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A APPENDIX

A.1 DLGN ILLUSTRATIONS
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Figure 4: An illustration of DLGN network and node hyperplanes

Figure f[(a) and ff[(b) give an example DLGN operating on a 2-dimensional input with 2 layers and
2 neurons per layer, i.e. d = m = L = 2. Figure[d{c) illustrates the region of activation for all the
m’ = 4 paths given by the gating network 4(a). The value network in Figure b) gives the path
value for all these paths by multiplying the appropriate weights in the path.

Next, we will discuss various variants of DLGN.

A.2 DLGN-VT AND DLGN-SF

We also consider two natural variants of the DLGN architecture. The first is a simple
re-parameterisation, where the gating network f, is parameterised directly by the matrices
VI V2 ..., VL, each of shape m x d, instead of using the parameters W', ... W, Clearly,
this reparameterisation does not lose any representation power. We call this parameterisation as
DLGN-SF (for shallow features).

Another variant that we use an explicit parameterisation of the coefficients g, instead of using a
value network. This parameterisation is also clearly more powerful than the standard DLGN param-
eterisation in the previous section. However, this requires a parameter tensor of size m” and is not
really practical for large L and m. We call this reparameterisation as DLGN-VT (for value tensor).

All of these models can be extended to allow a bias parameter for the gating network so that the
functions ng can also be affine functions instead of strict linear functions, but we do not discuss this
version here for the purpose of simplicity.

Number of DLGN hyperplanes (after training) within a given distance of the label function ODT
hyperplanes of DLGN-VT and DLGN-SF are shown in Table [5|and Table 4] At initialization, all
these numbers are equal to zero. The 15 ODT internal nodes are numbered O to 14, with O as the
root. Results of similar experiments as DLGN (Table [I)) shown in Table ] and [5] for DLGN_SF
and DLGN_VT respectively depicts identical hyperplane-seeking properties of these two variants
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(a) Layerl1 initial h-planes (b) Layer?2 initial h-planes (c) Layer3 initial h-planes

7
Vil

(d) Layerl trained h-planes (e) Layer2 trained h-planes (f) Layer3 trained h-planes

Figure 5: An illustration of DLGN hyperplanes before and after training on data in Fig 1c.

of DLGN models as well. For each node in the ODT, we count the number of DLGN hyperplanes
within a distance of 0.1, 0.2, and 0.3 from it.

Table 4: Distance table for DLGN-SF Layers: 4 Nodes per layer: 10

Distance

0 1 2 [ 3 415 6 [ 7 8 9 [ 10 11 [ 12 [ 13 | 14

01 1 1 1 I 0 [0 [0 1 0|0 I 0 [0 00

0.2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Closest Dist.(init) || 1 20 122126 | 127 | 1.24 [ 124 [ 125 122 [ 1.29 [ 1.27 | 124 [ 1.26 | 1.15 [ 1.26 | 1.25
Closest Dist.(final) || 0.05 | 0.07 | 0.08 | 0.08 | 0.12 | 0.11 | 0.13 | 0.09 | 0.18 | 0.26 | 0.08 | 0.16 | 0.10 | 0.14 | 0.21

Table 5: Distance table for DLGN-VT Layers: 4 Nodes per layer: 10

Distance 0 I 2 [ 3 R 6 | 7 8 9 [ 10 [ 11 [ 12 [ 13 ] 14

0.1 3 2 2 10 2 | 2 1 1 0 1 2 1 1 1 1

0.2 3 2 2 |0 2 | 2 1 1 0 2 | 2 1 1 1 1

0.3 2 | 2|0 2 | 2 1 1 1 2 | 2 1 1 1 1
Closest Dist.(init) || 1. 16 127 [ 123 [ 122 1.28 [ 122 [ 118 | 1.17 [ 1.27 | 1.26 | 1.19 | 1.21 | 1.26 | 1.23 | 1.21
Closest Dist.(final) || 0.03 | 0.05 | 0.06 | 0.35 | 0.08 | 0.09 | 0.06 | 0.09 | 0.24 | 0.06 | 0.04 | 0.07 | 0.05 | 0.07 | 0.05

