
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Appendix

A.15
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 3.1
(b) Did you include complete proofs of all theoretical results? [Yes] Appendix A.1

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] Access to the
CPRD is regulated. Researcher has to sign an end user license before access to the data
is granted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendix A.9

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Section 5

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Appendix A.14

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Section 5.2
(b) Did you mention the license of the assets? [Yes] We have signed the end user agreement

for CPRD.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] It is discussed in detail in the publication by the dataset creators,
which we cited in Section 5.2.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Section 5.2

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Appendix

Summary of Appendices.

Theoretical results.

• A.1: Proofs and discussions about all propositions.

Related works.

• A.2: Comparison of the causal assumptions
• A.3: Comparison of allowed temporal covariates
• A.4: Unrelated works with similar terminology

The SyncTwin algorithm.

• A.5: The generality of SyncTwin’s assumed DGP
• A.6: Estimation for control and new individuals
• A.7: Algorithmic details and pseudocode
• A.8: Optimization for the matching loss Lm

Simulation study.

• A.9: Implementation details of the benchmarks
• A.10: Details about the simulation model
• A.11: Additional simulation results
• A.12: Sparsity of weight bi
• A.13: Sensitivity of Hyper-Parameters
• A.14: Computation time

Experiment on real data.

• A.15: Additional results and statistics
• A.16: Cohort selection diagram in the CPRD study

15

Theoretical results

A.1 Theoretical results

A.1.1 Proofs of the propositions

Proposition 1 Error bound on the learned representations. Given the assumptions in Section 3.1, the
total error on the learned representations for the control 4 is bounded as follows:∑

j∈I0

‖cj − c̃j‖ ≤ βLs +
∑
j∈I0

‖ξj‖, (10)

where Ls is the supervised loss in Equation 2 and ξj is the white noise in Equation 1.

Proof. We start the proof from the definition of the supervised loss.

Ls =
∑
j∈I0

‖Q̃c̃j − yj(0)‖

=
∑
j∈I0

‖Q̃c̃j − (Qcj + ξj)‖

≥
∑
j∈I0

(∑
t∈T −

[
c̃>j ,−c>j

] [q̃t
qt

] [
q̃>t ,q

>
t

] [c̃j
−cj

]) 1
2

−

∑
j∈I0

||ξj‖2

≥ β̃
√
|T −|

∑
j∈I0

‖c̃j − cj‖ −
∑
j∈I0

‖ξj‖

(11)

where β̃ denotes the square root of the element of the matrices
[
q̃t
qt

] [
q̃>t ,q

>
t

]
, ∀t ∈ T−, with the

smallest absolute value. The first and second equations follow from Equation 2 and 1. Let β denotes
the constant 1/(β

√
|T −|). Arranging the terms in inequality 11 and we prove Proposition 1.

Justification for the supervised loss. Proposition 1 provide a justification for the supervised loss Ls.
By optimizing the supervised loss, SyncTwin learns the representation c̃i that is close to the latent
factor ci, which also reduces the bias bound on ITE in Proposition 2.

Rationale for the reconstruction loss. Although the bias bounds we developed so far do not include
the reconstruction loss Lc, we believe it is useful in real applications. Our reasoning follows from
the fact that unsupervised or semi-supervised losses often improve the performance of deep neural
networks [15, 14, 24]. In addition, the reconstruction loss ensures the representation c̃ retains the
information from the temporal covariates as required in the DAG (Figure 1). In our simulations
(Section 5.1), we found that ablating the reconstruction loss leads to consistently worse performance
(though the magnitude is somewhat marginal).

Proposition 2 Bias bound on counterfactual prediction. Given the assumptions in Section 3.1 and
suppose that dci = 0 for some i ∈ I1 (dci is defined in Equation 5), the absolute value of the expected
difference in the true and estimated potential outcome of i is bounded by: (the expectations are taken
with respect to the random noise ξit in Equation 1)

|E[ŷi(0)]− E[yi(0)]| ≤ |T +|‖
∑
j∈I0

bijcj − ci‖

≤ |T +|
(∑
j∈I0

‖cj − c̃j‖+ ‖ci − c̃i‖
)
.

(12)

4This is the first term in the upper bound of the absolute value of the expected error in counterfactual
prediction (R.H.S of Equation 12 Proposition 2)

16

Proof. We start the proof by observing

|E[ŷi(0)]− E[yi(0)]| =
∑
t∈T +

|E[ŷit(0)]− E[yit(0)]|

=
∑
t∈T +

|q>t (
∑
j∈I0

bijcj − ci)|

≤
∑
t∈T +

||qt|| · ||
∑
j∈I0

bijcj − ci||

= |T +| · ||
∑
j∈I0

bijcj − ci||

(13)

where the first equation follows from the definition of ITE in Section 3. The second equation follows
from Equation 1 and 6. The third line follows from Cauchy–Schwarz inequality. The fourth line uses
the fact that ||qt|| = 1. By definition, dci = 0 implies

∑
bij c̃j = c̃i. Continuing the proof,

||
∑
j∈I0

bijcj − ci|| = ||
∑
j∈I0

bij(cj − c̃j)− (ci − c̃i)||

≤
∑
j∈I0

bij ||cj − c̃j ||+ ||ci − c̃i||

≤
∑
j∈I0

||cj − c̃j ||+ ||ci − c̃i||,

(14)

where the second line follows from the triangular inequality and the third line relies on
∑
j∈I0 bij = 1

and bij ≥ 0, ∀j ∈ I0. Combining inequality 13 and 14, we prove the inequalities in Equation 12.

