to be difficult to encapsulate using the simple,
often single-word descriptions provided in a fixed concept
set. MILAN (Hernandez et al., 2022) sought to enhance
the quality of these neuron labels by providing generative
descriptions, but their method requires training a new de-
scriptions model from scratch to match human explanations
on a dataset of neurons. This leads to their proposed method
being more brittle and often performs poorly outside its
training data.

To overcome these limitations, we propose Describe-and-
Dissect (abbreviated as DnD) in Section 3, a pipeline to
dissect DNN by utilizing an image-to-text model to de-
scribe highly activating images for corresponding neurons.
The descriptions are then semantically combined by a large
language model, and finally refined with synthetic images
to generate the final concept of a neuron. We conduct exten-
sive qualitative and quantitative analysis in Section 4 and
show that Describe-and-Dissect outperforms prior work by
providing high quality neuron descriptions. Specifically,
we show that Describe-and-Dissect provides more complex
and higher-quality descriptions (up to 2-4× better) of in-
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Figure 1. Neuron descriptions provided by our method (DnD) and baselines CLIP-Dissect (Oikarinen & Weng, 2023), MILAN (Hernandez
et al., 2022)), and Network Dissection (Bau et al., 2017) for random neurons from ResNet-50 trained on ImageNet. We have added the
average quality rating from our Amazon Mechanical Turk experiment described in section 4.3 next to each label and color-coded the
neuron descriptions by whether we believed they were accurate, somewhat correct or vague/imprecise.

termediate layer neurons than other contemporary methods
in a large scale user study. Example descriptions from our
method are displayed in Figure 1. Additionally, we provide
an interesting use-case study showing that these neuron de-
scriptions can be used to find a good classifier for a class
missing from the training set.

2. Background and related work
2.1. Neuron Interpretability Methods

Network Dissection (Bau et al., 2017) is the first method de-
veloped to automatically describe individual neurons’ func-
tionalities. The authors first defined the densely-annotated
dataset Broden, denoted as DBroden, as a ground-truth con-
cept mask. The dataset is composed of various images
xi, each labeled with concepts c at the pixel-level. This
forms a ground truth binary mask Lc(xi) which is used to
calculate the intersection over union (IoU) score between
Lc(xi) and the binary mask from the activations of the
neuron k over all images xi ∈ DBroden, denoted Mk(xi):

IoUk,c =
∑

xi∈DBroden
Mk(xi)∩Lc(xi)∑

xi∈DBroden
Mk(xi)∪Lc(xi)

. The concept c is as-

signed to a neuron k if IoUk,c > η, where the threshold η
was set to 0.04. Intuitively, this method finds the labeled
concept whose presence in the image is most closely cor-
related with the neuron having high activation. Extensions
of Network Dissection were proposed by (Bau et al., 2020)
and (Mu & Andreas, 2020).

However, Network Dissection is limited by the need of con-
cept annotation and the concept set is a closed set that may
be hard to expand. To address these limitations, a recent
work CLIP-Dissect (Oikarinen & Weng, 2023) utilizes Ope-
nAI’s multimodal CLIP (Radford et al., 2021) model to
describe neurons automatically without requiring annotated
concept data. They leverage CLIP to score how similar each
image in the probing dataset Dprobe is to the concepts in a
user-specified concept set to generate a concept activation
matrix. To describe a neuron, they compare the activation
pattern of said neuron to activations of different concepts
on the probing data, and find the concept that is the clos-
est match using a similarity function, such as softWPMI.
Another very recent work FALCON (Kalibhat et al., 2023)
uses a method similar to CLIP-Dissect but augments it via
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Table 1. Comparison of existing automated neuron labeling methods and our Describe-and-Dissect (DnD). Green and boldfaced Yes or
No indicates the desired property for a column. DnD has all the desired properties while existing work has some limitations.

Method \ property
Requires
Concept
Annotations

Training
Free

Generative
Natural Language
Descriptions

Uses Spatial
Activation
Information

Can easily
leverage better
future models

Network Dissection (Bau et al., 2017) Yes Yes No Yes No
MILAN (Hernandez et al., 2022) Training only No Yes Yes No
CLIP-Dissect (Oikarinen & Weng, 2023) No Yes No No Yes
FALCON (Kalibhat et al., 2023) No Yes No Yes Yes

DnD (This work) No Yes Yes Yes Yes

counterfactual images by finding inputs similar to highly
activating images with low activation for the target neuron,
and utilizing spatial information of activations via cropping.
However, they solely rely on cropping the most salient re-
gions within a probing image to filter spurious concepts that
are loosely related to the ground truth functionality labels of
neurons. This approach largely restrict their method to local
concepts while overlooking holistic concepts within images,
as also noted in (Kalibhat et al., 2023). Their approach is
also limited to single word / set of words description that is
unable to reach the complexity of natural language.

MILAN (Hernandez et al., 2022) is a different approach
to describe neurons using natural language descriptions in
a generative fashion. Note that despite the concept sets in
CLIP-Dissect and FALCON being flexible and open, they
cannot provide generative natural language descriptions like
MILAN. The central idea of MILAN is to train an images-
to-text model from scratch to describe the neuron’s role
based on 15 most highly activating images. Specifically, it
was trained on crowdsourced descriptions for 20,000 neu-
rons from selected networks. MILAN can then generate
natural language descriptions to new neurons by outputting
descriptions that maximize the weighted pointwise mutual
information (WPMI) between the description and the active
image regions. One major limitation of MILAN is that the
method require training a model to imitate human descrip-
tions of image regions on relatively small training dataset,
which may cause inconsistency and poor explanations fur-
ther from training data. In contrast, our DnD is training-free,
generative, and produces a higher quality of neuron descrip-
tions as supported by our extensive experiments in Figure 1,
Table 3, and Table 4. A detailed comparison between our
method and the baseline methods is shown in Table 1.

2.2. Leveraging Large Pretrained models

In our DnD pipeline, we are able to leverage recent advances
in the large pre-trained models to provide high quality and
generative neuron descriptions for DNNs in a training-free
manner. Below we briefly introduce the Image-to-Text

Model, Large Language Models and Text-to-Image Model
used in our pipeline implementation. The first model is
Bootstrapping Language-Image Pretraining (BLIP) (Li et al.,
2022), which is an image-to-text model for vision-language
tasks that generates synthetic captions and filters noisy ones,
employing bootstrapping for the captions to utilize noisy
web data. While our method can use any image-to-text
model, we use BLIP in this paper for our step 2 in the
pipeline due to BLIP’s high performance, speed, and rela-
tively low computational cost. However, we note that our
method can be easily adapted to leverage more advanced
models in the future.

The second model is GPT-3.5 Turbo, which is a transformer
model developed by OpenAI for understanding and gener-
ating natural language. It provides increased performance
from other contemporary models due to its vast training
dataset and immense network size. We utilize GPT-3.5
Turbo for natural language processing and semantic sum-
marization in the step 2 of our DnD. We use GPT-3.5 Turbo
in this work as it’s one of the SOTAs in LLMs and cheap
to use, but our method is compatible with other future and
more advanced LLMs.

The third model is Stable Diffusion (Rombach et al., 2022),
which is a text-to-image latent diffusion model (LDM)
trained on a subset from the LAION-5B database (Schuh-
mann et al., 2022). By performing the diffusion process
over the low dimensional latent space, Stable Diffusion is
significantly more computationally efficient than other dif-
fusion models, such as DALLE (Ramesh et al., 2021). Due
to its open availability, lower computational cost, and high
performance, we employ Stable Diffusion for our image
generation needs in the step 3 of DnD.

