
Supplementary material for Recovering Simultaneously Structured Data via
Non-Convex Iteratively Reweighted Least Squares

This supplement is structured as follows.

• Appendix A presents some details about the experimental setup as well as additional
numerical experiments.

• Appendix B.1 presents the proof of Theorem 2.5.
• Appendix B.2 presents the proof of Theorem 2.6.
• Appendix C details some technical results that are used in Appendices B.1 and B.2.

A Experimental Setup and Supplementary Experiments

In this section, we elaborate on the detailed experimental setup that was used in Section 4 of the
main paper. Furthermore, we provide additional experiments comparing the behavior of the three
methods studied in Section 4 for linear measurement operators A that are closer to operators that can
be encountered in applications of simultaneous low-rank and group-sparse recovery. Finally, we shed
light on the evolution of the objective function (4) of IRLS (Algorithm 1), including in situations
where the algorithm does not manage to recover the ground truth.

A.1 Experimental Setup

The experiments of Section 4 were conducted using MATLAB implementations of the three al-
gorithms on different Linux machines using MATLAB versions R2019b or R2022b. In total, the
preparation and execution of the experiments used approximately 1200 CPU hours. The CPU models
used in the simulations are Dual 18-Core Intel Xeon Gold 6154, Dual 24-Core Intel Xeon Gold
6248R, Dual 8-Core Intel Xeon E5-2667, 28-Core Intel Xeon E5-2690 v3, 64-Core Intel Xeon
Phi KNL 7210-F. For Sparse Power Factorization (SPF) [60], we used our custom imple-
mentation of [60, Algorithm 4 "rSPF_HTP"] and for Riemannian adaptive iterative hard

thresholding (RiemAdaIHT) [29], we used an implementation provided to us by Max Pfeffer
in private communications. We refer to Section 3 for implementation details for the IRLS method
Algorithm 1.

In all phase transition experiments, we define successful recovery such that the relative Frobenius error
kX(K)�X?k

F
kX?kF

of the iterate X
(K) returned by the algorithm relative to the simultaneously low-rank

and row-sparse ground truth matrix X? is smaller than the threshold 10�4. As stopping criteria, we

used the criterion that the relative change of Frobenius norm satisfies kX(k)�X
(k�1)k

F

kX(k)k
F

< tol for

IRLS, the change in the matrix factors norms satisfy kUk �Uk�1k < tol and kVk �Vk�1k <

tol for SPF, and the norm of the Riemannian gradient in RiemAdaIHT being smaller than tol for
tol = 10�10, or if a maximal number of iterations is reached. This iteration threshold was chosen as
max_iter = 250 for IRLS and SPF and as max_iter = 2000 for RiemAdaIHT, reflecting the fact that
RiemAdaIHT is a gradient-type method which might need many iterations to reach a high-accuracy
solution. The parameters were chosen so that the stopping criteria do not prevent a method’s iterates
reaching the recovery threshold if they were to reach X? eventually.

In the experiments, we chose random ground truths X? 2 Rn1⇥n2 of rank r and row-sparsity s such
that X? = X̃?/

���X̃?

���
F

, where X̃? = U?diag(d?)V⇤
?, and where U? 2 Rn1⇥r is a matrix with s

non-zero rows whose location is chosen uniformly at random and whose entries are drawn from i.i.d.
standard Gaussian random variables, d has i.i.d. standard Gaussian entries and V? 2 Rn2⇥r has
likewise i.i.d. standard Gaussian entries.

A.2 Random Rank-One Measurements

In Section 4, we considered only measurement operator A : Rn1⇥n2 ! Rm whose matrix repre-
sentation consists of i.i.d. Gaussian entries, i.e., operators such that there are independent matrices
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A1, . . .Am with i.i.d. standard Gaussian entries such that

A(X)j = hAj ,XiF
for any X 2 Rn1⇥n2 . While it is known that such Gaussian measurement operators satisfy the
(r, s)-RIP of Section 4, which is the basis of our convergence theorem Theorem 2.5, in a regime
of a near-optimal number of measurements with high probability, practically relevant measurement
operators are often more structured; another downside of dense Gaussian measurements is that it is
computationally expensive to implement their action on matrices.

In relevant applications of our setup, however, e.g., in sparse phase retrieval [46, 11, 47] or blind
deconvolution [59, 83], the measurement operator consists of rank-one measurements. For this
reason, we now conduct experiments in settings related to the ones depicted in Figure 1 and Figure 2
Section 4, but for random rank-one measurements where the action of A : Rn1⇥n2 ! Rm on X can
be written as

A(X)j = hajb⇤
j ,XiF

for each j = 1, . . . ,m, where aj ,bj are independent random standard Gaussian vectors. In Figure 4,
we report the phase transition performance of RiemAdaIHT, SPF and IRLS for (256⇥40)-dimensional
ground truths of different row-sparsities and different ranks if we are given such random rank-one
measurements.
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Figure 4: Left column: RiemAdaIHT, center: SPF, right: IRLS. Success rates for the recovery of
low-rank and row-sparse matrices from random rank-one measurements. First row: Rank-1 ground
truth X? (cf. Figure 1. Second row: Rank-5 ground truth X? (cf. Figure 2).

We observe in Figure 4 that compared to the setting of dense Gaussian measurements, the phase
transitions of all three algorithms deteriorate slightly; especially for r = 1, one can observe that the
transition between no success and high empirical success rate is extends across a larger area. IRLS
performs clearly best for both r = 1 and r = 5, whereas SPF has the second best performance for
r = 5. For r = 1, it is somewhat unclear whether RiemAdaIHT or SPF performs better.

A.3 Discrete Fourier Rank-One Measurements

We now revisit the experiments of Appendix A.2 for a third measurement setup motivated from blind
deconvolution problems [3, 59, 64, 66, 83, 29], which are prevalent in astronomy, medical imaging
and communications engineering [49, 13]. In particular, in these settings, if z 2 Rm is an (unknown)
signal and w 2 Rm is an (unknown) convolution kernel, assume we are given the entries of their
convolution ey = z ⇤ w. If we know that z = Au for some known matrix A 2 Rm⇥n1 and an
s-sparse vector u 2 Rn1 and w = Bv for some known matrix B 2 Rm⇥n2 and arbitrary vector
v 2 Rn2 , applying the discrete Fourier transform (represented via the DFT matrix F 2 Cm⇥m), we
can write the coordinates of

y = Fey = diag(Fz)Fw = diag(FAu)FBv
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as
yj = A(uv⇤)j = h(FA)⇤j,:FBj,:,uv

⇤iF
for each j = 1, . . . ,m, which allows us to write the problem as a simultaneously rank-1 and s-row
sparse recovery problem from Fourier-type measurements.
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Figure 5: Left column: RiemAdaIHT, center: SPF, right: IRLS. Success rates for the recovery of
low-rank and row-sparse matrices from Fourier rank-one measurements. First row: Rank-1 ground
truth X?. Second row: Rank-5 ground truth X? (cf. Figure 2).

In Figure 5, we report the results of simulations with A and B chosen generically as standard real
Gaussians for these Fourier-based rank-1 measurements (including for rank-5 ground truths, which
goes beyond a blind deconvolution setting). We observe that the transition from no recovery to exact
recovery for an increasing number of measurement (with fixed dimension parameters s, n1 and n2)
happens earlier than for the random Gaussian rank-one measurements of Appendix A.2, but slightly
later than for dense Gaussian measurements. Again, IRLS exhibits the best empirical data-efficiency
with sharpest phase transition curves.

As a summary, we observe that IRLS is able to recovery simultaneously low-rank and row-sparse
matrices empirically from fewer measurements than state-of-the-art methods for a variety of linear
measurement operators, including in cases where the RIP assumption of Definition 2.4 is not satisfied
and in cases that are relevant for applications.

