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ABSTRACT

We study mini-batch stochastic gradient descent (SGD) dynamics under linear re-
gression and deep linear networks by focusing on the variance of the gradients
only given the initial weights and mini-batch size, which is the first study of this
nature. In the linear regression case, we show that in each iteration the norm of
the gradient is a decreasing function of the mini-batch size b and thus the vari-
ance of the stochastic gradient estimator is a decreasing function of b. For deep
neural networks with L2 loss we show that the variance of the gradient is a poly-
nomial in 1{b. The results theoretically back the important intuition that smaller
batch sizes yield larger variance of the stochastic gradients and lower loss function
values which is a common believe among the researchers. The proof techniques
exhibit a relationship between stochastic gradient estimators and initial weights,
which is useful for further research on the dynamics of SGD. We empirically pro-
vide insights to our results on various datasets and commonly used deep network
structures. We further discuss possible extensions of the approaches we build in
studying the generalization ability of the deep learning models.

1 INTRODUCTION

Deep learning models have achieved great success in a variety of tasks including natural language
processing, computer vision, and reinforcement learning (Goodfellow et al., 2016). Despite their
practical success, there are only limited studies of the theoretical properties of deep learning; see
survey papers (Sun, 2019; Fan et al., 2019) and references therein. The general problem underlying
deep learning models is to optimize (minimize) a loss function, defined by the deviation of model
predictions on data samples from the corresponding true labels. The prevailing method to train deep
learning models is the mini-batch stochastic gradient descent algorithm and its variants (Bottou,
1998; Bottou et al., 2018). SGD updates model parameters by calculating a stochastic approximation
of the full gradient of the loss function, based on a random selected subset of the training samples
called a mini-batch.

It is well-accepted that selecting a large mini-batch size reduces the training time of deep learning
models, as computation on large mini-batches can be better parallelized on processing units. For
example, Goyal et al. (2017) scale ResNet-50 (He et al., 2016) from a mini-batch size of 256 images
and training time of 29 hours, to a larger mini-batch size of 8,192 images. Their training achieves
the same level of accuracy while reducing the training time to one hour. However, noted by many
researchers, larger mini-batch sizes suffer from a worse generalization ability (LeCun et al., 2012;
Keskar et al., 2017). Therefore, many efforts have been made to develop specialized training pro-
cedures that achieve good generalization using large mini-batch sizes (Hoffer et al., 2017; Goyal
et al., 2017). Smaller batch sizes have the advantage of allegedly offering better generalization (at
the expense of a higher training time).

The focus of this study is on the behavior of SGD subject to the conditions on the initial point. This
is different from previous results which analyze SGD via stringing one-step recursions together. The
dynamics of SGD are not comparable if we merely consider the one-step behavior, as the model pa-
rameters change iteration by iteration. Therefore, fixing the initial weights and the learning rate can
give us a fair view of the impact of different mini-batch sizes on the dynamics of SGD. We hypoth-
esize that, given the same initial point, smaller sizes lead to lower training loss and, unfortunately,
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decrease stability of the algorithm on average. The latter follows from the fact that the smaller is
the batch size, more stochasticity and volatility is introduced. After all, if the batch size equals to
the number of samples, there is no stochasticity in the algorithm. To this end, we conjecture that
the variance of the gradient in each iteration is a decreasing function of the mini-batch size. The
conjecture is the focus of the work herein.

Variance correlates to many other important properties of SGD dynamics. For example, there is
substantial work on variance reduction methods (Johnson & Zhang, 2013; Allen-Zhu & Hazan,
2016; Wang et al., 2013) which show great success on improving the convergence rate by controlling
the variance of the stochastic gradients. Mini-batch size is also a key factor deciding the performance
of SGD. Some research focuses on how to choose an optimal mini-batch size based on different
criteria (Smith & Le, 2017; Gower et al., 2019). However, these works make strong assumptions on
the loss function properties (strong or point or quasi convexity, or constant variance near stationary
points) or about the formulation of the SGD algorithm (continuous time interpretation by means of
differential equations). The statements are approximate in nature and thus not mathematical claims.
The theoretical results regarding the relationship between the mini-batch size and the variance (and
other performances, like loss and generalization ability) of the SGD algorithm applied to general
machine learning models are still missing. The work herein partially addresses this gap by showing
the impact of the mini-batch size on the variance of gradients in SGD. We further discuss possible
extensions of the approaches we build in studying the generalization ability.

