
Published as a conference paper at ICLR 2025

ON THE COMPLETENESS OF INVARIANT GEOMETRIC
DEEP LEARNING MODELS

Zian Li1,2, Xiyuan Wang1,2, Shijia Kang1, Muhan Zhang1,∗
1Institute for Artificial Intelligence, Peking University
2School of Intelligence Science and Technology, Peking University

ABSTRACT

Invariant models, one important class of geometric deep learning models, are
capable of generating meaningful geometric representations by leveraging infor-
mative geometric features in point clouds. These models are characterized by
their simplicity, good experimental results and computational efficiency. How-
ever, their theoretical expressive power still remains unclear, restricting a deeper
understanding of the potential of such models. In this work, we concentrate on char-
acterizing the theoretical expressiveness of a wide range of invariant models under
fully-connected conditions. We first rigorously characterize the expressiveness of
the most classic invariant model, message-passing neural networks incorporating
distance (DisGNN), restricting its unidentifiable cases to be only highly symmetric
point clouds. We then prove that GeoNGNN, the geometric counterpart of one of
the simplest subgraph graph neural networks, can effectively break these corner
cases’ symmetry and thus achieve E(3)-completeness. By leveraging GeoNGNN
as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in
traditional graph learning can be seamlessly extended to geometric scenarios with
E(3)-completeness; 2) DimeNet, GemNet and SphereNet, three well-established
invariant models, are also all capable of achieving E(3)-completeness. Our theoret-
ical results fill the gap in the expressive power of invariant models, contributing to
a rigorous and comprehensive understanding of their capabilities.

1 INTRODUCTION

Learning geometric structural information from 3D point clouds constitutes a fundamental require-
ment for various real-world applications, including molecular property prediction, physical simulation,
and point cloud classification/segmentation (Schmitz et al., 2019; Sanchez-Gonzalez et al., 2020;
Jumper et al., 2021; Guo et al., 2020).

In the context of designing geometric models for point clouds, a pivotal consideration involves
ensuring that the model respects both permutation symmetry and Euclidean symmetry (i.e., symmetry
of SE(3) or E(3) group). This requirement necessitates the incorporation of appropriate inductive
biases into the architecture, ensuring that the model’s output remains invariant or equivariant to point
reordering and Euclidean transformation.

However, these restrictions on symmetry can impose limitations on the ability of models to approxi-
mate a broad range of functions. For example, Message Passing Neural Networks (MPNNs) (Gilmer
et al., 2017), a representative class of Graph Neural Networks (GNNs), learn permutation symmetric
functions over graphs. However, it has been shown that such functions are not universal (Xu et al.,
2018a; Morris et al., 2019), leading to the development of more expressive GNN frameworks (Maron
et al., 2018; Morris et al., 2019; Zhang et al., 2023). Similar challenges arise in the geometric setting,
where models must additionally respect the Euclidean symmetry, and thus achieving geometric
universality (E(3)-completeness) becomes a non-trivial task as well.

In this work, we systematically investigate the expressiveness of a wide range of invariant models
under fully-connected conditions , where interactions occur among all points. We begin by revisiting
DisGNN (Li et al., 2024), the simplest invariant model augmenting MPNNs with Euclidean distances

∗Corresponding author: Muhan Zhang (muhan@pku.edu.cn).

1

Published as a conference paper at ICLR 2025

between nodes as additional edge features. We seek to answer the question: how close is DisGNN to
completeness? Through theoretical analysis, we show that DisGNN is nearly-E(3)-complete, whose
unidentifiable cases can be restricted to a 0-measure subset containing well-defined highly-symmetric
point clouds only. Our results extend the findings of previous works that solely concentrated on
individual hand-crafted counterexamples illustrating the incompleteness of DisGNN (Li et al., 2024;
Pozdnyakov & Ceriotti, 2022; Pozdnyakov et al., 2020), and a contemporary work that provided a
coarser characterization of DisGNN’s expressiveness (Hordan et al., 2024b).

We then show that GeoNGNN, the geometric counterpart of NGNN (Zhang & Li, 2021) (one simple
subgraph GNN), can effectively break all DisGNN’s unidentifiable cases’ symmetry through node
marking, thereby achieving E(3)-completeness. We then leverage GeoNGNN as a theoretical tool,
proceeding to establish the E(3)-completeness of a wide range of invariant models by showcasing their
ability to implement GeoNGNN. Specifically, we systematically define the geometric counterparts
of subgraph GNNs within Zhang et al. (2023)’s framework by generalizing their local operations to
incorporate geometric information, and then prove that all of these geometric subgraph GNNs are
E(3)-complete. Furthermore, we establish that three well-established invariant geometric models,
DimeNet (Gasteiger et al., 2019), SphereNet (Liu et al., 2021) and GemNet (Gasteiger et al., 2021),
are also all capable of achieving E(3)-completeness.

These established E(3)-complete models, except for GemNet (Gasteiger et al., 2021), are either
known to be strictly weaker than 2-FWL (Cai et al., 1992) in traditional graph learning setting, or
utilize less informative aggregation schemes than 2-FWL-like geometric models (Li et al., 2024;
Delle Rose et al., 2023; Hordan et al., 2024b;a) (See Section 5 for details). However, our investigation
reveals that in the geometric setting, these models are equally E(3)-complete. These surprising
findings can deepen our understanding of the power of invariant models, while also suggesting that
the bottleneck of invariant models may lie in generalization instead of expressiveness. As a side effect,
by generalizing subgraph GNNs to the geometric setting, we greatly enlarge the design space of
geometric deep learning models, which we hope could inspire future, more powerful model designs.

2 RELATED WORKS

Designing complete invariant descriptors for point clouds plays a crucial role for scientific prob-
lems (Nigam et al., 2024), since complete invariants directly allow universal function approximations
when coupled with MLPs (Hordan et al., 2024b; Li et al., 2024). Previous works, such as Widdowson
& Kurlin (2022; 2023); Kurlin (2023), have proposed polynomial-time algorithms to compute and
compare complete invariants that uniquely determine point clouds. However, these invariants are
often highly structured, such as sets of matrices (Kurlin, 2023), and the absence of corresponding
neural-network formulations limits their practical applicability.

In the neural-network context, most prior works propose powerful models but typically with “weaker
completeness”(Wang et al., 2022; Puny et al., 2021; Duval et al., 2023; Du et al., 2024; Villar et al.,
2021). For example, ComENet (Wang et al., 2022) uses nearest neighbors as references for computing
higher-order geometric information, which is infeasible for symmetric point clouds where nodes can
have multiple nearest neighbors, thereby limiting its completeness over a asymmetric subset of point
clouds 1. Frame-based methods, such as FAENet (Duval et al., 2023), LEFTNet (Du et al., 2024), and
others (Wang & Zhang, 2022; Puny et al., 2021), project coordinates or vector features onto local or
global equivariant frames and employ powerful structures like MLPs (Hornik et al., 1989) to ensure
expressiveness. However, these frames can degenerate in symmetric structures (e.g., structures with
non-distinct eigenvectors (Puny et al., 2021; Duval et al., 2023)), a limitation that these methods do
not carefully address and theoretically characterize. Although symmetric point clouds often represent
zero-measure cases (Hordan et al., 2024b), they can significantly impact downstream continuous
function learning, as demonstrated in (Pozdnyakov & Ceriotti, 2022; Hordan et al., 2024b).

Several previous works (Dym & Maron, 2020; Joshi et al., 2023; Hordan et al., 2024b; Li et al., 2024;
Delle Rose et al., 2023; Hordan et al., 2024a) have characterized geometric models’ expressiveness in
a more rigorous sense. The seminal work (Dym & Maron, 2020) proved the universality of structures
like TFN (Thomas et al., 2018), while such universality requires arbitrarily high-order tensors that are
computationally expensive in practice. Another related work, GWL (Joshi et al., 2023), offers many

1Arbitrarily selecting one when multiple nearest neighbors exist could break permutation invariance, a
fundamental principle ensuring stable outputs. We focus only on invariant models.

2

Published as a conference paper at ICLR 2025

insightful theoretical conclusions, including that GWL provides upper bounds on the expressiveness
of many equivariant models (Batatia et al., 2022; Satorras et al., 2021). However, GWL relies on
injective multiset functions involving equivariant features, which do not exhibit practical polynomial-
time neural forms like scalar multiset functions proposed in (Dym & Gortler, 2024; Amir et al., 2024),
thus serving more as conceptual upper bounds. Joshi et al. (2023) also does not directly address
completeness of models as we do. A recent work (Cen et al., 2024) characterizes the symmetry of
point clouds from point group perspective, and investigate the expressiveness through degeneration
of equivariant functions. Notably, recent works (Li et al., 2024; Delle Rose et al., 2023; Hordan et al.,
2024b;a) have proposed provably complete geometric models that can produce complete invariant
features. Nevertheless, these methods are predominantly built upon the 2-FWL framework (Cai et al.,
1992), and the completeness of a broader class of invariant models—many of which employ weaker
aggregation schemes (Gasteiger et al., 2019)—remains an open question. In this work, we focus on a
significantly broader range of invariant methods (Schütt et al., 2018; Gasteiger et al., 2019; 2021;
Liu et al., 2021; Zhang & Li, 2021; Zhang et al., 2023), some of which are newly proposed based on
subgraph GNNs in traditional graph learning (Zhang & Li, 2021; Zhang et al., 2023), with the aim to
fully characterize their completeness rigorously.

3 PRELIMINARY

3.1 NOTATIONS AND DEFINITIONS

We investigate the expressiveness of invariant models for unlabeled point clouds consisting of n
nodes2, denoted by P ∈ Rn×3. The coordinates of the i-th node in P are represented by pi. We use
to denote sets and {{}} to denote multisets, with the set 1, 2, . . . , n represented as [n]. The Euclidean
distance between nodes i and j is denoted as dij .

Two point clouds P1 ∈ Rn1×3 and P2 ∈ Rn2×3 are isomorphic if n1 = n2 = n, and there exists a
rotation matrix R ∈ O(3), a translation vector t ∈ R3, and a permutation matrix P ∈ Rn×n such that
(PP1)R+ t = P2. Invariant models considered in this study are all permutation- and E(3)-invariant,
meaning they embed isomorphic point clouds into the same k-dimensional representation s ∈ Rk.

Definition 3.1 (Distinguish, Identify, and E(3)-Completeness). Let f :
⋃∞

n=1 Rn×3 → Rk be a
permutation- and E(3)-invariant function that maps point clouds to a k-dimensional representation.
We define the following concepts:

• Distinguish: Given two non-isomorphic point clouds P1 and P2, if f(P1) ̸= f(P2), we say f
can distinguish P1 and P2.

• Identify: For a point cloud P1, if for any non-isomorphic P2, we always have f(P1) ̸= f(P2),
we say f can identify P1.

• E(3)-Completeness: If for any pair of non-isomorphic point clouds P1 and P2, we always
have f(P1) ̸= f(P2), we say f is E(3)-complete.

Notably, we introduce the novel concept of “Identify”, which allows for a finer-grained analysis of
model expressiveness than commonly adopted “Distinguish”: By definition, each “identify” operation
encompasses an infinite number of “distinguish” pairs. It is evident that identifying all point clouds
implies E(3)-completeness. Furthermore, since distinguishing point clouds with different node counts
is straightforward, we focus solely on the case where point clouds have the same finite size.

For a parametric model fθ, we investigate its maximal expressive form where all intermediate
functions are injective, following typical ways (Delle Rose et al., 2023; Li et al., 2024). Notably,
recent work by Dym & Gortler (2024); Amir et al. (2024) proves the existence of neural function
forms and parametrizations that ensure injectivity for multiset functions commonly used in geometric
models (Gasteiger et al., 2019; 2021; Li et al., 2024), allowing us to achieve such completeness in
polynomial time and under (for Lebesgue) almost every parametrization.

2Unlabeled point clouds represent one of the most complex and general cases in geometric expressive-
ness (Kurlin, 2023; Widdowson & Kurlin, 2023), surpassing the complexity of point clouds with initial features
(e.g., molecules). We consider cases where P contains more than one point, as trivial cases arise otherwise.

3

Published as a conference paper at ICLR 2025

3.2 DISGNN

To leverage the rich geometric information present in point clouds, a straightforward approach is to
model the point cloud as a distance graph, where edges are present between nodes if their Euclidean
distance is below a certain cutoff rcutoff, and edge weights are Euclidean distance dij . Then, an
MPNN is applied to it. We call models with such framework as DisGNN, and SchNet (Schütt et al.,
2018) is a representative of such works.

To be specific, DisGNN models first embed nodes based on their initial node features X ∈ Rn×d (if
there exists), such as atomic numbers, obtaining initial node embedding h

(0)
i for node i. They then

perform message passing according to the following equation iteratively:

h
(l+1)
i = f

(l)
update

(
h
(l)
i , f (l)

aggr

(
{{(h(l)

j , dij) | j ∈ N (i)}}
))

, (1)

where h(l)
i represents the node embedding for node i at layer l,N (i) denotes the neighbor set of node

i. The global graph embedding is then obtained by aggregating the representations of all nodes using
a permutation-invariant function fout({{h(L)

i | i ∈ [n]}}), where L is the total number of layers and n
is the total number of nodes.

In the theoretical analysis for DisGNN (Section 4), we assume fully-connected distance graph
modeling for point clouds, i.e.,N (i) is [n] by default, and sufficient iterations until convergence. This
ensures maximal geometric expressiveness of DisGNN and aligns with existing works (Pozdnyakov
& Ceriotti, 2022; Hordan et al., 2024b; Li et al., 2024).

4 HOW POWERFUL IS DISGNN?

In Pozdnyakov & Ceriotti (2022); Li et al. (2024), researchers have carefully constructed pairs
of symmetric point clouds that DisGNN cannot distinguish to illustrate its E(3)-incompleteness.
However, rather than relying on hand-crafted finite pairs of counterexamples and intuitive illustration,
a more significant question arises: what properties do the point clouds that DisGNN cannot identify
share in common? Only after theoretically characterizing these corner cases can we describe and
bound the expressiveness of DisGNN in a rigorous way, and then design more powerful geometric
models accordingly by “solving” these corner cases.

Naively, to determine whether a point cloud P can be identified by DisGNN requires iterating through
all other point clouds P ′ within the entire cloud set Rn×3 according to its definition. Here, we
propose a simple sufficient condition for a point cloud to be identifiable by DisGNN, which focuses
solely on P . To achieve this, we first rigorously define the concept of A-symmetry.
Definition 4.1 (A-symmetry). Given a point cloud P ∈ Rn×3, letA be a permutation-equivariant and
E(3)-invariant algorithm taking P as input and produces node-level features XA = A(P) ∈ Rn×d

(we use xA
i ∈ Rd to denote the i-th nodes’ feature). We define A center set of P as Aset(P) =

{
∑

i∈[n] m(xA
i)pi∑

i∈[n] m(xA
i)
| m : Rd → R,

∑
i∈[n] m(xA

i) ̸= 0}. If |Aset(P)| = 1, then we say P is A-

symmetric; otherwise, we say P is A-asymmetric.

Intuitively, A assigns features to nodes of the point cloud based on their spatial properties, while m
represents a “mass” function that maps these features to corresponding “masses”.3 Thus, Aset(P)
denotes the collection of “barycenters” associated with different “mass” assignments. For example,
we can considerA as the distance encoding function, denoted as C, which computes the distance from
each node to the geometric center as the node feature. A C-asymmetric case is shown in Figure 1(a).

Obviously, the cardinality of Aset(P) is solely dependent on the partition of node features A(P) and
is independent of the specific feature values. We also propose a more powerful algorithm, DisGNN
encoding, denoted as D, which applies DisGNN to point clouds iteratively until the partition of
node features stabilizes. Notably, earlier studies by Delle Rose et al. (2023); Li et al. (2024) have
shown that D guarantees a node feature partition that is no coarser than that of C. Consequently,
D-symmetry always implies C-symmetry, representing a stricter form of symmetry.

Based on these definitions, we now present the primary theorem demonstrating that all such asym-
metric point clouds can be identified by DisGNN.

3Note that the geometric center of P is always included in Aset(P) by defining m as a constant function.

4

Published as a conference paper at ICLR 2025

Unidentifiable
Cases

(a) (b)

Figure 1: (a) A C-asymmetric point cloud. The blue small node represents the geometric center,
and each green node represents an element in Cset(P). The large nodes constitute the point cloud,
with different node colors denoting different node features. (b) Illustration of the relations among
different subsets of the point cloud. A-sym parts encompass all A-symmetric graphs. Each subset
has a measure of 0 and strictly contains their sub-parts (proper subset relation).

Theorem 4.2 (Asymmetric point clouds are identifiable). Let C denote the center distance encoding
and D the DisGNN encoding. Then, given an arbitrary point cloud P ∈ Rn×3, P is C-asymmetric
⇒ P is D-asymmetric⇒ P can be identified by DisGNN.

Key idea. Given a point cloud P , when it has two global-level distinct anchors, such as geometric
center or other centers that can be determined in a permutation-invariant and E(3)-equivariant way,
DisGNN has the potential to learn triangular distance encoding for each node i w.r.t. i and these two
global anchors, and produces complete representation for P by leveraging such encoding information
(Lemma B.6). For C- or D-asymmetric point clouds, their center sets Cset(P) or Dset(P) have more
than 1 element, within which any pair of distinct centers can be utilized by DisGNN for such encoding
(Lemma B.4), thereby facilitating DisGNN to fully represent and identify P .

We provide rigorous proof in Appendix B.3 and encourage readers to refer to it, where we show
the superior global geometric learning ability of DisGNN and can inspire the development of new
complete model designs in the triangular distance encoding perspective, as exemplified by GeoNGNN
proposed in the following section.

Theorem 4.2 shows that to test if a point cloud is identifiable by DisGNN, one can first check its
C-symmetry, which is quick and intuitive. If it is C-asymmetric, it is identifiable; otherwise, one can
test for the more powerful but costlier D-symmetry. Notably, although the latter test still requires
running DisGNN, it demonstrates that a single execution of DisGNN on P can provide an indication
of identifiability, offering insights without necessitating an exhaustive search over all P ′ ∈ Rn×3.

