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Improving Interaction Comfort in Authoring Task in AR-HRI
through Dynamic Dual-Layer Interaction Adjustment

Anonymous Authors
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Figure 1: In the authoring tasks for “Robot Welcoming Guests”, participants adjusted the robot’s initial path and programmed
its behaviors for obstacle avoidance, door opening, and handling a cup. The interaction method is dynamic, adapting through
general and individual layer modeling. The general model segments space for ergonomic interactions, while the individual
layer model uses physiological signals to predict discomfort and adjust interactions accordingly. Adjustments are triggered
when the Continuous Discomfort Index (CDI) exceeds a certain threshold.

ABSTRACT
Previous research has demonstrated the potential of Augmented
Reality in enhancing psychological comfort in Human-Robot In-
teraction (AR-HRI) through shared robot intent, enhanced visual
feedback, and increased expressiveness and creativity in interaction
methods. However, the challenge of selecting interaction methods
that enhance physical comfort in varying scenarios remains. This
study purposes a dynamic dual-layer interaction adjustment mecha-
nism to improve user comfort and interaction efficiency. The mech-
anism comprises two models: an general layer model, grounded
in ergonomics principles, identifies appropriate areas for various
interaction methods; a individual layer model predicts user dis-
comfort levels using physiological signals. Interaction methods
are dynamically adjusted based on continuous discomfort level
changes, enabling the system to adapt to individual differences and
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dynamic changes, thereby reducing misjudgments and enhancing
comfort management. The mechanism’s success in authoring tasks
validates its effectiveness, significantly advancing AR-HRI and fos-
tering more comfortable and enhancing efficient human-centered
interactions.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; In-
teraction design.

KEYWORDS
Interaction Comfort, Augmented Reality; Physiological Computing;
Human-Robot Interaction;

1 INTRODUCTION
Comfort is considered as an important indicator of interaction
quality in human-robot interaction (HRI) [47]. Recent studies on
AR-enhanced Human-Robot Interaction (AR-HRI) [43] have shown
that AR can enhance human comfort in HRI by sharing robot’s
intent [52] and plan [3], enhancing visual feedback [24], and in-
creasing the expressiveness and creativity of interaction methods
[13]. Comfort is mainly divided into psychological comfort and
physical comfort [44]. Although AR-HRI has made some progress

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in improving psychological comfort, how to choose the appropriate
interaction method for the current scenario to improve physical
comfort is still a challenge [49]. Inappropriate interaction methods
may reduce physical or psychological comfort [51], and thus lower
the efficiency of human-robot collaboration [38], or even cause
safety accidents [32]. Especially when people use AR technology to
assist robots in authoring tasks like path adjusting [9, 10, 16, 22, 36]
and visual programming [7, 23, 25, 40], the psychological discom-
fort caused by inappropriate paths [2] and the physical discomfort
caused by inappropriate interactions become more prominent. For
example, in specific task scenarios, people need to adjust the robot’s
pre-planned path to avoid collisions between the robot and human
or object. If the interaction method causes discomfort, it may affect
people’s operation efficiency, experience, and physical safety.

In authoring task of AR-HRI, the interaction methods of exist-
ing researches mainly include gesture [36], head pose [36], gaze
[48], touch screen [7], handheld device [35] and other unimodal
interactions, as well as gesture + voice [36], head pose + voice [36],
head pose + gesture + voice [36] and other multimodal interactions.
These interaction methods are utilized to implement three opera-
tions: picking, moving and placing [36]. For example, for “head pose
+ voice”, head point at target and say “pick” for picking target, and
head move to move the target, and then say “place” for palcing the
target. However, these studies have not fully considered whether
the interaction methods used are in line with ergonomics in the
current scenario, for example, different interaction methods may
be suitable for different interaction areas [43], and different people
may have different comfort feelings for different interaction meth-
ods [47]. Therefore, for this kind of AR-based authoring task, the
existing interaction methods lack the interaction adjustment mech-
anism that adapts to the environment (general interaction area)
and the human (individual comfort level), resulting in a serious
reduction of comfort.

To solve the above problems, this paper proposes a dynamic
dual-layer interaction adjustment mechanism (DDIA). Based on
the principles of ergonomics, we invited participants to participate
in experiments and established an general layer model, which
divided the areas for appropriate interaction methods. Moreover,
inspired by the “Dynamic Scene Adjustment (DSA)” proposed by
Liu [31], we dynamically adjust the current interaction method
based on the discomfort level (individual layer model), improv-
ing user comfort while ensuring interaction efficiency. Discomfort
can cause stress [11], which in turn triggers a series of physio-
logical responses, and the related physiological signals include
Photoplethysmography (PPG) and galvanic skin response (GSR)
[47]. Although unimodality could be weak and easily contaminated
by noise like artifact [39, 45], combining the various modalities to
overcome the weaknesses of each individual modality. Thus, we
collected the participants’ physiological signals (PPG and GSR) dur-
ing the interaction process through experiments, and modeled and
predicted the discomfort level by preprocessing and multimodal fu-
sion of physiological signals [50]. Finally, we effectively combined
the general layer and individual layer models to design a dynamic
dual-layer interaction adjustment mechanism.