We provide a quantitative comparison between GPT-3.5
Turbo, GPT-4.0, and LLaMA2 effect on DnD’s label quality
in Appendix A.4.4 as well as evaluation on cost and usage
limitations for each model.
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Figure 2. Overview of Describe-and-Dissect (DnD) algorithm. Given a Target model, it consists three important steps to identify the
neuron concepts (e.g. ‘Swimming Shark‘ for neuron n).

3. Describe-and-Dissect: Methods
Overview. In this section, we present Describe-and-
Dissect (DnD), a comprehensive method to produce gen-
erative neuron descriptions in deep vision networks. Our
method is training-free, model-agnostic, and can be easily
adapted to utilize advancements in multimodal deep learn-
ing. DnD consists of three steps:

• Step 1. Probing Set Augmentation: Augment the
probing dataset with attention cropping to include both
global and local concepts;

• Step 2. Candidate Concept Generation: Generate
initial concepts by describing highly activating images
and subsequently summarize them into candidate con-
cepts using GPT;

• Step 3. Best Concept Selection: Generate new images
based on candidate concepts and select the best concept
based on neuron activations on these synthetic images
with a scoring function.

An overview of Describe-and-Dissect (DnD) and these 3
steps are illustrated in Fig. 2.

3.1. Step 1: Probing Set Augmentations

Probing dataset Dprobe is the set of images we record neuron
activations on before generating a description. As described

in Section 2.1, one major limitation of (Kalibhat et al., 2023)
is the restriction to local concepts while overlooking holistic
concepts within images, while one limitation of (Oikarinen
& Weng, 2023) is not incorporating the spatial activation
information. Motivated by these limitations, DnD resolves
these problems by augmenting the original probing dataset
with a set of attention crops of the highest activating images
from the original probing dataset. The attention crops can
capture the spatial information of the activations and we
name this set as Dcropped, shown in Fig. 2. We discuss the
implementation details of our attention cropping procedure
in Appendix A.1.1 and an perform an ablation study of its
effects in Appendix A.4.1.

3.2. Step 2: Candidate Concept Generation

The top K most highly activating images for a neuron n
are collected in set I, |I| = K, by selecting K images
xi ∈ Dprobe ∪ Dcropped with the largest g(Ak(xi)). Here g
is a summary function (for the purposes of our experiments
we define g as the spatial mean) and Ak(xi) is the activation
map of neuron k on input xi. We then generate a set of
candidate concepts for the neuron with the following two
part process:

• Step 2A - Generate descriptions for highly activat-
ing images: We utilize BLIP image-to-text model to
generatively produce an image caption for each image
in I . For an image Ij∈[K], we feed Ij into the base
BLIP model to obtain an image caption.
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• Step 2B - Summarize similarities between image de-
scriptions: Next we utilize OpenAI’s GPT-3.5 Turbo
model to summarize similarities between the K im-
age captions for each neuron being checked. GPT is
prompted to generate N descriptions which identify
and summarize the conceptual similarities between
most of the BLIP-generated captions.

The output of Step 2B is a set of N descriptions which
we call ”candidate concepts”. We denote this set as T =
{T1, ..., TN}. For the purposes of our experiments, we gen-
erate N = 5 candidate concepts unless otherwise mentioned.
The exact prompt used for GPT summarization is shown in
Appendix A.1.2.

3.3. Step 3: Best Concept Selection

The last crucial component of DnD is concept selection,
which selects the concept from the set of candidate con-
cepts T that is most correlated to the activating images of a
neuron. We first use the Stable Diffusion model (Rombach
et al., 2022) from Hugging Face to generate images for each
concept Tj∈[N ]. Generating new images is important as it
allows us to differentiate between neurons truly detecting
a concept or just spurious correlations in the probing data.
The resulting set of images is then fed through the target
model again to record the activations of a target neuron on
the new images. Finally, the candidate concepts are ranked
using a concept scoring model, as discussed in section 3.4.

Concept Selection Algorithm The algorithm consists of
4 substeps. For each neuron n, we start by:

1. Generate supplementary images. Generate Q synthetic
images using a text-to-image model for each label
Tj∈[N ]. The set of images from each concept is de-
noted as Dj , |Dj | = Q. The total new dataset is then
Dnew =

⋃N
j=1 Dj = {xnew

1 , ..., xnew
N ·Q}, which repre-

sents the full set of generated images. For the purposes
of the experiments in this paper, we set Q = 10.

2. Feed new dataset Dnew, back into the target model and
rank the images based on activation. We then evaluate
the activations of target neuron n on images in Dnew

and compute the rank of each image in terms of target
neuron activation. Given neuron activations An(x

new
i ),

we define Gn = {g(An(x
new
1 )), ..., g(An(x

new
N ·Q))} as

the set of scalar neuron activations.

3. Gather the ranks of images corresponding to concept
Tj . Let Rank(x;G) be a function that returns the rank
of an element x in set G, such that Rank(x′;G) = 1 if
x′ is the largest element in G. For every concept Tj , we
record the ranks of images generated from the concept
in Hj , where Hj = {Rank(g(An(x));Gn) ∀ x ∈ Dj},

and Hj is sorted in increasing order, so Hj1 is the rank
of the lowest ranking element.

4. Assign scores to each concept. The scoring function
score(Hj) assigns a score to a concept using the rank-
ings of the concept’s generated images, and poten-
tial additional information. The concept with the best
(highest) score in T is selected as the concept label for
the neuron. Concept scoring functions are discussed
below in Section 3.4.

In simpler terms, the intuition behind this algorithm is that
if a neuron n encodes for a concept c, then the images
generated to encapsulate that concept c should cause the
neuron n to activate highly. While we only experiment with
Best Concept selection within the DnD framework, it can be
independently applied with other methods like (Bau et al.,
2017; Hernandez et al., 2022; Oikarinen & Weng, 2023) to
select the best concept out of their top-k best descriptions,
which is another benefit of our proposed method.

3.4. Scoring Function

For a given neuron, we use a scoring function to rate candi-
date concept accuracy during Best Concept Selection (step
3). Simple metrics such as mean are heavily prone to outliers
that result in skewed predictions so we propose a scoring
function that weights the average rank of top activating
images mapping to a candidate concept.

score(Rj , I,Dt
j) = (N − Rank(Rj)) · E(I,Dt

j)

Here, the average rank of images for candidate concept j,
∀j ∈ {1, ..., N}, is denoted Rj and Rank(Rj) sorts Rj in
increasing order. E(I,Dt

j) computes the average cosine
similarity between image embeddings of Dt

j and I using
CLIP-ViT-B/16 (Radford et al., 2021), with Dt

j ⊂ Dj for
t highest activating images. In practice, Rj is computed
as the square of the ranks in top β ranking images for bet-
ter differentiation between scores, Rj = {(Ri

j)
2; i ≤ β}.

Sections A.1.3 the details specifics behind the function. In
section A.1.4, we compare between various functions and
show our algorithm works robustly with different options.

4. Experiments
In this section, we present extensive qualitative and quanti-
tative analysis to show that DnD outperforms prior works
by providing higher quality neuron descriptions. For fair
comparison, we follow the setup in prior works to run our al-
gorithm on the following two networks: ResNet-50 and
ResNet-18 (He et al., 2016) trained on ImageNet (Rus-
sakovsky et al., 2015) and Place365 (Zhou et al., 2016)
respectively. In section 4.1, we qualitatively analyze DnD
along with other methods on random neurons and show that
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our method provides good descriptions on these examples.
Next in section 4.2 we quantitatively show that DnD yields
superior results to comparable methods. In section 4.3, we
show that our method outperforms existing neuron descrip-
tion methods in large scale crowdsourced studies. In section
4.4, we demonstrate a use case of DnD and provide another
quantitative means of comparison with similar methods by
utilizing Describe-and-Dissect to find classifiers for new
concepts. Finally in section 4.5 we study the importance of
critical steps in our pipeline by ablating away Generative
Image Captioning (step 2A) and Concept Selection (step
3). Supplementary results are presented in the appendix, in-
cluding method details in section A.1, additional qualitative
examples in section A.2, and extensive ablation studies on
each step of the DnD framework in section A.4.