A.3 DETAILS OF SUBROUTINES USED IN DLGN-DT

This function takes into account the DLGN model after training. It iteratively calculates the effective
weights of the layer using the formula V¢ = W W*=! .. W' as in lines 3 of the algorithm. It finally
returns each layer’s effective weight (hyperplanes) as a vector.
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Algorithm 3 Return gates of a trained DLGN model
Arguments: A DLGN model with parameters W', ... W¥ ut, U2, ... UL ult!
Qutputs: m L hyperplanes in the input dimension

1: function GATEHYPERPLANES(model)
2 for! < 1to L do

3: VE— wetwe-1t o wt

4: end for
5
6:

return V « V1 . . VE
end function

A.4 DATASETS USED
We have used 3 synthetic datasets and 20 tabular datasets to evaluate the performance of our model

DLGN and its variants against some standard algorithms. In this section, we will elaborately de-
scribe the datasets used.

A.4.1 SYNTHETIC DATASETS:

Table 6: Synthetic Datasets Generation

dataset | total_samples| train_samples(n) | n_features(d) | depth | seed | thres | generate_data
SDI 40000 20000 20 4 365 0 through code
SDII 60000 30000 100 4 365 0 through code
SDIII 100000 50000 500 4 365 0 through code

This dataset is synthetically generated with specified dimensions from a labelling function f* given
by an Oblique Decision Tree (ODT) with depth and a defined number of data points as given in
Table [6] The datapoints x are drawn uniformly from the surface of a d-dimensional sphere of radius
1, centred at the origin. We used COB-ODTs as mentioned in Section [3| with biases kept at zero.
The leaf node labels are chosen so that sibling labels get opposite signs. The final output includes
the pruned data, labels, and information about the tree’s structure. Three synthetic datasets (SD) are
used, named SDI, SDII, and SDIII.

Table [6] presents the parameters used for constructing the datasets.

A.4.2 TABULAR DATASETS:

We used a total of 20 tabular binary classification datasets for the comparative study of our mod-
els. Most datasets are available in the UCI repository https://archive.ics.uci.edu/
datasets| Some are taken from the OpenML benchmark, as given in the paper (Grinsztajn et al.,
2022). https://www.openml.org/search?type=benchmark&study_type=tasks
sort=tasks_included&id=298. The dataset download URL is in Table [/| After download-
ing the datasets, they are preprocessed by dropping rows with missing values, converting categorical
features using Label Encoding, Standardizing numerical features, and Encoding the target variables
to 0 and 1.

Figure [3| illustrates an example scenario when a 3-hidden layer DLGN is trained on data given in
Figure c). The initial hyperplanes(h-planes) given by V' and V2 and V? as shown in Figure[5{a-c)
are essentially random. However, after training, the hyperplanes in the later layers show a remark-
able tendency to move towards the hyperplanes corresponding to the decision tree — particularly that
of nodes close to the root (See Figures Ekd—f)).

A.5 EXPERIMENTAL SETUP DETAILS
A.5.1 TRAIN_VALIDATION_TEST SPLIT:

For the synthetic datasets SDI, SDII, and SDIII, the dataset is split into 50% train, 25% test, and
25% validation set. Models are trained on the training data and validated on the validation set, and
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Table 7: Tabular datasets

data | download_link

Adult | https://archive.ics.uci.edu/static/public/2/adult.zip

Bank | https://archive.ics.uci.edu/static/public/222/bank+
marketing.zip

Card | https://archive.ics.uci.edu/static/public/350/default+of+
credit+card+clients.zip

Telesc| https://archive.ics.uci.edu/static/public/159/magic+gamma+
telescope.zip

Rice | https://archive.ics.uci.edu/static/public/545/rice+cammeo+
and+osmancik.zip

Stat http://archive.ics.uci.edu/static/public/144/statlog+
germant+credit+data.zip

