
Ablation rvcmd
x,y

rωcmd
z

rccmd
f

rccmd
v

Trotting 0.92±0.01 0.70±0.04 0.98±0.00 0.95±0.00

Pronking 0.85±0.01 0.64±0.05 0.98±0.00 0.94±0.00

Pacing 0.83±0.02 0.66±0.04 0.96±0.01 0.94±0.01

Bounding 0.88±0.01 0.63±0.05 0.96±0.01 0.95±0.00

Gait-free Baseline 0.94±0.02 0.76±0.01 – –
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Table 5: Removing gait constraints results in improved velocity tracking task performance on flat
ground. Heat maps (right) break down the mean task reward for each velocity command, revealing
that the gait-free approach is most beneficial for combinations of high linear and angular velocity.

Term Minimum Maximum Units

Payload Mass −1.0 3.0 kg
Motor Strength 90 110 %
Joint Calibration −0.02 0.02 rad
Ground Friction 0.40 1.00 –
Ground Restitution 0.00 1.00 –
Gravity Offset −1.0 1.0 m/s2

vcmd
x – – m/s

vcmd
y −0.6 0.6 m/s

ωcmd
z – – m/s

f cmd 1.5 4.0 Hz

θcmd
1 , θcmd

2 , θcmd
3 0.0 1.0 –

hcmd
z 0.10 0.45 m

φcmd −0.4 0.4 rad

scmd
y 0.05 0.45 m

hfz
cmd 0.03 0.25 m

Table 6: Randomization ranges for dynam-
ics parameters (top) and commands (bottom)
during training. vcmd

x ,ωcmd
z are adapted ac-

cording to a curriculum.
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Figure 4: Pronking and trotting gaits are easier
to learn and tend to dominate pacing and bound-
ing early in training. However, when discovered,
pacing and bounding gaits can yield good perfor-
mance and later become preferred for some down-
stream tasks (Section 4.2).

A Training Details

The ranges used for domain and command randomization are provided in Table 6. The hyperpa-
rameters used for PPO are provided in Table 7. The hyperparameters used in the curriculum are
provided in Table 8.

Figure 6 illustrates data flow during training. The curriculum engine first samples from a Gaussian
distribution centered at one of the four main gaits (trotting, pronking, bounding, pacing); then it
samples velocity commands from a grid distribution according to the method of [3]; then finally it
samples the stepping frequency and body height uniformly. The policy and simulator are rolled out,
and the reward is computed as a function of the gait parameters. Then the curriculum is updated if
the episodic reward meets the thresholds given in Table 8.

B Teleoperation Interface

Figure 5 illustrates the mapping from remote control inputs to gait parameters used during teleoper-
ation. The front bumpers on the top toggle between control modes to accommodate mixing our large
number of gait parameters. Preprogrammed sequences such as dancing and leaping can be assigned
to the rear bumpers.
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(Mode D) Footswing Height
(Mode E) Step Frequency

(Mode F) Body Pitch
(Mode A) Body Height
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Mode toggle A/B/C Mode toggle D/E/F

Figure 5: Controller mapping. Mapping of remote
control inputs to gait parameters during robot teleoper-
ation. The user can change between gaits at any time.
Continuous interpolation between contact patterns is
supported by our policy, but not mapped here. Lat-
eral velocity is also supported by the controller but ex-
cluded from the mapping.

Figure 6: Training architecture. The
policy computes the action as a function
of the gait parameters and state. The
simulator computes the reward and state
as a function of the gait parameters and
actions. The curriculum engine period-
ically resamples gait parameters based
on the reward.

C Extended Performance Analysis

Impact of Gait Frequency on High-speed Running. We evaluate them impact of gait frequency
on performance of the robot at high speeds. Figure 10 reports our result that higher gait frequency
is necessary to yield good tracking performance for higher-speed running.

Impact of Footswing Height on Platform Terrain Performance. We evaluate them impact of
footswing height on performance of the robot on the out-of-distribution platform terrain. Figure 9
reports our result that higher swing heights yield improved platform traversal, outperforming the
gait-free policy.

Flat Ground Velocity Heatmaps for More Gaits. We provide velocity heatmaps in Table 11 for
pronking, pacing, and bounding gaits to supplement the trotting and gait-free heatmaps provided in
Table 5.

Forward and Backward Locomotion. During evaluation in the random platforms environment, we
found that walking backward leads to fewer failures than walking forward. Figure 8 illustrates this
phenomenon by plotting the mean failure rate of each gait at each test velocity. Possible explanations
include (i) recovery strategies that are dependent on knee orientation and (ii) the weight distribution
of the robot.

Real-world Robustness Demonstrations. We conducted several hours of real-world testing of
different gaits across a variety of laboratory and outdoor environments. A selection of this footage
is available on the project website. The robot was able to traverse down stairs, up and down granular
and slippery terrain, and to respond to external perturbations. To provide insight into the robot’s
disturbance response, we plot the joint torques, contact states, and learned state estimate of the robot
in Figure 7. The robot trots at two different frequencies and is shoved twice by the operator, once
from each side. The state estimator correctly predicts the direction of the lateral velocity increase
(orange), and adapts the joint torques and contact schedule to correct.