We are able to prove the hypothesis about variance in the convex linear regression case and to show
significant progress in a deep linear neural network setting with samples based on a normal distribu-
tion. In this case we show that the variance is a polynomial in the reciprocal of the mini-batch size
and that it is decreasing if the mini-batch size is larger than a threshold (further experiments reveal
that this threshold can be as small as 2). The increased variance as the mini-batch size decreases
should also intuitively imply convergence to lower training loss values and in turn better prediction
and generalization ability (these relationships are yet to be confirmed analytically; but we provide
empirical evidence to their validity).

The major contributions of this paper are as follows.

• For linear regression, we show that in each iteration the norm of any linear combination
of sample-wise gradients is a decreasing function of the mini-batch size b (Theorem 1).
As a special case, the variance of the stochastic gradient estimator and the full gradient at
the iterate in step t are also decreasing functions of b at any iteration step t (Theorem 2).
In addition, the proof provides a recursive relationship between the norm of gradients and
the model parameters at each iteration (Lemma 2). This recursive relationship can be used
to calculate any quantity related to the full/stochastic gradient or loss at any iteration with
respect to the initial weights.

• For the deep linear neural network with L2-loss and samples drawn from a normal distribu-
tion, we take two-layer linear network as an example and show that in each iteration step t
the trace of any product of the stochastic gradient estimators and weight matrices is a poly-
nomial in 1{b with coefficients a sum of products of the initial weights (Theorem 3). As a
special case, the variance of the stochastic gradient estimator is a polynomial in 1{bwithout
the constant term (Theorem 4) and therefore it is a decreasing function of b when b is large
enough (Theorem 5). The results and proof techniques can be easily extended to general
deep linear networks. As a comparison, other papers that study theoretical properties of
two-layer networks either fix one layer of the network, or assume the over-parameterized
property of the model and they study convergence, while our paper makes no such assump-
tions on the model capacity. The proof also reveals the structure of the coefficients of the
polynomial, and thus serving as a tool for future work on proving other properties of the
stochastic gradient estimators.

• The proofs are involved and require several key ideas. The main one is to show a more
general result than it is necessary in order to carry out the induction. The induction is on
time step t. The key idea is to show a much more general result that lets us carry out
induction. New concepts and definitions are introduced in order to handle the more general
case. Along the way we show a result of general interest establishing expectation of several
rank one matrices sampled from a normal distribution intertwined with constant matrices.
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• We verify the theoretical results on various datasets and provide further understanding. We
further empirically show that the results extend to other widely used network structures and
hold for all choices of the mini-batch sizes. We also empirically verify that, on average, in
each iteration the loss function value and the generalization ability (measured by the gap
between accuracy on the training and test sets) are all decreasing functions of the mini-
batch size.

In conclusion, we study the dynamics of SGD under linear regression and a two-layer linear net-
work setting by focusing on the decreasing property of the variance of stochastic gradient estimators
with respect to the mini-batch size. The proof techniques can also be used to derive other properties
of the SGD dynamics in regard to the mini-batch size and initial weights. To the best of authors’
knowledge, the work is the first one to theoretically study the impact of the mini-batch size on the
variance of the gradient subject to the conditions on the initial weights, under mild assumptions on
the network and the loss function. We support our theoretical results by experiments. We further
experiment on other state-of-the-art deep learning models and datasets to empirically show the va-
lidity of the conjectures about the impact of mini-batch size on average loss, average accuracy and
the generalization ability of the model.

The rest of the manuscript is structured as follows. In Section 2 we review the literature while in
Section 3 we present the theoretical results on how mini-batch sizes impact the variance of stochastic
gradient estimators, under different models including linear regression and deep linear networks.
Section 4 introduces (part of) the experiments that verify our theorems and provide further insights
into the impact of the mini-batch sizes on SGD performance. We defer the complete experimental
details to Appendix A and the proofs of the theorems and other technical details to to Appendix B.