Justification for the matching loss and dci . Proposition 2 presents a justification for minimizing
dci (or the matching loss Lm). Essentially, when the synthetic representations are matched with the
target (dci = 0), the bias in ITE estimate is controlled by how close the learned representations c̃ is to
the true latent factor c.

Proposition 3 Error control under no hidden confounders. Suppose that all the outcomes are
generated by the model in Equation 1, and that we reject the estimate τ̂i if the pre-treatment error dyi
on T − is larger than δ|T −|/|T +|, the post-treatment ITE estimation error on T + is below δ.

Proof. Let Q− = [qt]t∈T − and Q = [qt]t∈T + denote the matrix that stacks all the weight vectors
q’s before and after treatment as rows respectively where each qt satisfies that ‖qt‖ = 1 in Equation
1. The error dyi in Equation 7 can be decomposed into a representation error and a white noise error,

dyi = ‖ŷ−i − y−i ‖1
= ‖

∑
j∈I0

bijy
−
j − y−i ‖1

= ‖
∑
j∈I0

bij(Q
−cj + ξj)− (Q−ci + ξi)‖1

= ‖Q−
(∑
j∈I0

bijcj − ci
)
‖1 + ‖

∑
j∈I0

bijξj − ξi
)
‖1

≤
∑
t∈T −

‖qt‖‖
∑
j∈I0

bijcj − ci‖+ ‖
∑
j∈I0

bijξj − ξi‖1

≤ |T −|‖
∑
j∈I0

bijcj − ci‖+ ‖
∑
j∈I0

bijξj − ξi‖

(15)

We can not estimate the error from the representation and white noise on the last line of Equation 15.
Conservatively, we can say the representation error itself is larger or equal to dyi such that

|T −|‖
∑
j∈I0

bijcj − ci‖ ≥ dyi ,

17

i.e.,
‖
∑
j∈I0

bijcj − ci‖ ≥ dyi /|T
−|. (16)

The post-treatment error is upper bounded as follows,

|E[ŷi(0)]− E[yi(0)]| = |E[ŷit(0)]− E[yit(0)]|

=
∑
t∈T +

|q>t (
∑
j∈I0

bijcj − ci)|

≤ |T +|‖
∑
j∈I0

bijcj − ci‖

:= sup
τ̂i

|E[τ̂i]− E[τi]|.

Using Equation (16), we have

sup
τ̂i

|E[ŷi(0)]− E[yi(0)]| ≥ dyi |T
+|/|T −|.

Conservatively, we reject the estimate τ̂i if supτ̂i |E[τ̂i]− E[τi]| is larger than δ. That is when

dyi > δ|T −|/|T +|.

Why does dyi indicate the trustworthiness of the estimation? Proposition 3 shows that we can
control the estimation error to be below a certain threshold δ by rejecting the estimate if its error dyi
during the pre-treatment period is larger than δ|T −|/|T +|. Alternatively, we can rank the estimation
trustworthiness for the individuals based on dyi alone. This is helpful when the user is willing to
accept a percentage of estimations which are deemed most trustworthy. We note that this proposition
only holds under the assumption that the outcomes over time are generated by the model stated in
Equation 1. The outcomes generated by such a model can be nonlinear and complicated due to the
representation. However, the model assumes that the outcomes over time are linear functions of
the same representation. This is the reason why the pre-treatment error can be used to assess the
post-treatment error. We parameterize our neural network model according to Equation 1. If it is a
not good fit to the data, the model should have a large estimation error before treatment. The users
should also use their domain knowledge to check if the model holds for their data, i.e., if there is any
factor starting to affect the outcomes in halfway and causes the representation to change over time.

A.2 Discussion and comparison of the causal assumptions

A.2.1 The DAG structure

Although the conventional assumption has been that the covariate X directly influences the outcome
and the treatment, some recent works question the plausibility of this assumption [36, 22, 55]. In
many real world problems, the (high-dimensional) covariates are only a crude reflection of the
underlying (low-dimensional) latent states. For instance, the covariates may contain a full array of
biomarkers and medical test results, but the patient’s actual health status can be represented by a
handful of unobservable physiological variables.