The contributions of this paper include:
1. Dual-layer Interaction Adjustment Mechanism (DIAM).

We proposed a DIAM for authoring task in AR-HRI, integrating

general and individual factors. It uses an ergonomics-based general
layer model and a physiological signal-based individual layer model
to dynamically adjust AR interactions.

2.Continuous IndexModel. We enhance discomfort prediction
by shifting from a discrete to a continuous model in individual lay-
ers, adapting to individual differences, reducing errors, and aiding
discomfort management.

3.Validation Scenario. This paper verifies the effectiveness and
superiority of the dual-layer interaction adjustment mechanism
that enhances user comfort and efficiency through path authoring
and robot programming experiments.

2 RELATEDWORKS
2.1 Ergonomics in Authoring of AR-HRI Task
The intersection of AR and HRI opens up new avenues for er-
gonomics research [43]. Previous studies [15] found that compared
to pure physical HRI, users can better understand and optimize the
ergonomics aspects of HRI by using AR to enhance Human-Robot
Interaction (AR-HRI). This finding suggests that AR provides a
valuable platform for assessing potential ergonomics issues such
as interaction discomfort in Authoring of AR-HRI task.

Authoring of AR-HRI task mainly involves path adjusting and
visual programming to achieve more efficient collaboration, avoid
collision and conflict, adapt to dynamic environmental changes, and
meet user’s preferences and needs [6, 7]. The interaction methods
involved in the current authoring of AR-HRI task include unimodal
interaction (touch screen [7], handheld device [35], gesture [36],
gaze [48], etc.) and multimodal interaction (gesture + voice [36],
head pose + voice [36], head pose + gesture + voice [36], etc.).
Compared to the mixed reality head-mounted display (HMD, such
as Hololens 2), touch screen [7] and handheld device [35] may
cause more ergonomics problems, such as: visual fatigue (constantly
switching sight between the screen and the real environment), poor
posture (users often need to lower their heads or bend over), limiting
hand interaction, etc. [5]. Although wearing HMD for a long time
may also cause head and neck discomfort [51], but since the path
planning task is short [33], these problems can be alleviated by
proper rest and adjustment [6]. In addition, HMD can also provide
more natural and intuitive interaction methods (including gesture,
gaze, voice, etc.), allowing users to fully immerse themselves in the
task, rather than being limited by the device operation and interface.
Given the close relationship between ergonomics and interaction
comfort, there is a need for further maturation of ergonomics in the
Authoring of AR-HRI task to enhance comfort during interaction.

2.2 Interaction Comfort Measurement
The measurement methods of interaction comfort include two main
methods, namely subjective measurement methods (such as NASA
TLX [21] and active reporting of physical discomfort [28], etc.)
and objective measurement methods (such as GSR, PPG (converted
to heart rate variability), skin temperature, electroencephalogram
(EEG) and pupil measurement, etc.).

Subjective measurement. Since comfort is considered by most
researchers as a subjective psychological response to environmen-
tal stimuli [12], subjective evaluation methods such as NASA TLX
scale are usually considered as the most accurate human comfort
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Figure 2: Task authoring of cup delivery with an initial path (grey) for data collection. The subject modifies the path (green) to
avoid collisions, with two subtasks: (a) lateral and (b) longitudinal penetration. The robot starts from a direction (left or rear),
goes around obstacles and the subject, gets the cup, hands it to the subject, and returns to the start.

measurement methods at present. But subjective scales cannot col-
lect data in real time, and comfort data is highly discrete, sacrificing
the accuracy of real comfort reflection [47].

Objective measurement. Physiological signals can objectively
assess psychological and physiological responses, such as cognitive
load, stress, and emotion etc. [29]. Specifically, the relationship
between electrodermal activity and cognitive load, the relationship
between heart rate variability and stress level, and the relation-
ship between skin temperature and emotional state are the main
evaluation indicators of interaction comfort [47, 51].