A.4 Evolution of Objective Values

While Theorem 2.5 guarantees local convergence if the measurement operator A is generic enough
and contains enough measurements (RIP-assumption), it is instructive to study the behavior of
Algorithm 1 in situations where there are not enough measurements available to identify a specific
low-rank and row-sparse ground truth X? which respect to which the measurements have been taken.

In this setting, Theorem 2.6 guarantees that the behavior of the IRLS methods is still benign as the
sequence of "- and �-smoothed log-objectives

�
F"k,�k(X

(k))
�
k�1

from (4) is non-increasing. In
Figure 6, we illustrate the evolution of the relative Frobenius error of an iterate to the ground truth X?,
the ("k, �k)-smoothed logarithmic surrogates F"k,�k(X

(k)) as well as of the rank and row-sparsity
parts Flr,"k(X

(k)) and Fsp,�k(X
(k)) of the objective, respectively, in two typical situations.

In particular, we can see the evolution of these four quantities in the setting of data of dimensionality
n1 = 128, n2 2 {20, 40}, s = 20 and r = 5 created as in the other experiments, where a number of
m = 875 and m = 175 (corresponding to an oversampling factor of 3.0 and 1.0, respectively) dense
Gaussian measurements are provided to Algorithm 1.

In the left plot of Figure 6, which corresponds to setting of abundant measurements, we observe that
the four quantities all track each other relatively well on a semilogarithmic scale (note that we plot the
square roots of the objective values to match the order of the (unsquared) relative Frobenius error),
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converging to values between 10�13 and 10�11 (at which point the stopping criterion of the method
applies) within 12 iterations.

In the second plot of Figure 6, the number of measurements exactly matches the number of degrees
of freedom of the ground truth, in which case the X

(k) does not converge to X?. However, it
can be seen that Algorithm 1 still finds very meaningful solutions: It can be seen that within 86
iterations, F"k,�k(X

(k)) converges to ⇡ 10�12 (since
p
F"k,�k(X

(k)) ⇡ 10�6) in a manner that
is partially “staircase-like“: After 20 initial iterations where F"k,�k(X

(k)) decreases significantly
at each iteration, its decrease is dominated by relatively sudden, alternating drops of the (blue)
sparsity objective Fsp,�k(X

(k)) and the (red) rank objective Flr,"k(X
(k)), which typically do not

occur simultaneously.

This illustrates the self-balancing property of the two objective terms in the IRLS objective
F"k,�k(X

(k)): while the final iterate at iteration k = 86 is not of the target row-sparsity s = 20 and
r = 5, it is still 20-row sparse and has essentially rank 6. This means that Algorithm 1 has found an
alternative parsimonious solution to the simultaneous low-rank and row-sparse recovery problem that
is just slightly less parsimonious.

Arguably, this robust performance in the low-data regime of IRLS is rather unique, and to the best of
our knowledge, not shared by methods such as SPF or RiemAdaIHT, which typically breakdown in
such a regime.
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Figure 6: Objective/ error quantities of iterates X(k) for iterations k. Left: Typical result for n1 = 128,
n = 40, m = 875. Right: Typical result for n1 = 128, n = 20, m = 175.

A.5 Robustness under Noisy Measurements

The convergence theory for the IRLS method Algorithm 1 established in Theorem 2.5 assume that
exact linear measurements y = A(X?) of a row-sparse and low-rank ground truth X? are provided
to the algorithm. However, in practice, one would expect that the linear measurement model is
only approximately accurate. For IRLS for sparse vector recovery, theoretical guarantees have been
established for this case in [26, 57]. We do not extend such results to the simultaneously structured
case, but we provide numerical evidence that IRLS as defined in Algorithm 1 can be used directly
also for noisy measurements.

To this end, we conduct an experiment in the problem setup of Figure 1 in Section 4 for a fixed
row-sparsity of s = 40, in which the measurements provided to the algorithms IRLS, RiemAdaIHT
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and SPF are such that
y = A(X?) +w,

where w is a Gaussian vector (i.i.d. entries) with standard deviation of � =
q

kA(X?)k2
2

m·SNR and where
SNR is a varying signal-to-noise ratio. We consider SNRs between 10 and 1012, and report the
resulting relative Frobenius error statistics in Figure 7.
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Figure 7: Median relative Frobenius reconstruction errors of different algorithms given noisy Gaussian
measurements, n1 = 256, n2 = 40, row-sparsity s = 40 and rank r = 1, oversampling factor of 3.
Error bars correspond to 25% and 75% percentiles.

We observe that the reconstruction error is consistently roughly proportional to the inverse square
root of the signal-to-noise ratio, for all three algorithms considered. This suggests that IRLS is as
noise robust as comparable algorithms, and expected to be return estimates of the original ground
truth that has a reconstruction error that is of the order of the norm of the noise.

B Proofs

The following two sections contain the proofs of our main results. Let us begin with some helpful
observations.

First note that the low-rank promoting part W lr
X(k),"k

: Rn1⇥n2 ! Rn1⇥n2 of our weight operator
can be re-written as

W
lr
X(k),"k

(Z) = [U U?]

✓
H(�(k)

, "k) �
✓

U
⇤

U
⇤
?

�
Z [V V?]

◆◆
V

⇤

V
⇤
?

�
, (18)

where

H(�(k)
, "k) :=

h
min

⇣
"k/�

(k)
i , 1

⌘
min

⇣
"k/�

(k)
j , 1

⌘in1,n2

i,j=1

=

2

6664

✓
"2k

�(k)
i �(k)

j

◆rk

i,j=1

✓
"k
�(k)
i

◆rk,d2

i,j=1✓
"k
�(k)
j

◆d1,rk

i,j=1

1

3

7775
2 Rn1⇥n2 .

Consequently, all weight operators in Definition 2.1 are self-adjoint and positive. Whereas for
W

sp
X(k),�k

this is obvious, for W lr
X(k),"k

it follows from the matrix representation

W
lr
X(k),"k

=
⇣
[U U?]⌦ [V V?]

⌘
DH(�(k),"k)

⇣
[U U?]

⇤ ⌦ [V V?]
⇤
⌘
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where DH(�(k),"k) 2 Rn1n2⇥n1n2 is a diagonal matrix with the entries of H(�(k)
, "k), which are all

positive, on its diagonal.

B.1 Proof of Theorem 2.5

Before approaching the proof of Theorem 2.5, let us collect various important observations. In order
to keep the presentation concise, we defer part of the proofs to Appendix C.

For a rank-r matrix Z = U⌃V
⇤, we define the tangent space of the manifold of rank-r matrices at

Z as
TU,V := {UZ

⇤
1 + Z2V

⇤ : Z1 2 Rn2⇥r
,Z2 2 Rn1⇥r}. (19)

In a similar manner, we can define for Z = U⌃V
⇤ 2 Mr,s and S = supp(Z) = supp(U) ⇢ [n1]

the tangent space of Mr restricted to S as
TU,V,S := {UZ

⇤
1 + Z2V

⇤ : Z1 2 Rn2⇥r
,Z2 2 Rn1⇥r with supp(Z2) = S}. (20)

As the following lemma shows, orthogonal projections onto the sets Mn1,n2
r , Nn1,n2

s , TU,V, and
TU,V,S can be efficiently computed.
Lemma B.1. We denote the projection operators onto Mn1,n2

r and Nn1,n2
s by Tr and Hs. Tr

truncates a matrix to the r dominant singular values; Hs sets all but the s in `2-norm largest rows to
zero. In case of ambiguities (multiple singular values/rows of same magnitude), by convention we
choose the r (respectively s) with smallest index.

For U and V fixed, the orthogonal projection onto TU,V is given by
PU,V := PTU,VZ = UU

⇤
Z+ ZVV

⇤ �UU
⇤
ZVV

⇤
.