Hence, the DAG in Figure 2 explicitly involves a latent factor ci. We use ci to represent a patient’s
latent health status, which modulates both covariates and outcomes. In practice, the clinician assigns
the treatment based on the observed covariates x (e.g. biomarkers) so we allow x to directly affect
the treatment a.

Also note that the covariates observed after treatment assignment cannot causally affect the assign-
ment. Hence, we do not adjust for any covariates observed after treatment assignment.

A.2.2 The point treatment setting

The point treatment setting is applicable in two important scenarios. First, the drug is for treating a
chronic disease so the patients tend to take the drug for a period of time after treatment initiation.
Secondly, the treatment is one-off but has a long-lasting impact (stent implant or organ transplant).

18

Table 3: Comparison of the causal assumptions in the related works. The definitions of Consistency, Sequential
overlap, and No unobserved confounder are given in A.2. The data generating process (DGP) in Equation 1
contains the one in Equation 17 as a special case.

Approach Ref SUTVA DGP Sequential Overlap No unobserved conf.

SC [1] Yes Equation 17 - Yes
RSC [7] Yes Equation 17 - Yes
MC-NNM [8] Yes Equation 17 - Yes
CRN [11] Yes - Yes Yes
RMSN [35] Yes - Yes Yes
SyncTwin This work Yes Equation 1 - Yes

Importantly, the point treatment setting is still applicable when the patient receive other medical
treatments over time (as long as we are not interested in estimating the causal effect of these additional
medical treatments). In particular, the treatment history prior to t = 0 can be incorporated into the
covariates X . The additional treatments administered after t = 0 cannot confound the assignment of
the primary treatment at t = 0 and do not need to be adjusted for.

A.2.3 Models for dynamic treatment settings

As shown in Table 3, CRN [11] and RMSN [35] makes the following three causal assumptions. (1)
Consistency: yit(ait) = yit. (2) Sequential overlap (aka. positivity): Pr(ait = 1|ai,t−1, xit) > 0
whenever Pr(ai,t−1, xit) 6= 0. (3) No unobserved confounders: yit(0), yit(1) ⊥⊥ ait | xit, ai,t−1.
In summary, CRN makes the same consistency (SUTVA) assumption as SyncTwin. CRN and
SyncTwin both require no unobserved confounders though the assumptions take different forms.
However, SyncTwin does not assume sequential overlap (or any overlap) while CRN does not make
assumptions on the data generating model.

Why does SyncTwin not explicitly require overlap? The overlap assumption is commonly made in
treatment effect estimation methods. We first give a very brief review of why two importance classes
of methods need overlap. (1) For methods that rely on propensity scores, overlap makes sure that the
propensity scores are not zero [35]. It thus enables various forms of propensity weighting. (2) For
methods that rely on covariate adjustment [43, 11], overlap ensures that the conditional expectation
E[yi|Xi, ai] is well-defined, i.e. the conditioning variables (Xi, ai) have non-zero probability.

In comparison, SyncTwin relies on neither the propensity scores nor the explicit adjustment of
covariates, and hence it does not make overlap assumption explicitly. However, as discussed in
Proposition 2, SyncTwin requires the synthetic twin to match the representations dci ≈ 0, which
implies c̃i ≈

∑
j∈I0 bij c̃i for some bij — the target individual should be in or close to the convex

hull formed by the controls in the representation space. This condition has a similar spirit to overlap
(but very different mathematically). When overlap is satisfied there tends to be control individuals in
the neighbourhood of the treated individual, making it easier to construct matching twins. Conversely,
if overlap is violated, the controls will tend to far away from the treated individual, making it harder
to construct a good twin.

A.2.4 Synthetic control

As shown in Table 3, Synthetic control [2, 1] and its variants [8, 7] rely on three causal assumptions:
(1) Stable Unit Treatment Value Assumption [41]: yit(ai) = yit, ∀i ∈ [N], t ∈ T − ∪ T +. (2) No
anticipation, also known as causal systems [4]: yit = yit(1) = yit(0), ∀t ∈ T −, i ∈ [N]. And (3)
Data generating assumption (linear factor model):

yit(0) = q>t xi + ξit ∀i ∈ [N], t ∈ T − ∪ T +. (17)

where xi = vec(Xi) ∈ RD×L, vec is the vectorization operation. ξit is an error term that has mean
zero and satisfies ξit ⊥⊥ ars, xr for ∀ k, r, s, t.
The first two assumptions are also assumed by SyncTwin.

It is worth highlighting that the data generating assumption of Synthetic Control is a special case
of the more general assumption of SyncTwin in Equation 1. To see this, let ci = xi = vec(Xi) in
Equation 1, i.e. we use the flattened temporal covariates directly as the representation. Further let

19

En
co
de
r

Weights LossDecoderEncoder

(A) Training (B) Inference - optimization step

D
ec
od
er En
co
de
r

Figure 5: Illustration of the loss functions. (A) The representation networks are trained using Ls and Lr in
Equation 2. Note that the supervised loss Ls only applies to the control. (B) Validation and inference involve
optimizing the matching loss Lm in Equation 4. Note the encoder needs to be fixed during optimization.