Importantly, Theorem 4.2 restricts the unidentifiable set of DisGNN to a constrained, highly symmetric
subset, as illustrated in Figure 1(b). In Theorem 4.3, we provide a rigorous analysis demonstrating
that the unidentifiable set of DisGNN has zero measure. These results sufficiently demonstrate that,
despite its extremely simple and naive design, DisGNN is nearly E(3)-complete.

Theorem 4.3 (Unidentifiable set of DisGNN has measure zero). The Lebesgue measure on Rn×3 of
the C-symmetric, D-symmetric, and unidentifiable point cloud sets is zero.

Finally, we note that a recent study (Hordan et al., 2024b) also indicates the near-completeness of
DisGNN, by showing that it can distinguish arbitrary pairs of point clouds from an asymmetric
point cloud Rn×3

distinct. Nevertheless, our findings represent a significant advancement by introducing
a strictly larger asymmetric subset and employing the concept of “identify” instead of “pair-wise
distinguish”. This provides a finer characterization of the near completeness of DisGNN. Please refer
to Appendix C.2 for a detailed comparison.

5 ON THE COMPLETENESS OF INVARIANT GEOMETRIC MODELS

In this section, we move on to demonstrate and prove the E(3)-completeness of a broad range of
invariant models that leverage more geometric features or more complicated aggregation schemes
than DisGNN under fully-connected conditions. These models can effectively identify all those
highly-symmetric point clouds that DisGNN can not. We first introduce a new simple invariant model
design, which can precisely break such symmetry and achieve completeness. Consequently, we
show how this new design serves as a theoretical tool for proving a wide range of invariant models’
expressiveness. Proof for this section is provided in Appendix B.

5

Published as a conference paper at ICLR 2025

5.1 GEONGNN: BREAKING SYMMETRY THROUGH NODE MARKING

According to Theorem 4.2 (along with the lemmas emphasized in its key idea), the essential factor in
identifying a point cloud by DisGNN is the existence of two distinct anchors. Although every point
cloud inherently possesses one, i.e., the geometric center, the other may not exist in some highly
symmetric cases, such as a sphere. This hinders DisGNN from achieving completeness. In this
subsection, we show that GeoNGNN, the geometric counterpart of Nested GNN (NGNN) (Zhang
& Li, 2021) , can fill in this last piece of the puzzle by applying DisGNN on point clouds with an
additionally marked node, which breaks the symmetry and exactly acts as the other anchor.

GeoNGNN employs a two-level hierarchical framework by nesting DisGNN. Specifically, it processes
a given point cloud as follows: 1) The first level, referred to as the inner GNN, operates independently
on each point’s rsub-sized sub-point cloud and aggregates the local sub-point cloud information into
an initial embedding for the corresponding point in the original point cloud. 2) The second level,
referred to as the outer GNN, processes the original point cloud based on the embeddings generated
by the inner GNN, thereby producing final point-level and cloud-level representations.

Formally, for the inner GNN, the representation of the node j in node i’s sub-point cloud at the l-th
layer, denoted as h(l)

ij , is updated as:

h
(l+1)
ij = f

(l)
update, inner

(
h
(l)
ij , f

(l)
aggr, inner

(
{{(h(l)

ik , dkj) | k ∈ N (j), dik ≤ rsub}}
))

, (2)

for all hij satisfying dij ≤ rsub, and N (j) represents all nodes k satisfying dkj ≤ rcutoff. Here, rsub
and rcutoff are hyperparameters representing the subgraph size and interaction cutoff, respectively.
h
(0)
ij is initialized as:

h
(0)
ij = finit, inner(xj , dij ,1i=j), (3)

where xj is the raw feature of node j, and dij and 1i=j denote the position encoding and marking of
the center point, respectively. After Nin iterations, the inner GNN summarizes the sub-point cloud as:

h
(0)
i = foutput, inner({{h(Nin)

ij | j ∈ [n], dij ≤ rsub}}), (4)

producing the initial point representations for the outer GNN. The outer GNN then updates these
representations over Nout iterations following the framework in Equation (1).

By representing point clouds as distance graphs, GeoNGNN captures subgraph patterns instead of
subtree patterns, which have been shown to be more expressive in traditional graph learning (Zhang
& Li, 2021). We now show that GeoNGNN achieves geometric completeness under fully-connected
conditions, thereby effectively addressing expressiveness limitations of DisGNN.

Theorem 5.1 (E(3)-Completeness of GeoNGNN). When the following conditions are met, GeoNGNN
is E(3)-complete:

• Nin >= 5 and Nout >= 0 (where 0 indicates that the outer GNN only performs final pooling).
• The distance graph is fully-connected (rcutoff = +∞).
• All subgraphs are the original graph (rsub = +∞).

Key idea. Given an arbitrary point cloud P , consider a specific node i within it that differs from the
geometric center. As node i is explicitly marked within its own subgraph (Equation (3)), there are
now two anchors in this subgraph, namely node i and the geometric center, that facilitate triangular
distance encoding by DisGNN. Consequently, DisGNN can fully represent and identify P through the
representation of node i’s subgraph, as underscored in the key idea of Theorem 4.2. Notice that in a
point cloud with more than two nodes, a node that is distinct from the geometric center always exists,
and through the outer pooling, overall completeness and permutation invariance are guaranteed.

While Theorem 5.1 establishes that infinite subgraph radius and distance cutoff guarantee com-
pleteness over all point clouds, in Appendix D.2 we show that finite values also lead to boosted
expressiveness compared to DisGNN. And we notice that the conditions specified in Theorem 5.1
ultimately result in polynomial-time complexity w.r.t. the size of the point cloud even when consider-
ing the complexity involved in obtaining intermediate injective functions, which aligns with prior
studies (Kurlin, 2023; Widdowson & Kurlin, 2023; Hordan et al., 2024b; Li et al., 2024; Delle Rose
et al., 2023). The detailed complexity analysis is provided in Appendix D.1.

6

Published as a conference paper at ICLR 2025

5.2 COMPLETENESS OF GEOMETRIC SUBGRAPH GNNS

GeoNGNN provides a simple approach to extend traditional subgraph GNNs to geometric scenarios
with remarkable geometric expressiveness. Indeed, the realm of traditional graph learning literature
contains a multitude of subgraph GNNs such as DSS-GNN (Bevilacqua et al., 2021), GNN-AK (Zhao
et al., 2021), OSAN (Qian et al., 2022) and so on (You et al., 2021; Frasca et al., 2022). Extending
these models to geometric settings can significantly enlarge the design space of geometric models,
and potentially introduce valuable inductive biases. In this section, we take a pioneering step to do
this, subsequently establishing the geometric completeness of all these models.

We first define the general geometric subgraph GNN, a broad family of geometric models, by slightly
adapting the unweighted graph models from Zhang et al. (2023) to handle geometric scenarios. For
simplicity, we provide an intuitive overview and outline the modifications here, while self-contained
and formal definitions can be found in Appendix E.

Definition 5.2 (General geometric subgraph GNN, informal). A general geometric subgraph GNN
takes point clouds P ∈ Rn×3 (potentially with node features X ∈ Rn×d, such as atomic numbers) as
input, treats it as a distance graph with interaction cutoff rcutoff, and:
• Utilizes node marking with rsub-size ego subgraph as the subgraph generation policy.
• Stacks multiple geometric subgraph GNN layers, each following general subgraph GNN layer

defined in Zhang et al. (2023), which could arbitrarily include single-point, global, and local
operations for aggregating graph information at different levels. The only modification is to the local
operations: when updating huv (the representation of node v in u’s subgraph), distance information
is additionally integrated, thus the local operations aggregate information {{

(
huw, dvw

)
| w ∈

N (v)}} and {{
(
hwv, duw

)
| w ∈ N (u)}} respectively.

• It adopts vertex-subgraph or subgraph-vertex pooling schemes (Zhang et al., 2023) to summarize
node and subgraph features and produce the final graph representation.

It is noteworthy that GeoNGNN (without outer layers) represents a particular instance of general
geometric subgraph GNNs, focusing solely on intra-subgraph message propagation. Beyond this
scope, general geometric subgraph GNNs have the capability to engage in inter-subgraph message
passing in diverse manners and adopt different pooling schemes. Now, we show that the whole family,
with at least one local aggregation, is complete under exactly the same conditions as GeoNGNN.

Theorem 5.3 (Completeness for general geometric subgraph GNNs). When the general geometric
subgraph layer number is larger than some constant C (irrelevant to the node number), and the
last two conditions specified in Theorem 5.1 are met, all general geometric subgraph GNNs in
Definition 5.2 with at least one local aggregation are E(3)-complete.

Key idea. It can be shown that any type of general geometric subgraph GNNs, which could employ
any combination of aggregation and pooling schemes, can implement (Frasca et al., 2022) GeoNGNN,
which is established as an E(3)-complete model in Theorem 5.1. Consequently, any general geometric
subgraph GNN can also achieve E(3)-completeness under the same conditions as GeoNGNN.

Concerning prior research on traditional subgraph GNNs (Bevilacqua et al., 2021; Zhao et al.,
2021; Qian et al., 2022; You et al., 2021; Frasca et al., 2022), their geometric counterparts can
be defined correspondingly, by substituting all local aggregation schemes with distance-aware
counterparts. We denote their geometric counterpart by prefixing Geo to their original names, for
instance, GeoSUN Frasca et al. (2022). Consequently, it can be established that some of them
precisely fall into the general definition 5.2, such as GeoOSAN (Qian et al., 2022), and for the others
such as GeoGNN-AK (Zhao et al., 2021) and GeoSUN Frasca et al. (2022), while even though they
do not exactly match the general definition, they can still implement GeoNGNN, thereby exhibiting
E(3)-completeness (Theorem E.2). Please refer to Appendix E.2 for details about all of these.

We note that all subgraph GNNs in this section have been proven to be strictly weaker than 2-
FWL (Cai et al., 1992) in traditional graph learning context (Zhang et al., 2023). Specifically, there
exist pairs of unweighted graphs that can be distinguished by 2-FWL but remain indistinguishable by
these subgraph GNNs. Moreover, these subgraph GNNs themselves establish a strict expressiveness
hierarchy (Zhang et al., 2023). Interestingly, our findings reveal that all of these discrepancies
diminish when these models are extended to geometric scenarios with point clouds by leveraging
distance graphs. This phenomenon could be attributed to the low-rank nature of distance graphs,

7

Published as a conference paper at ICLR 2025

whose intrinsic dimension is less than the point cloud space dimension 3n rather than equals to their
ambient dimension n2.

5.3 COMPLETENESS OF WELL-ESTABLISHED INVARIANT MODELS

Based on the completeness of GeoNGNN, we move on to establish the E(3)-completeness of several
well-established invariant models, including DimeNet (Gasteiger et al., 2019), GemNet (Gasteiger
et al., 2021) and SphereNet (Liu et al., 2021). These models do not exactly learn on subgraphs,
however, can still be mathematically aligned with GeoNGNN. Formal descriptions of these models
can be found in Appendix B.6.

Theorem 5.4 (E(3)-Completeness of DimeNet, SphereNet, GemNet). When the following conditions
are met, DimeNet, SphereNet4 and GemNet are E(3)-complete.

• The aggregation layer number is larger than some constant C (irrelevant to the node number).
• They initialize and update all edge representations, i.e., rembed = +∞.
• They interact with all neighbors, i.e., rint = +∞.5.

Key idea. The key insight underlying is that all these models track edge representations (hedge
ij for

edge (i, j)), which can be mathematically aligned with the node-subgraph representations tracked in
GeoNGNN (hsubg

ij for node j in subgraph i). Moreover, the additionally incorporated features, such
as angles, can all be equivalently expressed by multiple distances. Consequently, these three models
can all implement GeoNGNN, and thereby achieving completeness.

Note that DimeNet is a relatively simpler invariant model that aggregates neighbor information in a
weaker manner compared to existing 2-FWL-like complete geometric models such as 2F-DisGNN (Li
et al., 2024). Specifically, when updating hij , DimeNet can be equivalently considered as aggregating
(hki, dkj) for a specific neighbor k, while 2F-DisGNN aggregates (hik, hkj). The latter incorporates
a more informative hidden representation hkj , which is essential in the proof of 2F-DisGNN’s
completeness (Li et al., 2024; Delle Rose et al., 2023), instead of dkj in the former. Nevertheless, our
findings first show that these models are equally E(3)-complete under fully-connected conditions.
Consequently, future developments like GemNet that integrate higher-order geometry could be
unnecessary in terms of boosting theoretical expressiveness under such conditions.

5.4 SUMMARIZATION AND DISCUSSION

Fully-Connected Condition. Thus far, we have characterized a broad collection of E(3)-complete
invariant models under similar conditions. Among these conditions, the condition of fully-connected
geometric graphs (or equivalently, infinite cutoffs) is required. Notably, this condition is consistent
with all prior works that rigorously characterize invariant models/descriptors in the same sense,
including (Kurlin, 2023; Widdowson & Kurlin, 2022; 2023; Li et al., 2024; Delle Rose et al., 2023;
Hordan et al., 2024b;a). And due to significant local information loss during invariant message
passing (Joshi et al., 2023; Du et al., 2024), even under this condition the characterization remains
highly nontrivial. Indeed, removing the fully-connected condition would require conditions about
specific forms of sparsity, which would be considerably more demanding than the overall connectivity
typically required by equivariant models (Joshi et al., 2023; Du et al., 2024; Wang et al., 2024;
Sverdlov & Dym, 2024) that can maintain local information through equivariant features. Such
characterization is left for future work.

Theoretical Characterization vs. Practical Use. In practical scenarios, efficiency and generalization
are often prioritized, and local/sparse connectivity can typically offer empirical advantages in these
aspects (Musaelian et al., 2023). Thus, strictly adhering to the complete condition which requires
full connectivity is unnecessary, and finding a balance is crucial, as demonstrated in our additional
experiments in Appendix F (Figure 6). However, this does not diminish the importance of theoretical
characterization, since theoretical completeness provides an upper bound for the parametric model’s

4Here in SphereNet we do not consider the relative azimuthal angle φ, since SphereNet with φ is not
E(3)-invariant, while E(3)-completeness is defined on E(3)-invariant models. Note that the exclusion of φ only
results in weaker expressiveness.

5In DimeNet and GemNet, nodes i or j are excluded when aggregating neighbors for edge ij. The condition
requires the inclusion of these end nodes.

8

Published as a conference paper at ICLR 2025

potential–when combined with MLPs (Hornik et al., 1989), complete models can achieve universal
approximation over continuous invariant functions (Hordan et al., 2024b; Li et al., 2024). This is
analogous to the universal approximation property for MLPs (Hornik et al., 1989) and the Turing
completeness for RNNs (Siegelmann & Sontag, 1992), where practical implementations do not (and
typically cannot) satisfy all theoretical conditions, yet these results indicate their superiority over
weaker structures that cannot achieve certain approximations even with unlimited resources.

SE(3)-complete Counterpart. Finally, we present a provable SE(3)-complete variant of GeoNGNN,
capable of distinguishing chiral molecules, by making a minor modification to the distance features
through the addition of a orientation sign. This is further detailed in Appendix H.

6 EXPERIMENTS

In this section, we conduct additional assessments to validate our theoretical claims. The first
experiment aims to verify the conclusion that DisGNN is nearly complete by assessing the proportion
of its unidentifiable cases in real-world point clouds. The second experiment is designed to evaluate
whether the complete models consistently demonstrate separation power for challenging pairs of
point clouds, where numerical precision may influence the outcomes. We provide more evaluations
of GeoNGNN on practical molecular-relevant tasks in Appendix F, which could offer further insights.

6.1 ASSESSMENT OF UNIDENTIFIABLE CASES OF DISGNN

In Theorem 4.3, we have rigorously shown the rarity of symmetric point cloud sets, which are
supersets of the unidentifiable set of DisGNN. However, since real-world point clouds are typically
subject to slight noise, requiring exact symmetry would be overly restrictive. Therefore, we address
a more challenging setting by explicitly accounting for noise and evaluating the rarity of relaxed
symmetric point clouds in practical scenarios. To this end, we first define two noise tolerances that
allow us to relax the exact C- and D-symmetry.

Noise Tolerances. 1) The rounding number r for distance-related calculations. When applying
algorithms C and D, we round the distance values to r decimal places for robustness to noise. 2) The
deviation error ϵ. In Definition 4.1, we define symmetry by the set of extended "mass" centers. We
provide an equivalent definition in Proposition C.4, which shows that a point cloud is A-symmetric if
and only if the geometric centers of all sub-point clouds, partitioned by distinct node features of A,
coincide. This alternative definition allows us to define another noise tolerance: we now consider a
point cloud as symmetric if all sub-point clouds’ centers described above lie within a ball of radius ϵ.
Together, r and ϵ define a relaxed symmetry that accounts for noise in real-world point clouds. When
r → +∞ and ϵ→ 0, the relaxed symmetry becomes the exact theoretical symmetry.

We are now ready to evaluate the proportion of relaxed symmetric point clouds in real-world datasets.
We select two representative datasets, namely QM9 (Ramakrishnan et al., 2014; Wu et al., 2018)
and ModelNet40 (Wu et al., 2015), for this assessment. The QM9 dataset comprises approximately
130K molecules, while the ModelNet40 dataset consists of roughly 12K real-world point clouds
categorized into 40 classes, including objects such as chairs. We first rescale all point clouds, and
then fix the rounding number to small values and evaluate the proportion of symmetric point clouds
with respect to different values of ϵ. Please refer to Appendix C.3 for detailed settings.

Results are shown in Figure 2. Here are several key observations: 1) For the QM9 dataset, even
with the largest deviation error (10−1), the proportion of C- and D-symmetric point clouds is less
than ∼0.15% of the entire dataset. Since C- and D-symmetric point cloud sets are supersets of the
unidentifiable set of DisGNN, the unidentifiable proportion is therefore no more than ∼0.15%. With
the strictest deviation error, only 0.0046% of the graphs (6 out of ∼130K) exhibit D-symmetry. 2)
For the ModelNet40 dataset, when the deviation error is less than 10−2, only 1 point cloud exhibit
C-symmetry. Moreover, no D-symmetric point clouds are found across all deviation errors.