4.1. Qualitative evaluation

We qualitatively analyze results of randomly selected neu-
rons from various layers of ResNet-50, ResNet-18, and
ViT-B-16. Sample results are displayed in Figure 1 and
Figures 7, 8, 9, 10, 11, 12, and 13 in the Appendix. We
use the union of the ImageNet validation dataset and Bro-
den as Dprobe and compare to Network Dissection (Bau
et al., 2017), MILAN (Hernandez et al., 2022), and CLIP-
dissect (Oikarinen & Weng, 2023) as baselines. Labels
for each method are color coded by whether we believe
they are accurate, somewhat correct, or vague/imprecise.
Compared to baseline models, we observe that DnD cap-
tures higher level concepts in a more semantically coherent
manner. Specifically, methods such as CLIP-dissect and
Network Dissection have limited expressability due to the
use of restricted concept sets while MILAN produces labels
confined to lower level concepts. Additionally, we find that
DnD can express multiple concepts within in a single label
owing to its generative nature.

4.2. Quantitative evaluation

4.2.1. FINAL LAYER EVALUATION

Here we follow (Oikarinen & Weng, 2023) to quantitatively
analyze description quality on the last layer neurons, which
have known ground truth labels (i.e. class name) to allow
us to evaluate the quality of neuron descriptions automat-
ically. In this evaluation, we focus on comparison with
MILAN (Hernandez et al., 2022), as it is the other gener-
ative contemporary work in the baselines. Network Dis-
section (Bau et al., 2017) and CLIP-Dissect (Oikarinen &
Weng, 2023) are not included in this comparison because
these methods have concept sets where the ”ground truth”
class or other similar concepts can be included, giving them
an unfair advantage to the methods without concept sets
like MILAN and DnD. We reported the results for all of
the neurons of ResNet-50’s final fully-connected layer in

Table 2. Our results show that DnD outperforms MILAN,
producing labels are significantly closer to the ground truths
than MILAN’s.

Table 2. Textual similarity between predicted labels and ground
truths on the fully-connected layer of ResNet-50 trained on
ImageNet. We can see DnD outperforms MILAN.

Metric / Methods MILAN DnD (Ours)

CLIP cos 0.7080 0.7598

mpnet cos 0.2788 0.4588

BERTScore 0.8206 0.8286

4.3. Crowdsourced experiment

Table 3. Averaged AMT results across layers in ResNet-50. Our
descriptions are consistently rated the highest and chosen as the
best more than twice as often as the best baseline.

Metric / Method NetDissect MILAN CLIP-Dissect DnD (Ours)

Mean Rating 3.14 3.21 3.67 4.15

selected as best 12.71% 13.29% 23.11% 50.89%

Table 4. Averaged AMT results across layers in ResNet-18. We
can see DnD outperforms existing methods on ResNet-18 trained
on Places365. Our model was selected the best out of the three
methods for more than 54% of time time, almost 3× as often as
the second best method.

Metric / Methods NetDissect MILAN CLIP-Dissect DnD (Ours)

Mean Rating 3.33 3.14 3.52 4.14

selected as best 12.62 13.32% 19.39% 54.67%

Setup. Our experiment compares the quality of labels pro-
duced by DnD against 3 baselines: CLIP-Dissect, MILAN,
and Network Dissection. For MILAN we used their most
powerful base model in our experiments.

We dissected both a ResNet-50 network pretrained on
Imagenet-1K and ResNet-18 trained on Places365, using
the union of ImageNet validation dataset and Broden (Bau
et al., 2017) as our probing dataset. For both models we
evaluated 4 of the intermediate layers (end of each residual
block), with 200 randomly chosen neurons per layer for
ResNet50 and 50 per layer for ResNet-18. Each neurons
description was evaluated by 3 different workers. In total,
3000 human ratings were conducted, 2400 evaluations on
ResNet-50 and 600 evaluations on ResNet-18.

The full task interface and additional experiment details are
available in Appendix A.1.5. Workers were presented with
the top 10 highest activating images of a neuron followed
by four separate descriptions; each description corresponds
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to a label produced by one of the four methods compared.
The descriptions are rated on a 1-5 scale, where a rating
of 1 represents that the user ”strongly disagrees” with the
given description, and a rating of 5 represents that the user
”strongly agrees” with the given description. Additionally,
we ask workers to select the description that best represents
the 10 highly activating images presented.

Results. Table 3 and Table 4 shows the results of a large
scale human evaluation study conducted on Amazon Me-
chanical Turk (AMT). Looking at ”% time selected as best”
as the comparison metric, our results show that DnD per-
forms over 2× better than all baseline methods when dis-
secting ResNet-50 or ResNet-18, being selected the best
of the four up to 54.67% of the time. In terms of mean
rating, our method achieves an average label rating over
4.1 for both dissected models, whereas the average rating
for the second best method, CLIP-Dissect, is only 3.67 on
ResNet-50 and 3.52 on ResNet-18. Our method also sig-
nificantly outperforms MILAN’s generative labels, which
averaged below 3.3 for both target models. In conclusion
we have shown that our method significantly outperforms
existing methods in crowdsourced evaluation, and does this
consistently across different models and layers.

4.4. Use case

To showcase a potential use case for neuron descriptions
(and provide another way to quantitatively compare expla-
nation methods), we experimented with using neuron de-
scriptions to find a good classifier for a class missing from
the training set. Our setup was as follows: we explained all
neurons in layer4 of ResNet-50 (ImageNet) using different
methods. We then wanted to find neurons in this layer that
could serve as the best classifiers for an unseen class, specif-
ically the classes in CIFAR-10, CIFAR-100, and Places365
datasets. Although there is some overlap, these classes are
typically much more broad than ImageNet classes. To find
a neuron to serve as a classifier, we locate the neuron whose
description is closest to the CIFAR/Places365 class name
in a text embedding space. We then measure how well that
neuron (its average activation) performs as a single class
classifier on the respective validation dataset, measured by
area under ROC curve. For cases where multiple neurons
share the closest description, we average the performance
of all neurons with that description.

Results are shown in Table 5. We can see DnD performs
quite well, reaching AUROC values around 0.74, while
MILAN performs much worse. We believe this may be
because MILAN descriptions are very generic (likely caused
by noisy dataset as discussed in section 4.4.1), making it
hard to find a classifier for a specific class. We believe this is
a good measure of explanation quality, as different methods
are dissecting the same network, and even if no neurons

exist that can directly detect a class, a better method should
find a closer approximation.

MILAN DnD (Ours)

CIFAR10 0.5906 0.7036
CIFAR100 0.6514 0.7396
Places365 0.650 0.709

Table 5. The average classification AUC on out of distribution
dataset when using neurons with similar description as a classifier.
We can see that our DnD clearly outperforms MILAN, the only
other generative description method.

4.4.1. MILANNOTATIONS EVALUATION

Though evaluation on hidden layers of deep vision networks
can prove quite challenging as they lack ”ground truth”
labels, one resource to perform such task is the MILANNO-
TATIONS dataset (Hernandez et al., 2022), which collects
annotated labels to serve as ground truth neuron explana-
tions. We perform quantitative evaluation by calculating the
textual similarity between a method’s label and the corre-
sponding MILANNOTATIONS. Our analysis in section A.3
found that if every neuron is described with the same con-
stant concept ‘depictions‘, it will achieve better results than
any explanation on the dataset, but this is not a useful nor
meaningful description. We hypothesize this is due to high
levels on noise and interannotator disagreement, leading
to low textual similarity between descriptions and generic
descriptions scoring highly. We conclude that this dataset is
unreliable to serve as ground truths for comparing different
methods.