φθ(ci, tis) = ci[Ds : D(s+ 1)] and εis = 0, where c[a : b] takes a slice of vector c between index
a and b. The result is exactly Equation 17.

A.3 Comparison of the temporal covariates allowed in the related works

As introduced in Section 2, SyncTwin is able to handle temporal covariates sampled at different
frequencies, i.e. the set of observation times Ti and a mask mit can be different for different
individuals. In comparison, Synthetic Control [2], robust Synthetic Control [7], and MC-NNM
[8] are only able to handle regularly-sampled covariates, i.e. Ti = {−1,−2, . . . ,−L} ∀i ∈ [N], and
mit = 1 ∀i ∈ [N], t ∈ Ti. In other words, the temporal covariates [xis]s∈[Si] = Xi ∈ RD×Si has a
matrix form.

The deep learning methods including CRN [11] and RMSN [35] have the potential to handle
irregularly-measured variable-length covariates when a suitable architecture is used. However, the
architectures proposed in the original papers only apply to regularly-sampled case and no simulation
or real data experiments were conducted for the more general irregular cases.

A.4 Unrelated works with similar terminology

Several recent works in the deep learning ITE literature employ similar terminologies such as
“matching” [29, 31]. However, they are fundamentally different from SyncTwin because they only
work for static covariates and they try to match the overall distribution of the treated and control
group rather than constructing a synthetic twin that matches one particular treated individual.

The Virtual Twin method [18] is designed for randomized controlled trials where there is no con-
founding (temporal or static). As a result, it cannot overcome the confounding bias when the problem
is to estimate causal treatment effect from observational data.

A.5 The generality of the assumed data generating model

SyncTwin assumes that the outcomes are generated by a latent factor model [48] with the latent
factors ci learnable from covariates Xi. We assume the dimensionality of ci to be low compared
with the number of time steps. Despite its seemingly simple form, the assumed latent factor model is
very flexible because the factors are in fact latent factors.

The latent factor model is widely studied in Econometrics. In many real applications, the temporally
observed variables naturally have a low-rank structure, thus can be described as a latent factor model
[3, 2]. The latent factor model also captures many of well-studied scenarios as special cases [17]
such as the conventional additive unit and time fixed effects (yit(0) = qt + ci). Last but not least, It

20

Algorithm 1 SyncTwin training procedure.

Input: Dtr0 , Dtr1
Input: Hyperparameters: λr, λp
Input: Encoder, Decoder, Q̃
Input: Training iteration max itr, batch size batch size, Optimizer
Randomly initialize Encoder θe and Decoder θd; set Q̃ = 0
for itr ∈ (0,max itr] do

Randomly draw a mini-batch of control units D0 ⊂ Dtr0 with batch size samples.
Randomly draw a mini-batch of treated units D1 ⊂ Dtr1 with batch size samples.
Evaluate training loss Ltr(D0,D1) = λrLr(D0,D1) + λpLs(D0) (defined in Equation 2).
Calculate the gradient of Ltr(D0,D1) via back propagation.
Update all θe, θd and Q̃ using the Optimizer.

end for
Output: Trained Encoder, Decoder and Q̃

has also been shown that the low-rank latent factor models can well approximate many nonlinear
latent variable models [49].

Latent factor models in the static setting are very familiar in the deep learning literature. Consider a
deep feed-forward neural network that uses a linear output layer to predict some real-valued outcomes
y ∈ RD in the static setting (notations used in this example are not related to the ones used in the
rest of the paper). Denote the last layer of the neural network as h−1 ∈ RK ; it is easy to see that
the neural network corresponds to a latent factor model i.e. y = Ah−1 + b, where h−1 is the latent
factor. Note that this holds true for arbitrarily complicated feed-forward networks as long as the
output layer is linear.

A.6 Estimating ITE for control individuals and applications in decision support

We have been focusing on predicting the counterfactual outcomes for a treated individual i ∈ I1. The
same approach can be applied to a control individual without loss of generality. After obtaining the
representation c̃i for i ∈ I0, SyncTwin can use the treatment group j ∈ I1 to construct the synthetic
twin by optimizing the matching loss Equation 4. The checking and estimation procedure remains
the same.

To use the method in decision support, one needs to extract two corpuses of historical patients from
EHR, one for the control and one for the treated. Since EHR is voluminous, we assume that both
corpuses contain enough patients for constructing the twins. For a new patient i /∈ [N] with observed
pre-treatment covariates x and outcomes y−, we can proceed as usual to estimate y(0) and y(1)
from each corpus and make recommendations.

SyncTwin also easily generalizes to the situation where there are A > 1 treatment groups each
receiving a different treatment. In this case, the treatment indicator ai ∈ [0, 1, . . . , A]. For a target
individual in any of the treatment groups, SyncTwin can construct its twin using the control group I0.
The remaining steps are the same as the single treatment group case.