To summarize, the statistical results suggest that the occurrence of unidentifiable graphs in DisGNN
is practically negligible in real-world scenarios, even when the criterions are significantly relaxed.
This supports the conclusion that DisGNN is almost E(3)-complete.

9

Published as a conference paper at ICLR 2025

1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

Deviation Error ε

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

p
or

ti
on

(%
)

QM9

C-symmetric

D-symmetric

1e-1 8e-2 6e-2 4e-2 2e-2 1e-2 1e-3

Deviation Error ε

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

p
or

ti
on

(%
)

ModelNet40

C-symmetric

D-symmetric

Figure 2: Assessment of symmetric point clouds in real-world datasets. (a) Proportion of symmetric
point clouds in QM9 (r = 2). (b) Proportion of symmetric point clouds in ModelNet40. The
proportion of D-symmetric point clouds in ModelNet40 is zero across all deviation errors (r = 1).

6.2 SEPARATION POWER ON SYNTHETIC POINT CLOUD PAIRS

To construct hard-to-distinguish counterexamples, we develop a geometric expressiveness dataset
based on the counterexamples proposed by Li et al. (2024). The synthetic dataset consists of 10
isolated and 7 combinatorial counterexamples. Each counterexample is composed of a pair of highly
symmetric point clouds (all of which are D-symmetric, as described in Section 4), which are non-
isomorphic yet indistinguishable by DisGNN. We provide some examples in Figure 7, and please
refer to Appendix G for further settings.

Table 1: Separation results on the constructed geometric expressiveness dataset. Models for which
we have theoretically established completeness are highlighted in gray.

Invaraint Equivaraint
SchNet DisGNN DimeNet SphereNet GemNet GeoNGNN PaiNN MACE

Isolated (10 cases) 0% 0% 100% 100% 100% 100% 100% 100%
Combined (7 cases) 0% 0% 100% 100% 100% 100% 100% 100%

Results are presented in Table 1. As shown, our established complete models can all distinguish these
challenging pairs effectively, whereas DisGNN and SchNet cannot. This supports our theory and
indicates that numerical precision is not impacting these complete models’ separation ability here.
Interestingly, two equivariant models, PaiNN (Schütt et al., 2021) and MACE (Batatia et al., 2022)
that leverages vectors and high-order tensors respectively, also effectively distinguish all the pairs.
This prompts further question of whether they are also complete, especially under sparse connections
or finite tensor orders, and requires further investigation.

7 CONCLUSION AND LIMITATION

Conclusion. In this study, we thoroughly analyze a wide range of invariant models’ theoretical
expressiveness under fully-connected condition. Specifically, we rigorously characterize the ex-
pressiveness of DisGNN, showcasing that all its unidentifiable cases exhibit D-symmetry and have
a measure of 0. We then establish a large family of E(3)-complete models, which encompasses
GeoNGNN, geometric subgraph GNNs, as well as three established models - DimeNet, GemNet, and
SphereNet. This contributes significantly to a comprehensive understanding of invariant geometric
models. Moreover, the newly introduced geometric subgraph GNNs notably enlarge the design space
of expressive geometric models. Experiments further validate our theoretical findings.

Limitation. The rigorous E(3)-completeness characterization for invariant models is under the
conditions of fully connected graphs, which can be limited and have been throughout discussed
in Section 5.4. The extent to which invariant models can exhibit high expressiveness on general
sparse graphs remains an open question that needs further investigation. Additionally, future research
is needed to characterize the expressiveness of vector models that rely solely on 1-order equivariant
representations and adopt atom-level representations, such as PaiNN (Schütt et al., 2021), which
show promising experimental results but still lack theoretical expressiveness characterization.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (62276003).

REFERENCES

Keir Adams, Lagnajit Pattanaik, and Connor W Coley. Learning 3d representations of molecular chi-
rality with invariance to bond rotations. In International Conference on Learning Representations,
2021.

Tal Amir, Steven Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym. Neural injective functions
for multisets, measures and graphs via a finite witness theorem. Advances in Neural Information
Processing Systems, 36, 2024.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher
order equivariant message passing neural networks for fast and accurate force fields. Advances in
Neural Information Processing Systems, 35:11423–11436, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):1–11, 2022.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2021.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Jiacheng Cen, Anyi Li, Ning Lin, Yuxiang Ren, Zihe Wang, and Wenbing Huang. Are high-
degree representations really unnecessary in equivariant graph neural networks? arXiv preprint
arXiv:2410.11443, 2024.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T Unke, Adil Kabylda, Huziel E Sauceda, Alexan-
dre Tkatchenko, and Klaus-Robert Müller. Accurate global machine learning force fields for
molecules with hundreds of atoms. Science Advances, 9(2):eadf0873, 2023.

Valentino Delle Rose, Alexander Kozachinskiy, Cristóbal Rojas, Mircea Petrache, and Pablo Barceló.
Three iterations of (d− 1)-wl test distinguish non isometric clouds of d-dimensional points. arXiv
e-prints, pp. arXiv–2303, 2023.

Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang Ji, Carla P Gomes, Zhi-Ming Ma,
et al. A new perspective on building efficient and expressive 3d equivariant graph neural networks.
Advances in Neural Information Processing Systems, 36, 2024.

Alexandre Agm Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pp. 9013–9033. PMLR,
2023.

Nadav Dym and Steven J Gortler. Low-dimensional invariant embeddings for universal geometric
learning. Foundations of Computational Mathematics, pp. 1–41, 2024.

Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks. In
International Conference on Learning Representations, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

11

Published as a conference paper at ICLR 2025

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and ex-
tending subgraph gnns by rethinking their symmetries. Advances in Neural Information Processing
Systems, 35:31376–31390, 2022.

Piotr Gaiński, Michał Koziarski, Jacek Tabor, and Marek Śmieja. Chienn: Embracing molecular
chirality with graph neural networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 36–52. Springer, 2023.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2019.

Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint
arXiv:2011.14115, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
6790–6802. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf.

Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ward
Ulissi, C Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks
for large and diverse molecular simulation datasets. Transactions on Machine Learning Research,
2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence, 43(12):4338–4364, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Snir Hordan, Tal Amir, and Nadav Dym. Weisfeiler leman for euclidean equivariant machine learning.
arXiv preprint arXiv:2402.02484, 2024a.

Snir Hordan, Tal Amir, Steven J Gortler, and Nadav Dym. Complete neural networks for complete
euclidean graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
12482–12490, 2024b.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive
power of geometric graph neural networks. In International Conference on Machine Learning, pp.
15330–15355. PMLR, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Dávid Péter Kovács, Cas van der Oord, Jiri Kucera, Alice EA Allen, Daniel J Cole, Christoph Ortner,
and Gábor Csányi. Linear atomic cluster expansion force fields for organic molecules: beyond
rmse. Journal of chemical theory and computation, 17(12):7696–7711, 2021.

12

https://proceedings.neurips.cc/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf

Published as a conference paper at ICLR 2025

David Peter Kovacs, Ilyes Batatia, Eszter Sara Arany, and Gabor Csanyi. Evaluation of the mace force
field architecture: from medicinal chemistry to materials science. arXiv preprint arXiv:2305.14247,
2023.

Vitaliy Kurlin. Polynomial-time algorithms for continuous metrics on atomic clouds of unordered
points. Match: Communications in Mathematical and in Computer Chemistry, 2023.

Yunyang Li, Yusong Wang, Lin Huang, Han Yang, Xinran Wei, Jia Zhang, Tong Wang, Zun Wang,
Bin Shao, and Tie-Yan Liu. Long-short-range message-passing: A physics-informed framework
to capture non-local interaction for scalable molecular dynamics simulation. arXiv preprint
arXiv:2304.13542, 2023.

Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for geometric
deep learning? Advances in Neural Information Processing Systems, 36, 2024.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. In The Eleventh International Conference on Learning Representations, 2022.

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In International Conference on Learning Representations,
2021.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018.

Boris Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276, 2015.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

Jigyasa Nigam, Sergey N Pozdnyakov, Kevin K Huguenin-Dumittan, and Michele Ceriotti. Com-
pleteness of atomic structure representations. APL Machine Learning, 2(1), 2024.

Lagnajit Pattanaik, Octavian-Eugen Ganea, Ian Coley, Klavs F. Jensen, William H. Green, and
Connor W. Coley. Message passing networks for molecules with tetrahedral chirality, 2020.

Sergey N Pozdnyakov and Michele Ceriotti. Incompleteness of graph convolutional neural networks
for points clouds in three dimensions. arXiv preprint arXiv:2201.07136, 2022.

Sergey N Pozdnyakov, Michael J Willatt, Albert P Bartók, Christoph Ortner, Gábor Csányi, and
Michele Ceriotti. Incompleteness of atomic structure representations. Physical Review Letters,
125(16):166001, 2020.

Omri Puny, Matan Atzmon, Edward J Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In International
Conference on Learning Representations, 2021.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. Advances in Neural Information Processing Systems, 35:21030–
21045, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Conference
on Machine Learning, pp. 8459–8468. PMLR, 2020.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

13

Published as a conference paper at ICLR 2025

Gunnar Schmitz, Ian Heide Godtliebsen, and Ove Christiansen. Machine learning for potential energy
surfaces: An extensive database and assessment of methods. The Journal of chemical physics, 150
(24):244113, 2019.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pp. 9377–9388. PMLR, 2021.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24):241722, 2018.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. In
Proceedings of the fifth annual workshop on Computational learning theory, pp. 440–449, 1992.

Yonatan Sverdlov and Nadav Dym. On the expressive power of sparse geometric mpnns. arXiv
preprint arXiv:2407.02025, 2024.

Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular
potentials. In International Conference on Learning Representations, 2021.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. Advances in Neural
Information Processing Systems, 34:28848–28863, 2021.

Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and
efficient message passing for 3d molecular graphs. Advances in Neural Information Processing
Systems, 35:650–664, 2022.

Shih-Hsin Wang, Yung-Chang Hsu, Justin Baker, Andrea L Bertozzi, Jack Xin, and Bao Wang.
Rethinking the benefits of steerable features in 3d equivariant graph neural networks. In The
Twelfth International Conference on Learning Representations, 2024.

Xiyuan Wang and Muhan Zhang. Graph neural network with local frame for molecular potential
energy surface. In Learning on Graphs Conference, pp. 19–1. PMLR, 2022.

Daniel Widdowson and Vitaliy Kurlin. Resolving the data ambiguity for periodic crystals. Advances
in Neural Information Processing Systems, 35:24625–24638, 2022.

Daniel Widdowson and Vitaliy Kurlin. Recognizing rigid patterns of unlabeled point clouds by
complete and continuous isometry invariants with no false negatives and no false positives. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1275–1284, 2023.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018b.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

14

Published as a conference paper at ICLR 2025

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. arXiv preprint arXiv:2302.07090,
2023.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. In International Conference on Learning Representations, 2021.

15

Published as a conference paper at ICLR 2025

A EXTENDED DISCUSSION OF RELATED WORK

Invaraint geometric models To leverage the rich 3D geometric information contained in point
clouds in permutation- and E(3)-invariant manner, early work Schütt et al. (2018) integrated 3D Eu-
clidean distance into the MPNN framework (Gilmer et al., 2017) and aggregate geometric information
iteratively. Nevertheless, this model exhibits a restricted capacity to distinguish non-isomorphic point
clouds even on fully-connected graphs as substantiated by Li et al. (2024); Pozdnyakov & Ceriotti
(2022); Pozdnyakov et al. (2020); Hordan et al. (2024b). Subsequent invariant models (Gasteiger
et al., 2019; 2020; 2021; 2022; Liu et al., 2021; Wang et al., 2022; Li et al., 2024) have endeavored to
enhance their geometric expressiveness through the incorporation of carefully designed high-order
geometric features (Gasteiger et al., 2019; 2020; 2021; 2022), adopting local spherical representa-
tions (Wang et al., 2022) or higher-order distance features (Li et al., 2024). These designs have greatly
improved the models’ performance on downstream tasks, however, most of them lack theoretical
guarantees of geometric completeness over the whole point cloud spaces.

B PROOF OF MAIN CONCLUSIONS IN MAIN BODY

B.1 MEASURE OF SYMMETRIC AND UNIDENTIFIABLE POINT CLOUDS

In this subsection, we aim to prove that the Lebesgue measure on Rn×3 of the C-symmetric point
cloud set, the D-symmetric point cloud set, and the unidentifiable point cloud set are all zero.

Theorem 4.3 (Unidentifiable set of DisGNN has measure zero) The Lebesgue measure on Rn×3 of
the C-symmetric, D-symmetric, and unidentifiable point cloud sets is zero.

We first show that the C-symmetric point cloud set has measure zero. We denote the set containing all
C-symmetric point clouds as Rn×3

C . Note that

Rn×3
C ⊆ Rn×3

super C := {P ∈ Rn×3 | ∃i ̸= j ∈ [n] such that condi,j holds},

where
condi,j := ∥pi −meank(pk)∥2 − ∥pj −meank(pk)∥2 = 0,

which is essentially a non-trivial polynomial equality constraint. Here, meank(pk) calculates the
geometric center of the point cloud, and ∥pi −meank(pk)∥ is essentially the distance between i and
the geometric center. The set Rn×3

super C is a superset of Rn×3
C , which can be validated as follows:

Assume some element P belongs to Rn×3
C but not to Rn×3

super C . Then, we have

∀i ̸= j ∈ [n], condi,j for P does not hold.

This essentially means that all the nodes are embedded with different features after applying the
C algorithm. Then, it is obvious that P is C-asymmetric, which contradicts the assumption that
P ∈ Rn×3

C . Hence, we conclude that

Rn×3
C ⊆ Rn×3

super C .

The set Rn×3
super C defines an algebraic manifold with a non-trivial polynomial equality constraint, thus

having dimension at most 3n− 1. Therefore, according to (Mityagin, 2015; Hordan et al., 2024b),
the set Rn×3

super C has measure zero, which implies that Rn×3
C also has measure zero.

According to Proposition C.1, since Rn×3
C is the largest set under consideration, it follows that both

the D-symmetric point cloud set and the unidentifiable point cloud set also have measure zero.

B.2 PREPARATION FOR RECONSTRUCTION PROOF

In the following proof, we particularly focus on models’ ability to encode input representations
without significant information loss. We provide a formal definition of an important concept derive
below:

16

Published as a conference paper at ICLR 2025

Definition B.1. (Derive) Given input representations P ∈ P, let f : P → O1 and g : P → O2 be
two property encoders defined on P. If there exists a function h : O1 → O2 such that for all P ∈ P,
h(f(P)) = g(P), we say that f can derive g. With a slight abuse of notation, we say that f(P) can
derive g(P), denoted as f(P)→ g(P).

For example, consider the space P = Rn×3 comprising all point clouds of size n. Let f denote an
encoder that computes f(P) = (

∑n
i=1 pi, n), which represents the sum of the nodes’ coordinates and

the number of nodes, while g being an encoder calculating the geometric center of P , it follows that
f(P)→ g(P), since we can calculate the geometric center from the sum of the nodes’ coordinates
and the number of nodes. In the following analysis, we consider P = Rn×3 by default. Notice that
derivation exhibits transitivity: if f1 → f2 and f2 → f3, it follows that f1 → f3.

Intuitively, “derive” is a concept describing the relation of two properties, i.e., whether property f(P)
contains all the information needed to calculate g(P). Obviously, if an encoder f can embed all the
information needed for reconstructing a given point cloud, then it is E(3)-complete:
Proposition B.2. Consider P = Rn×3 being the space of all point clouds of size n, and f satisfying
permutation- and E(3)-invariance, then: f(P) → P up to permutation and Euclidean isometry
⇐⇒ f is E(3)-complete.

Proof. We first prove the reverse direction. Since f is E(3)-complete, it will give distinct graph
embeddings/features s ∈ Rd for non-isomorphic finite-size point clouds. We can thus let h : Rd →
Rn×3 be a mapping which exactly maps the graph embeddings to the original point clouds up
to permutation and Euclidean isometry. The existence of such h implies that f(P) → P up to
permutation and Euclidean isometry.

For the forward direction, we prove by contradiction. Assume that f is not E(3)-complete, i.e., there
exists two non-isomorphic point clouds P1, P2 such that f(P1) = f(P2). Since f(P)→ P up to per-
mutation and Euclidean isometry, we have that there exists a function h that can reconstruct the point
cloud from the embedding. However, since f(P1) = f(P2), their reconstruction h(f(P1)), h(f(P2))
will be the same up to permutation and Euclidean isometry, which contradicts the assumption that P1

and P2 are non-isomorphic. Therefore, f is E(3)-complete.

B.3 PROOF OF THEOREM 4.2

As indicated in Figure 1(b), all D-symmetric point clouds are also C-symmetric, which is a direct
conclusion from Delle Rose et al. (2023); Li et al. (2024). We formally prove it here.
Proposition B.3. (D-symmetry implies C-symmetry) For any point cloud P ∈ Rn×3, if P is
D-symmetric, then P is C-symmetric.

Proof. As indicated by the conclusions of Delle Rose et al. (2023); Li et al. (2024), with the “derive”
notations we introduced in the previous subsection, we have that: xD

i → xC
i , where P ∈ Rn×3. This

essentially implies that DisGNN’s node-level output contains the information of the distance between
nodes to the geometric center. As a direct consequence, for any point cloud P , the node partition
based on node features XD will be no coarser than that based on C(P).

If P isD-symmetric, the center setDset(P) will obtain only one element. By definition, the cardinality
of the center sets only depends on the node features partitions, and no coarser partition will lead
to no smaller center set. Therefore, Cset(P) will also contain only one element, and thus P is
C-symmetric.

Based on Proposition B.3, to prove Theorem 4.2, it suffices to prove that point clouds that are not
D-symmetric are identifiable. To prove this, we first show the ability of DisGNN to learn global
geometric information:
Lemma B.4. (Locate A centers) Given a point cloud P ∈ Rn×3 with node features XA calculated
by algorithm A. Denote the D-center calculated by mass function m as cm ∈ Rn×3. With a bit
notation abuse, we use dicm to represent the distance between node i and cm.