For S ⇢ [n1] and U,V fixed with supp(U) = S, the orthogonal projection onto TU,V,S is given by
PU,V,S := PTU,V,SZ = PS(UU

⇤
Z+ ZVV

⇤ �UU
⇤
ZVV

⇤)

= UU
⇤
Z+ PSZVV

⇤ �UU
⇤
ZVV

⇤
,

where PS projects to the row support S, i.e., it sets all rows to zero which are not indexed by S.

The proof of Lemma B.1 is provided in Appendix C.2. In contrast to the above named projections,
the projection onto Mn1,n2

r,s is not tractable. However, [29, Lemma 2.4] shows that locally PMr,s can
be replaced by the concatenation of Tr and Hs, i.e., for Z? 2 Mr,s and Z ⇡ Z?, one has that

PMr,s(Z) = Tr(Hs(Z)).

For a matrix X 2 Rn1⇥n2 and i 2 [n1], we set ⇢i(X) = k(X)i0,:k2 where i
0 is a row index corre-

sponding to the i-th largest row of X in `2-norm. More precisely, if X is a decreasing rearrangement
of X with rows ordered by magnitude in `2-norm, then ⇢i(X) = k(X)i,:k2. As the following
lemma shows, the quantity ⇢s(X) determines a local neighborhood of X on which Hs preserves the
row-support.
Lemma B.2. Let X 2 Rn1⇥n2 be a matrix with row-support S ⇢ [n1] and |S| = s. Then, for
any Z 2 Rn1⇥n2 with kX� Zk1,2 := maxi2[n1] kXi,: � Zi,:k2  1

2⇢s(X) the matrix Hs(Z) has
row-support S.

Proof : Note that
max
i2[n1]

k(Z)i,: � (X)i,:k2  1
2
⇢s(X)

implies that any non-zero row of X corresponds to a non-zero row of Hs(Z) and hence yields the claim.

A first important observation is that if A has the (r, s)-RIP, then the norm of kernel elements of A is
bounded in the following way.
Lemma B.3. If A has the (r, s)-RIP with � 2 (0, 1) and U 2 Rn1⇥r,V 2 Rn2⇥r with supp(U) = S,
|S|  s, then

k⌅kF 

s

1 +
kAk22!2

(1� �)

���P?
TU,V,S

(⌅)
���
F
,

for all ⌅ 2 ker(A).
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The proof of Lemma B.3 is presented in Appendix C.3.

Remark B.4. If A is a Gaussian operator with standard deviation
q

1
m , one has with high probability

that kAk22!2 ⇡ n1n2
m .

We use of the following lemma to characterize the solution of the weighted least squares problem
(11). Its proof is analogous to [54, Lemma B.7] and [26, Lemma 5.2].
Lemma B.5. Let A : Rn1⇥n2 ! Rm and y 2 Rm. Let WX(k),"k,�k : Rn1⇥n2 ! Rn1⇥n2 be the
weight operator (8) defined based on the information of X(k) 2 Rn1⇥n2 . Then the solution of the
weighted least squares step (11) of Algorithm 1

X
(k+1) = argmin

A(X)=y

hX,WX(k),"k,�k(X)i, (21)

is unique and solves (21) if and only if

A(X(k+1)) = y and hWX(k),"k,�k(X
(k+1)),⌅i = 0 for all ⌅ 2 kerA. (22)

For any iterate X
(k) of Algorithm 1, we furthermore abbreviate the tangent space (20) of the fixed

rank-r manifold Mr restricted to S at Hs(X(k)) by

Tk = TeU,eV,S , (23)

where eU 2 Rn1⇥r and eV 2 Rn2⇥r are matrices with leading4
r singular vectors of Hs(X(k)) as

columns, and S 2 [n1] is the support set of the s rows of X(k) with largest `2-norm.

The following lemma is the first crucial tool for showing local quadratic convergence of Algorithm 1.
Lemma B.6. Let X? 2 Mr,s and let X(k) be the k-th iterate of Algorithm 1 with rank and sparsity
parameters er = r and es = s, let �k, "k be such that sk and rk from Definition 2.1 satisfy sk � s and
rk � r. Assume that there exists a constant c > 1 such that

k⌅kF  c

���PT?
k
(⌅)
���
F

for all ⌅ 2 ker(A), (24)

where Tk = TeU,eV,S is as defined in (23) for matrices eU 2 Rn1⇥r and eV 2 Rn2⇥r of leading r

left and right singular vectors of Hs(X(k)) and S ⇢ [n1] is the support set of Hs(X(k)). Assume
furthermore that

kX(k) �X?k  min

⇢
1

2
⇢s(X?),min

n 1

48
,

1

19c

o
�r(X?)

�
. (25)

Then,
���X(k+1) �X?

���  4c2 min

⇢
�r+1(X(k))

"k
,
⇢s+1(X(k))

�k

�2

·
✓���W lr

X(k),"k
(X?)

���
⇤
+
���Wsp

X(k),�k
·X?

���
1,2

◆
,

where kMk1,2 =
P

i kMi,:k2 denotes the row-sum norm of a matrix M, and W
lr
X(k),"k

and W
sp
X(k),�k

are the weight operators (9) and (10) from Definition 2.1.

The proof of Lemma B.6 is presented in Appendix C.4.
Remark B.7. By revisiting the proof of Lemma B.6 (omit the bound in (48) and keep the term
h⌅, W̄⌅i until the end), one can show under the same assumptions as in Lemma B.6 that

k⌅k2F  4c2 min

⇢
�r+1(X(k))

"k
,
⇢s+1(X(k))

�k

�2 D
⌅,
�
P?
U,VW

lr
X(k),"k

P?
U,V+PScW

sp
X(k),�k

PSc

�
⌅

E
,

where U and V are containing the left and right singular vectors of X(k), see Definition 2.1.

4As eU and eV might not be unique, any set of r leading singular vectors can be chosen in this definition.
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The contribution of the norms of the weighted X? terms in Lemma B.6 can be controlled by Lemmas
B.8 and B.9 below.
Lemma B.8. Let W lr

X(k),"k
: Rn1⇥n2 ! Rn1⇥n2 be the rank-based weight operator (9) that uses

the spectral information of X(k) and let X? 2 Rn1⇥n2 be a rank-r matrix. Assume that there exists
0 < ⇣ <

1
2 such that

max{"k, kX(k) �X?k}  ⇣�r(X?). (26)
Then for each 1  q  1,
���W lr

X(k),"k
(X?)

���
Sq

 r
1/q

(1� ⇣)�r(X?)

✓
1

1� ⇣
"
2
k + "kKqkX(k) �X?k+ 2kX(k) �X?k2

◆

and
���W lr

X(k),"k
(X?)

���
Sq

 1

(1� ⇣)�r(X?)

✓
r
1/q

1� ⇣
"
2
k + 2

���X(k) �X?

���
Sq

⇣
"k + kX(k) �X?k

⌘◆

where Kq is such that Kq = 21/q for 1  q  2 and 4  q, Kq =
p
2 for 2 < q  4 and Kq = 1

for q = 1.
Lemma B.9. Let Wsp

X(k),�k
2 Rn1⇥n1 be the row-sparsity-based weight operator (10) that uses the

current iterate X
(k) with �k = min

�
�k�1, ⇢s+1(X(k))

�
and let X? 2 Rn1⇥n2 be an s-row-sparse

matrix. Assume that there exists 0 < ⇣ <
1
2 such that

kX(k) �X?k1,2 = max
i2[n1]

k(X(k))i,: � (X?)i,:k2  ⇣⇢s(X?), (27)

where ⇢s(M) denotes the `2-norm of the in `2-norm s-largest row of M. Then

kWsp
X(k),�k

· X?k1,2  s�
2
k

(1� ⇣)2⇢s(X?)

Lemma B.8 is a refined version of [54, Lemma B.9] the proof of which we omit here.5 The proof of
Lemma B.9 is provided in Appendix C.5. Finally, the following lemma will allow us to control the
decay of the IRLS parameters �k and "k.
Lemma B.10 ([54, Lemma B.5]). Let X? 2 Mr,s, assume that A has the (r, s)-RIP with � 2 (0, 1),
and let us abbreviate n = min{n1, n2}.