A.7 Detailed training, validation and inference procedure

As is standard in machine learning, we perform model training, validation and inference (testing) on
three disjoint datasets, Dtr, Dva and Dte. We use Dtr0 and Dtr1 to denote the control and the treated
in the training data and use similar notations for validation and testing data. The schematics of the
architecture and various loss functions are visualized in 5.

Training. On the training dataset Dtr0 , we learn the representation networks by optimizing Ltr =
λrLr + λpLs, where Lr and Ls are the loss functions defined in Equation 2. The hyperparameter
λr and λp controls the relative importance between the two losses. We provide an ablation study in
Section 5.1 and perform detailed analysis on hyperparameter importance in Appendix A.13. The
objective Ltr can be optimized using stochastic gradient descent. In particular, we used the ADAM
algorithm with learning rate 0.001 [33].

21

Algorithm 2 SyncTwin inference procedure.

Input: Testing data set Dte0 , Dte1
Input: Trained Encoder
Input: Training iteration max itr, batch size batch size, Optimizer
Initialize a size |Dte1 | by |Dte0 | matrix B = 0 as the weight matrix.
Use Encoder to get representation c̃i, ∀i ∈ Dte0 ∪ Dte1
for itr ∈ (0,max itr] do

Randomly draw a mini-batch of treated units D1 ⊂ Dtr1 with batch size samples.
Evaluate matching loss Lm(Dte0 ,D1) (defined in Equation 4)
Calculate the gradient of Lm(Dte0 ,D1) via back propagation.
Update B using the Optimizer while keeping the Encoder fixed.

end for
Use weight matrix B to obtain τ̂i, ∀i ∈ Dte1 using Equation 6.
Output: Estimated ITE τ̂i, ∀i ∈ Dte1

Validation. Since we never observe the true ITE, we cannot evaluate the error of ITE estimation,
||τi − τ̂i||22. As a standard practice [11], we rely on the factual loss on observed outcomes: Lva =∑
j∈Dva

0
||yi(0) − ŷi(0)||22, where ŷi(0) is defined as in Equation 6 and obtained as follows. We

obtain the c̃i for all i ∈ Dva and then optimize the matching loss Lm(Dva0 ,Dva1) to find weights bvai .
It is important to keep the encoder fixed throughout the optimization; otherwise it might overfit to
Dva. Finally, ŷi(0) =

∑
j∈Dva

0
bvaij yj(0).

Inference. The first steps of the inference procedure are the same as validation. We start by obtaining
the representation c̃i for all i ∈ Dte and then obtain weights btei by optimizing the matching loss
Lm(Dte0 ,Dte1) while keeping the encoder fixed. Using weights btei , the ITE for any i ∈ Dte1 can be
estimated as τ̂i = yi(1)−

∑
j∈Dte

0
bteijyj(0) according to Equation 6. Similarly, we obtain ĉi, ŷit(0)

according to in Equation 6. The expert can check dyi to evaluate the trustworthiness of τ̂i.

Table 4: Parameters for each component of the architecture and the loss function for training each parameter.

Component Parameters Loss function Reference

Attentive Encoder θe Ls, Lr Section 3.2
Decoder θd Lr Section 3.2
Linear outcome prediction Q̃ Ls Section 3.2
Weights B Lm Section 3.3

A.8 Optimizing the matching loss

Here we present a way to optimize the matching lossLm in Equation 4. To ensure the three constraints
discussed in Section 3.3 while also allowing gradient-based learning algorithm, we reparameterize
bi = Gumbel-Softmax(fm(zi), τ), where zi ∈ RN0 , fm(·) is a masking function that sets the
element zii = −Inf to satisfy constraint (3). Gumbel-Softmax(·, τ) is the Gumbel softmax function
with temperature hyper-parameter τ [28]. It is straightforward to verify that bk satisfies the three
constraints while the loss Lm remains differentiable with respect to zk. We use the Gumbel softmax
function instead of the standard softmax function because Gumbel softmax tend to produce sparse
vector bk, which is highly desirable as we discussed in Section 3.

The memory footprint to directly optimize Lm is O
(
(|D0| + |D1|) × |D0|

)
, which can be further

reduced to O
(
|DB | × |D0|

)
if we use stochastic gradient decent with a mini-batch DB ⊆ D0 ∪ D1.

A.9 Implementation details of the benchmark algorithms

Synthetic control. We used the implementation of Synthetic Control in the R package Synth
(1.1-5). The package is available at https://CRAN.R-project.org/package=Synth.

Robust Synthetic Control. We used the implementation accompanied with the original paper [7]
at https://github.com/SucreRouge/synth_control. We optimized the hyperparame-

22

https://CRAN.R-project.org/package=Synth
https://github.com/SucreRouge/synth_control

ters on the validation set using the method described in Section 3.4.3 [7]. The best hyperparameter
setting was then applied to the test set.