Spam | http://archive.ics.uci.edu/static/public/94/spambase.zip

Gyro | https://archive.ics.uci.edu/static/public/755/
accelerometer+gyro+mobilet+phone+dataset.zip

Swar | https://archive.ics.uci.edu/static/public/524/swarm+
behaviour.zip

Credit| https://api.openml.org/data/v1/download/22103185/credit.
arff

Elec | https://api.openml.org/data/v1/download/22103245/
electricity.arff

Cover | https://api.openml.org/data/vl/download/22103246/
covertype.arff

Pol https://api.openml.org/data/vl/download/22103247/pol.arff

House| https://api.openml.org/data/vl/download/22103248/house_
loH.arff

Mini | https://api.openml.org/data/vl/download/22103253/
MiniBooNE.arff

Diab | https://api.openml.org/data/v1/download/22111908/
Diabetesl130US.arff

Jannis| https://api.openml.org/data/vl/download/22111907/jannis.
arff

Bior | https://api.openml.org/data/vl/download/22111905/
Bioresponse.arff

Calif | https://api.openml.org/data/vl/download/22111914/
california.arff

Heloc | https://api.openml.org/data/vl/download/22111912/heloc.
arff

then the test score is reported against the test data with the best hyperparameters. Similarly, for the
tabular datasets, the dataset is split into 60% train, 20% test, and 20% validation set.

A.5.2 NUMBER OF FOLDS:

Based on the algorithms used, the number of folds used is also varied. For standard ML algorithms
like CART, Random Forest, SVM, and SVM Linear, we use 3-fold cross-validation; for most other
algorithms, including DLGNs, we use one-fold size.

A.5.3 HARDWARE:

All the experiments are performed on Kaggle, and all the neural network-based experiments use
GPU, whereas traditional ML algorithms are performed on CPU. Kaggle provided GPUs, such as
GPU T4 x2 and GPU P100.
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A.5.4 HYPERPARAMETERS TUNING:

Each algorithm used in this paper has a different set of hyperparameters, and hyperparameter tuning
is one of the most important aspects for getting the best accuracy. Here, for each algorithm, we
extensively searched from a collection of hyperparameters and validated their result on the valida-
tion set to obtain the best-performing hyperparameters. Test results are reported based on the best
hyperparameters. The below tables give a list of all hyperparameters for each algorithm used.

Table 8: DLGN and DLGN-SF hyperparameters space

Parameters Set of values searched on

num layers 3,4,5

num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000

beta 3, 10, 20, 30

learning rate(Ir) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500

batches 1, 10, 100

optimizers Adam, SGD

weight decay 0,0.1

Table [§|contains the hyperparameter set used in training the DLGN and DLGN-SF models on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination
is found, which is then used to get the test accuracy. Parameters num layers, num nodes(each layer),
and beta are the most important hyperparameters.

Table 9: DLGN-VT hyperparameters space

Parameters Set of values searched on

num layers 3,4

num nodes(each layer) 10, 20

beta 3, 10, 20, 30

learning rate(lr) 1., 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500,1000,5000,10000,15000
batches 1, 10, 100

optimizers Adam, SGD

weight decay 0, 0.1

C 0.1,0.03, 1.0

max_iter 100, 500, 1000

penalty 11,12

solver liblinear

Table [9]contains the hyperparameter set used in training the DLGN-VT model on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. Along with the DLGN parameters, it has C, max_iter,
penalty and solver as additional parameters.

Table |10jcontains the hyperparameter set used in training the DLGN-DT models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. It has eps, min_samples and max_depth as important
parameters for finding the cluster centre and depth of the tree constructed.

Table [11|contains the hyperparameter set used in training the ReLU models on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy.

