Under review as a conference paper at ICLR 2021

A EXPERIMENTS

In this section, we present numerical results to support the theorems in Section [3] to backup the
hypotheses discussed in the introduction, and provide further insights into the impact of the mini-
batch size on the dynamics of SGD. The experiments are conducted on four datasets and models
that are relatively small due to the computational cost of using large models and datasets.

Remark: We cannot present the complete numerical results in the main paper due to the space limit.
Therefore, we move the whole experimental section to Appendix. In order to keep a smooth reading,
some of the content is overlapping with Section {4

A.1 DATASETS AND SETTINGS

For all experiments, we perform mini-batch SGD multiple times starting from the same initial
weights and following the same choice of the learning rates and other hyper-parameters, if applica-
ble. This enables us to calculate the variance of the gradient estimators and other statistics in each
iteration, where the randomness comes only from different samples of SGD. The learning rate v is
selected to be inversely proportional to iteration ¢, or fixed, depending on the task at hand.

All models are implemented using PyTorch version 1.4 (Paszke et al., 2019)) and trained on NVIDIA
2080Ti/1080 GPUs. We have also tested several other random initial weights and ground-truth
weights, and learning rates, and the results and conclusions are similar and not presented.

A.1.1 GRADUATE ADMISSION DATASET

The Graduate Admission datasetﬂ (Acharya et al.} [2019) is to predict the chance of a graduate ad-
mission using linear regression. The dataset contains 500 samples with 6 features and is normalized
by mean and variance of each feature. This is a popular regression dataset with clean data. We build
a linear regression model to predict the chance of acceptance (we include the intercept term in the
model) and minimize the empirical Lo loss using mini-batch SGD, as stated in Section [3.1]

For the experiment in Figure 2Ja), we randomly select an initial weight vectors w and run SGD for
2,000 iterations where it appears to converge. We record all statistics at every iteration. There are in
total 1,000 runs behind each observation which yields a p-value lower than 0.05. As for Figure 2{b),
we select 20 different b’s and run SGD from the same initial point for 40 iterations. There are in total
of 200,000 runs to make sure the p-value of all statistics are lower than 0.05. In all experiments, the
learning rate is chosen to be oy = 2%, t € [2000] because this rate yields a theoretical convergence
guaranteed (factor 1/2 has been fine tuned). The purpose of this experiment is to empirically study
the rate of decrease of the variance. The theoretical study exhibited in Section [3.1] establishes the

non-increasing property but it does not state anything about the rate of decrease.

A.1.2 SYNTHETIC DATASET

We build a synthetic dataset of standard normal samples to study the setting in Section [3.2] We
fix the teacher network with 64 input neurons, 256 hidden neurons and 128 output neurons. We
optimize the population Ly loss by updating the two parameter matrices of the student network
using online SGD, as stated in Section [3.2] In this case we have proved the functional form of the
variance as a function of b and show the decreasing property of the variance of the stochastic gradient
estimators for large mini-batch sizes. However, we do not show the decreasing property for every b.
With this experiment we confirm that the conjecture likely holds. In the experiment, we randomly
select two initial weight matrices W 1, Wy 2 and the ground-truth weight matrices W7*, W5. We
run SGD for 1,000 iterations which appears to be a good number for convergence while there are
1,000 runs of SGD in total to again give a p-value below 0.05. We record all statistics at every
iteration. The learning rate is chosen to be oz = t € [1000] for the same reason as in the
regression experiment.
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A.1.3 MNIST DATASET

The MNIST dataset is to recognize digits in handwritten images of digits. We use all 60,000 training
samples and 10,000 validation samples of MNIST. The images are normalized by mapping each
entry to [—1,1]. We build a three-layer fully connected neural network with 1024, 512 and 10
neurons in each layer. For the two hidden layers, we use the ReLU activation function. The last
layer is the softmax layer which gives the prediction probabilities for the 10 digits. We use mini-
batch SGD to optimize the cross-entropy loss of the model. The model deviates from our analytical
setting since it has non-linear activations, it has the cross-entropy loss function (instead of Ls), and
empirical loss (as opposed to population). MNIST is selected due to its fast training and popularity
in deep learning experiments. The goal is to verify the results in this different setting and to back up
our hypotheses.