2 LITERATURE REVIEW

Stochastic gradient descent type methods are broadly used in machine learning (Bottou, 1991; Le-
Cun et al., 1998; Bottou et al., 2018). The performance of SGD highly relies on the choice of the
mini-batch size. It has been widely observed that choosing a large mini-batch size to train deep
neural networks appears to deteriorate generalization (LeCun et al., 2012). This phenomenon exists
even if the models are trained without any budget or limits, until the loss function value ceases to
improve (Keskar et al., 2017). One explanation for this phenomenon is that large mini-batch SGD
produces “sharp” minima that generalize worse (Hochreiter & Schmidhuber, 1997; Keskar et al.,
2017). Specialized training procedures to achieve good performance with large mini-batch sizes
have also been proposed (Hoffer et al., 2017; Goyal et al., 2017).

It is well-known that SGD has a slow asymptotic rate of convergence due to its inherent variance
(Johnson & Zhang, 2013). Variants of SGD that can reduce the variance of the stochastic gradient
estimator, which yield faster convergence, have also been suggested. The use of the information of
full gradients to provide variance control for stochastic gradients is addressed in Johnson & Zhang
(2013); Roux et al. (2012); Shalev-Shwartz & Zhang (2013). The works in Lei et al. (2017); Li
et al. (2014); Schmidt et al. (2017) further improve the efficiency and complexity of the algorithm
by carefully controling the variance.

There is prior work focusing on studying the dynamics of SGD. Neelakantan et al. (2015) propose
to add isotropic white noise to the full gradient to study the “structured” variance. The works in Li
et al. (2017); Mandt et al. (2017); Jastrzebski et al. (2017) connect SGD with stochastic differential
equations to explain the property of converged minima and generalization ability of the model.
Smith & Le (2017) propose an “optimal” mini-batch size which maximizes the test set accuracy
by a Bayesian approach. The Stochastic Gradient Langevin Dynamics (SGLD, a variant of SGD)
algorithm for non-convex optimization is studied in Zhang et al. (2017); Mou et al. (2018).

In most of the prior work about the convergence of SGD, it is assumed that the variance of stochastic
gradient estimators is upper-bounded by a linear function of the norm of the full gradient, e.g.
Assumption 4.3 in Bottou et al. (2018). Gower et al. (2019) give more precise bounds of the variance
under different sampling methods and Khaled & Richtárik (2020) extend them to smooth non-convex
regime. These bounds are still dependent on the model parameters at the corresponding iteration.
To the best of the authors’ knowledge, there is no existing result which represents the variance of
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stochastic gradient estimators only using the initial weights and the mini-batch size. This paper
partially solves this problem.

3 ANALYSIS

Mini-batch SGD is a lighter-weight version of gradient descent. Suppose that we are given a loss
function Lpwq where w is the collection (vector, matrix, or tensor) of all model parameters. At each
iteration t, instead of computing the full gradient ∇wLpwtq, SGD randomly samples a mini-batch
set Bt that consists of b “ |Bt| training instances and sets wt`1 Ð wt ´ αt∇wLBtpwtq, where the
positive scalar αt is the learning rate (or step size) and ∇wLBtpwtq denotes the stochastic gradient
estimator based on mini-batch Bt.
An important property of the stochastic gradient estimator ∇wLBtpwtq is that it is an unbiased
estimator, i.e. E∇wLBtpwtq “ ∇wLpwtq, where the expectation is taken over all possible choices of
mini-batch Bt. However, it is unclear what is the value of var p∇wLBtpwtqq fi E }∇wLBtpwtq}

2
´

}E∇wLBtpwtq}
2. Intuitively, we should have var p∇wLBtpwtqq 9

n2

b var p∇wLpwtqq, where n
is the number of training samples and stochasticity on the right-hand side comes from mini-batch
samples behind wt (Smith & Le, 2017; Gower et al., 2019). However, even the quantities∇wLpwtq
and var p∇wLpwtqq are still challenging to compute as we do not have direct formulas of their
precise values. Besides, as we choose different b’s, their values are not comparable as we end up
with different wt’s.