4.5. Ablation Studies

4.5.1. DND WITH FIXED CONCEPT SET

To analyze the importance of using a generative image-to-
text model, we explore instead utilizing fixed concept sets
with CLIP (Radford et al., 2021) to generate descriptions for
each image instead of BLIP, while the rest of the pipeline is
kept the same (i.e. using GPT to summarize etc). For the
experiment, we use CLIP-ViT-B/16, where we define L(·)
and E(·) as text and image encoders respectively. From
the initial concept set S = {t1, t2, ...}, the best concept
for image Im is defined as tl, where l = argmaxi(L(ti) ·
E(Im)⊤). Following CLIP-dissect (Oikarinen & Weng,
2023), we use S = 20k2(20, 000 most common English
words) and Dprobe = ImageNet ∪ Broden.

To compare the performance, following (Oikarinen & Weng,
2023), we use our model to describe the final layer neurons

2Source: https://github.com/first20hours/google-10000-
english/blob/master/20k.txt
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Table 6. Human evaluation results for DnD (w/o Best Concept Selection) versus full Describe-and-Dissect. Full pipeline improves or
maintains performance on every layer in ResNet-50.

Method / Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layers

DnD (w/o Best Concept Selection) 3.54 3.77 4.00 4.02 3.84
DnD (full pipeline) 3.54 4.00 4.24 4.13 3.97

(a) Layer 2 Neuron 312 (b) Layer 3 Neuron 927

Figure 3. Concept Selection (Step 3) supplements Concept Generation (Step 2) accuracy. We show that concept selection improves
Concept Generation by validating candidate concepts.

of ResNet-50 (where we know their ground truth role) and
compare descriptions similarity to the class name that neu-
ron is detecting, as discussed in Section 4.2.1. Results in
Table 7 show that both methods perform similarly on the FC
layer. In intermediate layers, we notice that single word con-
cept captions from 20k significantly limit the expressiveness
of DnD, suggesting having generative image descriptions is
important for our overall performance. Qualitative examples
and notable failure cases of CLIP descriptions can be found
under Appendix A.4.2.

Table 7. Mean FC Layer Similarity of CLIP Captioning. Uti-
lizing a fixed concept set to caption activating images via CLIP
(Radford et al., 2021), we compute the mean cosine similarity
across fully connected layers of RN50. We find the performance of
DnD w/ CLIP Captioning is slightly worse than BLIP generative
caption.

Metric / Methods DnD (Ours) DnD w/ CLIP Captioning % Decline

CLIP cos 0.7598 0.7583 0.197%

mpnet cos 0.4588 0.4465 2.681%

BERTScore 0.8286 0.8262 0.290%

4.5.2. EFFECTS OF CONCEPT SELECTION

We use 50 randomly chosen neurons from each of the 4
layers of ResNet-50 to conducted an ablation study on the
impact of Best Concept Selection (step 3) on the pipeline.
Each neuron was evaluated twice yielding a total of 400
human ratings. Table 6 shows the effect of Best Concept

Selection on the overall accuracy of DnD. We can see DnD
performance is already high without Best Concept Selec-
tion, but Concept Selection further improves the quality of
selected labels in Layer 2 through Layer 4, while having the
same performance on Layer 1. One potential explanation is
due to Layer 1 detecting more limited lower level concepts
– there is less variance in candidate descriptions identified
in Concept Generation (step 2), resulting in similar ratings
across the set of candidate concepts T . We can see some
individual examples of the improvement Concept Selection
provides in Figure 3, with the new labels yielding more spe-
cific and accurate descriptions of the neuron. For example
Layer 2 Neuron 312 becomes more specific colorful festive
settings instead of generic Visual Elements.

5. Conclusions
In this paper, we presented Describe-and-Dissect (DnD), a
novel method for automatically labeling the functionality of
deep vision neurons without the need for labeled training
data or a provided concept set. We accomplish this through
three important steps including probing set augmentation,
candidate concept generation through off-the-shelf general
purpose models, and best concept selection with carefully
designed scoring functions. Through extensive qualitative
and quantitative analysis, we show that DnD outperforms
prior work by providing significantly higher quality neuron
descriptions, while being more general and flexible than
existing methods.

8



Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models

Acknowlegements
This work is supported in part by National Science Foun-
dation (NSF) awards CNS-1730158, ACI-1540112, ACI-
1541349, OAC-1826967, OAC-2112167, CNS-2100237,
CNS-2120019, the University of California Office of the
President, and the University of California San Diego’s Cal-
ifornia Institute for Telecommunications and Information
Technology/Qualcomm Institute. Thanks to CENIC for the
100Gbps networks. This work used Expanse CPU, GPU
and Storage at SDSC through allocation CIS230152 from
the Advanced Cyberinfrastructure Coordination Ecosys-
tem: Services & Support program, which is supported
by National Science Foundation grants 2138259, 2138286,
2138307, 2137603, and 2138296. The authors thank REHS
program (Research Experience for High School students)
in San Diego Supercomputer Center. This work is also
partially supported by National Science Foundation under
Grant No. 2107189 and 2313105, and Hellman Fellowship.

9



Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models

References
Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A.

Network dissection: Quantifying interpretability of deep
visual representations. In CVPR, 2017.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B.,
and Torralba, A. Understanding the role of individual
units in a deep neural network. Proceedings of the Na-
tional Academy of Sciences, 117(48):30071–30078, 2020.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. 2009.

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M.,
Schubert, L., Radford, A., and Olah, C. Multimodal
neurons in artificial neural networks. Distill, 6(3):e30,
2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hernandez, E., Schwettmann, S., Bau, D., Bagashvili, T.,
Torralba, A., and Andreas, J. Natural language descrip-
tions of deep visual features. In ICLR, 2022.

Kalibhat, N., Bhardwaj, S., Bruss, B., Firooz, H., Sanjabi,
M., and Feizi, S. Identifying interpretable subspaces in
image representations, 2023.

Li, J., Li, D., Xiong, C., and Hoi, S. BLIP: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In ICML, 2022.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Boot-
strapping language-image pre-training with frozen im-
age encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

Mu, J. and Andreas, J. Compositional explanations of neu-
rons. Advances in Neural Information Processing Sys-
tems, 33:17153–17163, 2020.

Oikarinen, T. and Weng, T.-W. CLIP-Dissect: Automatic
description of neuron representations in deep vision net-
works. In ICLR, 2023.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Otsu, N. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66, 1979. doi: 10.1109/TSMC.
1979.4310076.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. CoRR, abs/2102.12092, 2021. URL
https://arxiv.org/abs/2102.12092.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115:
211–252, 2015.

Scherlis, A., Sachan, K., Jermyn, A. S., Benton, J., and
Shlegeris, B. Polysemanticity and capacity in neural
networks, 2023.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., Schramowski, P., Kundurthy, S., Crow-
son, K., Schmidt, L., Kaczmarczyk, R., and Jitsev, J.
Laion-5b: An open large-scale dataset for training next
generation image-text models, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. 2023.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Object detectors emerge in deep scene CNNs. In ICLR,
2015.

10

https://arxiv.org/abs/2102.12092


Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models

Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., and Oliva,
A. Places: An image database for deep scene understand-
ing, 2016.