2.3 Learning from Physiological Signals
“Learning physiological signals” has appeared in various applica-
tions of understanding human comfort, including human-robot
interaction [1, 4, 47] and augmented reality [42]. Physiological sig-
nal data is also used to implement various perception tasks, such
as user experience quality [27], emotion recognition [46], atten-
tion assessment [14], the sense of co-presence. The latest flexible
and non-invasive design of physiological signals creates new pos-
sibilities for understanding the human comfort that is invisible
to the camera. Despite progress in using physiological signals to
understand comfort, a gap exists in applying this to AR-HRI. The
potential of dynamic interaction adjustment based on discomfort is
underexplored. This leads to our research questions:

RQ1: How do GSR and PPG signals influence interaction comfort
under different methods?

RQ2: What impact does the dual-layer interaction adjustment
mechanism have on subjects’ interaction experience?

These questions aim to address the research gap and enhance
AR-HRI systems’ comfort and efficiency.

3 METHOD
Our goal is to model and predict the interaction discomfort level.
And the method of evaluating the discomfort level of interaction
methods is to combine objective physiological signal measurement
(GSR and PPG) and subjective scale (NASA TLX [21] items related to
comfort and active reporting of physical discomfort [28]). Therefore,
we devised an experiment for data collection and preprocessing.

Participants and setup. After obtaining the approval of the
IRH, we invited 25 participants (aged between 21 and 29, of which 2
were female) to participate in the experiment. Among them, 2 had
experience in using AR head-mounted devices (Hololens 2) before

Authoring task

Hololens 2

Shimmer3 GSR+

Figure 3: Device and data collection

the study. All participants were comfortable wearing the Hololens 2.
Hololens 2 provides a resolution of 1440 × 936 for each eye, a refresh
rate of 60 FPS, and a vertical/horizontal field of view (FoV) of 29°/43°.
For each participant, we also attached a Shimmer3 GSR+ unit1 [37]
on the left hand (see Figure 3) to collect GSR and PPG data. In order
to ensure that the GSR data monitoring is not affected by the arm
and wrist movement, we asked the participants to interact with
their right hand with the consent of the participants. We initially
tested a wireless GSR wristband. Although the wristband is more
portable and flexible compared to the finger sleeve (Shimmer3), it
was excluded from the experiment due to its weak and unstable
signal, as well as its low sampling rate. The Shimmer3 GSR+ unit
has a frequency of 128Hz and transmits data to the PC with a delay
of 25ms to 100ms.

Interaction and authoring tasks. During the study, each par-
ticipant wore Hololens 2, kept their feet fixed in the scene, and
completed the path authoring in the “cup delivery” task (see Fig-
ure 2) where the robot has planned the initial path (gray). The cup
delivery task involves the robot moving from its starting position to
the table (brown), picking up the cup (blue circle), handing it to the
human, and then returning to the original position upon receiving
human instructions. However, the initial path goes through the
subject and obstacles. To ensure safety and no collision, the subject
1https://www.shimmersensing.com/
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Figure 4: Modeling of general layer interaction areas.

needs to adjust the initial path with the picking, moving and placing
operations of the target object by gesture (grab), gaze, voice, voice +
gaze (see Figure 4) to get the adjusted path (green). Figure 2 shows
the 2 sessions of Authoring tasks (lateral and longitudinal passing),
and the sessions settings for each participant are the same, each
session lasts about 10 minutes, and each session needs to be done 4
times, allowing users to actively report physical discomfort during
the experiment. In order to alleviate the head discomfort caused by
wearing Hololens 2 for too long and avoid posture drift, the partic-
ipants were allowed to rest appropriately during the experiment.
Upon session completion, participants are required to sequentially
evaluate their interactions using two elements of the NASA TLX
subjective scale: Physical Demand and Frustration Level. This pro-
cess typically takes approximately 3 minutes. The items in the scale
have 1 (very low) to 5 (very high) rating points to choose from, and
the higher the score, the more discomfortable.

Duration of the study. Including pre-questionnaires (demo-
graphics, AR-HRI-related experience questions), software and hard-
ware settings (Hololens visual calibration, physiological signal
transceiver adapter deployment), pre-study guidance, warm-up
training, task sessions (completion of tasks, monitoring of physi-
ological signals, self-evaluation of interaction methods), rest and
debriefing, each participant’s study took about 1 hour. In total, we
collected about 2 hours of GSR and PPG data paired with comfort
and time-synchronized. We only retained the data with obvious
fluctuations in GSR and PPG signals, and removed the data with
insignificant fluctuations or abnormal jumps. We retained approxi-
mately 1 hours of GSR and PPG data.