A plausible idea to address these issues is to represent E∇wLBtpwtq and var p∇wLBtpwtqq using
the fixed and known quantities w0, b, t, and αt. In this way, we can further discover the properties,
like decreasing with respect to b, of E∇wLBtpwtq and var p∇wLBtpwtqq. The biggest challenge is
how to connect the quantities in iteration t with those of iteration 0. This is similar to discovering
the properties of a stochastic differential equation at time t given only the dynamics of the stochastic
differential equation and the initial point.

In this section, we address these questions under two settings: linear regression and a deep linear
network. In Section 3.1 with a linear regression setting, we provide explicit formulas for calcu-
lating any norm of the linear combination of sample-wise gradients. We therefore show that the
var p∇wLBtpwtqq is a decreasing function of the mini-batch size b. In Section 3.2 with a deep linear
network setting and samples drawn from a normal distribution, we show that any trace of the product
of weight matrices and stochastic gradient estimators is a polynomial in 1{b with finite degree. We
further prove that var p∇wLBtpwtqq is a decreasing function of the mini-batch size b ą b0 for some
constant b0.

For a random matrix M , we define var pMq fi E }vecpMq}2´}EvecpMq}2 where vecpMq denotes
the vectorization of matrixM . We denote rm : ns fi tm,m`1, . . . , nu ifm ď n, andH otherwise.
We use rns fi r1 : ns as an abbreviation. For clarity, we use the superscript b to distinguish the
variables with different choices of the mini-batch size b. In each iteration t, we use Bbt to denote
the batch of samples (or sample indices) to calculate the stochastic gradient. We denote by Fbt the
filtration of information before calculating the stochastic gradient in the t-th iteration, i.e. Fbt fi
 

w0,Bb0, . . . ,Bbt´1

(

.

3.1 LINEAR REGRESSION

In this subsection, we discuss the dynamics of SGD applied in linear regression. Given data points
px1, y1q, ¨ ¨ ¨ , pxn, ynq, where xi P Rp and yi P R, we define the loss function to be Lpwq “
1
n

řn
i“1 Lipwq “

1
n

řn
i“1

1
2

`

wTxi ´ yi
˘2

, where w P Rp are the model parameters. We consider
minimizingLpwq by mini-batch SGD. Note that the bias term in the general linear regression models
is omitted, however, adding the bias term does not change the result of this section. Formally, we first
choose a mini-batch size b and initial weights w0. In each iteration t, we sample Bbt , a subset of rns
with cardinality b, and update the parameters bywbt`1 “ wbt´αtg

b
t , where gbt “

1
b

ř

iPBbt
∇Li

`

wbt
˘

.

We first show the relationship between the variance of stochastic gradient gbt and the full gradient
∇L

`

wbt
˘

and sample-wise gradient ∇Li
`

wbt
˘

, i P rns, derived by considering all possible choices
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of the mini-batch Bbt . Readers should note that Lemma 1 actually holds for all models with L2-loss,
not merely linear regression (since in the proof we do not need to know the explicit form of Lipwq).

Lemma 1. Let cb fi n´b
bpn´1q ě 0. For any matrix A P Rpˆp we have var

`

Agbt
ˇ

ˇFbt
˘

“

E
”

›

›Agbt
›

›

2
ˇ

ˇ

ˇ
Fbt

ı

´
›

›A∇L
`

wbt
˘
›

›

2
“ cb

´

1
n

řn
i“1

›

›A∇Li
`

wbt
˘
›

›

2
´
›

›A∇L
`

wbt
˘
›

›

2
¯

.

Lemma 1 provides a bridge to connect the norm and variance of gbt with sample-wise gradients
∇Li

`

wbt
˘

, i P rns. Therefore, if we can further discover the properties of ∇Li
`

wbt
˘

, i P rns, we
are able to calculate the variance of gbt . Lemma 2 addresses this problem by showing the relationship
between any linear combination of∇Li

`

wbt
˘

’s and∇Li
`

wbt´1

˘

’s.