We run SGD for 1,000 epochs on the training set which is enough for convergence. The learning
rate is a constant set to 3 - 1072 (which has been tuned). For the experiment in Figure [5| there are
in total 100 runs to give us the p-value below 0.05. For the experiment in Figure [d(a), we randomly
select five different initial points and we have 50 runs for each initial point. For the experiment
corresponding to Figure [4[b), we choose o = 8 and o = 2 as in[Simard et al| (2013). The initial
weights and other hyper-parameters are chosen to be the same as in Figure [5]

A.1.4 YELP REVIEW DATASET

The Yelp Review dataset from the Yelp Dataset Challenge (Zhang et al., 2015)) contains 1,569,264
samples of customer reviews with positive/negative sentiment labels. We use 10,000 samples as our
training set and 1,000 samples as the validation set. We use XLNet (Yang et al., 2019) to perform
sentiment classification on this dataset. Our XLNet has 6 layers, the hidden size of 384, and 12
attention heads. There are in total 35,493,122 parameters. We intentionally reduce the number of
layers and hidden size of XLNet and select a relatively small size of the training and validation sets
since training of XLNet is very time-consuming (Yang et al.|(2019) train on 512 TPU v3 chips for
5.5 days) and we need to train the model for multiple runs. This setting allows us to train our model
in several hours on a single GPU card. We train the model using the Adam weight decay optimizer,
and some other techniques, as suggested in Table 8 of [Yang et al.| (2019). This dataset represents
sequential data where we further consider the hypotheses.

We randomly select a set of initial parameters and run Adam with two different mini-batch sizes of
32 and 64. For computational tractability reasons, for each mini-batch size there are in total of 100
runs and each run corresponds to 20 epochs. We record the variance of the stochastic gradient, loss
and accuracy in every step of Adam. The statistics reported in Figure [6] are averaged through each
epoch. In all experiments, the learning rate is set to be 4 - 10~° and the € parameter of Adam is set to
be 1078 (these two have been tuned). The stochastic gradients of all parameter matrices are clipped
with threshold 1 in each iteration. We use the same setup for the learning rate warm-up strategy as
suggested in [Yang et al.[(2019). The maximum sequence length is set to be 128 and we pad the
sequences with length smaller than 128 with zeros.

A.2 DISCUSSION

As observed in Figure[2{a), under the linear regression setting with the Graduate Admission dataset,
the variance of the stochastic gradient estimators and full gradients are all strictly decreasing func-
tions of b for all iterations. This result verifies the theorems in Section Figure 2[b) further
studies the rate of decrease of the variance. From the proofs in Sectionﬂa see that var (gi7 ’]—'0)
is a polynomial of % with degree ¢ + 1. Therefore, for every ¢, we can approximate this polynomial
by sampling many different b’s and calculate the corresponding variances. We pick b to cover all
numbers that are either a power of 2 or multiple of 40 in [2, 500] (there are a total of 21 such values)
and fit a polynomial with degree 6 (an estimate from the analyses) at t = 10, 20, 30, 40. Figure[2(b)
shows the fitted polynomials. As we observe, the value var (gf|.7-"o) (approximated by the value of
the polynomial) is both decreasing with respect to the mini-batch size b and iteration ¢. Further, the
rate of decrease in b is slower as the b increasing. This provides a further insight into the dynamics
of training a linear regression problem with SGD.
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Figure 2: Experimental results for the Graduate Admission dataset. Left: log (var (g7|Fo)) and

log (var (VL(w,lf7 ) |.7-'0)) vs iteration ¢ for 4 different mini-batch sizes. Right: The log of polynomial val-
ues when fitting polynomials on selected mini-batch sizes at certain iterations.
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Figure 3: Experimental results for the Synthetic dataset. Left:  log (var (g71]70))
and log (var (VWIL'(Wtb,l, Wtb,z) ‘fo)) vs iteration t. Right: log (var (gf,2|.7-'0)) and

log (var (Vw, L(W{1, W{2) | Fo)) vs iteration ¢.

Under the two-layer linear network setting with the synthetic dataset, Figure [3] verifies that the
variance of the stochastic gradient estimators and full gradients are all strictly decreasing functions
of b for all iterations. This figure also empirically shows that the constant by in Theorem [3 could
be as small as by = 4. In fact, we also experiment with the mini-batch size of 1 and 2, and the
decreasing property remains to hold. We also test this on multiple choices of initial weights and
learning rates and this pattern remains clear.