Data processing and analysis. The original physiological sig-
nals cannot be used directly, because they exhibit: 1) non-stationary
behavior: the statistical characteristics of the signals change over
time, which makes the signal processing complex; 2) complex char-
acteristics: the features extracted from GSR signals are very com-
plex, and their detailed evaluation is insufficient; 3) transient arti-
facts: the signals may contain fast transient artifacts, which need
to be eliminated by applying a noise reduction filter with post-
processing tools; 4) individual differences: the same stimulus may
cause different intensity of physiological responses in different peo-
ple. Since physiological signals are sensitive to motion artifacts, we
instructed participants to act naturally, but also to prevent them
from waving their hands excessively [17]. Therefore, we performed

a series of preprocessing on the original signals, including segmen-
tation, resampling, filtering, etc. (see Figure 5(a)):

1) Segmentation operation: The original GSR and PPG signal
was cut into 7481 samples, each sample window size was 5s, and
the window moving step size was 0.25s.

2)Resampling: In order to solve the long tail effect caused by in-
dividual differences, the sample labels of the data set were adjusted
from five (1, 2 and 3 means normal, 4 and 5 means discomfortable)
to two groups (sample size: discomfortable (group D) and normal
(group N) each have 3200).

3) Filtering: In order to reduce the impact of noise and improve
the quality of the signal, third-order Butterworth filter was used to
preprocess each PPG time segment, and median smoothing filter
was used to preprocess each GSR time segment, and decomposed it
into SCL and SCR components [50].

Result and discussion. We assess sample quality by analyzing
differences between group D and N, and among different inter-
actions. The reasons we do not perform the analysis of variance
(ANOVA) on continuous time series signals, but on the wavelet fea-
tures of the signals[26] is: 1) Dimensionality reduction: Wavelet
features can greatly reduce the dimensionality of data, making data
processing and analysis more efficient. 2) Information extrac-
tion: Wavelet features can effectively capture key information in
GSR signals. 3) Stability: Wavelet features are more stable and less
susceptible to noise and outliers, especially the wavelet function
db4 has the best denoising effect. 4) Interpretability: Wavelet
features have good interpretability, which helps us understand the
relationship between GSR and interaction comfort. Since the data
of PPG and GSR do not pass the normality test and homogeneity
of variance test, we use one-way ANOVA (non-parametric method,
Kruskal-Walls) to test for significant differences. Group D and N
have significant differences (p < .001) in all wavelet features (vari-
ance, mean, maximum, minimum, energy) of GSR and PPG. The
lower values of the group N of wavelet features indicate that the
comfortable participants have less variation, lower average level,
lower peak, lower minimum and less energy in their GSR and PPG
signals. This may mean that they are less aroused and emotional
than the discomfortable participants. This is consistent with pre-
vious studies that found that GSR and PPG signals are sensitive
to discomfort [47]. The ANOVA results suggest that GSR and PPG
signals’ wavelet features are sensitive to AR-HRI interaction discom-
fort. Consequently, these signals could be effectively used to model
and predict discomfort in AR-enhanced HRI scenarios. However, no
significant differences exist in the wavelet features of physiological
signals (GSR and PPG) across the four interaction methods. There-
fore, while these signals can predict an individual’s comfort with
their current interaction method, they are unable to differentiate
among various interaction methods, nor can they determine the
subsequent interaction approach based on the current one.

The timing of adaptively switching interaction methods based
on discomfort depends not only on the comfort of the individual’s
current interaction method but also on the general applicability
of different interaction methods. Therefore, we have designed a
dynamic dual-layer interaction adjustment mechanism including
general layer modal and individual layer modal.
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Figure 5: Modeling Continuous Discomfort Index in individual layer discomfort.

3.1 General Layer Modeling
General Layer Interaction Adjustment Mechanism. By record-
ing and analyzing their operation effects and feedback, we obtained
the applicability of each interaction method under different con-
ditions. Ultimately, the general layer interaction area modeling is
constructed by statistically analyzing the average applicable area of
the normal distribution of each interaction method. Figure 4 details
the most suitable interaction methods (automatic switching), the
distance range and viewing angle range of the interaction methods
for different areas: Controllable area (red): The distance range
of this area is from 0.45m to 0.90m, the interactive angle range is
from 0° to 180°, and the recommended interaction method is gesture
(grab). Readable area (green): The distance range of this area is
from 0.90m to 2.50m, the interactive angle range is from 0° to 180°,
the recommended interaction method is gaze (for the easy-to-read
area), and the alternative interaction methods are voice + gaze (for
the hard-to-read area, dark green). Unreadable area (blue): The
distance range of this area is from 0.45m to 2.50m, the interactive
angle range is from 180° to 360°, and the best interaction methods
are voice. Hololens 2 screen left side provide a map with path points
and different areas for voice interaction in this area (see Figure 4).