Lemma 2. For any set of square matrices tA1, ¨ ¨ ¨ , Anu P Rpˆp, if we denote A “
řn
i“1Aixix

T
i , then we have E

”

›

›

řn
i“1Ai∇Li

`

wbt`1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

“ E
”

›

›

řn
i“1Bi∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

`

α2
t cb
n2

řn
k“1

řn
l“1 E

”

›

›

řn
i“1B

kl
i ∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

, where Bi “ Ai ´
αt
n A; Bkli “ A if i “ k, i ‰ l,

Bkli “ A if i “ l, i ‰ k, and Bkli equals the zero matrix, otherwise.

Lemma 2 provides the tool to reduce the iteration t by one. Therefore, we can easily use it to recur-
sively calculate the norm of any linear combinations of the sample-wise gradients, for all iterations
t. Combining the fact that cb is a decreasing function of b, we are able to show Theorem 1.

Theorem 1. For any t P N and any matrices Ai P Rpˆp, i P rns, E
”

›

›

řn
i“1Ai∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is

a decreasing function of b for b P rns.

Theorem 1 states that the norm of any linear combinations of the sample-wise gradients is a de-
creasing function of b. Combining Lemma 1 which connects the variance of gbt with the linear
combination of∇Li

`

wbt
˘

’s, and the fact that∇L
`

wbt
˘

“ 1
n

řn
i“1∇Li

`

wbt
˘

, we have Theorem 2.

Theorem 2. Fixing initial weightsw0, both var
`

Bgbt
ˇ

ˇF0

˘

and var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

are decreasing
functions of mini-batch size b for all b P rns, t P N, and all square matrices B P Rpˆp.

As a special case, Corollary 1 guarantees that the variance of the stochastic gradient estimator is a
decreasing function of b.

Corollary 1. Fixing initial weights w0, both var
`

gbt
ˇ

ˇF0

˘

and var
`

∇L
`

wbt
˘
ˇ

ˇF0

˘

are decreasing
functions of mini-batch size b for all b P rns and t P N.

In conclusion, we provide a framework for calculating the explicit value of variance of the stochastic
gradient estimators and the norm of any linear combination of sample-wise gradients. We further
show that the variance of both the full gradient and the stochastic gradient estimator are a decreasing
function of the mini-batch size b. Readers should note that the framework here is not limited to
showing the decreasing property of the variance, but can also be used in many other circumstance.
For example, we can use Lemma 2 to induct on t and easily show that E

”

›

›

řn
i“1Ai∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is a polynomial of 1
b with degree at most t and estimate the coefficients therein.

3.2 DEEP LINEAR NETWORKS WITH ONLINE SETTING

In this section, we study the dynamics of SGD on deep linear networks. We take the two-layer
linear network as an example while the results and proofs can be easily extended to deep lin-
ear network with any depth (see Appendix B.3 for more details). We consider the population
loss Lpwq “ Ex„N p0,Ipq

”

1
2 }W2W1x´W

˚
2 W

˚
1 x}

2
ı

under the teacher-student learning frame-

work (Hinton et al., 2015) with w “ pW1,W2q a tuple of two matrices. Here W1 P Rp1ˆp
and W2 P Rp2ˆp1 are parameter matrices of the student network and W˚

1 and W˚
2 are the fixed

ground-truth parameters of the teacher network. We use online SGD to minimize the population
loss Lpwq. Formally, we first choose a mini-batch size b and initial weight matrices tW0,1,W0,2u.
In each iteration t, we draw b independent and identically distributed samples xt,i, i P rbs from
N p0, Ipq to form the mini-batch Bbt and update the weight matrices by W b

t`1,1 “W b
t,1´αtg

b
t,1 and
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W b
t`1,2 “W b

t,2 ´ αtg
b
t,2, where

g
b
t,1 “

1

b

b
ÿ

i“1

∇
Wb
t,1

ˆ

1

2

›

›

›
W
b
t,2W

b
t,1xt,i ´W

˚
2 W

˚
1 xt,i

›

›

›

2
˙

“
1

b

b
ÿ

i“1

W
b
t,2

T
´

W
b
t,2W

b
t,1 ´W

˚
2 W

˚
1

¯

xt,ix
T
t,i, (1)