11



Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models

A. Appendix
In the appendix, we discuss specifics of the methods and experiments presented in the paper and provide additional results.
Appendix Section A.1 provides further details on the method pipeline, Section A.2 presents additional qualitative evaluations,
Section A.3 shows results for quantitative comparison to MILANNOTATIONS, Section A.4 provides detailed ablation
studies on each step of the DnD pipeline, Section A.5 shows an extension of DnD to return multiple concept labels, and
Section A.6 discusses the limitations and directions for future work.

Appendix Outline

1. A.1 Method Details

(a) A.1.1 Detailed Description of Attention Cropping
(b) A.1.2 GPT Prompt
(c) A.1.3 Scoring Function Details
(d) A.1.4 Selecting a Scoring Function
(e) A.1.5 Amazon Mechanical Turk Setup

2. A.2 Qualitative Evaluation

3. A.3 Quantitative Results: MILANNOTATIONS

4. A.4 Ablation Studies

(a) A.4.1 Attention Cropping
(b) A.4.2 Image Captioning with Fixed Concept Set
(c) A.4.3 Image-to-Text Model
(d) A.4.4 Effects of Large-Language-Model Choice
(e) A.4.5 Effects of GPT Concept Summarization

5. A.5 Multiple Labels

6. A.6 Limitations
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A.1. Method Details

A.1.1. DETAILED DESCRIPTION OF ATTENTION CROPPING

The attention cropping algorithm described in Sec 3.1 is composed of three primary procedures:

• Step 1. Compute the optimal global threshold λ for the activation map of a given neuron n using Otsu’s Method (Otsu,
1979).

• Step 2. Highlight contours of salient regions on the activation map that activate higher than λ.

• Step 3. Crop α largest salient regions from the original activating image that have an IoU score less than η with all
prior cropped regions.

Here, we provide more implementation details for each step:

• Step 1. Global Thresholding using Otsu’s Method. For an activation map of neuron n, we define regions with high
activations as the ”foreground” and regions with low activations as the ”background”. Otsu’s Method (Otsu, 1979)
automatically calculates threshold values which maximizes interclass variance between foreground and background
pixels. Interclass variance σ2

B is defined by σ2
B = WbWf (µb − µf )

2, where Wb,f denotes weights of background and
foreground pixels and µb,f denotes the mean intensity of background and foreground pixels respectively. For global
thresholding used in DnD, Wf is the fraction of pixels in activation map Mn(xi) above potential threshold λ while Wb

is the fraction of pixels below λ. A value of λ that maximizes σ2
B is used as the global threshold.

• Step 2. Highlight Contours of Salient Regions. DnD utilizes OpenCV’s contour detection algorithm to identify
changes within image color in the binary masked activation map. Traced contours segments are compressed into four
end points, where each end point represents a vertex of the bounding box for the salient region.

• Step 3. Crop Activating Images. Bounding boxes recorded from Step 2 are overlaid on corresponding activating
images from Dprobe, which are cropped to form Dcropped. To prevent overlapping attention crops, the IoU score
between every crop in Dcropped is less than an empirically set parameter η, where high η values yield attention crops
with greater similarities.

We also visualize these steps in the below Figure 4 for better understanding.
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Figure 4. Detailed Visualization of Attention Cropping Pipeline. All three steps of attention cropping are shown for Layer 2 Neuron
165. Steps 1 and 2 illustrate the derivation of bounding boxes from salient regions in the original activation map and are overlaid on
original activating images from Dprobe in Step 3. Cropped images are added back to Dprobe to form Dprobe

⋃
Dcropped.
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A.1.2. GPT PROMPT

The Concept Selection process utilizes GPT to identify and coherently summarize similarities between image captions of
every image in I . Due to the generative nature of DnD, engineering an precise prompt is crucial to the method’s overall
performance. The use of GPT in DnD can be split into two primary cases, each with an individual prompt: 1) Summarizing
image captions to better bring out the underlying concepts, and 2) Detecting similarities between the image captions. We
explain each part separately.

1. Summarizing Image Captions. BLIP’s image captions frequently contain extraneous details that detract from the ideas
represented. To resolve this problem, captions are fed through GPT and summarized into simpler descriptions to represent
the concept. We use the following prompt:

”Only state your answer without a period and quotation marks. Do not number your
answer. State one coherent and concise concept label that simplifies the following
description and deletes any unnecessary details:”

2. Detecting Similarities Between Image Captions. To describe the similarity between image captions, we design the
following prompt:

”Only state your answer without a period and quotation marks and do not simply
repeat the descriptions. State one coherent and concise concept label that is 1-5 words
long and can semantically summarize and represent most, not necessarily all, of the
conceptual similarities in the following descriptions:”

In addition to the prompt, we use few shot-prompting to feed GPT two sets of example descriptions and along with the
respective human-identified similarities:

Example 1:

Human-Identified Similarity: ”multicolored textiles”
Image Captions:

• ”a purple background with a very soft texture”

• ”a brown background with a diagonal pattern of lines and lines”

• ”a white windmill with a red door and a red door in the middle of the picture”

• ”a beige background with a rough texture of linen”

• ”a beige background with a rough texture and a very soft texture”

Example 2:

Human-Identified Similarity: ”red-themed scenes”
Image Captions:

• ”a little girl is sitting in a red tractor with the word sofy on the front”

• ”a toy car sits on a red ottoman in a play room”

• ”a red dress with silver studs and a silver belt”

• ”a red chevrolet camaro is on display at a car show”

• ”a red spool of a cable with the word red on it”
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A.1.3. SCORING FUNCTION DETAILS

Though scoring functions all seek to accomplish the same purpose, the logic behind them can vary greatly and have different
characteristics. Simplest scoring functions, such as mean, can be easily skewed by outliers in Hj , resulting in final concepts
that are loosely related to the features detected by neurons. In this section, we discuss 3 different scoring functions and a
combination of them which we experimented with in section A.1.4. The concept with highest score is chosen as the final
description for neuron n.

• Mean. Simply score concept j as the negative mean of its image activation rankings Hj . Concepts where each image
activates the neuron highly will receive low ranks and therefore high score. We use the subscript M to denote it’s the
score using Mean.

scoreM (Hj) = − 1

Q

Q∑
i=1

Hji

• TopK Squared. Given Hj , the score is computed as the mean of the squares of β lowest ranking images for the concept.
For our experiments, we use β = 5. This reduces reliance on few poor images. We use the subscript TK to denote the
score using TopK Squared:

scoreTK(Hj , β) = − 1

β

β∑
i=1

H2
ji

• Image Products. Let set Dt
j ⊂ Dj , such that it keeps the t highest activating images from Dj . From the original set

of activating images I and Dt
j , the Image Product score is defined as the average cosine similarity between original

highly activating images and the generated images for the concept j. We measure this similarity using CLIP-ViT-B/16
(Radford et al., 2021) as our image encoder E(·):

scoreIP (I,Dt
j) =

1

|I| · |Dt
j |

∑
x∈I

∑
xnew∈Dt

j

(E(x) · E(xnew))

See Figure 5 for an illustration of Image Product. Intuitively, Image Products selects the candidate concept whose
generated images are most similar to the original highly activating images. However, Image Product doesn’t really
account for how highly the new images actually activate the target neuron, which is why we chose to use this method to
supplement other scoring functions. The enhanced scoring method, TopK Squared + Image Products, is described
below.

• TopK Squared + Image Products. This scoring function uses both image similarity and neuron activations to select the
best concept. The method combines Image Products and TopK Squared by multiplying the Image Product score with
the relative rankings of each concept’s TopK Squared score. We define RTK = { scoreTK(Hj , β), ∀ j ∈ {1, ..., N}}
as the set of TopK Squared scores for different descriptions. The final score is then:

scoreTK−IP (Hj , β, I,Dt
j) = (N − Rank(scoreTK(Hj , β);RTK)) · scoreIP (I,Dt

j),

where we use N − Rank(·) to invert the ranks of TopK Squared so low ranks result in a high score.