We now run a DisGNN on (P,XA), and denote the node i’s representations at layer l as h(l)
i (we let

h
(0)
i = xA

i). Then we have:

17

Published as a conference paper at ICLR 2025

• (Node-center distance) Given an arbitrary mass function m, h(2)
i can derive di,cm .

• (Center-center distance) Given two arbitrary mass functions m1 and m2, {{h(2)
i | i ∈ [n]}}

can derive dcm1 ,cm2 .

• (Counting centers) {{h(2)
i | i ∈ [n]}} can derive 1|Aset(P)|=1.

This proposition essentially extends the Barycenter Lemma in Delle Rose et al. (2023); Li et al.
(2024) to the general case of centers defined by D features. Such information can enable DisGNN
to obtain many global geometric features, facilitating it to distinguish non-isomorphic point clouds.
Moreover, the ability to count centers is crucial for DisGNN to distinguish any point cloud that is not
A-symmetric from a A-symmetric one, thereby achieving “identifiability”. Now we give the formal
proof.

Proof.

Node-center distance We first denote the weighted distance profile of node i as f(m, i), which is
defined as f(m, i) =

∑
j∈[n] m(xA

j)d
2
ij . According to the aggregation scheme of DisGNN, f(m, i)

can be derived from h
(1)
i , since h

(1)
i → (h

(0)
i , {{(h(0)

j , dij) | j ∈ [n]}})→ {{(xA
j , dij) | j ∈ [n]}} →∑

j∈[n] m(xA
j)d

2
ij when m is given. All the → here hold because we assume that DisGNN uses

injective function forms and parameterizations (thereby resulting in no information loss), and j ∈ [n]
since DisGNN treats point clouds as fully connected distance graphs, as mentioned at the beginning
of the main body.

f(m, i) can be further decomposed as:

f(m, i) =
∑
j∈[n]

m(xA
j)d

2
ij

=
∑
j∈[n]

m(xA
j)||pi − pj ||2

=
∑
j∈[n]

m(xA
j)||pi − cm + cm − pj ||2

=
∑
j∈[n]

m(xA
j)

(
||pi − cm||2 + ||pj − cm||2 − 2⟨pi − cm, pj − cm⟩

)
= M ||pi − cm||2 +

∑
j∈[n]

m(xA
j)||pj − cm||2 − 2⟨pi − cm,

∑
j∈[n]

m(xA
j)(pj − cm)⟩

where M =
∑

j∈[n] m(xA
j) and ⟨⟩ denotes the inner product.

By definition of cm,
∑

j∈[n] m(xA
j)(pj − cm) = 0. Therefore, we have:

f(m, i) = M∥pi − cm∥2 +
∑
j∈[n]

m(xA
j)∥pj − cm∥2

Therefore, the distance from i to cm can be calculated as:

1

M

f(m, i)− 1

2M

∑
j∈[n]

m(xA
j)f(m, j)

 = ||pi − cm||2 = d2i,cm (5)

And since

h
(2)
i → (h

(1)
i , {{(h(1)

j , dij) | j ∈ [n]}})
→ (f(m, i), {{(m(xA

j), f(m, j)) | j ∈ [n]}}), (6)

we finally have: h(2)
i → di,cm .

18

Published as a conference paper at ICLR 2025

Center-center distance Based on the conclusion of Node-center distance, at round 2, each node is
aware of its distance to the two centers defined by m1 and m2:

h
(2)
i → (di,cm1 , di,cm2). (7)

Therefore,

h
(2)
i → ∥pi − cm1∥2 − ∥pi − cm2∥2

= ⟨cm2 − cm1 , 2pi − cm1 − cm2⟩
.

Therefore, the multiset of all node representations at round 2 can derive the distance between the two
centers:

{{h(2)
i | i ∈ [n]}} → {{(h(2)

i ,m1(x
A
i)) | i ∈ [n]}}

→ 1

M1

∑
i∈[n]

m1(x
A
i)⟨−cm1 + cm2 , 2pi − cm1 − cm2⟩

= ⟨−cm1 + cm2 ,
(2

M1

∑
i∈[n]

m1(x
A
i)pi

)
− cm1 − cm2⟩

= ⟨−cm1 + cm2 , 2cm1 − cm1 − cm2⟩
= ⟨−cm1 + cm2 , cm1 − cm2⟩
= −||cm1 − cm2 ||2, (8)

where M1 =
∑

i∈[n] m1(x
A
i).

Counting centers In this case, we are not given any specific mass function m. It seems like we need
to iterate all possible mass functions to determine the number of centers, which is infeasible due to
the infinite number of mass functions. However, thanks to Proposition C.4, we can determine whether
Aset(P)’s cardinality is 1 (i.e., whether P isA-symmetric) by checking whether the geometric centers
of all corresponding sub point clouds coincide with each other.

Now, assume that there are K types of node features in XA, and we use mk to represent the mass
function that maps all xA

i to 1 if xA
i is the k-th type of features and 0 otherwise, and use c solely to

represent the coordinate of geometric center (unweighted average coordinates of all points).

Based on the conclusion of center-center distance part, we know that {{h(2)
i | i ∈ [n]}} can derive the

distance between c to all cmk , k ∈ [K], i.e., {{h(2)
i | i ∈ [n]}} → {dc,cmk | k ∈ [K]}. We can easily

check the cardinality of the set {dc,cmk | k ∈ [K]} to determine whether the geometric centers of all
these K sub point clouds coincide, and according to Proposition C.4, this is equivalent to determining
whether |Aset(P)| = 1.

Therefore, {{h(2)
i | i ∈ [n]}} → 1|Aset(P)|=1.

Notice that DisGNN can itself calculate C and D feature, therefore, it can simply take unlabeled
point clouds as input, and eventually is able to learn distance information related to all centers in set
Dset(P). This is concluded in the following corollary:

Corollary B.5. Given an unlabelled point cloud P ∈ Rn×3. DisGNN can derive the “node-center”,
“center-center” and “center count” information defined in Lemma B.4 w.r.t. center sets Aset(P) after
k rounds, where A and k can be:

• A = NULL (i.e., A assigns the same features to all nodes), k = 2. In such case, Aset(P)
contains only the geometric center of P .

• A = C, k = 4.

• A = D, k’s upper bound is (n + 2) (n means that we need to first ensure that DisGNN
stabilizes).

19

Published as a conference paper at ICLR 2025

In the case of where A is NULL, the conclusion degenerates to the Barycenter Lemma in Delle Rose
et al. (2023); Li et al. (2024).

We now give an essential lemma. In previous work (Pozdnyakov & Ceriotti, 2022; Li et al., 2024),
it has been shown that DisGNN is E(3)-incomplete, i.e., there exist pairs of non-isomorphic point
clouds that DisGNN cannot distinguish. This essentially means that we cannot prove that DisGNN’s
output s can derive the point cloud P up to permutation and Euclidean isometry. However, in the
following lemma and corollary, we will show that, if we restrict the underlying space P to be all
point clouds that are not A-symmetric for arbitrary A algorithm, we can prove that DisGNN’s
output can derive the input point cloud up to permutation and Euclidean isometry. This implies that
DisGNN is complete on such subsets.

Lemma B.6. Given a point cloud P ∈ Rn×3
not A with node features XA calculated by algorithm A,

where Rn×3
not A contains all A-asymmetric point clouds in Rn×3. Then, 4-round DisGNN’s output s

can derive P up to permutation and Euclidean isometry.

Proof. By definition of “derive”, we describe the reconstruction function that takes DisGNNs’ output
s as input and produces the point cloud P up to permutation and Euclidean isometry. We initially
assume that the point cloud does not degenerate into 2D, which is a trivial case and will be discussed
at the end of the proof.

Since P is A-asymmetric, there are at least two centers in Aset(P). We now take two arbitrary
such centers and denote them as c1 and c2. According to Corollary B.5, 2-round DisGNN’s node-
level features can derive the distance information related to these two centers, namely, h(2)

i →
(di,c1 , di,c2 , dc1,c2). In the following, we show how DisGNN can reconstruct the whole geometry
based on triangular distance encoding.

By defnition of DisGNN and the injectivity assumption, its output s can derive the multiset {{h(4)
i |

i ∈ [n]}}. And since h
(4)
i → h

(3)
i → h

(2)
i → (di,c1 , di,c2 , dc1,c2), we know that from h

(4)
i we can

reconstruct the triangle formed by i, c1, c2. Consequently, it is feasible to determine the following
dihedral angle list from h

(4)
i :

h
(4)
i = HASH(h

(3)
i , {{(h(3)

j , dij) | j ∈ [n]}})
→ {{(h(3)

i , h
(3)
j , dij) | j ∈ [n]}}

→ {{(h(2)
i , h

(2)
j , dij) | j ∈ [n]}}

→ {{(dij , di,c1 , di,c2 , dj,c1 , dj,c2 , dc1,c2) | j ∈ [n]}}
→ {{θ(ic1c2, jc1c2) | j ∈ [n]}}.

Here, θ(ic1c2, jc1c2) represents the dihedral angle formed by plane ic1c2 and plane jc1c2. If i or j
lies on the line c1c2, or the angle θ is 0, we define/overwrite θ as +∞.

Given this observation, we now conduct a search across the multiset {{h(4)
i | i ∈ [n]}} to find the

node x which can derive the smallest θ(xc1c2, yc1c2) relative to some other node y (In case of
multiple minimal angles, an arbitrary x is chosen). Denote the minimal angle as α, and we record
the corresponding h

(4)
x . And note that since θ(xc1c2, yc1c2) is derived from (h

(4)
x , h

(3)
y , dxy), the

corresponding (h
(3)
y , dxy) in the calculation of h(4)

x can also be recorded. We now aim to prove that
the entire geometry can be reconstructed using h

(4)
x and the corresponding (h

(3)
y , dxy).

First of all, having found the node y in the multiset, we can calculate the exact 3D coordi-
nates of nodes x, y, c1, c2 up to Euclidean isometry given (h

(4)
x , h

(3)
y , dxy). This is because

(h
(4)
x , h

(3)
y , dxy) → (dxy, dx,c1 , dx,c2 , dy,c1 , dy,c2 , dc1,c2). At this stage, the coordinates of n − 2

nodes remain undetermined.

We proceed to traverse all nodes in the multiset {{(h(1)
j , dxj) | j ∈ [n]}} that can be derived from h

(4)
x

by definition. For each node j, with information (h
(1)
x , h

(1)
j , dxj), we can derive (djx, dj,c1 , dj,c2).

Consequently, we can determine the 3D coordinates of j to at most two positions, which are
symmetrically mirroring w.r.t. the plane xc1c2. Notably, j’s position is unique if and only if it lies on

20

Published as a conference paper at ICLR 2025

the plane xc1c2 (denoted as x-plane). We first identify all nodes on the x-plane, since their calculated
positions are unique.

Additionally, from h
(3)
y , we can also derive (djy, dj,c1 , dj,c2) for each node j, allowing us to identify

all nodes on the y-plane.

The coordinates of these nodes are added to the “known” set of nodes K, while the remaining nodes
are labeled as “unknown.”

It is established that there are no “unknown” nodes in the interior (as θxc1c2,yc1c2 is minimal) and
border (since we have identified these points) of the x-plane and y-plane. We denote the interior and
border of the two planes as P0.

Now, we reflect the y-plane mirrorly w.r.t. the x-plane which yields the p−1-plane. The interior
and border formed by p−1-plane and x-plane are denoted as P−1. Since there are no “unknown”
nodes in P0, the remaining undetermined nodes in P−1 can be determined from h

(4)
x , as their another

possible position calculated by h
(4)
x lie in the “dead area” P0, where it is ensured to be empty (no

undetermined nodes left). Similarly, reflecting the x-plane w.r.t. the y-plane produces the p1-plane,
and the corresponding area by p1-plane and y-plane is denoted as P1. Nodes in P1 are determined
likewise from h

(3)
y . This process continues by reflecting the p1-plane w.r.t. the x-plane to obtain

the p−2-plane, determining the nodes in P−2, and so forth, until all P areas collectively cover the
entire 3D space. Consequently, all nodes can be determined, and the geometric structure can be
reconstructed.

When the point cloud degenerates into 2D, we can initially derive a node i’s representation h
(4)
i from

the output s of DisGNN that does not lie on the line c1c2. By leveraging h
(4)
i , we can extract the

necessary distance information to compute the coordinates of i, c1, and c2 up to Euclidean isometry.
Given that h(4)

i → {{(h(3)
j , dij) | j ∈ [n]}}, we can derive (dij , djA1 , djA2) from each (h

(3)
j , dij).

Consequently, the coordinates of node j can be uniquely determined (2D setting). And therefore, the
complete geometry can be reconstructed up to Euclidean isometry.

As an insightful takeaway from Lemma B.6, we notice that the key in reconstruction is the initial
triangular distance encoding that can be captured by DisGNN. The triangular distance encoding
enhances each node i’s feature with distance information (dic1 , dic2 , dc1c2), where c1 and c2 are two
global anchors. In Lemma B.6, the two anchors are from A center sets, and DisGNN can capture
the corresponding distance encoding according to Lemma B.4. In Section 5.1, we show that we can
mark a node as an additional anchor, which can also be captured by DisGNN due to the distinct mark.
Other designs may also be proposed by considering this insightful idea.

Similarly to Corollary B.5, DisGNN can take unlabelled point clouds as input and finally reconstruct
them when the unlabelled point clouds are C-asymmetric or D-asymmetric.

Corollary B.7. Given a point cloud P ∈ Rn×3, assume that P is A-asymmetric. Then, k-round
DisGNN’s output s can derive P up to permutation and Euclidean isometry, where A and k can be:

• A = C, k = 6.

• A = D, k’s upper bound is (n+ 4).

Now, we are ready to prove Theorem 4.2 based on all the above propositions and theorems.

Theorem 4.2. (Asymmetric point clouds are identifiable) Let C denote the center distance encoding
and D the DisGNN encoding. Then, given an arbitrary point cloud P ∈ Rn×3, P is C-asymmetric
⇒ P is D-asymmetric⇒ P can be identified by DisGNN.

Proof. The first⇒ is proved in Proposition B.3.

It suffices to show that P is D-asymmetric⇒ P can be identified by DisGNN.

Now, given another P ′ ∈ Rn×3, there are two cases:

21

Published as a conference paper at ICLR 2025

• P ′ is D-asymmetric. As a direct consequence of Lemma B.6, Corollary B.7 and Proposi-
tion B.2, DisGNN can distinguish P and P ′.

• P ′ is D-symmetric. According to Lemma B.4 and Corollary B.5, DisGNN’s output for
P and P ′ can derive 1|Dset(P)|=1 and 1|Dset(P ′)|=1 respectively. Since P is D-asymmetric
while P ′ is, by definition, we know that 1|Dset(P)|=1 ̸= 1|Dset(P ′)|=1, and thus DisGNN can
distinguish P and P ′.

B.4 PROOF OF THEOREM 5.1

Theorem 5.1 (E(3)-Completeness of GeoNGNN) When the following conditions are met, GeoNGNN
is E(3)-complete:

• Nin >= 5 and Nout >= 0 (where 0 indicates that the outer GNN only performs final pooling).
• The distance graph is fully-connected (rcutoff = +∞).
• All subgraphs are the original graph (rsub = +∞).

Proof. Based on the condition that rsub =∞, all subgraphs are exactly the original distance graph,
with the exception that the central node (the subgraph around which is generated) is explicitly marked.

We consider the GeoNGNN with exactly 5 inner layers and 0 outer layers, and since we assume the
injectiveness of intermediate functions, more layers will only lead to no-worse expressiveness.

Now consider node i’s subgraph. We first assume that node i is distinct to the geometric center c. We
denote node j’s representation in subgraph i using hj instead of hij for brevity when the context is
clear. We can now prove the following:

1. After 1 round of DisGNN, for all j ∈ [n], h(1)
j → dij (since node i is explictly marked in its

subgraph).

2. After 2 rounds of DisGNN, according to Lemma B.4, for all j ∈ [n], h(2)
j → djc.

3. After 3 rounds of DisGNN, for all j ∈ [n], h(3)
j → h

(2)
i → dic.

At this point, for all nodes j, h(3)
j can derive dji, djc, and dic, thus completing the triangular distance

encoding necessary for reconstruction in Lemma B.6. Therefore, similar to the proof of Lemma B.6,
with another two more rounds of DisGNN, the output can derive the point cloud up to permutation
and Euclidean isometry.

4. At round 5, the output of DisGNN w.r.t. the subgraph of node i, si = foutput({{h(5)
j | j ∈

[n]}}), can derive the point cloud up to permutation and Euclidean isometry.

There is still a potential problem with the above proof: node i may coincide with the geometric center.
In such case, we can not anymore obtain triangle distance information formed by each node j and
i, c, which is essential in Lemma B.6 for reconstruction. However, since P has more than 2 nodes,
there is at least one node that satisfies the assumption.

Notice that GeoNGNN injectively pools all the subgraph representations in the outer GNN and obtains
the final output s = fouter({{si | i ∈ [n]}}). Each subgraph represnetation si can derive the distence
between node i and the geometric center c as following: si → h

(5)
i → h

(4)
i → ... → h

(2)
i → dic,

according to Lemma B.4. This can be leveraged as an indicator, telling us whether node i coincides
with the c. As a consequence, we can derive the point cloud from s as follows: first, search across
all subgraph representations si to find the one that does not coincide with the geometric center, then
reconstruct the point cloud based on this subgraph representation according to Lemma B.6. This
finishes the proof.

22

Published as a conference paper at ICLR 2025

B.5 PROOF OF THEOREM 5.3

Theorem 5.3 (Completeness for general geometric subgraph GNNs) Under the conditions specified
in Theorem 5.1, all general geometric subgraph GNNs in Definition 5.2 with at least one local
aggregation are E(3)-complete.