For the final placement position of the target object, we refer to
the three interaction categories proposed by Hall [20]: intimate (0-
0.45 m), personal (0.45-1.20 m) and social (1.20-3.60 m). Considering
the physical safety in the subsequent human-robot interaction tasks,
we recommend users to place the target interaction object outside
the intimate distance. This can ensure that both users and robots
can operate within a safe distance during human-robot interaction,
while also ensuring the efficiency and effect of interaction.

However, this general layer model may have bias, only consider-
ing the average, without considering the individual differences of
each participant, for example, some participants (P1, P4-7, P10, P11,
P13, P17-18, P20) felt gesture interaction discomfort before reaching
the best gesture interaction area boundary divided by the general
layer model, then we need to further investigate the interaction
that this type of participant most wants to switch to at this time.

In order to reduce the impact of individual differences on the
interaction comfort in the general layer model, we collected and
analyzed the participants’ physiological signals (PPG and GSR) to
establish a individual layer comfort model. This model can predict
the user’s discomfort level when performing different interaction

methods, and provide personalized interaction method recommen-
dations. By combining the general layer interaction area modeling
and the individual layer comfort model, we finally constructed a
dual-layer interaction adjustment mechanism. This mechanism can
dynamically select the most suitable interaction method according
to the user’s actual situation and environmental conditions, thereby
improving the interaction efficiency and user experience.

3.2 Individual Layer Modaling
We built a computational model by analyzing the GSR and PPG
data paired with comfort. Although subjective scales can measure
comfort, they may interfere with normal activities and be affected
by recall bias and social expectations, reducing the reliability and
validity [41]. Therefore, we propose an interaction discomfort pre-
diction model that combines physiological signals and subjective
evaluation, and use an open function to describe the change of
GSR and PPG driven discomfort. We also use the collected data
to fit these functions with deep learning models, so as to predict
interaction discomfort level.

Cross-attention discomfort prediction. Before model train-
ing, we preprocess the collected raw data (see data processing and
analysis in 3.2 for details). The preprocessed data was randomly
split into training and validation sets, each with 3200 samples, with
a ratio of 8:2, and a random seed of 5000 was designed. Our inputs
are preprocessed physiological time series signals (time segments),
and the outputs are discomfort or normal. Supervised learning has
proven that by learning physiological features, it can quickly, ac-
curately, and robustly detect cognitive states [34]. Thus, compared
to manually extracting features from the processed GSR signal as
sample attributes, we use deep networks (5 layers of CNN and 1
layer of pooling) to automatically learn the features of time series
signals, avoiding human bias, improving feature quality and gener-
alization. We can choose the feature extraction method according
to the characteristics of the time series signal, such as CNN extract-
ing the short-term local dependency pattern of the PPG and GSR
signal, and can map the time series signal to the same dimensional
feature space, retaining more information, which is convenient for
multimodal fusion[50]. Inspired by [50], we use the Bidirectional
Cross Attention module (see Figure 5(b)) to address the delay issue
between multimodal physiological signals and align and fuse PPG
and GSR signals more effectively with cross-attention mechanism:



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Best Interaction  =      α LayerEnvironmental(Area)   +    β LayerHuman(CDI)  (α < β)

0.4

0.6

: CDI ≥ 0.4

: CDI ≥ 0.6

Time(s)

CDI
: Easy-to-read area

: Hard-to-read area

: Controllable area

: Unreadable area

Figure 6: Individual-layer interaction adjustment mechanism.

Attention(𝑥,𝑦𝑖 ) =
𝑁∑︁
𝑖=1

softmax

(
𝑥𝑊𝑄 (𝑦𝑖𝑊𝐾 )𝑇√

𝐿

)
𝑦𝑖𝑊𝑉 , (1)

where 𝑥 is the query, 𝑦𝑖 is the value,𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are param-
eter matrices, 𝛼𝑖 is the attention weight, indicating the matching
degree of 𝑥 and 𝑦𝑖𝑊𝐾 . The query (Q), key (K) and value (V) are
mapped to the dimension 𝐿. PPG and GSR are used as queries, keys
and values interchangeably, and cross attention weights are cal-
culated to obtain PPG and GSR representations fused with each
other’s information.

Figure 5(b) shows discomfort modeling and prediction. After 916
epochs, accuracy of our continuous signals (0.928 ± 0.012) is higher
than discrete features (0.794 ± 0.051) [50], possibly due to detail
loss or noise in discrete features, while continuous signals preserve
more temporal information and signal changes. Considering device
delay of 25ms to 100ms, one layer of cross-attention ensures at least
one update per second, while more layers cannot.