In section A.1.4, we compare the different functions and note that our model is largely robust to the choice of scoring
function with all performing similarly well. We use the TopK Squared + Image Products scoring function for all experiments
unless otherwise specified.
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Figure 5. Image Product Scoring Function. In the diagram, we let Wi = E(Di
j) and Pi = E(Ii). Image Products computes the mean

of Wi · Pi.
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Table 8. Comparison of scoring functions. Total of 276 evaluations were performed on interpretable neurons (neurons deemed
uninterpretable by raters were excluded) from the first 4 layers of ResNet-50 on a scale from 1 to 5. We observe a small margin of
difference between the total averages of each scoring function’s ratings. Across all 4 layers, the worst and best performing scoring
functions differ in average rating by only 0.04 so our algorithm is not dependent on the choice of scoring function.

Scoring Function / Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layers

Mean 3.95 3.92 4.14 3.82 3.95

TopK Squared 3.73 3.91 4.23 3.80 3.91

TopK Squared + Image Products 3.77 3.94 4.28 3.78 3.93

A.1.4. SELECTING A SCORING FUNCTION

We again used ResNet-50 with Imagenet + Broden as the probing dataset. 50 neurons were randomly chosen from each of
the 4 hidden layers, with each neuron evaluated twice, again rating the quality of descriptions on a scale 1-5. The participants
in this experiment were volunteers with no knowledge of which descriptions were provided by which methods. Table 8
shows the performance of different scoring functions described in section A.1.3. We observe that all three scoring functions
presented perform similarly well, and shows our algorithm is robust and not dependent on the choice of scoring function.
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A.1.5. AMAZON MECHANICAL TURK SETUP

In this section we explain the specifics of our Amazon Mechanical Turk experiment setup in section 4.3. In the interface
shown in figure 6, we display the top 10 highly activating images for a neuron of interest and prompt workers to answer the
question: ”Does description accurately describe most of the above 10 images?”. Each given description is rated on a 1-5
scale with 1 representing ”Strongly Disagree”, 3 representing ”Neither Agree nor Disagree”, and 5 representing ”Strongly
Agree”. Evaluators are finally asked to select the label that best describes the set of 10 images.

We used the final question to ensure the validity of participants’ assessments by ensuring their choice for best description is
consistent with description ratings, If the label selected as best description in the final question was not (one of) the highest
rated descriptions by the user, we deemed a response invalid. In our analysis we only kept valid responses, which amounted
to 1744/2400 total responses for Resnet-50 and 443/600 responses for ResNet-18, so around 75% of the responses were
valid.

We collected responses from workers over 18 years old, based in the United States who had > 98% approval rating and
more than 10,000 approved HITs to maximize the quality of the responses. We paid workers $0.08 per response, and our
experiment was deemed exempt by the relevant IRB board.

One downside of our experimental setup is that it is not clear which highly activating images we should display to the users
and how to display them, and these choices may be important to the final results. In our experiments, we displayed the
images in Dprobe with the highest mean activation as done by CLIP-Dissect(Oikarinen & Weng, 2023), but displaying images
with highest max activation would likely be better for MILAN (Hernandez et al., 2022). Unfortunately there is no simple
answer to which images we should display that would be good for all methods. See Limitations A.6 for more discussion.
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Figure 6. Amazon Mechanical Turk experiment user interface. For each neuron, we present participants with the top 10 highly
activating images and prompt them to rate each method’s label based by how accurately the description represents the set of images. We
also ask participants to select the best label from the four descriptions presented.
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A.2. Qualitative Evaluation

Figures 7, 8, 9, and 10 provide supplementary qualitative results for DnD along with results produced by baseline methods
for ResNet-50 and ResNet-18. Figure 11 showcases our descriptions on random neurons of the ViT-B/16 Vision Transformer
trained on ImageNet, showing good descriptions overall, and higher quality than CLIP-Dissect descriptions. Finally in
Figures 12 and 13 we dissect ResNet-50 using the CIFAR-100 training image set as the probing set, showcasing our method
still perfoms well with a different probing dataset.

Figure 7. Additional examples of DnD results from Layer 1 and 2 of ResNet-50. We showcase a set of randomly selected neurons and
their descriptions from Layer 1 and 2 of ResNet-50 trained on ImageNet-1K. Labels are color-coded by whether we believed they were
accurate, somewhat correct/vague or imprecise.
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Figure 8. Additional examples of DnD results from Layer 3 and 4 of ResNet-50. We showcase a set of randomly selected neurons and
their descriptions from Layer 3 and 4 of ResNet-50 trained on ImageNet-1K. Labels are color-coded by whether we believed they were
accurate, somewhat correct/vague or imprecise.
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Figure 9. Additional examples of DnD results from Layer 1 and 2 of ResNet-18. We showcase a set of randomly selected neurons
and their descriptions from Layer 1 and 2 of ResNet-18 trained on Places365. Labels are color-coded by whether we believed they were
accurate, somewhat correct/vague or imprecise.
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Figure 10. Additional examples of DnD results from Layer 3 and 4 of ResNet-18. We showcase a set of randomly selected neurons
and their descriptions from Layer 3 and 4 of ResNet-18 trained on Places365. Labels are color-coded by whether we believed they were
accurate, somewhat correct/vague or imprecise.
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Figure 11. Examples of DnD results from the encoder layer of ViT-B/16 (ImageNet). We showcase a set of randomly selected neurons
and their descriptions from the encoder layer of ViT-B/16 trained on ImageNet. DnD is model agnostic and can be generalized to any
convolutional network. Labels are color-coded by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 12. Examples of DnD results from Layer 1 and 2 of ResNet-50 using the training dataset of CIFAR100 as the probing image
set. We showcase a set of randomly selected neurons and their descriptions from Layer 1 and 2 of ResNet-50 trained on ImageNet-1K.
DnD is probing dataset agnostic and can maintain its high performance on other image sets. Labels are color-coded by whether we
believed they were accurate, somewhat correct/vague or imprecise.

26



Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models

Figure 13. Examples of DnD results from Layer 3 and 4 of ResNet-50 using the training dataset of CIFAR100 as the probing image
set. We showcase a set of randomly selected neurons and their descriptions from Layer 3 and 4 of ResNet-50 trained on ImageNet-1K.
DnD is probing dataset agnostic and can maintain its high performance on other image sets. Labels are color-coded by whether we
believed they were accurate, somewhat correct/vague or imprecise.
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A.3. Quantitative Results: MILANNOTATIONS

In this section we discuss using the MILANNOTATIONS dataset (Hernandez et al., 2022) as a set of ground truths to
calculate quantitative results on the intermediate layers of ResNet-152. Table 9 displays an experiment done on 103 randomly
chosen ”reliable” neurons across the 4 intermediate layers of ResNet-152. A neuron was deemed ”reliable” if, out of its
three corresponding MILANNOTATIONS, two had a CLIP cosine similarity exceeding a certain threshold (for the purposes
of this experiment we set that threshold to 0.81). Additionally, we define our summary function g to be spatial max, as this is
what was used to calculate the highest activating images for the MILANNOTATIONS. We compare against MILAN trained
on Places365 and CLIP-Dissect, using the spatial max summary function for CLIP-Dissect as well. Our results are generally
mixed, with DnD performing the best (average of 0.7766), then MILAN (average of 0.7698), and finally CLIP-Dissect
(average of 0.7390) using CLIP cosine similarity. These results match with BERTScore, as using that metric DnD performs
the best (average of 0.8489), then MILAN (average of 0.8472), and finally CLIP-Dissect (average of 0.8368). With mpnet
cosine similarity, CLIP-Dissect is calculated as the best (average of 0.1970) followed by MILAN (average of 0.1391) and
then DnD (average of 0.1089). However, the MILANNOTATIONS dataset is very noisy as seen in Figure 14 and thus is
largely unreliable for evaluation. The dataset provides three annotations per neuron, each made by a different person. This
causes them to often be very different from one another, not representing the correct concept of the neuron. We can see in
the table that the average CLIP cosine similarity between the annotations for each of these reliable neurons is 0.7884, the
average mpnet cosine similarity is 0.1215, and the average BERTScore is 0.8482. Due to this noisiness, we found that the
best performing description is as generic as possible as it will be closest to all descriptions. In fact, we found that a trivial
baseline describing each neuron as ”depictions” irrespective of the neuron’s function outperforms all description methods,
including MILAN. This leads us to believe MILANNOTATIONS should not be relied upon to evaluate description quality.
Figure 14 showcases descriptions and MILANNOTATIONS for some neurons.