g
b
t,2 “

1

b

b
ÿ

i“1

∇
Wb
t,2

ˆ

1

2

›

›

›
W
b
t,2W

b
t,1xt,i ´W

˚
2 W

˚
1 xt,i

›

›

›

2
˙

“
1

b

b
ÿ

i“1

´

W
b
t,2W

b
t,1 ´W

˚
2 W

˚
1

¯

xt,ix
T
t,iW

b
t,1

T
. (2)

The derivation follows from the formulas in Petersen & Pedersen (2012). In the following, we use
Wb
t “W b

t,2W
b
t,1´W

˚
2 W

˚
1 to denote the gap between the product of model weights and ground-truth

weights.

For ease of developing our proofs, we first introduce the definition of a multiplicative term in Def-
inition 1. Intuitively, a multiplicative term is a matrix which equals to the product of its parameter
matrices and constant matrices (and their transpose). The degree of a matrix A in a multiplicative
term M is the number of appearance of A and AT in M . The degree of M is exactly the number of
appearances of all weight matrices in M .

Definition 1. For any set of matrices S, we denote sS “ S Y tMT : M P Su. Given a set of
parameter matrices X “ tX1, X2, ¨ ¨ ¨ , Xnvu and constant matrices C “ tC1, C2, ¨ ¨ ¨ , Cncu, we
say that a matrix M is a multiplicative term of parameter matrices X and constant matrices C
if it can be written in the form of M “ MpX , Cq “

śk
i“1Ai, where Ai P sX Y sC. We write

degpXj ;Mq “
řk
i“1

`

1 tXj “ Aiu ` 1
 

Xj “ ATi
(˘

, j P rnvs as the degree of parameter matrix
Xj in M , degpCj ;Mq “

řk
i“1

`

1 tCj “ Aiu ` 1
 

Cj “ ATi
(˘

, j P rncs as the degree of constant
matrix Cj in M , and degpMq “

řk
i“1 1

 

Ai P sX
(

“
řnv
j“1 degpXj ;Mq as the total degree of the

parameter matrices of M .

As pointed out in the Section 1, the difficulty of studying the dynamics of SGD is how to connect the
quantities in iteration twith fixed variables, like initial weightsW0,1,W0,2 and mini-batch size b. We
overcome this challenge by carefully calculating the relationship between gbt`1,i and gbt,i, i “ 1, 2 so
that we can reduce the iteration t step by step. With the help of Lemmas 8 and 9 in Appendix B.2,
we can represent gbt`1,i, i “ 1, 2 using multiplicative terms of gbt,i, i “ 1, 2 and some other constant
matrices. Theorem 3 precisely gives the representation in the form of a polynomial of 1

b and the
coefficients as the sum of multiplicative terms of parameter matrices

 

W b
0,1,W

b
0,2

(

and constant
matrices tW˚

1 ,W
˚
2 u.

Theorem 3. Given t ě 0, for any multiplicative terms Mi, i P r0 :ms of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree di, respectively, we denote
M “

śm
i“1 tr pMiqM0, d “

řm
i“0 di and d1 “

řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

. There
exists a set of multiplicative terms

 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter matrices
 

W b
0,1,W

b
0,2

(

and constant matrices tW˚
1 ,W

˚
2 u such that E rM |F0s “ N0 `N1

1
b ` ¨ ¨ ¨ `Nq

1
bq ,

where Nk “
řmk
i“1

śmki
j“1 tr

`

Mk
ij

˘

Mk
i0, k P r0 : qs. Here mk,mki and q ď 1

2 p3
t`1 ´ 1qd` 1

2 p3
t ´

1qd1 are constants independent of b, and
řmki
j“0 deg

`

Mk
ij

˘

ď 3tp3d` d1q.