Assume that the k-th iterate X
(k) of Algorithm 1 with er = r and es = r updates the smoothing

parameters in (12) such that one of the statements "k = �r+1(X(k)) or �k = ⇢s+1(X(k)) is true,
and that rk � r and sk � s. Furthermore, let

"k  1

48
�r(X?)

with ckAk2!2
=
q
1 +

kAk2
2!2

(1��) , let ⌅(k) := X
(k) �X? satisfy

k⌅(k)k  min
n1
2
⇢s(X?),min

n 1

48
,

1

21ckAk2!2

o
�r(X?)

o
. (28)

Then

k⌅(k)kF  2
p
2
p
nckAk2!2

q
4"2k + �2k.

The proof of Lemma B.10 is provided in Appendix C.6. We finally have all the tools to prove
Theorem 2.5. Note that (14) implies

kX(k) �X?k  min

(
1

48c2kAk2!2

min

⇢
�r(X?)

r
,
⇢s(X?)

s

�
,

1

4µ
p
5nckAk2!2

)
, (29)

5This result is a technical result of an unpublished paper. In this paper, we only use that result as a tool. If the
reviewers think that adding the proof is relevant here, we are happy to provide it.
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and

"k  1

48
�r(X?) (30)

which we will use in the proof below. The latter follows from the fact that for r̃ = r

"k = min
⇣
"k�1,�r+1(X

(k))
⌘
 �r+1(X

(k))  ||X(k) �X⇤||  �r(X⇤)/48.

Proof of Theorem 2.5 : First note, that by assumption r̃ = r and s̃ = s. Furthermore, since 1
48c2kAk2!2

 1
2 ,

the closeness assumption (29) implies that Hs(X
(k)) and X? share the same support due to Lemma B.2.

Let X(k) be the k-th iterate of Algorithm 1. Since the operator A : Rn1⇥n2 ! Rm has the (r, s)-RIP with
� 2 (0, 1), Lemma B.3 yields for all U 2 Rn1⇥r ,V 2 Rn2⇥r with supp(U) = S, |S|  s, that

k⌅kF  ckAk2!2

���P?
TU,V,S

(⌅)
���
F
,

for any ⌅ 2 ker(A). Furthermore, due to our assumption that s̃ = s and r̃ = r, the smoothing parameter update
rules in (12), i.e., �k = min

⇣
�k�1, ⇢s+1(X

(k))
⌘

and "k = min
⇣
"k�1,�r+1(X

(k))
⌘

, imply that rk � r and

sk � s for all k. We can thus apply Lemma B.6 for ⌅(k) := X
(k) �X? (note at this point that (29) implies the

closeness assumption (25) of Lemma B.6) and obtain
���⌅(k+1)

��� =
���X(k+1) �X?

���

 4c2kAk2!2
min

⇢
�r+1(X

(k))
"k

,
⇢s+1(X

(k))
�k

�2 ✓���W lr
X(k),"k

(X?)
���
⇤
+
���Wsp

X(k),�k
·X?

���
1,2

◆
,

(31)

where W lr
X(k),"k

: Rn1⇥n2 ! Rn1⇥n2 is the low-rank promoting part (9) of the weight operator associated to
X

(k) and W
sp
X(k),�k

2 Rn1⇥n1 the sparsity promoting part (10). Since by assumption

max("k, k⌅(k)k)  1
48

�r(X?),

Lemma B.8 yields
��W lr

X(k),"k
(X?)

��
⇤  0.995

42
40�r(X?)

⇣
"2kr + 2"kkX(k) �X?k+ 2kX(k) �X?k2

⌘
. (32)

Similarly, by assumption

k⌅(k)k1,2  k⌅(k)k  1
48s

⇢s(X?) 
1
48

⇢s(X?),

such that Lemma B.9 yields

kWsp
X(k),�k

· X?k1,2  0.995
21s�2k

20⇢s(X?)
. (33)

Inserting (32) and (33) into (31) we obtain that
���⌅(k+1)

���  0.995 · 4.2c2kAk2!2
min

⇢
�r+1(X

(k))
"k

,
⇢s+1(X

(k))
�k

�2

·
✓

r
�r(X?)

⇣
"2k + 2"kk⌅(k)k+ 2k⌅(k)k2

⌘
+

2s
⇢s(X?)

�2k

◆
.

(34)

Due to the assertion that rk � r, it holds that "k  �r+1(X
(k)). Therefore, Lemma C.3 yields that

⇣
"2k + 2"kk⌅(k)k+ 2k⌅(k)k2

⌘
 5k⌅(k)k2.

and, since sk � s, also that

�2k  k⌅(k)k21,2  k⌅(k)k2,

since �k  ⇢s+1(X
(k)) in this case.

Thus, using the assertion that one of the statements "k = �r+1(X
(k)) or �k = ⇢s+1(X

(k)) is true, we obtain
from (34) that

���⌅(k+1)
���  0.995 · 4.2c2kAk2!2

·
✓

5r
�r(X?)

+
2s

⇢s(X?)

◆���⌅(k)
���
2
. (35)
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For
���⌅(k)

��� < 1
48 c

�2
kAk2!2

min{�r(X?)
r , ⇢s(X?)

s } (as implied by (29)), this yields

k⌅(k+1)k < 0.9k⌅(k)k (36)

and the quadratic error decay

k⌅(k+1)k  µk⌅(k)k2

if we define µ = 4.179c2kAk2!2

�
5r

�r(X?)
+ 2s

⇢s(X?)

�
.

To show the remaining statement, we need to argue that the assertions of Theorem 2.5 are satisfied not only for
k, but for any k + ` with ` � 1. For this, it is sufficient to show that

1. rk+1 � r,
2. sk+1 � s,
3. "k+1  1

48�r(X?),

4. (29) holds for X(k+1), and that
5. one of the statements "k+1 = �r+1(X

(k+1)) or �k+1 = ⇢s+1(X
(k+1)) is true,

as in this case, X(k+`) `!1! X? follows by induction due to successive application of (36).
For 1. and 2., we see that this follows from the smoothing parameter update rules (12) which imply that
"k+1  �r+1(X

(k+1)) and �k+1  ⇢s+1(X
(k+1)).

3. follows from (30) and the fact that due to (12), ("k)k�1 is non-increasing. 4. is satisfied due to (36) and (29).
To show 5., we note that due to (29), the assertion (28) is satisfied, and therefore it follows from (35) and
Lemma B.10 that

���⌅(k+1)
���  4.179c2kAk2!2

✓
5r

�r(X?)
+

2s
⇢s(X?)

◆���⌅(k)
��� · 2

p
2
p
nckAk2!2

q
4"2k + �2k.

We now distinguish the case (i) �k < "k and the case (ii) �k � "k.
In case (i), it holds that

�r+1(X
(k+1)) 

���⌅(k+1)
���  4.179c2kAk2!2

✓
5r

�r(X?)
+

2s
⇢s(X?)

◆
2
p
10nckAk2!2

���⌅(k)
��� "k

= µ2
p
10nckAk2!2

���⌅(k)
��� "k

< "k,

where the last inequality holds since by (29) the k-th iterate X
(k) additionally satisfies

kX(k) �X?k <
1

2µ
p
10ckAk2!2

. (37)

In this case, due to the smoothing parameter update rule (12), we have that "k+1 = �r+1(X
(k+1)).

In case (ii), we have likewise that

⇢s+1(X
(k+1)) 

���⌅(k+1)
���  µ2

p
10nckAk2!2

���⌅(k)
��� �k < �k,

due to (35), Lemma B.10, and (37). Hence, �k+1 = ⇢s+1(X
(k+1)) which shows the remaining statement 5. and

concludes the proof of Theorem 2.5.