Enhancing discomfort prediction from discrete to continu-
ous can more accurately reflect the changes in the discomfort level
of the subjects, rather than categorizing them into discrete classes
[19]. This method can better adapt to individual differences and dy-
namic changes, alleviate misjudgments of the subjects’ discomfort,
and thus better assist the subjects in managing discomfort. Specifi-
cally, windows (𝑤 , monitored every second with a 10s window and
1s step, see Figure 5(c)) that are entirely within the discomfort and
normal intervals are assigned values of 1 and 0, respectively. How-
ever, if a window involves two states, its Continuous Discomfort
Index (CDI(x)) is calculated using the following formula:

𝐶𝐷𝐼 (𝑥𝑛) =


𝑒
− (𝑥𝑛−𝑚)2

2𝜙2 if 𝑡normal < 𝑤 < 𝑡discomfort

1 − 𝑒
− (𝑥𝑛−𝑚)2

2𝜙2 if 𝑡discomfort < 𝑤 < 𝑡normal

(2)

where𝑚 = 0, 𝜙 = 0.3, 𝑥𝑛 = −1 + 0.1×𝑛, 𝑛 = 1, . . . , 10 are used to
generate a uniformly distributed sequence from -1 to 0, representing
the position of the time window. Then, the discomfort within these
10 seconds is gradually mapped to the range of 0 to 1 using a normal
distribution (see Figure 5(c)). The purpose of this is to assign a
fuzzy discomfort index to each time window, rather than a discrete
discomfort category. By transforming discrete predictions into a
continuous form, we effectively address the issues of abrupt changes
and unstable changes (see Figure 5(c)). This approach allows us to
more accurately reflect the actual feelings of the subjects, rather

than simply categorizing them as “normal" or “uncomfortable".
Therefore, this method can more effectively help users manage
discomfort. Finally, the CDIs are sent to Hololens via UDP (User
Datagram Protocol), enabling interaction adjustments as needed.

Individual Layer Interaction Adjustment Mechanism. To
address the “bias” issue (limited applicability, i.e., the interactive
adjustment strategy cannot satisfy individual users.) inherent in
the general layer model, we once again invited 25 participants to
engage in authoring tasks. We found that more than half of the
participants reported discomfort in both the “controllable area” and
the “difficult-to-read area”. Specifically, for the “controllable area”,
64% of participants (all with discomfort indices exceeding 0.6) re-
ported discomfort and requested a switch to gaze interaction. For
the “difficult-to-read area”, 72% of participants (all with discomfort
indices exceeding 0.4) reported discomfort and requested a switch
to gaze+voice interaction. Figure 6 illustrates the individual layer
interaction adjustment mechanism. When a discomfort index ex-
ceeding 0.6 is detected, the system automatically switches to gaze
interaction if the participant is in the “controllable area”. If the
participant is in the “difficult-to-read area”, the system automati-
cally switches to gaze+voice interaction when a discomfort index
exceeding 0.4 is detected. This mechanism allows participants to
choose the interaction method that best suits their comfort and
preferences. Therefore, the priority of the individual layer interac-
tion adjustment mechanism is higher than that of the general layer
interaction adjustment mechanism.

4 EVALUATION
We evaluate the performance of our dual-layer interaction adjust-
ment mechanism in dynamically adjusting interactions to reduce
discomfort through a series of objective measurements. We demon-
strate the effectiveness and superiority of the dual-layer interaction
adjustment mechanism considering both general and individual
dimensions through experiments with ecological validity [30].

4.1 Authoring of Real-life AR-HRI Tasks
Participants and setup. To mitigate carryover effects [8], we re-
cruited 31 distinct participants (aged 20-29, including 3 females),
separate from the 25 discussed in Section 3.1. Two of them had
experience using AR headsets before the study. Our study design is
mixed-model, with the interaction strategies varying as a between-
subjects factor.Within-subject factors encompass two task difficulty
levels. The easy level involves completing all path adjusting tasks
before all robot programming tasks (separate tasks). The difficult
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level requires alternating between path adjusting and robot pro-
gramming after each task (combine tasks). All participants reported
that their device-wearing conditions were comfort, and the hard-
ware and software setup is similar to Section 3.2 (see Figure 3). All
participants were evenly divided into three groups, Group A (10
males, 1 female, M=23.4, SD=2.77) chose the interaction method
(baseline) according to their wishes, Group B (9 males, 1 female,
M=24.0, SD=2.40) used the general layer interaction switchingmech-
anism (single layer only), and Group C (9 males, 1 female, M=23.4,
SD=2.50) used the dual-layer interaction adjustment mechanism.
Each condition required the completion of two types authoring
tasks: path adjusting and programming (see Figure 2).