In aforementioned two experiments we use SGD in its original form by randomly sampling mini-
batches. In deep learning with large-scale training data such a strategy is computationally prohibitive
and thus samples are scanned in a cyclic order which implies fixed mini-batches are processed
many times. Therefore, in the next two datasets we perform standard “epoch” based training to
empirically study the remaining two hypotheses discussed in the introduction (decreasing loss and
error as a function of b) and sensitivity with respect to the initial weights. Note that we are using
cross-entropy loss in the MNIST dataset and the Adam optimizer in the Yelp dataset and thus these
experiments do not meet all of the assumptions of the analysis in Section 3]

As shown in Figure Eka), we run SGD with two batch sizes 64 and 128 on five different initial
weights. This plot shows that, even the smallest value of the variance among the five different
initial weights with a mini-batch size of 64, is still larger than the largest variance of mini-batch size
128. We observe that the sensitivity to the initial weights is not large. This plot also empirically
verifies our conjecture in the introduction that the variance of the stochastic gradient estimators is
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Figure 4: Experimental results for the MNIST dataset. Left: The median, min, and max of the log of variance
of the stochastic gradient estimators for two different mini-batch sizes (distinguished by colors) and five dif-
ferent initial weights. The solid lines show the median of all five initial weights while the highlighted regions
show the min and max of the log of variance. Right: The gap of accuracy on training and test sets vs epochs

starting from epoch 100.
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Figure 5: Experimental results for the MNIST dataset. Left: The log of the training and validation loss vs
epochs. Right: The log of training and validation error vs epochs. Here error is defined as one minus predicting
accuracy. The plot does not show the epochs if error equals to zero.

18850 1 —— batch size 64

—— batch size 32

18840 08
18830

18820

Average variance
Average loss

18810

18800

—— batch size 64; train
—— batch size 32; train -
~ = batch size 64; validation -=7 -
~ = batch size 32; validation

Average error

0.00

~—— batch size 64; train

=~ batch size 32; train

— = batch size 64; validation
\ —— batch size 32; validation

2 4 6 8 10

Epochs

12 14 16 18 20

(a) Variance of stochastic gradients

0o 2 4 6 8 10

Epochs

12 14

(b) Training and validation loss

o 2 a 6 8 10

Epochs

12

(c) Training minus validation error

Figure 6: Experimental results for the XLNet model on the Yelp dataset. Left: The variance of stochastic
gradient estimators vs epochs. Middle: The training and validation loss vs epochs. Right: The training and

validation error vs epochs.

a decreasing function of the mini-batch size, for all iterations of SGD in a general deep learning

model.

In addition, we also conjecture that there exists the decreasing property for the expected loss, error
and the generalization ability with respect to the mini-batch size. Figure[5{a) shows that the expected
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loss (again, randomness comes from different runs of SGD through the different mini-batches with
the same initial weights and learning rates) on the training set is a decreasing function of b. However,
this decreasing property does not hold on the validation set when the loss tends to be stable or
increasing, in other words, the model starts to be over-fitting. We hypothesize that this is because
the learned weights start to bounce around a local minimum when the model is over-fitting. As the
larger mini-batch size brings smaller variance, the weights are closer to the local minimum found
by SGD, and therefore yield a smaller loss function value. Figure[5(b) shows that both the expected
error on training and validation sets are decreasing functions of b.

Figure [{b) exhibits a relationship between the model’s generalization ability and the mini-batch
size. As suggested by (Simard et al.,[2013), we build a test set by distorting the 10,000 images of the
validation set. The prediction accuracy is obtained on both training and test sets and we calculate
the gap between these two accuracies every 100 epochs. We use this gap to measure the model
generalization ability (the smaller the better). Figure[d(b) shows that the gap is an increasing function
of b starting at epoch 500, which partially aligns with our conjecture regarding the relationship
between the generalization ability and the mini-batch size. We also test this on multiple choices of
the hyper-parameters which control the degree of distortion in the test set and this pattern remains
clear.

Figure [6] shows the similar phenomenon that the variance of stochastic estimators and the expected
loss and error on both training and validation sets are decreasing functions of b even if we train
XLNet using Adam. This example gives us confidence that the decreasing properties are not merely
restricted on shallow neural networks or vanilla SGD algorithms. They actually appear in many
advanced models and optimization methods.

B LEMMAS AND PROOFS

B.1 LEMMAS AND PROOFS OF RESULTS IN SECTION [3.1]

For two matrices A, B with the same dimension, we define the inner product (A, B) = tr (ATB).

Lemma 3. Suppose that f(x) and g(x) are both smooth, non-negative and decreasing functions of
x € R. Then h(z) = f(x)g(z) is also a non-negative and decreasing function of x.