Table 9. Similarity between predicted labels and ”ground truth” MILANNOTATIONS on the 4 intermediate layers of ResNet-152
trained on ImageNet. We observe that when using CLIP cosine similarity and BERTScore, DnD performs the best followed by MILAN
and then CLIP-Dissect, but when using MPNet cosine similarity, CLIP-Dissect performs the best followed by MILAN and then DnD.
Simply labeling every neuron as ”depictions” outperforms all other methods, demonstrating the unreliability of MILANNOTATIONS as
an evaluation method. The set’s noisiness is also shown by the average similarities between the different annotations for each neuron,
demonstrating that the annotations are not consistent. We round results to the nearest 4 decimal places, but in instances of ties within a
row, we observe further digits and bold accordingly.

Method

Metric Layer MILAN CLIP-Dissect Describe-and-Dissect (Ours) ”depiction” Avg Cos Sim
Between Annotations

CLIP cos Layer 1 0.7441 0.7398 0.7454 0.7746 0.7643
Layer 2 0.7627 0.7472 0.7872 0.7988 0.7976
Layer 3 0.7893 0.7414 0.7858 0.7900 0.8026
Layer 4 0.7739 0.7291 0.7825 0.7820 0.7845

All Layers 0.7698 0.7390 0.7766 0.7864 0.7884

mpnet cos Layer 1 0.0801 0.1962 0.0950 0.2491 0.1124
Layer 2 0.1143 0.1850 0.1075 0.2513 0.1167
Layer 3 0.1462 0.2039 0.1160 0.2483 0.1279
Layer 4 0.1973 0.1995 0.1132 0.2501 0.1252

All Layers 0.1391 0.1970 0.1089 0.2496 0.1215

BERTScore Layer 1 0.8426 0.8282 0.8395 0.8513 0.8392
Layer 2 0.8472 0.8348 0.8475 0.8597 0.8467
Layer 3 0.8519 0.8438 0.8519 0.8580 0.8490
Layer 4 0.8456 0.8374 0.8539 0.8475 0.8501

All Layers 0.8472 0.8368 0.8489 0.8541 0.8482
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Figure 14. MILANNOTATIONS from random neurons in ResNet-152 (ImageNet). We showcase a set of randomly selected neurons
alongside their corresponding DnD label, MILAN label, and three MILANNOTATIONS labels (MA). We can see that the three
MILANNOTATIONS for each neuron often don’t match up well and don’t accurately describe the neuron.
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A.4. Ablation Studies

A.4.1. ABLATION: ATTENTION CROPPING

Attention cropping is a critical component of DnD due to generative image-to-text captioning. Unlike models that utilize
fixed concept sets such as CLIP-dissect (Oikarinen & Weng, 2023), image captioning models are prone to spuriously
correlated concepts which are largely irrelevant to a neuron’s activation. To determine the effects of attention cropping on
subsequent processes in the DnD pipeline, we evaluate DnD on Dprobe without augmented image crops from Dcropped. We
show qualitative examples of this effect in Figure 15.

Figure 15. Examples where Attention Cropping Improves DnD. The left panel shows the result without attention cropping (Uncropped)
while the right panel show the result with attention cropping (Cropped). It can be seen that Attention cropping eliminates spurious
features in highly activating images and improves accuracy of potential candidate concepts.
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A.4.2. ABLATION: IMAGE CAPTIONING WITH FIXED CONCEPT SET

In section 4.5.1, we explored using fixed concept sets with CLIP (Radford et al., 2021) to generate descriptions for
highly activating images rather than BLIP. We present qualitative examples of fixed concept captioning below in figure 16.
Additionally, we also note particular failure cases caused by a lack of expressiveness encapsulated in static concepts, as
demonstrated in figure 17.

Figure 16. Examples of DnD with CLIP Image Captioning Compared to DnD (with BLIP). Despite producing similar results on the
FC layer, we see that DnD (with BLIP) outperforms DnD with CLIP image captioning, especially on intermediate layer neurons. Single
word captions fail to fully encapsulate concepts expressed in these layers, resulting in poor DnD performance.
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(a) CLIP Image Captioning Failure Case 1 (b) CLIP Image Captioning Failure Case 2

Figure 17. Failure Cases of CLIP Image Captioning. Due to the lack of expressiveness of static concept sets, GPT summarization fails
to identify conceptual similarities within CLIP image captions. With dynamic concept sets generated by BLIP, the issue is largely avoided.
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(a) BLIP-2 Similar Example 1 (b) BLIP-2 Similar Example 2

Figure 18. Examples of Similar BLIP and BLIP-2 Labels. BLIP and BLIP-2 detect similar concepts across all layers of RN50. Two
such examples are detailed above.

A.4.3. ABLATION: IMAGE-TO-TEXT MODEL

In light of advancements in image-to-text models, we compare BLIP (Li et al., 2022) to a more recently released model,
BLIP-2 (Li et al., 2023). Unlike BLIP, BLIP-2 leverages frozen image encoders and LLMs while introducing Querying
Transformer to bridge the modality gap between two models. We experiment with using BLIP-2 as the image-to-text model
and quantitatively compare with BLIP by computing the mean cosine similarity between the best concept chosen from
Concept Selection. As discussed in the Appendix A.3, CLIP-ViT-B/16 cosine similarity is a stronger indicator of conceptual
connections than all-mpnet-base-v2 similarity for generative labels. Accordingly, CLIP-ViT-B/16 cosine similarity is used
as the comparison metric. We evaluate on 50 randomly chosen neurons from each intermediate layer of RN50 and results of
the experiment are detailed in Table 10. From Table 10, BLIP and BLIP-2 produce highly correlated concepts across all four
layers of RN50 and a 87.0% similarity across the entire network.

Table 10. Mean Cosine Similarity Between BLIP and BLIP-2 Labels. For each layer in RN50, we compute the mean CLIP cosine
similarity and BERTScore between BLIP and BLIP-2 labels for 50 randomly chosen neurons. Similar conceptual ideas between both
models are reflected in the high similarity scores.

Metric Layer 1 Layer 2 Layer 3 Layer 4 All Layers

CLIP cos 0.864 0.848 0.875 0.891 0.870
BERTScore 0.883 0.880 0.894 0.891 0.887

We also show examples of similar description produced in Figure 18. Somewhat counter-intuitively, our qualitative analysis
of neurons in preliminary layers of RN50 reveals examples where BLIP-2 fails to detect low level concepts that BLIP is
able to capture. Such failure cases limit DnD accuracy by generating inaccurate image captions and adversely affecting the
ability of GPT summarization to identify conceptual similarities between captions. We show two such examples in below
Figure 19. In general this experiment shows that our pipeline is not very sensitive to the choice of image-captioning model.
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(a) BLIP-2 Failure Case Example 1 (b) BLIP-2 Failure Case Example 2

Figure 19. Examples of BLIP-2 failure cases. BLIP-2 overlooks crucial low level concepts in early layers of RN50. Potential Candidate
Concepts generated are vague and spuriously correlated, yielding poor results in the final DnD label.
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Table 11. Comparison of LLMs on label quality. Our experiment shows that GPT-4 Turbo and LLaMA2 significantly increase the
cosine similarity score between DnD labels and ground truth classes on FC layer neurons, suggesting the ability for our framework to
incorporate new advancements in LLMs.