Table [12]contains the hyperparameter set used in training the Linear SVM models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. Here, kernel is set to Linear for Linear SVM.
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Table 10: DLGN-DT hyperparameters space

Parameters Set of values searched on

num layers 3,4,5

num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000
beta 3, 10, 20, 30

learning rate(Ir) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500

batches 1, 10, 100

optimizers Adam, SGD

weight decay 0,0.1

eps 0.1,0.2,0.3

min_samples 1,2,3,5,7,10, 15, 22, 40
max_depth 1to 10

Table 11: ReL.U hyperparameters space

Parameters Set of values searched on

num layers 3,4,5

num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000

learning rate(Ir) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 500, 1000

optimizers Adam, SGD

weight decay 0,0.1

Table [I3]contains the hyperparameter set used in training the Non-linear SVM models on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination is
found, which is then used to get the test accuracy. Here, the kernel is set to Non-linear Kernels like
rbf or sigmoid.

Table [14|contains the hyperparameter set used in training the CART model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. max_depth is the most important hyperparameter to train.

Table contains the hyperparameter set used in training the random forest model on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination
is found, which is then used to get the test accuracy. n_estimators define the number of estimators in
the random forest as one of the most vital hyperparameters.

Table [T6]contains the hyperparameter set used in training the SDT model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. depth is the tree depth of SDT which is the most vital hyperpa-
rameter to tune.

Table contains the hyperparameter set used in training the TAO model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. n_iters, max_leaf_nodes and min_node_samples are important
hyperparameters to train.

Table [I§] contains the hyperparameter set used in training the Zan-DT models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. depth, reg and mlp_layer are vital parameters.

Table [I9]contains the hyperparameter set used in training the Disnn model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. A value of 10-15 for n_polytopes_list and m_list works best.

Table [20]contains the hyperparameter set used in training the GLN model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
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Table 12: SVM Linear hyperparameters space

Parameters Set of values searched on
C 0.1,05,1,2,5
kernel Linear

Table 13: SVM hyperparameters space

Parameters Set of values searched on

C 0.1,05,1,2,5

kernel rbf, sigmoid

gamma scale, auto, 0.001, 0.01, 0.1, 1, 10
degree 2,3,4,5

is then used to get the test accuracy. layer_sizes, num_nodes and context_map_size are important
parameters. context_map_size = 4 gives the best result.
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Table 14: CART hyperparameters space

Parameters Set of values searched on
criterion gini, entropy
splitter best, random
max_depth 1to 10
min_samples_split 1to 10
min_samples_leaf 1,2,4,5
max_features sqrt, log2

Table 15: Random Forest hyperparameters space
Parameters Set of values searched on
criterion gini, entropy
n_estimators 10, 20, 50, 100
max_depth 1to 10
min_samples_split 1to 10
min_samples_leaf 1,2,4,5
max_features sqrt, log2

Table 16: SDT hyperparameters space

Parameters Set of values searched on
depth 1to 10
lamda 0.1, 0.01, 0.02, 0.05, 0.001
learning rate(Ir) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500
batches 32,64, 128
weight decay 0, 0.1, 0.0005

Table 17: TAO hyperparameters space

Parameters Set of values searched on

n_iters 10, 20, 30

max_leaf_nodes 5,10, 15

randomize_tree True, False

update_scoring accuracy

min_node_samples_tao 1,2,3,4,5

min_leaf_samples_tao 1,2,3,4,5

reg_param 0.1, 0.01, 0.02, 0.05, 0.001
Table 18: Zan-DT hyperparameters space

Parameters Set of values searched on

depth 1to 10

reg 0.1,0.01,1.48,1.5,2

mlp_layer 3,4,5

dropout 0.0, 0.01, 0.05, 0.07, 0.1

Ir 0.1, 0.01, 0.02, 0.05, 0.001

epochs 200, 300, 500

batches 32,64, 128,512
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Table 19: Disnn hyperparameters space

Parameters Set of values searched on
n_polytopes_list 1-15,20,30,100
m_list 1-15,20,30,100

Table 20: GLN hyperparameters space

Parameters Set of values searched on
layer_sizes 3,45

num_nodes 5,10,20,50

context_map_size 2to 10

Ir 0.1, 0.01, 0.02, 0.05, 0.001,0.00025
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