MC-NNM. We used the implementation in the R package SoftImpute (1.4) available at https:
//CRAN.R-project.org/package=softImpute. The regularization strength λ is tuned
on validation set using grid search before applied to the testing data.

Counterfactual Recurrent Network and Recurrent Marginal Structural Network. We used
the implementations by the authors [11, 35] at https://bitbucket.org/mvdschaar/
mlforhealthlabpub/src/master/. The networks were trained on the training dataset. We
experimented different hyper-parameter settings on the validation dataset, and applied the best setting
to the testing data. We also found that the results are not sensitive to the hyperparameters.

Counterfactual Gaussian Process. We used the implementation with GPy [19], which is able to
automatically optimize the hyperparameters such as the kernel width using the validation data.

One-nearest neighbour. We used our own implementation. Since no parameters need to be learned
or tuned, the algorithm was directly applied on the testing dataset.

Search range of hyper-parameters

1. Synthetic control: hyperparameters are optimized by Synth directly.
2. Robust Synthetic control: num sc ∈ {1, 2, 3, 4, 5}
3. MC-NNM: C ∈ {3, 4, 5, 8, 10}
4. Counterfactual Recurrent Network: max alpha ∈ {0.1, 0.5, 0.8, 1}, hidden dimension H ∈
{32, 64, 128}

5. Recurrent Marginal Structural Network: hidden dimension H ∈ {32, 64, 128}
6. Counterfactual Gaussian Process: hyperparameters are optimized by GPy directly.

A.10 The simulation model

In Equation 9, Rt is the LDL cholesterol level (outcome) and It is the dosage of statins. For each
individual in the treatment group, one dose of statins (10 mg) is administered daily after the treatment
starts, which gives dosage It = 0 if t ≤ t0 and It = 1 otherwise. K,H andD50 are constants fixed to
the values reported in [16]. Kin

t ∈ R is a individual-specific time varying variable that summarizes a
individual’s physiological status including serum creatinine, uric acid, serum creatine phosphokinase
(CPK), and glycaemia. Pt and Dt are two intermediate temporal variables both affecting Rt.

A.11 Additional simulation results

Table 5: Mean absolute error on ITE with varying irregular m. S = 25 and p0 = 0.5 are used in all cases.
Estimated standard deviations are shown in the parentheses. The best performer is in bold. * did not finish
within 48h.

Method N0 = 200 N0 = 1000

m = 0.7 m = 0.5 m = 0.3 m = 0.7 m = 0.5 m = 0.3

SyncTwin-Full 0.129 (.009) 0.143 (.010) 0.190 (.012) 0.110 (.006) 0.116 (.006) 0.141 (.008)
SyncTwin-Lr 0.158 (.013) 0.177 (.014) 0.245 (.017) 0.126 (.007) 0.133 (.008) 0.175 (.012)
SyncTwin-Ls 0.128 (.010) 0.157 (.011) 0.234 (.016) 0.140 (.009) 0.135 (.009) 0.174 (.013)
SC 0.155 (.017) 0.201 (.016) 0.327 (.023) 0.145 (.015) 0.215 (.020) 0.359 (.026)
RSC 0.415 (.021) 0.521 (.028) 0.640 (.044) * 0.495 (.028) *
MC-NNM 0.363 (.020) 0.556 (.031) 0.898 (.050) 0.174 (.010) 0.332 (.021) 0.556 (.036)
CFRNet 0.321 (.030) 0.303 (.018) 0.484 (.032) 0.139 (.009) 0.202 (.013) 0.267 (.018)
CRN 0.274 (.020) 0.318 (.026) 0.512 (.032) 0.663 (.044) 0.448 (.029) 0.542 (.040)
RMSN 0.350 (.028) 0.370 (.025) 0.418 (.030) 0.401 (.032) 0.426 (.033) 0.479 (.035)
CGP 0.568 (.037) 0.553 (.037) 0.631 (.045) 0.605 (.039) 0.626 (.039) 0.689 (.044)
1NN 1.584 (.080) 1.725 (.098) 1.703 (.096) 1.455 (.084) 1.680 (.088) 1.531 (.089)

Table 5 shows the results under irregularly-measured covariates with varying degree of irregularity
m (smaller m, more irregular and fewer covariates are observed). For methods that are unable to

23

https://CRAN.R-project.org/package=softImpute
https://CRAN.R-project.org/package=softImpute
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/

Table 6: Mean absolute error on ITE under different lengths of the temporal covariates S. m = 1 and p0 = 0.5
are used in all cases. Estimated standard deviations are shown in the parentheses. The best performer is in bold.
* did not finish within 48 hours.