Real-life authoring tasks. Figure 1 illustrates two tasks for
“Welcoming Guests”: path authoring (Task 1) and robot program-
ming (Task 2). Participants, wearing Hololens 2 and stationed in
the kitchen scene, engaged in two activities. In path authoring, they
modified the robot’s initial path (gray) to accommodate four tasks:
door opening, cup grabbing, obstacle avoidance, and cup placing.
This was achieved by programming the robot’s behaviors using the
interaction methods shown in Figure 4. During robot programming,
participants assigned tasks to the robot by moving colored balls
(red, yellow, green, and blue) representing the four tasks to the task
setting area beside the corresponding robot’s virtual avatar. For
instance, the “door opening task ball” was placed in the task setting
area of the virtual robot near the door.

Task duration. The two authoring tasks need to be conducted
in two sessions with two different difficulties. A Latin square design
was employed to balance the sessions. Each round takes approxi-
mately 10 minutes, with path authoring and robot programming
each requiring about 5 minutes. The study for each participant also
takes about 45 minutes including pre-questionnaires, software and
hardware settings, pre-study guidance, warm-up training, task ses-
sions, after-task subjective scales, rest and debriefing. Each session
was monitored to ensure that the subjects’ movements were within
a safe range.

4.2 Result
We evaluate the effectiveness and superiority of the dual-layer
interaction adjustment mechanism through a combination of sub-
jective and objective measures. Objective behavioral data reflect
the operation efficiency and operation load of users under different
interaction methods. We collected the average interaction time per
session, and the total number of operations for each task . We also
constructed scales using 7-point Likert-style items to measure par-
ticipants’ subjective feelings and preferences, with higher scores
being more positive. These scales rated physical and psychological
comfort (2 items, Cronbach’s 𝛼 = .758), acceptance of interaction
adjustment strategies (2 items, Cronbach’s 𝛼 = .731), and overall
design usability (2 items, Cronbach’s 𝛼 = .745). All collected data
have undergone normality testing (Shapiro-Wilk) and homogeneity
of variance testing (Levene’s). Meanwhile, we compared each partic-
ipant’s predicted discomfort with their actual experience, assessing
the alignment between predicted and perceived uncomfortable
interactions. Our model’s discomfort predictions are statistically
significant, with an 75.2% accuracy (see Figure 7(a)), indicating a
minimal chance of them being random.

(b) Acceptance for different predictions
Dis.+Ea.

3.7

4.0
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Figure 7: Evaluation of discomfort prediction accuracy and
interaction strategy acceptance

Between-subject analysis.We used ANOVA (Welch’s method)
to determine whether there were significant differences among the
three groups (see Figure 1). Single-session interaction duration:
C group (147.2 seconds) and B group (215.8 seconds) had signifi-
cantly shorter interaction time than A group (270.0 seconds), F(2,
37.7) = 552.67, p < .001. Games-Howell post hoc test showed sig-
nificant differences among three groups (p < .001). Total number
of operations in robot programming: C group (10.8 times) and
B group (13.5 times) had significantly fewer number of operations
than A group (21.4 times), F(2, 37.7) = 134.4, p < .001. Games-Howell
post hoc test showed significant difference between A and B group
(p < .001) and C group (p < .001). Total number of operations in
path adjusting: C group (13.7 times) and B group (19.4 times) had
significantly fewer number of operations than A group (23.9 times),
F(2, 37.7) = 88.40, p < .001. Games-Howell post hoc test showed
significant differences among three groups (p < .001). Comfort
level during interaction: C group (4.60 points) had significantly
higher comfort level than B group (3.73 points) and A group (2.48
points), F(2, 38.6) = 52.1, p < .001. Games-Howell post hoc test
showed significant difference among three groups (p < .005). Ac-
ceptance level of interaction adjustment strategy: C group
(4.97 points) and B group (4.35 points) had significantly higher
acceptance level than A group (3.02 points), F(2, 38.7) = 66.0, p <

.001. Games-Howell post hoc test showed significant differences
between A and B (p < .001) and C group (p < .001), B and C (p =
.007).Usability: C group (4.88 points) and B group (4.38 points) had
significantly higher Usability than A group (2.61 points), F(2, 38.8)
= 86.8, p < .001. Games-Howell post hoc test showed significant
differences between A group and B and C group (p < .001).

Within-subject analysis. We used ANOVA to investigate the
main effect of task difficulties and their two-way interaction effects
with interaction adjustment strategies. Participants in easy level
task had a significantly shorter interaction time (197.1s) compared
to those in difficult level task (228.7s), F(1, 60) =106.99, p < .001. In
the robot programming task, participants in easy level performed
significantly fewer operations (13.9 times) than those in difficult
level (16.9 times), F(1, 60) = 28.7, p < .001. However, in the path
adjusting task, there was no significant difference between partici-
pants in easy (18.2 times) and difficult level (20.0 times). The only
two-way interaction effect we found was in the operations of the
robot programming task, F(2, 37.7) = 11.2, p < .001.