Proof. We establish by demonstrating that all general geometric subgraph GNNs
GeoA(A,Pool, L, rsub = +∞, rcutoff = +∞) (Please see Appendix E for formal defini-
tions), abbreviated as GeoA hereafter, are capable of implementing (Frasca et al., 2022) GeoNGNN
(with Ninner inner layers, rsub = +∞, rcutoff = +∞ and without outer GNN) – denoted as complete
GeoNGNN – with a fixed number of layers L. Since complete GeoNGNN is E(3)-complete when
Ninner ≥ 5, GeoA can also achieve E(3)-completeness when L is larger than some constant.

Two scenarios are considered: when GeoaggLu ∈ A and when GeoaggLu /∈ A.

In the scenario where GeoaggLu ∈ A, a single aggregation layer in GeoA can implement a complete
GeoNGNN layer by learning an aggregation function f (l), defined in Section E, that only maintains
GeoaggPu,v and GeoaggLu while disregarding other aggregation operations.

Notably, complete GeoNGNN utilizes VS pooling, while Pool in GeoA encompasses the options
of VS or SV pooling. If Pool is VS, then consequently GeoA with L = Ninner has the capability to
implement complete GeoNGNN.

On the other hand, should Pool be SV, GeoA can deploy an additional aggregation layer in conjunction
with SV pooling to implement VS pooling. In the following, we mainly elaborate on this simulation
process.

First, it is crucial to note that SV pooling learns the global representation hG through the function
fSV as follows:

hG = fSV({{{{h(LSV)
uv | u ∈ VG}} | v ∈ VG}}),

and VS pooling learns through fVS in the subsequent manner:

hG = fVS({{{{h(LVS)
uv | v ∈ VG}} | u ∈ VG}}).

With LSV = LVS+1, the last aggregation layer can be utilized to accumulate all subgraph information
to the central node representation, i.e., h(LSV)(u, u) = h(LVS+1)(u, u)→ {{h(LVS)

uv | v ∈ VG}}, given
that GeoaggLu ∈ A. Notice that this is feasible since each subgraph is the original graph and is fully
connected. Consequently:

{{{{h(LSV)
uv | u ∈ VG}} | v ∈ VG}}

→{{h(LSV)
vv | v ∈ VG}}

→{{{{h(LVS)
vu | u ∈ VG}} | v ∈ VG}}

={{{{h(LVS)
uv | v ∈ VG}} | u ∈ VG}},

indicating that fSV can acquire a function that initially converts {{{{h(LSV)
uv | u ∈ VG}} | v ∈ VG}} to

{{{{h(LVS)
uv | v ∈ VG}} | u ∈ VG}}, and subsequently emulates fVS. Thus, GeoA with L = Ninner + 1

has the capability to implement complete GeoNGNN.

Finally, consider the case where GeoaggLu /∈ A. And since we assume the existence of at least one
local operation, it follows that GeoaggLv ∈ A. By presenting a proposition that essentially underscores
symmetry, we can affirm that this case is equivalent to the first case, and therefore the conclusion still
holds.

Proposition B.8. Let GeoA be any general geometric subgraph GNN defined in Section E.
Denote Au↔v as the aggregation scheme obtained from A by exchanging the element aggPuu
with aggPvv, exchanging GeoaggLu with GeoaggLv , and exchanging aggGu with aggGv . Then,
GeoA(A,VS, L, rsub, rcutoff) and GeoA(Au↔v,SV, L, rsub, rcutoff) can implement each other.

Proof. Similar to the original proof of Proposition 4.5. in Zhang et al. (2023), the proof is almost
trivial by symmetry: All functions within GeoA(A,VS) can inherently learn to ensure that h(l)

uv

23

Published as a conference paper at ICLR 2025

in GeoA(A,VS) precisely corresponds to h
(l)
vu in GeoA(Au↔v,SV) for any arbitrary u, v, l, with

the reverse equivalence also holding. Additionally, given the symmetry of the pooling method,
consistency in the output can be guaranteed.

As a direct consequence of Proposition B.8, all of the general subgraph GNN with GeoaggLv can
implement another equivalent one with GeoaggLu, and according to the previous proof, they are also
E(3)-complete under the conditions specified in Theorem. This ends the proof.

B.6 PROOF OF THEOREM 5.4

Theorem 5.4 (E(3)-Completeness of DimeNet, SphereNet, GemNet) When the following conditions
are met, DimeNet, SphereNet and GemNet are E(3)-complete.

• The aggregation layer number is larger than some constant C (irrelevant to the node number).
• They initialize and update all edge representations, i.e., rembed = +∞.
• They interact with all neighbors, i.e., rint = +∞..

The main idea to prove this theorem is to also show that DimeNet, SphereNet and GemNet can
implement (Frasca et al., 2022) GeoNGNN, which is E(3)-complete, and thus they are E(3)-complete
as well. We elaborate on these models in separate subsections.

B.6.1 E(3)-COMPLETENESS OF DIMENET

To begin, let us abstract the functions utilized in DimeNet. Fundamentally, DimeNet employs edge
representations, iteratively updating these representations based on the neighbors of edges within
a specified neighbor cutoff. During aggregation, DimeNet incorporates angle information formed
by the center edge and its neighbor edges. Finally, all these edge representations are aggregated to
produce a graph-level output.

We formally state these procedures:

Initialization (DimeNet) In DimeNet, the initial representation hij of the edge ij is initialized
based on the tuple (xi, xj , dij), where xi and xj are the features of nodes i and j, and dij is the
distance between these nodes:

hij = fDimeNet
init (xi, xj , dij) (9)

Message Passing (DimeNet) The message passing in DimeNet updates the edge representation hij

based on the features of neighboring edges and their respective geometric information. It aggregates
information from all neighbors k of node i:

hij = fDimeNet
update (hij , {{(θkij , hki, dij) | k ∈ N (i)}})

Note that hij is initialized by fusing dij and atomic information, therefore we have: hij → dij . And
clearly dij , dik, dkj → θkij . Therefore, the above function is expressively equivalent to:

hij = fDimeNet
update (hij , {{(dkj , hki) | k ∈ N (i)}})

When the interaction cutoff of DimeNet is infinite, N (i) = [n], giving the final update function:

hij = fDimeNet
update (hij , {{(hki, dkj) | k ∈ [n]}}) (10)

Output Pooling (DimeNet) Finally, DimeNet pools over all node pairs to obtain the final represen-
tation t:

t = fDimeNet
output ({{{{hij | i ∈ [n]}} | j ∈ [n]}}) (11)

GeoNGNN, as a subtype of subgraph GNN, initializes and updates the node j’s represnetation in
node i’s subgraph based on its atomic number and its distance to node i. Representing the node j’s
representation in node i’s subgraph as hij , then we can samely abstract its function forms.

24

Published as a conference paper at ICLR 2025

Initialization (GeoNGNN) GeoNGNN initializes hij based on node j’s initial node feature and
distance encoding w.r.t. i:

hij = fGeoNGNN
init (xj , dij) (12)

Message Passing (GeoNGNN) GeoNGNN’s inner GNN iteratively updates hij based on the
following procedure:

hij = fGeoNGNN
update (hij , {{(hik, dkj) | k ∈ [n]}}) (13)

Note that k iterates all nodes, because according to Theorem 5.1, the complete version GeoNGNN
has infinite subgraph size and message passing cutoff.

Output Pooling (GeoNGNN) In the absence of an outer GNN, GeoNGNN produces the scalar out-
put by respectively aggregating all in-subgraph nodes’ representations as the subgraph representation,
and then aggregating all subgraphs’ representations:

t = fGeoNGNN
output ({{{{hij | j ∈ [n]}} | i ∈ [n]}}) (14)

Implementing GeoNGNN with DimeNet Now we show how to use DimeNet to implement
GeoNGNN. Since GeoNGNN is E(3)-complete, it can be observed that if DimeNet can successfully
implement GeoNGNN, then DimeNet is also E(3)-complete.

Let us start by examining the initialization step. Note that fDimeNet
init (Eq. 9) takes more information

than fGeoNGNN
init (Eq. 12) as input. Therefore, by learning a function fDimeNet

init that simply disregards
the xi term, fDimeNet

init can achieve the same function form as fGeoNGNN
init .

Next, we move on to the update (message passing) step. The only difference between fDimeNet
update (Eq. 10)

and fGeoNGNN
update (Eq. 13) lies in their input arrangements. Specifically, fDimeNet

update takes hki, k ∈ [n]

as part of input, while fGeoNGNN
update takes hik, k ∈ [n] as the corresponding part of input. This index

swap can be mathematically aligned: We can stack two DimeNet update layers to implement
one GeoNGNN update layer. The first DimeNet layer, starting from h

(l)
ij , calculates h

(l+ 1
2)

ij to

store the information of h
(l)
ji , i.e., h(l+ 1

2)
ij → h

(l)
ji . This is feasible due to the property that in

Eq.10, (djj , hji) can be selected uniquely from the multiset by fDimeNet
update , as dkj = 0 if and only if

k = j. Subsequently, the second DimeNet layer swaps the indices within the multiset, transforming(
h
(l+ 1

2)
ij , {{(dkj , h(l+ 1

2)

ki) | k ∈ [n]}}
)

into
(
h
(l)
ij , {{(dkj , h

(l)
ik) | k ∈ [n]}}

)
. At this stage, the function

form aligns with that of fGeoNGNN
update (Eq.13).

Finally, we consider the output step. Similarly, the only distinction between fDimeNet
output (Eq.11) and

fGeoNGNN
update (Eq.14) lies in the swapping of input indices. By stacking one DimeNet update layer and

one DimeNet output layer, we can similarly implement the GeoNGNN output layer, as discussed in
the prior paragraph.

In conclusion, we have shown that DimeNet’s layers can be utilized to implement GeoNGNN’s layers.
By doing so, we establish that DimeNet is also E(3)-complete with a constant number of layers.

B.6.2 E(3)-COMPLETENESS OF SPHERENET

We aim to demonstrate the E(3)-completeness of SphereNet by illustrating that SphereNet can
implement DimeNet, which has already been established as E(3)-complete in the preceding subsection.
We begin by abstracting the layers of SphereNet.

Initialization (SphereNet) Similar to DimeNet, SphereNet also initializes edge representations by
integrating atom properties and distance information:

hij = fSphereNet
init (xi, xj , dij) (15)

Message Passing (SphereNet) During message passing, SphereNet aggregates neighbor edge
information into the center edge, while additionally considering end nodes’ embeddings and spherical

25

Published as a conference paper at ICLR 2025

coordinates. Since we consider SphereNet∗, which drops the relative azimuthal angle φk of end node
k, the function form is highly similar to that of DimeNet:

hij = fSphereNet
update (hij , vi, vj , {{(hki, dki, θkij) | k ∈ [n]}})

Note that the original SphereNet can only be more powerful than SphereNet∗.

Since hij → dij , (dij , dki, θkij)→ dkj , the above function is equivalently expressive as

hij = fSphereNet
update (hij , vi, vj , {{(hki, dkj) | k ∈ [n]}}) (16)

Output (SphereNet) The output block of SphereNet first aggregates edge representations into node
representations as follows:

vj = fSphereNet
node ({{hij | i ∈ [n]}})

Then, in order to calculate graph/global embedding, it further aggregates node representations as
follows:

t = fSphereNet
graph ({{vj | j ∈ [n]}})

Therefore, the overall output function can be abstracted as:

t = fSphereNet
output ({{{{hij | i ∈ [n]}} | j ∈ [n]}}) (17)

Implementing DimeNet with SphereNet Now we show how to use SphereNet to implement
DimeNet.

At the initialization step, fSphereNet
init (Eq. 15) and fDimeNet

init (Eq. 9) exhibit exactly the same function
form.

At the update step, fSphereNet
update (Eq. 16) takes strictly more information, i.e., the node representa-

tions, than fDimeNet
update (Eq. 10). Therefore, by learning a function fSphereNet

update that simply ignores node

representations vi, vj , fSphereNet
update and fDimeNet

update can share the same function form.

At the output step, fSphereNet
output (Eq. 17) and fDimeNet

output (Eq. 11) share exactly the same function form.

In conclusion, we have shown that SphereNet’s layers can be utilized to implement DimeNet’s layers.
By doing so, we establish that SphereNet is also E(3)-complete with a constant number of layers.

B.6.3 E(3)-COMPLETENESS OF GEMNET

GemNet(-Q) and DimeNet share the same initialization and output block. The difference between
them lies in the update block. Specifically, GemNet adopts a three-hop message passing to incorporate
higher-order geometric information, dihedral angle. The update function can be abstracted as:

hij = fGemNet
update

(
hij , {{(hab, dij , dbj , dab, θijb, θjba, θijba) | b ∈ [n], a ∈ [n]}}

)
Here, θijba that has 4 subscripts represents the dihedral angle of plane ijb and jba. By learning a
function that simply selects all b = i from the multiset and ignores some terms (Note that this is
feasible, since (hab, dij , θijb, θijba, dbj , θjba, dab)→ (dij , θijb, dbj)→ dbi, while only b = i results
in dbi = 0), fGemNet

update can be simplified as follows:

hij = fGemNet
update (hij , {{(θaij , hai, dij) | a ∈ [n]}}) (18)

Now, the simplified fGemNet
update has the same form as fDimeNet

update (Eq. 10), indicating that GemNet can
implement DimeNet, and therefore is also E(3)-complete.

C EXTENDED ANALYSIS OF DISGNN

C.1 THE PROPER SUBSET RELATION IN FIGURE 1(B)

Proposition C.1. (Proper Subset)

26

Published as a conference paper at ICLR 2025

• D-symmetric point cloud set is a proper subset of C-symmetric point cloud set.

• The unidentifiable point cloud set is a proper subset of D-symmetric point cloud set.

Proof. The first ⊆ relation is a direct consequence of results in Delle Rose et al. (2023); Li et al.
(2024), and reformulated in Proposition B.3. The second ⊆ relation is a direct consequence of
Theorem 4.2. Therefore, we only need to prove the ⊂ relation for the two cases. To see this, we
construct a point cloud P for each case, showing that P is in the second set but not in the first set.

The first constructed P is shown in Figure 3. This point cloud P is C-symmetric but D-asymmetric.

(a) (b) (c)

Figure 3: A point cloud P that exhibits C-symmetry but not D-symmetry. (a) The point cloud
P , which consists of an equilateral triangle and two additional nodes. (b) The labeled point cloud
(P,XC) after calculating C features. Note that each node has the same distance to the geometric center,
therefore the nodes still remain undivided. (c) The labeled point cloud (P,XVD) after calculating D
features.

We describe the second case as follows. Consider an equilateral triangle P of arbitrary side length.
For any other point cloud P ′ consisting of three points and non-isomorphic to P , there are only
two possible scenarios: (1) P ′ consists of three nodes forming an equilateral triangle with a side
length distinct from that of P ; (2) P ′ consists of 3 nodes arranged in a manner that does not form
an equilateral triangle. Importantly, DisGNN possesses the capability to distinguish between P and
P ′ for both cases, due to its ability to embed node numbers and all distance lengths. Consequently,
DisGNN successfully identifies P (i.e., P is not in the unidentifiable set). However, it’s easy to check
that P is D-symmetric.

C.2 COMPARISON TO HORDAN ET AL. (2024B)

We first show that our established symmetric point cloud set, specifically the D-symmetric point
cloud set, denoted as Rn×3

D , is strictly smaller than the symmetric point cloud set Rn×3 \ Rn×3
distinct

defined in Hordan et al. (2024b) (and restated in Definition C.3), as illustrated in Figure 4.

Unidentifiable
Cases

Figure 4: The relationship between our proposed symmetric point cloud sets and the symmetric set
Rn×3 \ Rn×3

distinct characterized in prior work (Hordan et al., 2024b). The D-symmetric point cloud set
is a proper subset of Rn×3 \ Rn×3

distinct, as stated in Proposition C.2.

More precisely, if we denote the complement of the D-symmetric point cloud set as Rn×3
not D, we arrive

at the conclusion stated in Proposition C.2.

Proposition C.2. Rn×3
distinct ⊂ Rn×3

not D.

27

Published as a conference paper at ICLR 2025

Proof. To establish this result, we first revisit the findings of Hordan et al. (2024b), which define an
asymmetric point cloud subset Rn×3

distinct as follows:

Definition C.3 (Rn×3
distinct set (Hordan et al., 2024b)). We define Rn×3

distinct ⊂ Rn×3 as

Rn×3
distinct := {P ∈ Rn×3 | d(i, P) ̸= d(j, P) ∀i, j ∈ [n], i ̸= j},

where the geometric degree of i is defined as

d(i, P) = {∥p1 − pi∥, . . . , ∥pn − pi∥}.

It is evident that Rn×3
distinct ⊆ Rn×3

not D, since DisGNN embeds nodes based on their geometric degrees.
According to Definition C.3, all nodes’ geometric degrees are distinct, leading to unique embedded
node features. Thus, these point clouds are D-asymmetric, meaning that Rn×3

distinct ⊆ Rn×3
not D.

Furthermore, there exist many cases in Rn×3
not D that do not belong to Rn×3

distinct. For example, see the
case in Figure 3. Other examples can be easily constructed, such as isosceles triangles where the leg
length differs from the base length.

The key reason why Rn×3
not D contains significantly more point clouds than Rn×3

distinct is that the latter
imposes overly strict constraints on asymmetry, requiring all pairs of nodes to be distinct. In contrast,
Rn×3

not D emphasizes the global asymmetry of the entire point cloud.

In Theorem 2 of Hordan et al. (2024b), the authors showed that given any two point clouds P1, P2 ∈
Rn×3

distinct, DisGNN can distinguish them. Our result is strictly stronger than that of Hordan et al.
(2024b) in the sense that our Theorem 4.2 identifies many more distinguishable pairs of point clouds
(by DisGNN) than their result, in the following sense:

• Theorem 4.2 shows that arbitrary pairs of point clouds P1, P2 from Rn×3
not D (which is strictly

larger than Rn×3
distinct as shown in Proposition C.2) can be distinguished by DisGNN.

• Theorem 4.2 further establishes identifiability, meaning that for any P1 ∈ Rn×3
not D and any

P2 from the entire point cloud set Rn×3, DisGNN can still distinguish them.

C.3 ASSESSMENT OF UNIDENTIFIABLE CASES OF DISGNN

Here, we provide further details about the experiment in Section 6.1.