Method N0 = 200 N0 = 1000

S = 15 S = 25 S = 45 S = 15 S = 25 S = 45

SyncTwin-Full 0.121 (.009) 0.128 (.008) 0.120 (.007) 0.097 (.005) 0.094 (.005) 0.085 (.004)
SyncTwin-Lr 0.170 (.014) 0.135 (.010) 0.139 (.010) 0.114 (.006) 0.102 (.006) 0.098 (.006)
OURS-Ls 0.130 (.010) 0.119 (.008) 0.123 (.008) 0.119 (.007) 0.127 (.010) 0.106 (.007)
SC 0.140 (.019) 0.149 (.018) 0.138 (.021) 0.190 (.029) 0.214 (.036) 0.215 (.044)
RSC 0.348 (.023) 0.322 (.019) 0.228 (.011) * 0.302 (.014) *
MC-NNM 0.454 (.023) 0.226 (.011) 0.159 (.008) 0.140 (.007) 0.124 (.006) 0.109 (.005)
CFRNet 0.316 (.025) 0.291 (.003) 0.143 (.008) 0.353 (.035) 0.104 (.007) 0.095 (.005)
CRN 0.307 (.022) 0.335 (.023) 0.316 (.022) 0.282 (.018) 0.563 (.035) 0.457 (.028)
RMSN 0.311 (.028) 0.334 (.027) 0.493 (.032) 0.342 (.032) 0.390 (.032) 0.557 (.036)
CGP 0.561 (.036) 0.561 (.035) 0.549 (.035) 0.578 (.037) 0.602 (.038) 0.611 (.038)
1NN 1.356 (.072) 1.614 (.078) 1.575 (.078) 1.322 (.072) 1.384 (.083) 1.744 (.098)

Table 7: Sparsity metrics of the learned bi. Estimated standard deviations are shown in the parentheses. Here
p0 = 0.5, m = 1, S = 25. The worst performer is italicized

Method N0 = 200 N0 = 1000

Gini Entropy N Control Gini Entropy N Matched

SyncTwin-Full .207 (.017) .394 (.032) 1.745 (.070) .242 (.017) .482 (.034) 1.830 (.073)
SyncTwin-Lr .196 (.016) .381 (.031) 1.710 (.070) .267 (.018) .548 (.037) 1.930 (.080)
SyncTwin-Ls .213 (.016) .409 (.030) 1.760 (.068) .306 (.018) .631 (.039) 2.080 (.086)
SC .792 (.009) 1.871 (.035) 6.125 (.135) .862 (.006) 2.274 (.029) 7.059 (.110)

deal with irregular covariates, we first impute the unobserved values using Probabilistic PCA before
applying the algorithms [23]. SyncTwin achieves the best performance in all cases. Furthermore,
SyncTwin’s performance deteriorates more slowly than the benchmarks when sampling becomes
more irregular (larger m). This suggests that the encoder network in SyncTwin is able to learn good
representations even from highly irregularly-measured sequences. Table 6 shows the results under
various lengths of the observed covariates S (smaller S, shorter sequences are observed). Again
SyncTwin achieves the best performance in all cases. As expected, SyncTwin makes smaller error
when the observed sequence is longer. Note that this is not the case of CRN and RMSN — their
performance deteriorates when the observed sequence is longer. This might indicate that these
two methods are less able to learn good balancing representations (or balancing weights) when the
sequence is longer.

A.12 Sparsity compared with Synthetic Control

In Figure 3 (A) we have shown visualy that SyncTwin produces sparser solution than SC. To quantify
the differences, we report the Gini index (

∑
ij bij(1 − bij)/N1), entropy (

∑
ij −bij log(bij)/N1)

and the number of contributors used to construct the twin (
∑
ij 1{bij > 0}/N1) in the simulation

study. All three metrics reflect the sparsity of the learned weight vector (smaller more sparse). Table
7 shows that SyncTwin achieve sparser results that SC in all metrics considered. The full and ablated
versions of SyncTwin have similar sparsity because the sparsity is regulated in the matching loss,
which all versions share. It is worth pointing out that RSC and MC-NNM do not produce sparse
weights and the weights do not need to be positive and sum to one [7, 8].

A.13 Sensitivity of Hyper-Parameters

It is beneficial to understand the network’s sensitivity to each hyper-parameter so as to effectively
optimize them during validation. In addition to the standard hyper-parameters in deep learning (e.g.
learning rate, batch size, etc.), SyncTwin also includes the following specific hyper-parameters: (1) τ ,
the temperature of the Gumbel-softmax function Appendix A.8, (2) λp in the training loss Ltr (since

24

● ● ● ●
●

● ● ● ●
●

●

● ● ●●● ● ● ●
●

● ● ●●● ● ● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

H lambda_p tau

20 40 60 80 100 0 1 2 3 4 5 0 1 2 3 4 5

0.125

0.250

0.500

1.000

● ●MAE on ITE Validation Loss

Figure 6: The sensitivity of hyper-parameters on the mean absolute error of ITE estimation and the validation
loss defined in Section 3.5. The left panel shows the results for various choices of H; the middle panel shows
the ratio between λp and λr; and the right panel shows τ . The y-axis is shown in log scale.

only the ratio between λp and λr matters, we keep λr = 1 and search different values of λp) , and (3)
H , the dimension of the representation c̃i.