Metric DnD DnD w/ GPT-4 Turbo DnD w/ LLaMA2

CLIP cos 0.6377 0.7607 0.7407

mpnet cos 0.1403 0.4506 0.4726

BERT Score 0.8172 0.8340 0.8105

A.4.4. ABLATION: EFFECTS OF LARGE-LANGUAGE-MODEL CHOICE

To test the robustness of our pipeline at the concept summarization stage, we swap out GPT-3.5 Turbo for GPT-4 Turbo
and LLaMA2 (Touvron et al., 2023). For reference, our paper utilizes GPT-3.5 Turbo for all of its primary experiments
rather than GPT-4 Turbo because GPT-4 Turbo has 20x the cost of GPT-3.5 Turbo and at the time of developing our pipeline,
GPT-3.5 Turbo was the most advanced GPT model provided by OpenAI. LLaMA2, although cost free, is restricted to the
public and requires specialized access for use in research.

Our experiment follows the precedence of the setups of our previous experiments in our paper and of the setups utilized in
prior works. We evaluate 26 neurons on the FC Layer of ResNet-50 and compare to the ground truth labels provided by the
classes. As this is a small-scale experiment, the results may not be entirely accurate, but we can see that utilizing other
models actually significantly increases DnD’s performance in all metrics. As shown in table 11, not only is DnD able to
keep up its performance with other models but also improve with new and more advanced ones.
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(a) GPT Ablation: Poor Quality Concept (b) GPT Ablation: Concept Specific to Single Image

Figure 20. Failure Cases in GPT-Ablation Study. Figure a illustrates potential failure cases of DnD without GPT summarization. BLIP
produces illogical image captions that hinder overall interpretability. Figure b shows an additional failure case where the omission of
concept summarization causes individual image captions to generalize to the entire neuron.

A.4.5. ABLATION: EFFECTS OF GPT CONCEPT SUMMARIZATION

DnD utilizes OpenAI’s GPT-3.5 Turbo to summarize similarities between the image caption generated for each K highly
activating images of neuron n. This process is a crucial component to improve accuracy and understandability of our
explanations, as shown in the ablation studies below.

As mentioned in Appendix A.1.2, GPT summarization is composed of two functionalities: 1. simplifying image captions and
2. detecting similarities between captions. Ablating away GPT, we substitute the summarized candidate concept set T with
the image captions directly generated by BLIP for the K activating images of neuron n. We note two primary drawbacks:

• Poor Concept Quality. An important aspect of GPT summarization is the ability to abbreviate nuanced captions into
semantically coherent concepts (function 1.). In particular, a failure case for both BLIP and BLIP-2, shown in Figure
20a, is the repetition of nonsensical elements within image captions. Processing these captions are computationally
inefficient and can substantially extend runtime. DnD resolves this problem by preprocessing image captions prior to
similarity detection.

• Concept specific to a single image. Without the summarization step, concepts only describe a single image and fail to
capture the shared concept across images. We can see for example that the neuron in Figure 20b gets only described as
a ”pile of oranges”, which only applies to the fourth image and misses the overall theme of orange color.
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A.5. Multiple Labels

As discussed in the Appendix A.6, many neurons in intermediate layers can be considered ”polysemantic”, meaning that they
encode multiple unrelated concepts. Our primary pipeline only produces one label, and though this label can encapsulate
more than one concept, providing multiple labels can better account for issues of polysemanticity. We accomplish this by
taking the top candidate concepts selected by Concept Selection as our final labels. If the final labels have a CLIP cosine
similarity exceeding 0.81, we only take the top labels and eliminate the others from the set of final labels. This allows use to
bring out accurate labels that account for distinct concepts prevalent in the neuron. We can see this in Figure 21. For Neuron
508 from Layer 2, DnD captures not only the polka dot and metal texture concepts of the neuron, but adds that the textures
are primarily black and white. For Neuron 511 from Layer 3, DnD labels the neuron as detecting not only interior elements,
but also specifying that these elements are mostly black and white.

Figure 21. Example results on ResNet-50 (ImageNet) from the DnD pipeline being modified to produce multiple labels. We
showcase a set of randomly selected neurons to exemplify DnD’s capability to provide multiple descriptions. We can see that though
some of these neurons can’t be described by just a singular label, DnD’s multiple labels can describe their various aspects.
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A.6. Limitations

One limitation of Describe-and-Dissect is the relatively high computational cost, taking on average about 38.8 seconds per
neuron with a Tesla V100 GPU. However, this problem can be likely well-addressed as the current pipeline has not been
optimized for speed-purposes yet (e.g. leveraging multiple GPU etc). Another potential limitation of our method is that since
it first converts the images into text and then generates its labels based on the text, DnD likely cannot detect purely visual
elements occasionally found in lower layers of networks, such as contrast or spatial elements. Additionally, our method
only takes into account the top k most highly activating images when generating labels. Excluding the information found in
lower activating images may not allow our method to gain a full picture of a neuron. However, this problem of only focusing
on top activations is shared by all existing methods and we are not aware of good solutions to it. Finally, DnD is limited by
how well the image-to-text, natural language processing, and text-to-image models are able to perform. However, this also
means that future innovations in these types of Machine Learning models can increase the performance of our method.

Polysemantic neurons: Existing works (Olah et al., 2020; Mu & Andreas, 2020; Scherlis et al., 2023) have shown that
many neurons in common neural networks are polysemantic, i.e. represent several unrelated concepts or no clear concept
at all. This is a challenge when attempting to provide simple text descriptions to individual neurons, and is a limitation
of our approach, but can be somewhat addressed via methods such as adjusting DnD to provide multiple descriptions
per neuron as we have done in the Appendix A.5. We also note that due to the generative nature of DnD, even its single
labels can often encapsulate multiple concepts by using coordinating conjunctions and lengthier descriptions. However,
polysemantic neurons still remain a problem to us and other existing methods such as (Bau et al., 2017) (Hernandez et al.,
2022) (Oikarinen & Weng, 2023). One promising recent direction to alleviate polysemanticity is via sparse autoencoders as
explored by (Bricken et al., 2023).

Challenges in comparing different methods: Providing a fair comparison between descriptions generated by different
methods is a very challenging task. The main method we (and previous work) utilized was displaying highly activating
images and asking humans whether the description matches these images. This evaluation itself has some flaws, such
as only focusing on the top-k activations and ignoring other neuron behavior. In addition, the question of what are the
highly activating images and how to display them is a surprisingly complex one and requires multiple judgement calls, with
different papers using different methods with little to no justification for their choices. First, which images are most highly
activating. When our neuron is a CNN channel, its activation is 2D – sorting requires summarizing to a scalar, typically
using either max or average pooling. In our experiments we used average, but max gives different sets of results. Second,
the choice of probing dataset is important, as it will affect which images are displayed. Finally choosing if/how to highlight
the highly activating region to raters will have an effect. We chose not to highlight as we crop the highly activating regions
which can provide similar information. If highlighting is used, choices like what activation threshold to use for highlights
and how to display non-activating regions will also affect results. Different choices for all these parameters will generate
varying results. Consequently, it is hard to provide fully fair comparisons, so results such as Section 4.3 should be taken
with a grain of salt.

38