D Contact Schedule Parameterization

At each control timestep, we compute the desired contact from the gait parameters θcmd as follows.
First, we increment the global timing variable t by f cmd

fπ
where f cmd is the commanded stepping

frequency and fπ is the control frequency. Then, we compute separate timing variables for each
foot, clipped between 0 and 1:

12



20

10

0

10

20

Jo
in

t T
or

qu
es

 (N
-m

)

0 100 200 300 400 500 600 700 800

RF

RR

LF

LR

Co
nt

ac
t S

ta
te

s

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Bo
dy

 V
el

oc
ity

 E
st

im
at

e

x-axis
y-axis
z-axis

Figure 7: Shove Robustness Test. Joint torques (top), contact states (middle), and velocity estimate
(bottom) during trotting in the laboratory setting. Dashed boxes indicate shove events. The robot
was first shoved to the right during trotting at low frequency, and then shoved to the left during
trotting at high frequency. The learned state estimator correctly infers the change in lateral velocity
and adjusts the joint torques and foot contacts to stabilize the robot.
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Figure 8: Forward vs Backward Walking on Platforms. Time to failure for different gaits and
velocities in the random platforms environment (zero-shot test). The temperature bar unit is the
mean fraction of a 20s episode elapsed before failure, between zero and one. The gait frequency
is 3Hz. The pacing gait boasts the longest mean survival time, possibly due to higher footswings
or more practice with recovery strategies during training. Interestingly, almost all failures occur
during forward locomotion, and the robot is much more robust when moving backward. Possible
explanations include (i) recovery strategies that are dependent on knee orientation and (ii) the weight
distribution of the robot.

[tFR, tFL, tRR, tRL] = clip([t+ θcmd
2 + θcmd

3 , t+ θcmd
1 + θcmd

3 , t+ θcmd
1 , t+ θcmd

2 ], 0, 1)

From these, we can directly compute the desired contact states:

Ccmd
foot (tfoot(θcmd, t)) = Φ(tfoot, σ) ∗ (1−Φ(tfoot − 0.5, σ)) + Φ(tfoot − 1, σ) ∗ (1−Φ(tfoot − 1.5, σ))

where Φ(x;σ) is the cumulative density function of the normal distribution:

Φ(x;σ) =
1

σ
√

2π
e−

1
2 (
x
σ )

2

which is an approximation to the Von Mises distribution used in [8] to form a smooth transition
between stance and swing.

13



Hyperparameter Value

discount factor 0.99
GAE parameter 0.95

# timesteps per rollout 21
# epochs per rollout 5

# minibatches per epoch 4
entropy bonus (α2) 0.01

value loss coefficient (α1) 1.0
clip range 0.2

reward normalization yes
learning rate 1e-3

# environments 4096
# total timesteps 2.58B

optimizer Adam

Table 7: PPO hyperparameters.

Parameter Value Units

vcmd
x initial [-1.0, 1.0] m/s

ωcmd
z initial [-1.0, 1.0] rad/s

vcmd
x max [-3.0, 3.0] m/s

ωcmd
z max [-5.0, 5.0] rad/s

vcmd
x bin size 0.5 m/s

ωcmd
z bin size 0.5 rad/s

rvcmd
x,y

threshold 0.8 –
rωcmd
z

threshold 0.7 –
rccmd
f

threshold 0.95 –
rccmd
v

threshold 0.95 –

Table 8: Curriculum parameters.
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Figure 9: Footswing Height vs Robustness:
Impact of footswing height on time to failure
on the platform terrain (Section 4.2). Increased
footswing height yields better generalization to
uneven terrain from flat terrain compared to the
gait-free policy.
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Figure 10: Frequency vs Speed: Impact of trot-
ting frequency on flat-ground velocity tracking
reward across speeds (Section 4.2). Enforcing
low frequency (2Hz) makes high speeds less at-
tainable. The gait-free policy offers slightly bet-
ter performance at the lowest and highest speeds.

Figure 11: Flat Ground Velocity Tracking Heatmaps: We provide heatmaps as in Table 5 for the
other major gaits: pronking, pacing, and bounding. In all cases, the policy forgoes performance on
the training task of flat-ground velocity tracking to achieve diversity that will help accomplish new
tasks. However, in-distribution task performance is maintained well for the lower range of speeds.

14


	Introduction
	Background
	Method
	Task Structure for MoB
	Learning Diversified Locomotion
	Design Choices for Sim-to-Real Transfer
	Materials

	Experimental Results
	Sim-to-Real Transfer and Gait Switching
	Leveraging MoB for Generalization

	Discussion and Limitations
	Training Details
	Teleoperation Interface
	Extended Performance Analysis
	Contact Schedule Parameterization