Here we present a sensitivity analysis on the hyper-parameters H , λp and τ using the simulation
framework detailed in Section 5.1. Here we present the results for N0 = 2000 and S = 15 although
these results generalize to all the simulation settings we considered. The results are presented in
Figure 6, where we can derive two insights.

Firstly, the hyper-parameter τ is very important to the performance and need to be tuned carefully
during validation. This is understandable because τ is the temperature parameter of the Gumbel
softmax function and it directly controls the sparsity of matrix B. In comparison, hyper-parameter H
and λp do not impact the performance in significant way. Therefore we recommend to use H = 40
and λp = 1 as the default.

Secondly, we observe that the validation loss Lva closely tracks the error on ITE estimation (which
is not directly observable in reality). These results support the use of Lva to validate models and
perform hyper-parameter optimization.

A.14 Computation time

0

200

400

200 1000 2000
Size of Control Group: N0

W
al

l−
cl

oc
k

tim
e

in
 s

ec
on

ds

t0 15 25 45

Figure 7: The wall-clock time of the simulation study under different settings. For each setting, 10 independent
simulation runs were conducted. The bar shows the average wall-clock time and the line range captures the 95%
confidence interval.

In figure 7 we present the wall-clock computation time (in seconds) of SyncTwin under various
simulation conditions — with the control group size N0 = (200, 1000, 2000) and the length of
pre-treatment period S = (15, 25, 45). The simulations were performed on a server with a Intel(R)
Core(TM) i5-8600K CPU @ 3.60GHz and a Nvidia(R) GeForce(TM) RTX 2080 Ti GPU. All
simulations with SyncTwin finished within 30 mins. As we expect, the computation time increases
with respect to N0 and S as more data need to be processed. However, a 10-fold increase in N0 only

25

approximately doubled the computation time, suggesting that SyncTwin scales well with sample size.
In comparison, S seems to affect the computation time more because the encoder and decoder need
to be trained on longer sequences.

A.15 Description and summary statistics of the CPRD data

Access to the CPRD is regulated. We have signed an end user license before access to the data was
granted. All patient records were pseudonymized in CPRD.

Any treatment effect estimation algorithm could be used negatively if the user intentionally chooses
to worsen the outcome. This is very unlikely in our case because the intended users of SyncTwin are
clinicians and medical researchers.

The treatment and the control group in the CPRD experiment are selected based on the selection
criterion in Figure 8. We have followed all the guidelines listed in [13] to make sure the selection
process does not increase the confounding bias. The summary statistics of the treatment and control
groups are listed below. We can clearly see a selection bias as the treatment group contains a much
higher proportion of male and people with previous cardiovascular or renal diseases.

Table 8: The summary statistics of the treatment and control groups

Treatment Group Control Group

% male 59% 51%
Median age 61 60
Townsend Index 8 8
% CVD 16% 9%
% Renal disease 16% 12%
% Atrial Fibrillation 4% 4%

A.16 Cohort selection criterion in the CPRD study

Refer to the figure at the end (page 26).

26

Number of available People in CPRD =
17,251,881

Number of people = 11,997,921

Reason for exclusion: Remove patients whose data is
marked as unacceptable, gender is not male or female,

outside England. N = 5,253,960

Reason for exclusion: Removing prople who exited
before the start of the study or age 40, and who startd
after the study exit or age 85

Study entry date was the latest of:

The date of 6 months after the individual
registered at a general practice
The date that the individual turned 30 years of
age
The date that the data for the practice were up
to standard (UTS)

Study exist date was the eariliest of:

The date of deregistration at the practice
The individual's death
The date that the individual turned 95 years of
age
The last contect date for the proactice with
CPRD
The administrate end date (Nov 2017)

N = 9,368,221

Number of people = 2,619,700
Reason for exclusion: Remove patients with data
quality issue.

people for whom likage data is not available;
people who have a death recorded in Office of
National Statistics (ONS) before study entry;
people with entry date = exit date

N=30,626

Number of people = 2,589,074

Number of people = 2,383,191

Reason for exclusion: Removing people with prevalent
cardiovascular disease (CVD) beofre study entry:

N=205,883

Number of people = 125,784

Reason for exclusion: Participants have no detected
exposures for SBP, total cholesterol, HDL, SBP, DBP,
BMI, Pulse, Creatinine, Triglycerides or smoking status
between study entry and exit.

N = 2,257,407

Treatment group
52,113

Control group
73,671

Figure 8: Flowchart for selection of eligible individuals from CPRD for the observational study on the treatment
effect of statins. Numbers represent unique individuals in each group.

27