We first give a simple proposition, which can determine whether a given point cloud is A-symmetric
without the need to consider “mass” functions m, and subsequentially facilitate the noise tolerance
setting.

Proposition C.4. (Equivalent definition for A-symmetry) Given an arbitrary point cloud P ∈ Rn×3

and a E(3)-invaraint and permutation-equivariant algorithm A, let K denote the number of distinct
node features inA(P), and we consider K sub-point clouds each only contain nodes from P with the
same node feature. Then we have: P is A-symmetric ⇐⇒ all these K sub-point clouds’ geometric
centers coincide.

Proof. We first prove that P is A-symmetric =⇒ all these K sub-point clouds’ geometric centers
coincide. This is actually a direct consequence of the original definition of A-symmetry: each
geometric center of the K point clouds is in Aset(P), and P is A-symmetric means that Aset(P)
contains only one element, therefore all K sub-point clouds’ geometric centers coincide.

We then prove the reverse direction. We denote Ik as the index set of the nodes with the k-th kind
of node features in A(P). For an arbitrary element A(P)m from collections Aset(P) calculated by

28

Published as a conference paper at ICLR 2025

function m, we have A(P)m =
∑

i∈[n] m(xA
i)pi∑

i∈[n] m(xA
i)

by definition, which can be decomposed as follows:

A(P)m =

∑
i∈[n] m(xA

i)pi∑
i∈[n] m(xA

i)

=

∑
k∈[K]

∑
i∈Ik

m(xA
i)pi∑

k∈[K]

∑
i∈Ik

m(xA
i)

=

∑
k∈[K] Mkck∑
k∈[K] Mk

, (19)

where ck ∈ R3 denotes the geometric center of the k-th point cloud, Mk =
∑

i∈Ik
m(xA

i) denotes
the sum of “masses” associated with the k-th sub-point cloud. Since all ck coincide, i.e., c1 = c2 =

. . . = cK , we have: A(P)m =
c1

∑
k∈[K] Mk∑

k∈[K] Mk
= c1. Thus, all the possible elements from Aset(P)

coincide with c1. Obviously, since the geometric center c of the whole point cloud is also in Aset(P),
c1 = c. Therefore, P is A-symmetric.

Rescaling and criteria settings Since the two datasets under consideration exhibit different scales,
the use of fixed tolerance errors is inapplicable. To address this, a preprocessing step is performed on
both datasets by rescaling all point clouds to ensure that the distance between the geometric center
and the farthest node is 1. For ModelNet40, we preprocess the data using farthest point sampling with
256 nodes. We then fix the rounding number r to 2 for QM9 and 1 for ModelNet40 (which is thus
quite robust against noise in this scale), and conduct the assessment with the deviation error ranging
from 1e-6 to 1e-1, as shown in Figure 2. Note that a deviation error of 1e-1 is quite large for a point
cloud located within a unit sphere. As a result, many asymmetric clouds may still be determined as
symmetric under such criteria. We use this as a rough upper bound only for reference.

D EXTENDED ANALYSIS OF GEONGNN

D.1 COMPLEXITY ANALYSIS

For a n-sized point cloud, without considering the complexity of achieving injective intermediate func-
tions, GeoNGNN achieves theoretical completeness with an asymptotic time complexity of O(n3).
This complexity arises from the fact that there are n subgraphs, each of which undergoes the complete-
version DisGNN operation, resulting in an overall complexity of O(n2) per subgraph. Importantly,
this time complexity is consistent with that of 2-F-DisGNN (Li et al., 2024), DimeNet (Gasteiger
et al., 2019), and SphereNet (Liu et al., 2021), when their conditions for achieving E(3)-completeness
are met.

We leverage the findings introduced by Amir et al. (2024) to analyze the complexity involving the
realization of injective neural functions.6 Within each aggregation layer, GeoNGNN embeds the
multiset {{(h(l)

ij , dij) | j ∈ [n]}} to update the representation of h(l)
ij . As per the study conducted by

Amir et al. (2024), an embedding dimension of O(kn) is sufficient for injectively embedding such a
multiset, with k representing the embedding dimension of (h(l)

ij , dij). In the initial layer, (h(0)
ij , dij)

possesses a constant dimension independent of n. Therefore, the sufficient embedding dimension for
h
(1)
ij is O(n). Though it seems that the sufficient embedding dimension will grow exponentially with

respect to the layer number l, Hordan et al. (2024b) has demonstrated that the crucial dimension is the
intrinsic dimension of the multiset, which maintains O(n) throughout all layers, rather than kn, the
ambient dimension. Consequently, the sufficient embedding dimension for any given layer is O(n).
By following the neural function form proposed by Amir et al. (2024), we apply a shallow MLP
individually to each element within the multiset and sum them up to obtain the multiset embedding.
This leads to a complexity of O(n2) × n = O(n3), where O(n2) represents the complexity of
forwardness of MLP whose input and output dimension are both O(n), and n represents the n

6We note that for tractability, “E(3)-completeness” now should refer to the model’s ability to distinguish
between any pairs of non-isomorphic point clouds of size less than or equal to n.

29

Published as a conference paper at ICLR 2025

elements in the multiset. Considering the updating of all h(l)
ij , i, j ∈ [n], the complexity in each layer

becomes O(n3)× n2 = O(n5). During the final pooling stage, the nodes are initially pooled into
subgraph representations, resulting in n×O(n2)×n = O(n4), where the first n denotes n subgraphs,
and the last n denotes n nodes within each subgraph. Subsequently, all subgraph representations are
further pooled into a graph-level representation, culminating in a complexity of O(n2)× n = O(n3),
where n represents n nodes. Consequently, the overall complexity amounts to O(n5).

D.2 THEORETICAL EXPRESSIVENESS WITH FINITE SUBGRAPH RADIUS AND DISTANCE
CUTOFF

While Theorem 5.1 establishes that infinite subgraph radius and distance cutoff guarantees com-
pleteness over all point clouds, this section explores how finite values can also enhance geometric
expressiveness compared to DisGNN. We demonstrate this through an example.

Take the left pair of point clouds in Figure 7 for example, and note that this pair of point clouds cannot
be distinguished by DisGNN even when taking fully-connected point cloud as input. Assuming
that the subgraph radius and distance cutoff for each node are finite, only covering nodes’ one-hop
neighbors, as illustrated in Figure 5. The representation of the green node produced by inner DisGNN
will differ between the two point clouds, due to the presence of long-distance information on the left
point cloud, whereas it is absent on the right point cloud. Therefore, GeoNGNN with such a small
subgraph radius and distance cutoff can easily distinguish the two point clouds.

Figure 5: An example that illustrates the separation power of finite-subgraph-size GeoNGNN. The
green node represents the central node, while the green sphere depicts the subgraph environment
surrounding the central node. The brown line signifies the distance information that will be aggregated
during the message passing.

E GEOMETRIC SUBGRAPH GRAPH NEURAL NETWORKS

In this section, we provide self-contained definitions of general geometric subgraph GNNs as
delineated in Definition 5.2 as well as definitions of the geometric counterparts of well-established
traditional subgraph GNNs, all of which are proven to be E(3)-complete under specific conditions.

E.1 BASIC DEFINITIONS

We first notice that the main definition of general geometric subgraph GNN is based on the general
definitions of subgraph GNNs in traditional graph settings from Zhang et al. (2023), where the input
graphs are unweighted graphs. The difference is that the geometric subgraph GNN is applied to point
clouds, treating it as distance graphs with distance cutoff rcutoff, and applies geometric aggregations.

We separately introduce the main components in Definition 5.2. From now on, we follow the notation
style of (Zhang et al., 2023), but for geometric settings.

We denote the original distance graph as G = (VG, EG), where VG = [n] contains all nodes in the
distance graph, and EG = {(u, v) | u, v ∈ VG, duv ≤ rcutoff} consists of all weighted edges with
weight (distance) less than rcutoff, by definition of the distance graph. We denote the subgraph of
node u as Gu = (VGu , EGu). We use NGv (u) to denote the set of neighbors of u in v’s subgraph,

30

Published as a conference paper at ICLR 2025

i.e., NGv (u) = {i | i ∈ VGv , (i, u) ∈ EGv}. We use h(l)
uv to denote the node embedding for node v in

node u’s subgraph at the l-th layer of the subgraph GNN.

Subgraph generation As defined in Definition 5.2, general geometric subgraph GNNs adopt node
marking with rsub-size ego subgraph as the subgraph generation policy. This essentially means that
node u’s subgraph, Gu = (VGu , EGu), contains all the nodes and edges within Euclidean distance
rsub, i.e., VGu = {i | i ∈ VG, diu ≤ rsub}, EGu = {(i, j) | (i, j) ∈ EG, i, j ∈ VGu}. And node v in
u’s subgraph’s initial representation is h(0)

uv = f init(1u=v, xu, xv), where 1u=v represents indicator
function that equals 1 when u = v and 0 otherwise, and xu, xv are the potential node features.

Geometric aggregation schemes As defined in Definition 5.2, geometric subgraph GNN adopts
general geometric subgraph GNN layers as the basic aggregation layer, which is formally defined as
follows:

Definition E.1. A general geometric subgraph GNN layer has the form

h(l+1)
uv = f (l+1)(h(l)

uv, op1(u, v, h
(l), G), · · · , opr(u, v, h(l), G)),

where f (l+1) is an arbitrary parameterized continuous function, and each atomic operation
opi(u, v, h,G) can take any of the following expressions:

• Single-point: hvu, huu, or hvv;

• Global: {{huw | w ∈ VG}} or {{hwv | w ∈ VG}};
• Local: {{(huw, dvw) | w ∈ NGu(v)}} or {{(hwv, duw) | w ∈ NGv (u)}}

Notice that h
(l)
uv is always in the input to ensure that geometric subgraph GNN

can always refine the node feature partition. These operations are denoted as
aggPuu, agg

P
vv, agg

P
vu, agg

G
u , agg

G
v ,Geoagg

L
u,Geoagg

L
v , respectively. Here, we color the local

operations with blue and name it with an additional “Geo” prefix since all the aggregation schemes
do not incorporate geometric information and are the same as those in Zhang et al. (2023), except for
the local operations, which additionally incorporates distance information.

Pooling layer After L geometric aggregation layers, geometric subgraph GNN outputs a graph-level
representation f(G) through a two-level pooling of the collected features {{h(L)

uv : u, v ∈ VG}} the
same as Zhang et al. (2023) do. Specifically, there are two approaches, named VS (vertex-subgraph
pooling) and SV (subgraph-vertex pooling). The first approach first pools all node features in each
subgraph Gu to obtain the subgraph representation, i.e., hu = fS

(
{{h(L)

uv | v ∈ VG}}
)

, and then

pools all subgraph representations to obtain the final output hG = fG({{hu | u ∈ VG}}). Here, fS

and fG can be any parameterized function. The second approach first generates node representations
hv = fV

(
{{h(L)

uv | u ∈ VG}}
)

, and then pools all these node representations to obtain the graph

representation, i.e., hG = fG({{hv | v ∈ VG}}).
We denote a general geometric subgraph GNN with L layers, each with aggregation scheme A =
B∪aggPuv, and with parameters rsub, rcutoff as GeoA(A,Pool, L, rsub, rcutoff), where Pool ∈ {VS,SV},
and

B ⊂ {aggPuu, aggPvv, aggPvu, aggGu , aggGv ,GeoaggLu,GeoaggLv}.

It is obvious that GeoNGNN without outer GNN, is a specific kind of general subgraph GNN, which
can be denoted as GeoA({aggPuv,GeoaggLu}, V S,Ninner, rsub, rcutoff).

E.2 GEOMETRIC COUNTERPARTS OF WELL-KNOWN TRADITIONAL SUBGRAPH GNNS

In the main body, we have extended one of the simplest subgraph GNNs, NGNN (Zhang & Li,
2021), to geometric scenarios, and shown that GeoNGNN is already E(3)-complete. Similar efforts
can be made to other well known subgraph GNNs, including DS-GNN (Bevilacqua et al., 2021),
DSS-GNN (Bevilacqua et al., 2021), GNN-AK (Zhao et al., 2021), OSAN (Qian et al., 2022) and so
on. We now give a general definition of the geometric counterparts of these subgraph GNNs, and

31

Published as a conference paper at ICLR 2025

show that they, even though does not exactly match the general forms in Definition 5.2, are also
E(3)-complete under exactly the same conditions as Theorem 5.3.

Similar to Zhang et al. (2023), we consider the following well-known subgraph GNNs: IDGNN (You
et al., 2021), DS-GNN (Bevilacqua et al., 2021), OSAN (Qian et al., 2022), GNN-AK (Zhao et al.,
2021), DSS-GNN (ESAN) (Bevilacqua et al., 2021), GNN-AK-ctx (Zhao et al., 2021), SUN (Frasca
et al., 2022). Generally, all these traditional subgraph GNNs involve local aggregations. In a manner
akin to the modification detailed in Definition 5.2, to get the geometric counterpart of these models,
we replace the node representations aggregated by local operations with node representations that
integrate the distances between the aggregated node and the base node (i.e., the node performing the
aggregation).

Notably, GNN-AK, GNN-AK-ctx, IDGNN, OSAN, DS-GNN, and DSS-GNN all employ base
GNNs, which can operate on graphs, subgraphs, or a combination of subgraphs (as in DSS-GNN).
In these cases, the proposed adjustment simply involves replacing these base GNNs with DisGNN.
In certain architectures like SUN, they may have more complicated operations, such as aggregating
{{hww′ | w′ ∈ N (v), w ∈ VG}} to update huv, which involve a combination of global (w) and
local (w′) aggregation. Consistent with the modification rule, we selectively incorporate distance
information solely for these local operations. Therefore, the featured geometric counterpart aggregates
{{(hw,w′ , dw′v) | w′ ∈ N (v), w ∈ VG}} instead. One can also incorporate distance information
into those global operations. However, they are unnecessary in terms of boosting expressiveness, as
current modifications are enough for them to achieve completeness, as shown in the following. We
name all the geometric counterparts with a Geo prefix, such as GeoSun.

Theorem E.2. (Completeness for geometric counterparts of well-known subgraph GNNs) Under the
node marking with rsub-size ego subgraph policy, when the conditions described in Theorem 5.3 are
met, GeoIDGNN, GeoDS-GNN, GeoOSAN, GeoGNN-AK, GeoDSS-GNN (ESAN), GeoGNN-AK-ctx,
GeoSUN are all E(3)-complete.

Proof. • Among these models, GeoIDGNN, GeoDS-GNN, GeoOSAN fall under the general
definition of geometric subgraph GNNs (see Definition 5.2), and they all incorporate at least
one local operation, therefore they are inherently complete given these conditions according
to Theorem 5.3 (See proof in Appendix B.5).

• Under node marking with original graph (rsub =∞) policy, the other models can all be well
abstracted and summarized, which have been done by Zhang et al. (2023). We list here for
convenience (non-blue parts represent the geometric modification):

GeoGNN-AK (Zhao et al., 2021).

h(l+1)
uv =



f (l)(h(l)
uv,

h(l)
vv ,

{{(h(l)
uw, dvw) : w ∈ NG(v)}})

if u ̸= v,

f (l)(h(l)
vv ,

{{(h(l)
uw, dvw) : w ∈ NG(v)}},

{{h(l)
uw : w ∈ VG}})

if u = v.

It adopts VS pooling.

GeoGNN-AK-ctx (Zhao et al., 2021). The GNN aggregation scheme can be written as

h(l+1)
uv =



f (l)(h(l)
uv,

h(l)
vv ,

{{(h(l)
uw, dvw) : w ∈ NG(v)}})

if u ̸= v,

f (l)(h(l)
vv ,

{{(h(l)
uw, dvw) : w ∈ NG(v)}},

{{h(l)
uw : w ∈ VG}},

{{h(l)
wv : w ∈ VG}})

if u = v.

32

Published as a conference paper at ICLR 2025

It adopts VS pooling.

GeoDSS-GNN (Bevilacqua et al., 2021). The aggregation scheme of DSS-GNN can be
written as

h(l+1)
uv = f (l)(h(l)

uv,

{{(h(l)
uw, dvw) : w ∈ NG(v)}},

{{h(l)
wv : w ∈ VG}},

{{(h(l)
w,w′ , dw′v) : w ∈ VG, w′ ∈ NG(v)}}).

It adopts VS pooling.

GeoSUN (Frasca et al., 2022). The WL aggregation scheme can be written as

h(l+1)
uv = f (l)(h(l)

uv, h
(l)
uu, h

(l)
vv ,

{{(h(l)
uw, dvw) : w ∈ NG(v)}},

{{h(l)
uw : w ∈ VG}},

{{h(l)
wv : w ∈ VG}},

{{(h(l)
w,w′ , dw′v) : w ∈ VG, w′ ∈ NG(v)}}).

It can adopt VS or SV pooling.

Regarding these models, it is observed that they all exhibit the local operation GeoaggLu , thus enabling
them to implement the GeoNGNN inner layer with a single aggregation layer, as demonstrated in the
proof of Theorem 5.3. Moreover, irrespective of whether they employ SV or VS pooling, they are all
capable of implementing VS pooling, which is adopted by GeoNGNN, as evidenced in the proof of
Theorem 5.3. Hence, under the given conditions, these models can also implement GeoNGNN under
the given conditions and consequently achieve completeness, as GeoNGNN itself is complete.

F EXTENDED EVALUATION OF GEONGNN

In this section, we further evaluate GeoNGNN on various datasets, including rMD17 (Chmiela
et al., 2017), which assesses the model’s ability to predict high-precision energy and forces based on
molecular conformations; MD22 (Chmiela et al., 2023), which requires models to efficiently handle
large point clouds; 3BPA (Kovács et al., 2021), which assesses the model’s ability to generalize
well on out-of-domain datasets; and QM9 (Ramakrishnan et al., 2014; Wu et al., 2018), which
contains diverse properties for evaluating the models’ universal learning capabilities. Please refer
to Appendix G for further model architecture and experimental settings.