B.2 Proof of Theorem 2.6

1.) Let ", � > 0 be arbitrary. Due to the additive structure of F",�(·), cf. (4), it is sufficient to establish
that

Fsp,�(Z)  Qsp,�(Z|X) = Fsp,�(X) + hrFsp,�(X),Z�Xi+ 1

2
hZ�X,W

sp
X,�(Z�X)i (38)

for any Z,X 2 Rn1⇥n2 , where W
sp
X,� : Rn1⇥n2 ! Rn1⇥n2 is defined analogously to (10) and

Flr,"(Z)  Qlr,"(Z|X) = Flr,"(X) + hrFlr,"(X),Z�Xi+ 1

2
hZ�X,W

lr
X,"(Z�X)i, (39)

for any Z,X 2 Rn1⇥n2 , where W
lr
X," : Rn1⇥n2 ! Rn1⇥n2 is defined analogously to (9).
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The argument for (38) is standard in the IRLS literature [2, 73, 76] and is based on the facts that both
Qsp,�(Z|X) and Fsp,�(Z) are row-wise separable, and that t 7! fp⌧ (

p
t) is concave and therefore

majorized by its linearization: indeed, let g⌧ : R ! R be such that

g⌧ (t) :=

⇢
1
2⌧ log(e|t|/⌧), if |t| > ⌧,

1
2 |t|, if |t|  ⌧.

The function g⌧ (·) is continuously differentiable with derivative g
0
⌧ (t) = ⌧

2max(|t|,⌧) sign(t) and
furthermore, concave restricted to the non-negative domain R�0.

Therefore, it holds for any t, t
0 2 R�0 that

g⌧ (t)  g⌧ (t
0) + g

0
⌧ (t

0)(t� t
0).

We recall the definition f⌧ (t) =
1
2⌧

2 log(et2/⌧2) for |t| > ⌧ and f⌧ (t) =
1
2 t

2 for |t|  ⌧ from (2)
with derivative f

0
⌧ (t) =

max(t2,⌧2)t
t2 = ⌧2t

max(t2,⌧2) . Thus, for any x, z 2 R, it follows that

f⌧ (z) = g⌧2(z2)  g⌧2(x2) + g
0
⌧2(x2)(z2 � x

2)

= f⌧ (x) +
⌧
2

2max(x2, ⌧2)
(z2 � x

2),

and inserting ⌧ = �, z = kZi,:k2, x = kXi,:k2 and summing over i = 1, . . . n1 implies that

Fsp,�(Z) =
n1X

i=1

f�(kZi,:k2)  Fsp,�(X) +
n1X

i=1

�
2

2max(kXi,:k22, �2)
(kZi,:k22 � kXi,:k22)

= Fsp,�(X) +
n1X

i=1

�
2

max(kXi,:k22, �2)
hXi,:,Zi,: �Xi,:i+

1

2

n1X

i=1

��Zi,: �Xi,:

��2
2

max(kXi,:k22/�2, 1)

From the chain rule, it follows that for all i = 1, . . . , n1 for which Xi,: 6= 0,

d

dXi,:
f�(kXi,:k2) = f

0
�(kXi,:k2)

dkXi,:k2
dXi,:

=
�
2kXi,k2

max(kXi,:k22, �2)
Xi,:

kXi,:k2
,=

�
2
Xi,:

max(kXi,:k22, �2)
(40)

and therefore

Fsp,�(Z)  Fsp,�(X) + hrFsp,�(X),Z�Xi+ 1

2
hZ�X,W

sp
X,�(Z�X)i

which shows the majorization of (38), recalling the definition W
sp
X,� =

diag
⇣
max

�
kXi,:k22/�2, 1)

d1
i=1

��1
⌘

of (10).

The majorization of (39) is non-trivial but follows in a straightforward way from [53, Theorem 2.4]
as the objective Flr,"(Z) corresponds to the one of [53, Theorem 2.4] up to a multiplicative factor
of "2 and constant additive factors, and since the weight operator W lr

X," corresponds to the weight
operator used in [53, Chapter 2] for p = 0.

2.) Due to the definition (3) of Fsp,�k(·) and the derivative computation of (40), we observe that

rFsp,�k(X
(k)) = diag

 ✓
max

⇣��(X(k))i,:
��2
2
/�

2
k, 1
⌘�1

◆d1

i=1

!
X

(k) = W
sp
X(k),�k

·X(k)
,

comparing the resulting term with the definition of (10) of Wsp
X(k),�k

. Furthermore, an analogue
equality follows from the the formula

rFlr,"k(X
(k)) = [U U?] diag

 ✓
�
(k)
i max

⇣
(�(k)

i )2/"2k, 1
⌘�1

◆d

i=1

!
V

⇤

V
⇤
?

�

with �
(k)
i = �i(X(k)) for any i  d, which is a direct consequence from the calculus of spectral

functions Lemma C.1, and inserting into the low-rank promoting weight operator formula (9)

W
lr
X(k),"k

(X(k)) = [U U?]⌃
�1
"k diag

✓⇣
�
(k)
i

⌘d
i=1

◆
⌃

�1
"k


V

⇤

V
⇤
?

�
= rFlr,"k(X

(k))
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Inserting rFsp,�k(X
(k)) = W

sp
X(k),�k

·X(k) and rFlr,"k(X
(k)) = W

lr
X(k),"k

(X(k)) into the defini-
tions of Qlr,"k(Z|X(k)) and Qsp,�k(Z|X(k)), we see that it holds that

Qlr,"k(Z|X(k)) = Flr,"k(X
(k)) +

1

2

⇣
hZ,W lr

X(k),"k
(Z)i � hX(k)

,W
lr
X(k),"k

(X(k))i
⌘

and

Qsp,�k(Z|X(k)) = Fsp,�k(X
(k)) +

1

2

⇣
hZ,Wsp

X(k),�k
Zi � hX(k)

,W
sp
X(k),�k

X
(k)i
⌘
.

Therefore, we see that the weighted least squares solution X
(k+1) of (11) for k + 1 coincides with

the minimizer of

min
Z:A(Z)=y

h
Qlr,"k(Z|X(k)) +Qsp,�k(Z|X(k))

i

= min
Z:A(Z)=y


Flr,"k(X

(k)) + Fsp,�k(X
(k))

+
1

2

⇣
hZ,WX(k),"k,�k(Z)i � hX(k)

,WX(k),"k,�k(X
(k))i

⌘�
(41)

with the weight operator WX(k),"k,�k of (8), which implies that

Qlr,"k(X
(k+1)|X(k)) +Qsp,�k(X

(k+1)|X(k))  Qlr,"k(X
(k)|X(k)) +Qsp,�k(X

(k)|X(k)). (42)
Using the majorization (16) established in Statement 1 of Theorem 2.6 and (42), it follows that

F"k,�k(X
(k+1))  Qlr,"k(X

(k+1)|X(k)) +Qsp,�k(X
(k+1)|X(k))

 Qlr,"k(X
(k)|X(k)) +Qsp,�k(X

(k)|X(k))

= Flr,"k(X
(k)) + Fsp,�k(X

(k)) = F"k,�k(X
(k)),

(43)

using in the third line that Qlr,"k(X
(k)|X(k)) = Flr,"k(X

(k)) and Qsp,�k(X
(k)|X(k)) =

Fsp,�k(X
(k)).

To conclude, it suffices to show that " 7! F",�k(X
(k+1)) and � 7! F"k,�(X

(k+1)) are non-decreasing
functions, since (43) then extends to

F"k+1,�k+1(X
(k+1))  F"k,�k+1(X

(k+1))  F"k,�k(X
(k+1))  F"k,�k(X

(k)),

where we used that the sequences "k and �k defined in Algorithm 1 are decreasing. So let us prove
this last claim. We define for t 2 R the function ht : R>0 ! R such that ht(⌧) = f⌧ (t), i.e.,

ht(⌧) =

⇢
1
2 t

2
, if ⌧ � |t|,

1
2⌧

2 log(et2/⌧2), if ⌧ < |t|.
This function is continuously differentiable with h

0
t(⌧) = 0 for all ⌧ > |t| and

h
0
t(⌧) = ⌧

�
log(et2/⌧2)� 1

�

for ⌧ < |t|, which implies that h0
t(⌧) � 0 for all ⌧ � 0 and thus shows that " 7! F",�k(X

(k+1)) and
� 7! F"k,�(X

(k+1)) are non-decreasing functions due to the additive structure of F",�(X(k+1)) and
(4).