As a special case of Theorem 3, Theorem 4 shows that the variance of the stochastic gradient esti-
mators is also a polynomial of 1

b but with no constant term. This backs the important intuition that
the variance is approximately inversely proportional to the mini-batch size b. Besides, note that if
we consider bÑ8, intuitively we should have var

`

gbt,i
ˇ

ˇF0

˘

Ñ 0, i “ 1, 2. This observation aligns
with the statement of Theorem 4.

Theorem 4. Given t ě 0, value var
`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2 can be written as a polynomial of 1
b with

degree at most 2 ¨ 3t with no constant term. Formally, we have var
`

gbt,i
ˇ

ˇF0

˘

“ β1
1
b ` ¨ ¨ ¨ ` βr

1
br ,

where r ď 2 ¨ 3t`1 and each βi is a constant independent of b.

One should note that the polynomial representation of var
`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2 does not have the
constant term. Therefore, to show the that the variance is a decreasing function of b, we only need
to show that the leading coefficient β1 is non-negative. This is guaranteed by the fact that variance
is always non-negative. We therefore have Theorem 5.
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Theorem 5. Given t P N, there exists a constant b0 such that for all b ě b0 function
var

`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2 is a decreasing function of b.

The constant b0 is the largest root of the equation β1b
r´1 ` β2b

r´2 ` ¨ ¨ ¨ ` βr “ 0. See the proof
of Theorem 5 in Appendix B.2 for more details. Although we cannot calculate the precise value of
b0, we verify that b0 is smaller than 1 in many experiments. From the proofs we conclude that the
scale of each βi is of the order O p}M}q, where M is a multiplicative term of parameter matrices
tW0,1,W0,2,W

˚
1 ,W

˚
2 u and constant matrixH with degree 2 ¨ 3t`1.

Unlike the linear regression setting where we can iteratively calculate the variance by Lemma 2, the
closed form expressions for the variance of the stochastic gradients in the deep linear network setting
are much harder to calculate. However, we are able to iteratively deducing t one by one and provide
a polynomial representation for any multiplicative terms of parameter matrices

 

gbt,i,W
b
t,i, i “ 1, 2

(

and constant matrices tW˚
1 ,W

˚
2 u using only the initial weights W0,1,W0,2 and the mini-batch size

b. As we further study the polynomial representation of var
`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2, we are also able to
show the decreasing property of the variance of stochastic gradient estimators with respect to b.

4 EXPERIMENTS

In this section, we present numerical results to support the theorems in Section 3 and provide further
insights into the impact of the mini-batch size on the dynamics of SGD. The experiments are con-
ducted on four datasets and models that are relatively small due to the computational cost of using
large models and datasets. We only report the results on the MNIST dataset here due to the limited
space. A complete empirical study is deferred in Appendix A.

For all experiments, we perform mini-batch SGD multiple times starting from the same initial
weights and following the same choice of the learning rates and other hyper-parameters, if applica-
ble. This enables us to calculate the variance of the gradient estimators and other statistics in each
iteration, where the randomness comes only from different samples of SGD.

4.1 RESULTS ON MNIST DATASET

The MNIST dataset is to recognize digits in handwritten images of digits. We use all 60,000 training
samples and 10,000 validation samples of MNIST. We build a three-layer fully connected neural
network with 1024, 512 and 10 neurons in each layer. For the two hidden layers, we use the ReLU
activation function. The last layer is the softmax layer which gives the prediction probabilities for
the 10 digits. We use mini-batch SGD to optimize the cross-entropy loss of the model. The model
deviates from our analytical setting since it has non-linear activations, it has the cross-entropy loss
function (instead of L2), and empirical loss (as opposed to population). MNIST is selected due to
its fast training and popularity in deep learning experiments. The goal is to verify the results in this
different setting and to back up our hypotheses.