Since GeoNGNN is built upon DisGNN, a direct comparison is made to DisGNN, which we
implement as an enhanced SchNet (Schütt et al., 2018) with additional residual layers. Additionally,
we include two other complete models: DimeNet (Gasteiger et al., 2019) and GemNet (Gasteiger et al.,
2021), as well as the recent advanced invariant model 2-F-DisGNN (Li et al., 2024). Furthermore, we
incorporate equivariant models that leverage vectors or higher-order tensors, including PaiNN (Schütt
et al., 2021), NequIP (Batzner et al., 2022), and MACE (Batatia et al., 2022).

Overall, GeoNGNN demonstrates good experimental results, and in some cases, performs comparably
to advanced models that incorporate equivariant high-order tensors, such as Allegro (Musaelian et al.,
2023), MACE (Batatia et al., 2022), and PaiNN (Schütt et al., 2021), on specific tasks. This validates
the effectiveness of capturing subgraph representations in molecular-relevant tasks, which may
provide even better inductive bias or generalization ability in this scenario than the design like
directional message passing in DimeNet (Gasteiger et al., 2019), which is also complete in our proof
yet did not catch up with GeoNGNN’s downstream performance.

However, it does not consistently achieve the best performance, which may be attributed to its simple
design, relying solely on distance features and the weak base GNN it employs. Therefore, future

33

Published as a conference paper at ICLR 2025

Table 2: MAE loss on revised MD17. Energy (E) is in kcal/mol, and force (F) is in kcal/mol/Å. The
best and second-best results are shown in bold and underline. Results for GeoNGNN are highlighted
in green if they outperform their base model, DisGNN, while models are grayed if they are our
characterized powerful models. The average rank is computed as the mean rank across all rows.

Equivariant models Invariant models
Molecule Target PaiNN NequIP MACE DisGNN 2F-Dis. DimeNet GemNet GeoNGNN

E 0.1591 0.0530 0.0507 0.1565 0.0465 0.1321 - 0.0502Aspirin F 0.3713 0.1891 0.1522 0.4855 0.1515 0.3549 0.2191 0.1720
E - 0.0161 0.0277 0.2312 0.0315 0.1063 - 0.0315Azobenzene F - 0.0669 0.0692 0.5050 0.1121 0.2174 - 0.1157
E - 0.0009 0.0092 0.0308 0.0013 0.0061 - 0.0014Benzene F - 0.0069 0.0069 0.2209 0.0085 0.0170 0.0115 0.0065
E 0.0623 0.0092 0.0092 0.0117 0.0065 0.0345 - 0.0074Ethanol F 0.2306 0.0646 0.0484 0.0774 0.0379 0.1859 0.0830 0.0482
E 0.0899 0.0184 0.0184 0.2814 0.0129 0.0507 - 0.0143Malonaldehyde F 0.3182 0.1176 0.0945 0.1661 0.0782 0.2743 0.1522 0.0875
E 0.1176 0.0208 0.0115 0.1269 0.0103 0.0445 - 0.0069Naphthalene F 0.0830 0.0300 0.0369 0.4144 0.0478 0.1105 0.0438 0.0377
E - 0.0323 0.0300 0.1534 0.0310 0.1176 - 0.0352Paracetamol F - 0.1361 0.1107 0.4698 0.1178 0.3028 - 0.1385
E 0.1130 0.0161 0.0208 0.0791 0.0174 0.0590 - 0.0168Salicylic acid F 0.2099 0.0922 0.0715 0.3481 0.0860 0.2428 0.1222 0.0881
E 0.0969 0.0069 0.0115 0.0918 0.0051 0.0228 - 0.0069Toluene F 0.1015 0.0369 0.0346 0.3070 0.0284 0.1085 0.0507 0.0375
E 0.1038 0.0092 0.0115 0.0363 0.0139 0.0338 - 0.0096Uracil F 0.1407 0.0715 0.0484 0.1973 0.0828 0.1634 0.0876 0.0577

AVG RANK 6.71 2.80 2.50 6.55 2.25 5.70 5.00 2.55

improvements could focus on integrating vectors (Schütt et al., 2021; Thölke & De Fabritiis, 2021) or
higher-order tensors (Thomas et al., 2018) into GeoNGNN’s base model, as these have been shown
to enhance model generalization (Du et al., 2024; Musaelian et al., 2023).

Nevertheless, GeoNGNN shows promise, leaving open opportunities for future research by incorporat-
ing more powerful base architectures within its nested framework to improve empirical performance,
or developing theoretically more powerful models analogous to its underlying principles.

F.1 MOLECULE STRUCTURE LEARNING: REVISED MD17

We first evaluate on the rMD17 dataset (Chmiela et al., 2017), which poses a substantial challenge to
models’ geometric learning ability. This dataset encompasses trajectories from molecular dynamics
simulations of several small molecules, and the objective is to predict the energy and atomic forces of
a given molecule conformation, which contains all atoms’ positions and atomic numbers.

The comprehensive results and comparison is shown in Table 2. There are several important observa-
tions: 1) GeoNGNN exhibits substantial improvements over DisGNN, demonstrating the effectiveness
of higher expressiveness and the significance of capturing subgraph representations on practical
tasks. 2) Though equally being E(3)-complete, with practical implements, DimeNet and GemNet
show worse performance than GeoNGNN. This finding suggests that different inductive biases of
different model designs can impact significantly on generalization ability, while learning more refined
subgraph representations like GeoNGNN may be superior to directional message passing in certain
molecule-relevant tasks. 3) GeoNGNN shows competitive performance in comparison to other
well-designed advanced models. However, it does not consistently achieve the best performance.

F.2 SCALING TO LARGE GRAPHS: MD22

Geometric models face challenges in scaling to larger point clouds. Here, we evaluate GeoNGNN on
MD22 (Chmiela et al., 2023), a dataset of molecules with up to 370 atoms. To enhance efficiency, we
apply GeoNGNN with a finite subgraph cutoff rsub (5 Å) and message passing cutoff rcutoff (5 Å), and
assess its practical performance.

In this table, we further include a recent SOTA model VisNet-LSRM (Li et al., 2023). As shown in
Table 3, GeoNGNN consistently outperforms DisGNN across all targets. It also delivers competitive

34

Published as a conference paper at ICLR 2025

Table 3: MAE loss on MD22. Energy (E) in meV/atom, force (F) in meV/Å. The best and the second
best results are shown in bold and underline. We color the cell if GeoNGNN outperforms DisGNN.
The average rank is the average of the rank of each row.

Equivariant models Invariant models
Mol # atoms Target sGDML PaiNN TorchMD-NET Allegro Equiformer MACE VisNet-LSRM DisGNN GeoNGNN

Ac-Ala3-NHMe 42 E 0.4 0.121 0.116 0.105 0.106 0.064 0.070 0.153 0.093
F 34 10.0 8.1 4.6 3.9 3.8 3.9 9.2 3.6

Docosahexaenoic acid 56 E 1 0.089 0.093 0.089 0.214 0.102 0.070 0.281 0.072
F 33 5.9 5.2 3.2 2.5 2.8 2.6 11.3 2.5

Stachyose 87 E 2 0.076 0.069 0.124 0.078 0.062 0.050 0.077 0.057
F 29 10.1 8.3 4.2 3.0 3.8 3.3 4.1 2.4

AT-AT 60 E 0.52 0.121 0.139 0.103 0.109 0.079 0.060 0.109 0.078
F 30 10.3 8.8 4.1 4.3 4.3 3.4 8.221 5.0

AT-AT-CG-CG 118 E 0.52 0.097 0.193 0.145 0.055 0.058 0.040 0.098 0.081
F 31 16.0 20.4 5.6 5.4 5 4.6 9.8 6.4

Buckyball catcher 148 E 0.34 - - - - 0.141 - 0.157 0.112
F 29 - - - - 3.7 - 17.6 4.3

Double-walled nanotube 370 E 0.47 - - - - 0.194 - 0.387 0.219
F 23 - - - - 12 - 12.3 10.6

AVG RANK 7.57 6.50 6.50 4.80 3.80 2.64 1.80 5.50 2.29

results compared to other SOTA models, including MACE and VisNet-LSRM, ranking 2nd on average.
These results demonstrate the effectiveness of subgraph enhancement in practical GeoNGNN with
finite configurations.

To explore how subgraph size affects experimental performance, we selected three molecules of
different representative scales and observed the effects, as depicted in Figure 6. As anticipated,
performance generally improves with increased subgraph size, roughly matching the improved
theoretical expressiveness. However, the rule does not always hold: there are cases where increasing
the subgraph size leads to degraded performance, which can be attributed to the potential noise and
redundant information. It implies that practically, there could exist a conflict between theoretical
expressiveness and experimental performance, and striking a balance between them is important.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Subgraph Size

0.10

0.15

0.20

0.25

En
er

gy
 E

rro
r

Ac
AT
Bu

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Subgraph Size

5

6

7

8

9

Fo
rc

e
Er

ro
r

Ac
AT
Bu

Figure 6: Effect of subgraph size for energy and force prediction on Ac-Ala3-NHMe, AT-AT and
Buckyball catcher in MD22. Subgraph size in Å, energy (E) in meV/atom, force (F) in meV/Å.

We further evaluated the inference time and GPU memory consumption of GeoNGNN and several
high-performance models. As shown in Table 4, GeoNGNN is more than 2x faster than MACE and
more than 8x faster than Equiformer, which both utilize high-order equivariant representations and
perform tensor products. Additionally, GeoNGNN demonstrates efficient memory usage, particularly
when compared to Equiformer. This could be attributed to the invariant representation and the simple
architecture GeoNGNN adopts.

F.3 GENERALIZATION ON OUT-OF-DOMAIN DATA: 3BPA

GeoNGNN has demonstrated remarkable expressiveness. However, higher expressiveness only
implies a better capability to fit data, and whether this leads to improved inductive bias and general-
ization power remains uncertain. Therefore, we conducted further evaluations of GeoNGNN on the
3BPA dataset (Kovács et al., 2021), which includes lots of out-of-domain data in its test set, providing

35

Published as a conference paper at ICLR 2025

Table 4: Efficiency Analysis of Models. The batch size for all molecules is set to 16, except for Bu
and Do where it is 4. Models marked with an asterisk (*) utilize a batch size of 8, except for Bu and
Do, which use a batch size of 2. The evaluation is conducted on Nvidia A100.

Molecule # atoms MACE Equiformer* GeoNGNN

Ac-Ala3-NHMe 42 0.166 0.305 0.070
13400 38895 12997

Docosahexaenoic acid 56 0.209 0.397 0.088
17875 51565 16980

Stachyose 87 0.388 OOM 0.161
33146 OOM 32430

AT-AT 60 0.195 0.361 0.083
17310 50032 15864

AT-AT-CG-CG 118 0.437 OOM 0.175
38090 OOM 34951

Buckyball catcher 148 0.183 0.382 0.074
14466 47702 13891

Double-walled nanotube 370 0.545 OOM 0.180
44923 OOM 36849

a good assessment of the generalization power of geometric models. The dataset comprises molecular
dynamic simulations of the molecule 3-(benzyloxy)pyridin-2-amine, with the training set consisting
of samples from the trajectory at 300K, and the test sets containing samples from trajectories at 300K,
600K, and 1200K.

Table 5: Root-mean-square errors (RMSE) on 3BPA. Energy (E) in meV, force (F) in meV/Å.
Standard deviations are computed over three runs.

NequIP Allegro MACE GeoNGNN

300K E 3.1±0.1 3.84±0.08 3±0.2 3.76±0.29
F 11.3±0.2 12.98±0.7 8.8±0.3 11.77±0.34

600K E 11.3±0.31 12.07±0.45 9.7±0.5 12.49±0.38
F 27.3±0.3 29.17±0.22 21.8±0.6 28.91±0.71

1200K E 40.8±1.3 42.57±1.46 29.8±1.0 44.82±0.88
F 86.4±1.5 82.96±1.77 62±0.7 89.62±1.58

Consistent with prior studies, we present the Root Mean Square Error for energy and force pre-
dictions, comparing GeoNGNN with MACE (Batatia et al., 2022), NequIP (Batzner et al., 2022),
and Allegro (Musaelian et al., 2023). The results are detailed in Table 5. GeoNGNN demonstrates
competitiveness with Allegro, an equivariant model equipped with high-order tensors for learning
local equivariant representations. However, when compared to the SOTA method MACE, GeoNGNN
exhibits relatively worse performance, especially under higher temperatures, which signifies a greater
distribution shift between the testing and training sets. This underscores that despite GeoNGNN’s
strong theoretical expressiveness, its generalization power may lag behind that of those well-designed
equivariant models. As stated in the main text Section 6, this discrepancy could potentially be
attributed to the fact that GeoNGNN only adopts invariant representations, whereas equivariant
representations could offer superior generalization abilities, particularly in sparse graph cases, as
demonstrated in Du et al. (2024).

F.4 HANDLING VARIOUS PROPERTY PREDICTIONS: QM9

Finally, we evaluate GeoNGNN on QM9 (Ramakrishnan et al., 2014; Wu et al., 2018), which contains
approximately 13k well-annotated small molecules, each paired with 12 properties to predict. The
results, shown in Table 6, indicate that GeoNGNN performs particularly well in energy-related
predictions, such as U0 and H .

36

Published as a conference paper at ICLR 2025

Table 6: MAE loss on QM9. The best and the second best results are shown in bold and underline. We
color the cell if GeoNGNN outperforms DisGNN. GeoNGNN demonstrates competitive performance
across all models and ranks first in terms of average ranking.

Target Unit SchNet PhysNet ComENet SphereNet 2F-Dis. PaiNN Torchmd DisGNN GeoNGNN
µ D 0.033 0.053 0.025 0.025 0.010 0.012 0.002 0.015 0.012
α a30 0.235 0.062 0.045 0.045 0.043 0.045 0.010 0.057 0.044

ϵHOMO meV 41.0 32.9 23.1 22.8 21.8 27.6 21.2 34.0 23.8
ϵLUMO meV 34.0 24.7 19.8 18.9 21.2 20.4 17.8 28.3 21.5
∆ϵ meV 63.0 42.5 32.4 31.1 31.3 45.7 38.0 45.2 33.3
⟨R2⟩ a20 0.073 0.765 0.259 0.268 0.030 0.066 0.015 0.160 0.046

ZPVE meV 1.7 1.39 1.20 1.12 1.26 1.28 2.12 1.88 1.4
U0 meV 14 8.15 6.59 6.26 7.33 5.85 6.24 9.60 5.29
U meV 19 8.34 6.82 6.36 7.37 5.83 6.30 9.88 5.35
H meV 14 8.42 6.86 6.33 7.36 5.98 6.48 9.82 5.35
G meV 14 9.40 7.98 7.78 8.56 7.35 7.64 11.06 7.04
cv cal/mol/K 0.033 0.028 0.024 0.022 0.023 0.024 0.026 0.031 0.023

AVG RANK 8.42 7.25 4.58 3.42 3.67 3.92 3.17 7.42 2.92

G EXPERIMENT SETTINGS

G.1 DATASET SETTINGS

Synthetic dataset We generate the synthetic dataset by implementing the counterexamples proposed
by Li et al. (2024).

The dataset includes 10 isolated cases and 7 combinatorial cases, where each case consists of a pair
of symmetric point clouds that cannot be distinguished by DisGNN. Figure 7 shows two pairs of
selected counterexamples, and more counterexamples are provided in Figure 8.

(a) (b)

Figure 7: Selected counterexamples in the synthetic dataset. Only colored nodes belong to the point
clouds. The grey nodes and “edges” are for visualization purposes only. (a) One isolated case. (b)
One combinatorial case.

The 10 isolated cases comprise the following: 6 pairs of point clouds sampled from regular dodecahe-
drons, 1 pair from icosahedrons, 2 pairs from a combination of one cube and one regular octahedron,
and 1 pair from a combination of two cubes. In the combination cases, the relative size is set to 1/2.

The 7 combinatorial cases are obtained through the augmentation of the 6 pairs of point clouds
sampled from regular dodecahedrons and 1 pair from icosahedrons, using the method outlined in
Theorem A.1 of Li et al. (2024). When augmenting the base point cloud, we consider the original,
complementary, and all types of the base graph (Li et al., 2024), respectively.

Given that the counterexamples are designed to test the maximal expressiveness of geometric models,
we configure all point clouds in the dataset to be fully connected.

rMD17 and MD22 The data split (training/validation/testing) in rMD17 is 950/50/the rest, follow-
ing related works such as Batatia et al. (2022); Gasteiger et al. (2021). For MD22, we adopt the data
split specified in Chmiela et al. (2023), which is also consistent with the other works. We train the
models using a batch size of 4.

To optimize the parameters θ of the model fθ, we use a weighted loss function:

L(X, z) = (1− ρ)|fθ(X, z)− t̂(X, z)|+ ρ

m

n∑
i=1

√√√√ 3∑
α=1

(−∂fθ(X, z)

∂xiα
− F̂iα(X, z))2,

37

Published as a conference paper at ICLR 2025

scale cube scale cube

scale cube scale cube

Figure 8: Pairs of point clouds that cannot be distinguished by DisGNN, taken from Li et al. (2024).
The nodes are arranged on the surfaces of regular polyhedra, only red or blue nodes are part of point
clouds; the grey nodes and the “edges” are included solely for vi- sualization purposes. For those
subfigures with two node colors, nodes of the same color in the left and right point clouds represent
one specific pair of indistinguishable point clouds by GeoNGNN. The label "Scale cube" signifies
that the relative sizes of the two regular polyhedra can vary arbitrarily. Each subfigure, except the
bottom-rightmost one, represents an isolated counterexample. The bottom-rightmost case illustrates a
combinatorial counterexample, constructed by combining multiple instances of the top-left pair in
an "origin-all-complementary" pattern. Comprehensive explanations of these counterexamples are
provided in Li et al. (2024).

where X ∈ Rn×3 and z ∈ R represents the n atoms’ coordinates and atomic number respectively, t̂
and F̂ represents the molecule’s energy and forces acting on atoms respectively. The force ratio ρ is
chosen as 0.99 or 0.999.