3.) First, we argue that (X(k))k�1 is a bounded sequence: Indeed, if " := limk!1 "k > 0 and
� := limk!1 �k > 0, we note that

1

2
"
2 log(ekX(k)k2/"2) + 1

2
�
2
log(emax

i
kX(k)k1,2/�

2
)

=
1

2
"
2 log(e�2

1(X
(k))/"2) +

1

2
�
2
log(emax

i
kX(k)

i,: k2/�
2
)

 1

2
"
2
k log(e�

2
1(X

(k))/"2k) +
1

2
�
2
k log(emax

i
kX(k)

i,: k2/�
2
k)

 Flr,"k(X
(k)) + Fsp,�k(X

(k)) = F"k,�k(X
(k))  F"1,�1(X

(1))

 1

2
min(d1, d2)�

2
1(X

(1)) +
1

2
d1 max

i
kX(1)

i,: k
2
2 =: CX(1) ,
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which implies that {kX(k)k}k�1 is bounded by a constant that depends on CX(1) .

Furthermore, we note that the optimality condition of (11) (see Lemma B.5) implies that X(k+1)

satisfies
hWX(k),"k,�k(X

(k+1)),⌅i = 0 for all ⌅ 2 kerA and A(X(k+1)) = y.

Choosing ⌅ = X
(k+1) �X

(k) and using the notation W
(k) = WX(k),"k,�k we see that

hX(k+1)
,W

(k)(X(k+1))i � hX(k)
,W

(k)(X(k))i
= hX(k+1)

,W
(k)(X(k+1))i � hX(k)

,W
(k)(X(k))i � 2hW (k)(X(k+1)),X(k+1) �X

(k)i

= �
⇣
hX(k+1)

,W
(k)(X(k+1))i � 2hW (k)(X(k)),X(k+1)i+ hX(k)

,W
(k)(X(k))i

⌘

= �
⌦
(X(k+1) �X

(k)),W (k)(X(k+1) �X
(k))
↵
.

(44)

Due to the definition of W (k), we note that its smallest singular value (interpreted as matrix operator)
can be lower bounded by

�min(W
(k)) � �min

�
W

lr
X(k),"k

�
+ �min

�
W

sp
X(k),�k

�
� �

2
k/max

i

��X(k)
i,:

��2
2
+ "

2
k/�

2
1(X

(k))

� �
2
/csp,X(1) + "

2
/clr,X(1) ,

where csp,X(1) and clr,X(1) are constants that satisfy csp,X(1)  �
2
exp(CX(1)/�

2 � 1) and clr,X(1) 
"
2 exp(CX(1)/"

2 � 1).

Combining this with (44), the monotonicity according to Statement 2 of Theorem 2.6, and (41), it
follows that

F"k,�k(X
(k))� F"k+1,�k+1(X

(k+1)) � 1

2

⌦
(X(k) �X

(k+1)),W (k)(X(k) �X
(k+1))

↵

� 1

2

⇣
�
2
/csp,X(1) + "

2
/clr,X(1)

⌘
kX(k+1) �X

(k)k2F .

Summing over all k, this implies that limk!1 kX(k+1) �X
(k)kF = 0.

Since (X(k))k�1 is bounded, each subsequence of (X(k))k�1 has a convergent subsequence. Let
(X(k`))`�1 be such a sequence with lim`!1 X

(k`) = X̄, i.e., X̄ is an accumulation point of the
sequence. As the weight operator W

(k`) depends continuously on X
(k`), there exists a weight

operator W̄ : Rn1⇥n2 ! Rn1⇥n2 such that W̄ = lim`!1 W
(k`).

Since limk!1 kX(k+1) �X
(k)kF = 0, it also holds that X(k`+1) ! X̄ and therefore

hrF",�(X̄),⌅i = hW̄ (X̄),⌅i = lim
`!1

hW (k`)(X(k`+1)),⌅i = 0

for all ⌅ 2 kerA. The statement is shown as this is equivalent to X̄ being a stationary point of
F",�(·) subject to the linear constraint {Z 2 Rn1⇥n2 : A(Z) = y}.

C Technical addendum

C.1 Auxiliary Results

In the proof of Theorem 2.6, we use the following result about the calculus of spectral functions.
Lemma C.1 ([63],[35, Proposition 7.4]). Let F : Rd1⇥d2 ! R be a spectral function F = f � �
with an associated function f : Rd ! R that is absolutely permutation symmetric. Then, F is
differentiable at X 2 Rd1⇥d2 if and only if f is differentiable at �(X) 2 Rd.

In this case, the gradient rF of F at X is given by
rF (X) = Udiag

�
rf(�(X)

�
V

⇤

if X = Udiag
�
�(X)

�
V

⇤ for unitary matrices U 2 Rd1⇥d1 and V 2 Rd2⇥d2 .6

6Here, for v 2 Rmin(d1,d2), diag(v) 2 Rd1⇥d2 refers to the matrix with diagonal elements vi on its main
diagonal and zeros elsewhere.
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C.2 Proof of Lemma B.1

The projection operators for Mn1,n2
r , Nn1,n2

s , and TU,V are well-known, see e.g. [8]. To see the
final statement assume that U has row-support S and note that PU,V,S is idempotent, i.e.,
PU,V,SPU,V,SZ

= UU
⇤(UU

⇤
Z+ PSZVV

⇤ �UU
⇤
ZVV

⇤) + PS(UU
⇤
Z+ PSZVV

⇤ �UU
⇤
ZVV

⇤)VV
⇤

�UU
⇤(UU

⇤
Z+ PSZVV

⇤ �UU
⇤
ZVV

⇤)VV
⇤

= UU
⇤
Z+UU

⇤PSZVV
⇤ �UU

⇤
ZVV

⇤ +UU
⇤
ZVV

⇤ + PSZVV
⇤ �UU

⇤
ZVV

⇤

�UU
⇤
ZVV

⇤ �UU
⇤PSZVV

⇤ +UU
⇤
ZVV

⇤

= UU
⇤
Z+ PSZVV

⇤ �UU
⇤
ZVV

⇤ = PU,V,SZ.

One can easily check that PU,V,S acts as identity when applied to matrices in TU,V,S and that
PU,V,S = P⇤

U,V,S since hZ0
,PU,V,SZiF = hPU,V,SZ

0
,ZiF , for any Z,Z

0. This proves the claim.

C.3 Proof of Lemma B.3

Let ⌅ 2 ker(A). Note that

0 = kA(⌅)k2 =
���A(PTU,V,S (⌅) + P?

TU,V,S
(⌅))

���
2
�
��A(PTU,V,S (⌅))

��
2
�
���A(P?

TU,V,S
(⌅))

���
2

By the RIP we hence get that
��PTU,V,S (⌅)

��2
F
 1

1� �

��A(PTU,V,S (⌅))
��2
2
 1

1� �

���A(P?
TU,V,S

(⌅))
���
2

2


kAk22!2

(1� �)

���P?
TU,V,S

(⌅)
���
2

F
.

Consequently,

k⌅k2F =
��PTU,V,S (⌅)

��2
F
+
���P?

TU,V,S
(⌅)
���
2

F

 
1 +

kAk22!2

(1� �)

!���P?
TU,V,S

(⌅)
���
2

F
.