(a) Different initial weights (b) Log of loss (c) Log of error (d) Gap of accuracy (zoomed-in)

Figure 1: Experimental results for the MNIST dataset. (a) The median, min, and max of the log of variance of
the stochastic gradient estimators for two different mini-batch sizes (distinguished by colors) and five different
initial weights. The solid lines show the median of all five initial weights while the highlighted regions show
the min and max of the log of variance. (b) The log of the training and validation loss vs epochs. (c) The log of
training and validation error vs epochs. Here error is defined as one minus predicting accuracy. The plot does
not show the epochs if error equals to zero. (d) The gap of accuracy on training and test sets vs epochs starting
from epoch 100.
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As shown in Figure 1(a), we run SGD with two batch sizes 64 and 128 on five different initial
weights with 50 runs for each initial point. This plot shows that, even the smallest value of the
variance among the five different initial weights with a mini-batch size of 64, is still larger than the
largest variance of mini-batch size 128. We observe that the sensitivity to the initial weights is not
large. This plot also empirically verifies our conjecture in the introduction that the variance of the
stochastic gradient estimators is a decreasing function of the mini-batch size, for all iterations of
SGD in a general deep learning model.

In addition, we also conjecture that there exists the decreasing property for the expected loss, error
and the generalization ability with respect to the mini-batch size. Figure 1(b) shows that the expected
loss (again, randomness comes from different runs of SGD through the different mini-batches with
the same initial weights and learning rates) on the training set is a decreasing function of b. However,
this decreasing property does not hold on the validation set when the loss tends to be stable or
increasing, in other words, the model starts to be over-fitting. We hypothesize that this is because
the learned weights start to bounce around a local minimum when the model is over-fitting. As the
larger mini-batch size brings smaller variance, the weights are closer to the local minimum found
by SGD, and therefore yield a smaller loss function value. Figure 1(c) shows that both the expected
error on training and validation sets are decreasing functions of b.

Figure 1(d) exhibits a relationship between the model’s generalization ability and the mini-batch
size. As suggested by Simard et al. (2013), we build a test set by distorting the 10,000 images of the
validation set. The prediction accuracy is obtained on both training and test sets and we calculate
the gap between these two accuracies every 100 epochs. We use this gap to measure the model
generalization ability (the smaller the better). Figure 1(d) shows that the gap is an increasing function
of b starting at epoch 500, which partially aligns with our conjecture regarding the relationship
between the generalization ability and the mini-batch size. We test this on multiple choices of the
hyper-parameters which control the degree of distortion in the test set and this pattern remains clear.

5 SUMMARY AND FUTURE WORK

We examine the impact of the mini-batch size on the dynamics of SGD. Our focus is on the variance
of stochastic gradient estimators. For linear regression and a two-layer linear network, we are able to
theoretically prove that the variance conjecture holds. We further experiment on multiple models and
datasets to verify our claims and their applicability to practical settings. Besides, we also empirically
address the conjectures about the expected loss and the generalization ability.

A challenging research direction is to theoretically investigate the impact of the mini-batch size on
the generalization ability. There are existing works studying the relationship between the variance
of the stochastic gradients and the generalization ability (Gorbunov et al., 2020; Meng et al., 2016).
Together with the tools developed herein, it would be possible to bridge the mini-batch size with the
generalization ability of a neural network. We can further choose an optimal mini-batch size which
minimizes the generalization ability by solving the polynomial equation if we have more precise
estimations of the coefficients.

Another appealing direction is using our variance estimations to develop better variance reduction
methods. As a results, the upper-bound of the variance decides the convergent rate of these al-
gorithms. Researchers usually assume a much larger upper-bound at each iteration, like a linear
function of the norm of the full gradient. With the help of our techniques, we should calculate the
variance more precisely and further improve the algorithms.

Further interesting work is to extend our techniques to more complicated and sophisticated networks.
Although the underlying model of this paper corresponds to deep linear network networks, we are
able to show a deeper relationship between the variance and the mini-batch size, the polynomial in
1{b, while the common knowledge is simply that the variance is proportional to 1{b. The extension to
other optimization algorithms, like Adam and Gradient Boosting Machines, are also very attractive.
We hope our theoretical framework can serve as a tool for future research of this kind.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the Institute of Electrical and Electronics Engineers, 86
(11):2278–2324, 1998.

9



Under review as a conference paper at ICLR 2021
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