In rMD17, the experimental results of NequIP (Batzner et al., 2022), GemNet (Gasteiger et al.,
2021), are sourced from Musaelian et al. (2023). The result of PaiNN (Schütt et al., 2021) is sourced
from Batatia et al. (2022). The results of 2-F-DisGNN (Li et al., 2024) and MACE (Batatia et al.,
2022) are reported by their original papers. We trained and evaluated DimeNet (Gasteiger et al.,
2019) using its implementation in Pytorch Geometric (Fey & Lenssen, 2019) since the original paper
did not report results on this dataset, and we use the default parameters (We find that the default
parameters produce the best performance).

In MD22, the results of sGDML and MACE (Kovacs et al., 2023) are sourced from Kovacs et al.
(2023). The results of PaiNN (Schütt et al., 2021), TorchMD-Net (Thölke & De Fabritiis, 2021),
Allegro (Musaelian et al., 2023), and Equiformer (Liao & Smidt, 2022) are obtained from the work
presented by Li et al. (2023).

38

Published as a conference paper at ICLR 2025

3BPA Following Batatia et al. (2022), we split the training set and validation set at a ratio of 450/50,
utilizing pre-split test sets for evaluation. We use a batch size of 4, an identical objective function to
that in rMD17 and MD22, and a force ratio of 0.999 were employed. The results of all other models
are sourced from Batatia et al. (2022).

QM9 Following Li et al. (2024), we split the training set and validation set at a ratio of 110K/10K,
utilizing pre-split test sets for evaluation. We use a batch size of 32. See the following for details of
model hyper-parameters.

G.2 MODEL SETTINGS

RBF Following previous work, we use radial basis functions (RBF) f rbf
e : R→ RHrbf to expand

the euclidean distance between two nodes into a vector, which is shown to be beneficial for inductive
bias Gasteiger et al. (2019); Li et al. (2024). We use the same expnorm RBF function as Li et al.
(2024), defined as

f rbf
e (eij)k = e−βk(exp(−eij)−µk)

2

, (20)

where βk, µk are coefficients of the kth basis.

DisGNN In each stage of the DisGNN, we augment its expressiveness and experimental perfor-
mance by stacking dense layers or residual layers DisGNN’s architecture is described in Figure 9.

𝑧

Embedding

𝑠

𝑑

VD-Conv

VD-Conv

…
VD-Conv

RBF

𝑟𝑏𝑓

Output

𝑡
Vanilla DisGNN

𝑠!

∑!∈[$]

Residual

Residual

𝑡
Output

Dense*

Dense*

𝑠

+
𝑠

Residual

𝑠!𝑟𝑏𝑓!&

Linear

Residual

Residual

𝑠!

⨀

∑&∈$(!)

Residual

𝑚!&

ℎ!

⨀

VD-Conv

𝑠&

Residual

Residual Residual

Residual

Figure 9: Architecture of DisGNN. z, d, t represent the atomic number, euclidean distance and the
target output, respectively. Each Linear block represents an affine transformation with learnable
parameters W, b, while the Dense* block extends the Linear block by incorporating a non-linear
activation function (pre-activation). ⊙ represents Hadamard product.

We set the number of VD-Conv layers to 7 for rMD17 and 6 for MD22. The hidden dimension is set
to 512 and the dimension of radial basis functions (RBF) is set to 16. The message passing cutoff
is set to 13Å for rMD17 and 7Å for MD22. We employ the polynomial envelope with p = 6, as
proposed in Gasteiger et al. (2019), along with the corresponding cutoff.

NGNN GeoNGNN is based on the high-level framework of NGNN proposed in (Zhang & Li,
2021). NGNN learns over topological graphs by nesting a base GNN such as GCN (Kipf & Welling,
2016), GIN (Xu et al., 2018b), or GraphSAGE (Hamilton et al., 2017), as illustrated in Figure 10. For
completeness, we include formal descriptions provided in (Zhang & Li, 2021).

Formally, given a topological graph G = (V,E), where V = {1, 2, . . . , n} represents the set of
nodes and E ⊆ V × V represents the set of edges, NGNN first defines k-hop ego subgraphs Gv

k
for each node v ∈ V . Each k-hop ego subgraph Gv

k is induced by the nodes within k-hops from v
(including v itself) and the edges connecting these nodes.

39

Published as a conference paper at ICLR 2025

For each rooted subgraph Gw
k , NGNN applies a base GNN to perform T in-rounds of message passing.

Let v be any node appearing in Gw
k . Denote the hidden state of v at time t in subgraph Gw

k as ht
v,Gw

k
.

The initial hidden state h0
v,Gw

k
is typically set to the node’s raw features, such as embeddings of

atomic numbers. When explicit node marking is adopted, which is the default in GeoNGNN, h0
v,Gw

k

is further fused with a unique mark embedding to distinguish the root node within its subgraph.

After T in-rounds of message passing, a subgraph pooling operation aggregates the node embeddings
{{hT in

v,Gw
k
| v ∈ Gw

k }} into a single subgraph representation hGw
k

:

hGw
k
= Rsubgraph

(
{{hT in

v,Gw
k
| v ∈ Gw

k }}
)
,

where Rsubgraph is the subgraph pooling function that summarizes all node-level information within
the subgraph. This subgraph representation hGw

k
serves as the final representation of the root node w

in the original graph.

Subsequently, an outer GNN performs T out-rounds of message passing, obtaining the hidden repre-
sentation ht

v of node v at step t, where the initial representation is h0
v = hGv

k
. Finally, the graph-level

representation hG is produced:

hG = Rgraph

(
{{hT out

v | v ∈ V }}
)
,

where Rgraph is a global pooling function that aggregates node-level embeddings into a comprehensive
graph-level representation. This process enables NGNN to capture hierarchical representations of the
graph, leveraging both local (subgraph-level) and global (graph-level) features.

Figure 10: Illustration of NGNN (Zhang & Li, 2021), taken from (Zhang & Li, 2021). NGNN
operates by first extracting rooted subgraphs around each node in the original graph. A base GNN
with a subgraph pooling layer is then applied independently to each rooted subgraph to compute its
representation. The resulting subgraph representation serves as the original feature for the root node
in the original graph. Subsequently, an outer GNN is applied to the original graph, leveraging these
node features and original graph structures to extract final graph-level representations.

GeoNGNN GeoNGNN serves as the geometric counterpart to NGNN, operating on point clouds
rather than topological graphs in Figure 10. The high-level architecture of GeoNGNN is described in
the main body. The inner DisGNN, which runs on the ego subgraph of each node, is similar to the
DisGNN block shown in Figure 9. However, the inner DisGNN additionally performs node marking
and distance encoding for each node j in node i’s subgraph before passing their representations to
VD-Conv layers:

hij ← hj ⊙MLPs(RBF(dij))⊙MLPs(Emb(1j=i))) (21)
where hij represents node j’s representation in i’s subgraph.

The outer DisGNN additionally fuses the subgraph representation ti produced by the inner DisGNN
for node i with hi obtained from the embedding layer:

hi ← MLPs([hi, ti])) (22)

The hidden dimension and message passing cutoff are set to the same values as those in DisGNN.
The subgraph size is set to 13 Å for rMD17, 5 Å for MD22, 6 Å for 3BPA, 13 Å for QM9 and the

40

Published as a conference paper at ICLR 2025

maximal subgraph size is set to 25. We set (Nin, Nout) as (5, 2) for rMD17, (3, 3) for MD22, (6, 2)
for 3BPA and (4, 1) for QM9. It is worth mentioning that the total number of convolutional layers is
the same as that of DisGNN. This ensures that the receptive field of the two models is roughly the
same, thereby guaranteeing a relatively fair comparison.

We optimize all models using the Adam optimizer (Kingma & Ba, 2014), incorporating exponential
decay and plateau decay learning rate schedulers, as well as a linear learning rate warm-up. To mitigate
the risk of overfitting, we employ early stopping based on validation loss and apply exponential
moving average (EMA) with a decay rate of 0.99 to the model parameters during the validation and
testing phases. The models are trained on Nvidia RTX 4090 and Nvidia A100 (80GB) GPUs. For
rMD17, training hours for each molecule range from 20 to 70. For MD22, the training hours ranged
from 35 to 150 on Nvidia 4090 for all molecules except Stachyose (due to longer convergence time)
and Double-walled nanotube (the largest molecule necessitating an A100), which required about 210
and 70 GPU hours on the Nvidia 4090 and 80GB A100, respectively. For 3BPA, the training hours is
around 10 GPU hours on Nvidia 4090. For QM9, the training hour is around 36 to 100 on the Nvidia
4090.

H GEONGNN-C: SE(3)-COMPLETE VARIANT OF GEONGNN

H.1 DEFINITION AND THEORETICAL ANALYSIS OF GEONGNN-C

In certain chemical-related scenarios, it is important to guarantee that the outputs of models exhibit
invariance under permutations, transformations, and rotations of point clouds, while exhibiting
differentiation when the point cloud undergoes mere reflection. This distinction is crucial as
pairs of enantiomers, may demonstrate vastly contrasting properties, such as binding affinity. In
this section, we propose the SE(3)-complete invariant of GeoNGNN, which is capable of embracing
chirality and producing complete representations for downstream tasks.

Generally speaking, GeoNGNN-C is designed by simply replacing the undirected distance in
GeoNGNN with the directed distance. The formal definition is:
Definition H.1. The fundamental architecture of GeoNGNN remains the same, with the exception
that the inner GNN for node k’s subgraph performs the subsequent message-passing operation:

h
(l+1)
ki = fupdate(h

(l)
ki , {{(h

(l)
kj , dk,ij) | j ∈ Nk(i)}}),

where h(l)
ki represents node i’s representation at layer l in node k’s subgraph, and the directed distance,

dk,ij , is defined as:
dk,ij = fdist(sign(r⃗ci × r⃗cj · r⃗ck), dij),

where c is the geometric center of the point cloud.

As can be easily validated, directed distance is invariant under SE(3)-transformation while undergoing
a sign reversal after reflecting the point cloud. Consequently, GeoNGNN-C retains SE(3)-invariance
while possessing the potential to discriminate enantiomers. Significantly, we show that GeoNGNN-C
is SE(3)-complete, able to distinguish all pairs of enantiomers:
Theorem H.2. (SE(3)-Completeness of GeoNGNN-C) When the conditions described in Theorem 5.1
are met, GeoNGNN-C is SE(3)-complete.

Proof. We first note that the proof is highly similar to that in the proof of Theorem 5.1.

Let us consider a subgraph containing a node i, where we assume that i is distinct from the geometric
center c. By imitating the proof of Theorem 5.1, we can ascertain the following:

After three rounds of the Chiral DisGNN (i.e., the DisGNN that incorporates the directed distance as
a geometric representation as described in Definition H.1), node representations h(3)

j for any node
j can encode the directed distances dji, djc, and dic. This enables the completion of the triangular
distance encoding necessary for reconstruction in Lemma B.6.

Next, we employ a modified version of the proof from Lemma B.6 to demonstrate that with an
additional two rounds of the Chiral DisGNN, we can derive the SE(3)- and permutation-invariant
identifier of the point cloud P .

41

Published as a conference paper at ICLR 2025

In the proof of Lemma B.6, we first search across all the nodes to find two nodes a and b that form the
minimal dihedral angles θ(aic, bic), and then identifies the coordinates of a, b, i, c up to Euclidean
isometry from the all-pair distances D = {(m,n, dmn) | m,n ∈ {a, b, i, c}}. However, since Chiral
DisGNN embeds the geometry using directed distance, we now have Di = {(m,n, di,mn) | m,n ∈
{a, b, i, c}} instead. We are now able to identify the coordinates of a, b, i, c up to SE(3)-transformation
(i.e., Euclidean isometry without reflection) from Di in the following way:

1. Fix xi = (0, 0, 0).

2. Fix xc = (dic, 0, 0).

3. Fix xa in plane xOy+ and calculate its coordinates using dia, dca.

4. Calculate the coordinates of xb using dib, dcb, dab, and determine whether b is on z+ side
or z− side using the signal embedded in di,ab.

Note that the orientation relevant to SE(3) transformation is already determined at this stage. We
proceed with the remaining steps of the proof outlined in Lemma B.6 and reconstruct the whole
geometry in a deterministic way based on the known 4-tuple abic, and therefore reconstruct the whole
geometry up to permutation and SE(3)-transformation.

Similarly, note that such subgraphs i, where i is distinct from the geometric center c, always exist as
GeoNGNN-C traverses all node subgraphs. Hence, we have established the SE(3)-Completeness of
GeoNGNN-C.

H.2 EXPERIMENTAL EVALUATION OF GEONGNN-C

Datasets and tasks We evaluate the ability of GeoNGNN-C to distinguish enantiomers and learn
meaningful chirality-relevant representations through three tasks on two datasets (Adams et al., 2021;
Gaiński et al., 2023): 1) Classification of tetrahedral chiral centers as R/S. R/S offers a fundamental
measure of molecular chirality, and this classification task serves as an initial evaluation of the model’s
capacity to discriminate enantiomers. The underlying dataset contains a total of 466K conformers
of 78K enantiomers with a single tetrahedral chiral center. 2) Enantiomer ranking task and binding
affinity prediction task. The two tasks share the same underlying dataset, while the second task
requires models to predict the binding affinity value for each enantiomer directly, and the first requires
the model to predict which enantiomer between the corresponding pair exhibits higher such values.
Chirality is essential here because enantiomers often exhibit distinct behaviors when docking in a
chiral protein pocket, thus leading to differences in binding affinity. The underlying dataset contains
335K conformers from 69K enantiomers carefully selected and labeled by Adams et al. (2021).

Model architecture and training/evaluation details In the task of R/S classification, GeoNGNN-
C adopts a three-layer outer GNN positioned before the inner GNNs. This configuration is designed
to enhance the node features first, facilitating the subsequent extraction of chirality-related properties
within the inner GNNs. For the other two tasks, GeoNGNN-C consists of five inner layers and one
outer layer, with the outer GNN placed after the inner GNN. The model is trained with L1 loss.
Specifically, if predicted affinity difference between two enantiomers falls below the threshold of
0.001, it is considered that the model lacks the capability to discriminate between the two enantiomers.
Note that all the evaluation criteria are consistent with previous works Adams et al. (2021); Gaiński
et al. (2023) for fair comparisons.

Models to compare with We compare GeoNGNN-C against previous high-performance models,
SphereNet (Liu et al., 2021), ChiRo (Adams et al., 2021), ChiENN (Gaiński et al., 2023), and
other baseline models in (Pattanaik et al., 2020; Adams et al., 2021; Gaiński et al., 2023). It is
worth noting that, for the last two tasks, the docking scores are labeled at the stereoisomer level,
meaning that all different conformers of a given enantiomer are assigned the same label, specifically
the best score, by Adams et al. (2021). As a result, 2D Graph Neural Networks (GNNs) such as
DMPNN+tags and models that possess invariance to conformer-level transformations, such as
bond rotations, including ChiRo (Adams et al., 2021), Tetra-DMPNN (Pattanaik et al., 2020) and

42

Published as a conference paper at ICLR 2025

Table 7: Results on chiral-sensitive tasks compared to reference models. We bold the best result
among models and underline the second best ones.

R/S Enantiomer ranking Binding affinityModel Accuracy ↑ R. Accuracy ↑ MAE ↓
DMPNN+tags - 0.701±0.003 0.285±0.001

SphereNet 0.982±0.002 0.686±0.003 -
Tetra-DMPNN 0.935±0.001 0.690±0.006 0.324±0.02

ChIRo 0.968±0.019 0.691±0.006 0.359±0.009
ChiENN 0.989±0.000 0.760±0.002 0.275±0.003

GeoNGNN-C 0.980±0.002 0.751±0.003 0.254±0.000

ChiENN (Gaiński et al., 2023), inherently exhibit significantly better data efficiency and usually
exhibit better performance. GeoNGNN-C and SphereNet do not exhibit such invariance, and are
trained on 5 conformers for each enantiomer as data augmentation.

Results The experimental results for the three tasks are presented in Table 7. It can be observed
that GeoNGNN-C demonstrates a competitive performance compared to SOTA methods on the
R/S classification task. Importantly, despite the simple and general model design, GeoNGNN-C
outperforms models specifically tailored for the last two tasks, such as ChIRo and ChiENN, which
incorporates invariance to bond rotations. It successfully learns the approximate invariance from
only 5 conformers per enantiomer and achieves the second-best result (very close to the best one)
on the enantiomer ranking task and new SOTA results on the binding affinity prediction task. These
results reveal the potential of GeoNGNN-C as a simple but theoretically chirality-aware expressive
geometric model.

43

	Introduction
	Related Works
	Preliminary
	Notations and Definitions
	DisGNN

	How Powerful is DisGNN?
	On the Completeness of Invariant Geometric Models
	GeoNGNN: Breaking Symmetry Through Node Marking
	Completeness of Geometric Subgraph GNNs
	Completeness of Well-Established Invariant Models
	Summarization and Discussion

	Experiments
	Assessment of Unidentifiable Cases of DisGNN
	Separation Power on Synthetic Point Cloud Pairs

	Conclusion and Limitation
	Extended discussion of related work
	Proof of Main Conclusions in Main Body
	Measure of Symmetric and Unidentifiable Point Clouds
	Preparation for Reconstruction Proof
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	E(3)-completeness of DimeNet
	E(3)-completeness of SphereNet
	E(3)-completeness of GemNet

	Extended Analysis of DisGNN
	The Proper Subset Relation in Figure 1(b)
	Comparison to hordan2024complete
	Assessment of Unidentifiable Cases of DisGNN

	Extended Analysis of GeoNGNN
	Complexity Analysis
	Theoretical Expressiveness with Finite Subgraph Radius and Distance Cutoff

	Geometric Subgraph Graph Neural Networks
	Basic Definitions
	Geometric Counterparts of Well-Known Traditional Subgraph GNNs

	Extended Evaluation of GeoNGNN
	Molecule Structure Learning: revised MD17
	Scaling to Large Graphs: MD22
	Generalization on Out-of-Domain Data: 3BPA
	Handling Various Property Predictions: QM9

	Experiment Settings
	Dataset Settings
	Model Settings

	GeoNGNN-C: SE(3)-complete Variant of GeoNGNN
	Definition and Theoretical Analysis of GeoNGNN-C
	Experimental Evaluation of GeoNGNN-C