Discrete vs. Continuous Discomfort Prediction. In addition
to continuous discomfort prediction, participants in Group C were
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Figure 8: An ANOVA (Welch’s method) compared subjective
and behavioral measures among three groups in the valida-
tion study. Statistical significance is marked with stars.

asked to complete two sessions involving discrete discomfort pre-
diction and evaluate their acceptance of interaction adjustment
strategies. A significant difference was observed between discrete
(4.13 point) and continuous (4.97 point) discomfort prediction, F(1,
38)=22.6, p < .001 (see Figure 7(b)).

4.3 Discussion
This study aims to compare the impact of three different interac-
tion adjustment strategies on user performance and experience in
two authoring tasks of AR-HRI. The results show that Group C,
which uses a dynamic dual-layer interaction adjustment mecha-
nism (DDIA), and Group B, which uses an single-layer interaction
adjustment mechanism, significantly outperform Group A, where
users choose the interaction method according to their wishes,
in terms of single session interaction duration, total number of
operations, comfort during interaction, acceptance of interaction
adjustment strategies, and usability. This suggests that by provid-
ing more flexible and efficient interaction methods, user efficiency
and satisfaction in authoring tasks of AR-HRI can be improved. In
addition, the results also show that Group C, which uses a dual-
layer interaction adjustment mechanism, significantly outperforms
Group A and B in terms of the interaction duration, total number
of operations in path adjusting, and comfort level during interac-
tion. This indicates that compared to the single-layer interaction
adjustment mechanism, the DDIA can better adapt to individual
differences and dynamic changes, reduce misjudgments, and ef-
fectively help participants manage discomfort. The results also
revealed that separating tasks (easy) improved efficiency in the
robot programming task but showed similar performance to com-
bining tasks (difficult) in the path adjusting task, indicating its
effectiveness may be task-dependent.

The two-way interaction effect was only seen in the robot pro-
gramming task, likely due to its complex and decision-based nature,
which might be affected by discomfort prediction and adjustment

methods. The path adjusting task, which is more procedural, didn’t
show this effect. Despite both tasks being part of the AR-HRI author-
ing task, they demand different cognitive skills: strategic planning
for robot programming and spatial reasoning for path adjusting.

Moreover, compared to discrete discomfort prediction, continu-
ous prediction could enhance the acceptance of interaction adjust-
ment strategies. It suggests that a continuous model could adapt
to dynamic changes, minimize misjudgment, and aid discomfort
management.

5 LIMITATIONS AND FUTURE RESEARCH
This study considers the impact of GSR and PPG on interaction
comfort. However, due to the need for per-second updates and com-
putational resource overhead for discomfort monitoring, it does
not take into account additional physiological signals such as EEG
[41, 51]. This may result in our model missing some crucial informa-
tion. Furthermore, this work only considers the physiological state
of users during interaction with robots, without taking into account
factors such as personality traits and emotional states, which could
also influence user interaction comfort [46].

Moreover, the development process necessitated certain con-
straints on AR usage, such as limiting interactions to the right hand
to accommodate sensor placement on the other hand. This con-
straint naturally restricts use-cases, particularly bi-manual tasks.
To overcome this, we aim to use head-mounted devices for signal
collection in future iterations.

Future research plans include incorporating other types of phys-
iological information and psychological states to more comprehen-
sively assess user comfort in VR/AR. On the other hand, we can
leverage probabilistic modeling and learning techniques to extract
more statistical variations and individual differences from phys-
iological signals, enhancing the generalizability and robustness
of the model. Moreover, recommendations for switching to more
comfortable interaction methods should consider the impact of
specific scenario factors. For instance, users engaged in cooking
with both hands occupied should be advised against interaction
methods related to gestures. Additionally, future work needs to con-
sider the differences in physiological data collected under different
interaction methods [18].

6 CONCLUSION
This paper proposes a dynamic dual-layer interaction adjustment
mechanism (DDIA) for authoring of AR-enhanced Human-Robot
Interaction (AR-HRI) tasks. The mechanism consists of an gen-
eral layer model and a individual layer model, which can dynami-
cally switch to a appropriate interaction method. The general layer
model divides the interaction areas according to the principles of
ergonomics, and the individual layer model predicts the user’s dis-
comfort level, dynamically adjusts interaction methods based on
physiological signals. We evaluate the performance of our mecha-
nism through objective and subjective measures. The results show
that our DDIAmechanism can significantly improve the user’s com-
fort, and efficiency in robot authoring tasks. Our work contributes
to the ergonomics research of AR-HRI, and provides a valuable
platform for assessing and improving the interaction comfort in
authoring of AR-HRI tasks.
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