C.4 Proof of Lemma B.6

In the proof of Lemma B.6 we will use the following fact.
Lemma C.2. Let W lr

X(k),"k
be the weight operator defined in (9), which is based on the matrices

U 2 Rn1⇥rk and V 2 Rn2⇥rk of leading rk left and right singular vectors of X(k). If M 2 TU,V,
then W

lr
X(k),"k

(M) 2 TU,V. If M 2 T
?
U,V, then W

lr
X(k),"k

(M) 2 T
?
U,V.

Proof : If M 2 TU,V, there exist M1 2 Rrk⇥rk , M2 2 Rrk⇥(n2�rk), M3 2 R(n1�rk)⇥rk such that

M =
⇥
U U?

⇤ M1 M2

M3 0

� 
V

⇤

V
⇤
?

�
,

e.g., see [90, Proposition 2.1]. We thus observe that the weight operator W lr
X(k),"k

: Rn1⇥n2 ! Rn1⇥n2 from
(18) satisfies

W lr
X(k),"k

(M)

=
⇥
U U?

⇤✓
H(�(k), "k) �

✓
U

⇤

U
⇤
?

� ⇥
U U?

⇤ M1 M2

M3 0

� 
V

⇤

V
⇤
?

� ⇥
V V?

⇤◆◆V⇤

V
⇤
?

�

=
⇥
U U?

⇤✓
H(�(k), "k) �


M1 M2

M3 0

�◆
V

⇤

V
⇤
?

�

=
⇥
U U?

⇤
"
H

(k)
1 �M1 H

(k)
2 �M2

H
(k)
3 �M3 0

# 
V

⇤

V
⇤
?

�
2 TU,V.

Similarly, if M 2 T?
U,V, there exists M4 2 R(n1�rk)⇥(n2�rk) such that M = U?M4(V?)

⇤ and

W lr
X(k),"k

(M) =
⇥
U U?

⇤✓
H(�(k), "k) �


0 0
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�◆
V

⇤
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⇤
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=
⇥
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⇤ 0 0
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2
k

� 
V

⇤

V
⇤
?

�
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Proof of Lemma B.6 : Let ⌅ 2 Rn1⇥n2 be arbitrary. We start with some simple but technical observations.
First note that by Lemma B.1, if Tk = T eU, eV,S ,

PT?
k
⌅ = (Id� PTk )(⌅)

= ⌅�
⇣
eUeU⇤

⌅+ PS⌅
eV eV⇤ � eUeU⇤

⌅eV eV⇤
⌘

= (Id� P eU, eV)⌅+ (Id� PS)⌅eV eV⇤

= P?
eU, eV⌅+ PSc⌅eV eV⇤,

(45)

with
D
P?

eU, eV⌅,PSc⌅eV eV⇤
E
=
D
eU? eU⇤

?⌅eV? eV⇤
?,PSc⌅eV eV⇤

E
= 0, (46)

where we used that P?
eU, eV⌅ = (Id � P eU, eV)⌅ = eU? eU⇤

?⌅eV? eV⇤
?, for eU? 2 Rn1⇥(n1�r) and eV? 2

Rn2⇥(n2�r) being the complementary orthonormal bases of eU and eV, and that eV⇤
? eV = 0.

Second, let now U 2 Rn1⇥r and V 2 Rn2⇥r be matrices with r leading left and right singular vectors of X(k)

in their columns which coincide with the matrices U and V from Definition 2.1 in their first r columns. Then it
follows from (45) and (46) that

���PT?
k
(⌅)
���
2

F

=
���P?

eU, eV⌅

���
2

F
+
���PSc⌅eV eV⇤

���
2

F

=
���P?

U,V⌅+ (P?
eU, eV � P?

U,V)⌅
���
2

F
+
���PSc⌅(VV

⇤ + (eV eV⇤ �VV
⇤))
���
2

F

 2

✓���P?
U,V⌅

���
2

F
+
���(P?

eU, eV � P?
U,V)⌅

���
2

F
+ kPSc⌅VV

⇤k2F +
���PSc⌅(eV eV⇤ �VV

⇤)
���
2

F

◆
.

(47)

By an argument analogous to (46), we observe that
���P?

U,V⌅

���
2

F
+ kPSc⌅VV

⇤k2F = hP?
U,V⌅+ PSc⌅VV

⇤,P?
U,V⌅+ PSc⌅VV

⇤i = he⌅, e⌅i,

where e⌅ = PM(⌅) is an element of the subspace M = M1 �M2 ⇢ Rn1⇥n2 that is the direct sum of the
subspaces M1 := {P?

U,VZ : Z 2 Rn1⇥n2} and M2 := {PScZVV
⇤ : Z 2 Rn1⇥n2}.

Let now W lr
X(k),"k

be the rank promoting part of the weight operator from (9) and W
sp
X(k),�k

be the row-sparsity
promoting part from (10). Note that the restriction of

W̄ := P?
U,VW lr

X(k),"k
P?
U,V + PScW

sp
X(k),�k

PSc

to M is invertible as its first summand is invertible on M1 = T?
U,V, its second summand is invertible on M2

(recall that the weight operators are positive definite), and M1 ? M2. Therefore it holds that
���P?

U,V⌅

���
2

F
+ kPSc⌅VV

⇤k2F

= he⌅, e⌅i =
D
W̄ 1/2

|M
e⌅, W̄�1

|MW̄ 1/2
|M
e⌅
E

 �1

⇣
W̄�1

|M

⌘D
e⌅, W̄|Me⌅

E
=

1

�min

�
W̄|M

�
D
e⌅, W̄ e⌅

E

 1

�min

✓⇣
P?
U,VW lr

X(k),"k
P?
U,V

⌘

|M

◆
+ �min

✓⇣
PScW

sp
X(k),�k

PSc

⌘

|M

◆
D
e⌅, W̄ e⌅

E

 1
"2k

�2
r+1(X

(k))
+

�2k
⇢2s+1(X

(k))

D
⌅, W̄⌅

E
.

In the first inequality, we used that W̄|M is positive definite. In the second inequality, we used that �min(A+
B) � �min(A) + �min(B), for any positive semidefinite operators A and B, and and in the third inequality that
he⌅, W̄ e⌅i  h⌅, W̄⌅i. The latter observation can be deduced as follows: Note that, by the self-adjointness of
W̄ ,

h⌅, W̄⌅i = hPM(⌅), W̄PM(⌅)i+ hPM(⌅), W̄P?
M(⌅)i+ hP?

M(⌅), W̄PM(⌅)i+ hP?
M(⌅), W̄P?

M(⌅)i

= he⌅, W̄ e⌅i+ 2hP?
M(⌅), W̄PM(⌅)i+ hP?

M(⌅), W̄P?
M(⌅)i.

31



Since W̄ is positive semi-definite (due to the fact that both W lr
X(k),"k

and W
sp
X(k),�k

are positive definite), all

that remains is to argue that the mixed term on the right-hand side vanishes. To this end, note that P?
U,VZ =

PScZVV
⇤ = 0, for any Z 2 M? and compute

hP?
M(⌅), W̄PM(⌅)i = hP?

M(⌅),P?
U,V(W lr

X(k),"k
(P?

U,V(PM1(⌅))))i+ hP?
M(⌅),PScW
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PScPM2(⌅)i

= hP?
U,V(P?

M(⌅)),W lr
X(k),"k

(P?
U,V(PM1(⌅)))i+ hPScP?

M(⌅)VV
⇤,Wsp

X(k),�k
PSc⌅i

= 0.

We can now continue by estimating
D
⌅, W̄⌅

E
=
D
⌅,P?

U,VW lr
X(k),"k

P?
U,V⌅

E
+
D
⌅,PScW
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E

=
D
P?
U,V(⌅),W lr
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P?
U,V(⌅)

E
+
D
PSc⌅,Wsp

X(k),�k
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E


D
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⌅

E
+
D
⌅,Wsp

X(k),�k
⌅

E

=
D
⌅,WX(k),"k,�k

⌅

E
,

(48)

using the positive semidefiniteness of W lr
X(k),"k

and W
sp
X(k),�k

in the last inequality. To be precise, the last
inequality can be argued as follows: Due to complimentary supports S and Sc, we see that

h⌅,Wsp
X(k),�k

⌅i = hPS⌅,Wsp
X(k),�k

PS⌅i+ hPSc⌅,Wsp
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+ hPSc⌅,Wsp
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� hPSc⌅,Wsp
X(k),�k
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(49)

Similarly, we note that W lr
X(k),"k

acts diagonally on TU,V and T?
U,V. Indeed, we have by Lemma C.2 that if

M 2 TU,V, then W lr
X(k),"k

(M) 2 TU,V and if M 2 T?
U,V, then W lr

X(k),"k
(M) 2 T?

U,V, which implies
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X(k),"k

(P?
U,V⌅)i = 0 and hP?

U,V⌅,W lr
X(k),"k

(PU,V⌅)i = 0

due to the orthogonality of elements in T?
U,V and TU,V, respectively, and therefore it follows from ⌅ =

TU,V(⌅) + T?
U,V(⌅) that
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� hP?
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(P?
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(50)

Combining the previous estimates with (47) and noticing that

1
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�2k
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we obtain
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F
.

(51)

Next, we control the last two summands in (51) using matrix perturbation results. Recall that U? 2 Rn1⇥r and
V? 2 Rn2⇥r are the singular vector matrices of the reduced singular value decomposition of X?. First observe
that ���(P eU, eV � PU?,V?)⌅

���
F

=
���(eUeU⇤ �U?U

⇤
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Now note that, by [12, Lemma 1] and [65, Theorem 3.5], we obtain
���eUeU⇤ �U?U
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where we used some small observations in the last two inequalities: First, �r+1(Hs(X
(k)))  �r+1(X

(k)),
which follows from the rectangular Cauchy interlacing theorem [27, Theorem 23]. Second, according to
Lemma B.2 and (25), the row-support S of Hs(X

(k)) coincides with the row-support S? = {i 2 [n1] :
k(X?)i,:k2 6= 0} of X? and hence Hs(X
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such that it follows from P?
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To estimate the fourth summand in (51), we argue analogously that
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using again that �r+1(X
(k))  kX? �X

(k)k  1
48�r(X?) due to (25).

Let now ⌅
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(k+1) �X?. Combining (24) and (51)-(52) we can proceed to estimate that
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where the third inequality follows from (8) and (25). Hence, rearranging (55) yields
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By Lemma B.5, we know that X(k+1) fulfills
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which completes the proof. We used in the penultimate line Hölder’s inequality and that
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for all matrices A,B.

C.5 Proof of Lemma B.9

Note that by Lemma B.2 and (27), S := supp(Hs(X(k))) = supp(X?). Since by assumption
�k  ⇢s(X(k)) we have by definition of Wsp

X(k),�k
that Z := W

sp
X(k),�k

· X? is a matrix with
row-support S and rows

Zi,: = min

(
�
2
k��(X(k))i,:
��2
2

, 1

)
(X?)i,:,=

�
2
k��(X(k))i,:
��2
2

(X?)i,:

for i 2 S. Now note that if (27) holds, then

kZi,:k2 =
�
2
kk(X?)i,:k2
k(X(k))i,:k22

 �
2
k

(1� ⇣)2⇢s(X?)
,

where we used in the last estimate that with (27) and k(X?)i,:k2 � ⇢s(X?), for i 2 S, we have

k(X(k))i,:k22 � (k(X?)i,:k2 � k(X(k))i,: � (X?)i,:k2)2 � (k(X?)i,:k2 � ⇣⇢s(X?))
2

�
⇣
(1� ⇣)⇢s(X?)

⌘⇣
(1� ⇣)k(X?)i,:k2

⌘
,

for all i 2 S. The claim easily follows since Z has only s non-zero rows.

C.6 Proof of Lemma B.10

In the proof of Lemma B.10, we use a simple technical observation.

Lemma C.3. Let X? 2 Mr,s, let X(k) be the k-th iterate of Algorithm 1, and abbreviate ⌅
(k) =

X
(k) �X?. Then the following two statements hold true:

1. If "k  �r+1(X(k)), then "k  k⌅(k)k.

2. If �k  ⇢s+1(X(k)), then �k  k⌅(k)k1,2.
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Proof : By defining [X(k)]r to be the best rank-r approximation of X(k) in any unitarily invariant norm, we
bound

"k  �r+1(X
(k)) = kX(k) � [X(k)]rk  kX(k) �X?k = k⌅(k)k,

where the inequality follows the fact that X? is a rank-r matrix.
Similarly, for the second statement, we have that

�k  ⇢s+1(X
(k)) = kX(k) � Hs(X

(k))k1,2  kX(k) �X?k1,2 = k⌅(k)k1,2,

using that X? is s-row sparse.

Proof of Lemma B.10 : First, we note that, using Lemma B.3, the observation in Remark B.7 yields

k⌅k2F  4c2kAk2!2
min

⇢
�r+1(X

(k))
"k

,
⇢s+1(X

(k))
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·
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�
P?
U,VW lr

X(k),"k
P?
U,V + PScW

sp
X(k),�k

PSc
�
⌅

E (56)

for all ⌅ 2 Rn1⇥n2 as the assumption (28) implies kX(k) �X?k  min
n

1
48 ,

1
19c

o
�r(X?). Thus, this holds

in particular also for ⌅(k) = X
(k) �X?. (Recall that U and V contain the leading singular vectors of X(k),

see Definition 2.1.) We estimate thatq⌦
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U,V⌅

(k),W lr
X(k),"k

P?
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(k)
↵
=
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���
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)1/2(X?)
���
F
+

p
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Furthermore, since max("k, k⌅(k)k)  1
48�r(X?) by assumption and "k  k⌅(k)k by Lemma C.3, we can

use a variant of Lemma B.8 to obtain
���(W lr

X(k),"k
)1/2(X?)

���
F
 48

47

✓p
r"k + 2"k

k⌅(k)kF
�r(X?)

+ 2
k⌅(k)kk⌅(k)kF

�r(X?)

◆

 1.04
p
r"k +

4.16k⌅(k)k
�r(X?)

k⌅(k)kF .

On the other hand, we note that ⌅(k) restricted to Sc coincides with the restriction of X
(k) to Sc under

assumption (28), cf. Lemma B.2, and therefore
⌦
PSc⌅

(k),Wsp
X(k),�k

PSc⌅
(k)↵ =
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PScX
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PScX
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=
n1X
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max{k(X(k))i,:k22/�2k, 1}

 (n1 � s)�2k.

With the estimate of above, this implies thatD
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sp
X(k),�k
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⌘2
+(n1 � s)�2k

 13
4
r"2k +

52k⌅(k)k2

�2
r(X?)

k⌅(k)k2F + 3(n� r)"2k + (n1 � s)�2k.

Inserting these estimates into (56), we obtain

k⌅(k)k2F  4c2kAk2!2
min

⇢
�r+1(X

(k))
"k

,
⇢s+1(X

(k))
�k
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13
4
n"2k + n1�

2
k +

52k⌅(k)k2

�2
r(X?)

k⌅(k)k2F
◆
.

If now either one of the two equations "k = �r+1(X
(k)) or �k = ⇢s+1(X

(k)) is true, it follows that

k⌅(k)k2F  c2kAk2!2

�
13n"2k + 4n1�

2
k

�
+ c2kAk2!2

208k⌅(k)k2

�2
r(X?)

k⌅(k)k2F

 c2kAk2!2

�
13n"2k + 4n1�

2
k

�
+

1
2
k⌅(k)k2F

if the proximity condition k⌅(k)k = kX(k) �X?k  1
21ckAk2!2

�r(X?) is satisfied. Rearranging the latter
inequality yields the conclusion of Lemma B.10.
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