Proof. 1t is obvious that h(x) is non-negative for all z. The first-order derivative of h is

W(z) = f(x)g(x) + f(x)g'(z) <0,

and thus h(z) is also a decreasing function of z. O

Proof of Lemmall} Throughout the paper, We use Ck = #lk)' to denote the combinatorial num-
ber. Note that
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For any A € RP*P, we have
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Therefore, we have

var (Agt|F}) = E [[Agt|”| ! | - [E [Agh| 7]
—E[|agt|’| 7] - |AVL (w})[”

<o (23w () - Jave b)),

Lemma 4. For any set of square matrices {Ay, -+ , A, } € RP*P, if we denote A =Y | Ajz;al,
then we have
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Here By = A; — % A; BF = Aifi=k,i# 1, BF¥ = Aifi =1,i # k, and B¥" equals the zero
matrix, otherwise.
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Proof of Lemma] Let C; = z;2l and C = 13" | C;. For the given Ay, ..., A,, we denote
A=3" | A,C;. Then we have
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Proof of Theorem[I} We use induction to show this statement.

When ¢ = 0, [HZ?:l AL (wh) HQ)JEO] — |57, A;VL; (wo)|* which is invariant of b. There-
fore, it is a decreasing function of b.
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Suppose the statement holds for ¢. For any set of matrices {Ay, ..., A,} in RP*?, by Lemma we
know that there exist matrices {By,- -+ , B, } and { B} : i, k,1 € [n]} such that
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By induction, we know that E [HZZ;l B;VL; (w}) Hzl}"o] and all E [HZZ;l BFVL; (w}) HQ‘}"@]

ale,  ai(n=b)
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and decreasing function of b. By Lemma we know that 1 E [szzl BFIVL; (wy) Hz)fo] is

n2

are non-negative and decreasing functions of b. Besides, clearly is a non-negative

also a non-negative and decreasing function of b. Finally, E [HZLl A; VL, (wi’ +1) “2‘]__0], as the

sum of non-negative and decreasing functions in b, is a non-negative and decreasing function of b.

O

In order to prove Theorem 2] we split the task to two separate theorems about the full gradient and
the stochastic gradient and prove them one by one.

Theorem 6. Fixing initial weights wq, var (BVL (wf) |.7-"0) is a decreasing function of mini-batch
size bforall b € [n], t € N, and all square matrices B € RP*P.

Theorem 7. Fixing initial weights w, var (B a? !}'0) is a decreasing function of mini-batch size b
forallb e [n], t € N, and all square matrices B € RP*P.

Proof of Theorem[6] We induct on ¢ to show that the statement holds. For ¢ = 0, we have
var (BVL (w}) |[Fo) = 0 for any matrix B. Suppose the statement holds for ¢ — 1 > 0. Note
that from
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we have
var (BVL (wf) | 7o)
=var (BVL (wi7 ) — a;BCgl_, |]-'0)
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where (@) is by Lemma [I] By induction, we know that the first term of (@) is a decreasing function
of b. Taking A; = BC,A; = —BC, A, = 0,k € [n]\{7, j} in Theorem |1} we know that

[HBCVL (wh_,) — BOVL; (w!_,) ﬂfo]

is also a decreasing function of b. Note that an°b decreases as b increases. By Lemmal 3[ we learn
that (4) is a decreasing function of b and hence we have completed the induction.

O
Proof of Theorem[7} We have
war (Bt ) = % [| B 5] ~ [E [Bat1 o]

— & [&[|Bg |72 || %] - [E [E [Bot |1 7]

= (i Z E[|BVL: (w)['|7o] - B[|BVE (wf)||2\fo]>
VE[IBVEL (w))[*| o] - |E [BYL (w})|5]

S E 1BV L: (w}) = BYL; (w}) | Fo| + var (BVE (u}) | 7).
1#]
Taking A; = B, Aj = —B, Ay, = 0,k € [n]\{i, j} in Theorem 1} we know that
E||BVL: (w}) - BVL; (u}) |7

is a decreasing and non-negative function of b for all 4,j € [n]. By Theorem |§|, we know that
var (BVL (w?) |Fo) is also a decreasing function of b. Therefore, var (Bg? | Fo), as the sum of two
decreasing functions of b, is also a decreasing function of b.
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Proof of Corollary[l} Simply taking B = I,, in Theorem|T]yields the proof. O

B.2 PROOFS FOR RESULTS IN[3.2]

Remark. We often rely on the trivial facts that z123 = 21,2 and 2123 2327 = 2127 [, 527

Lemma 5. Given a multiplicative term of parameter matrices {ulvlT cu,v; € RP G € [ng] } u{4;:
Aj € RPXP_j € [na]} and constant matrix {I,,} such that deg(uiv; M) > 1, we have

tr (M) = v M'uy,

where M’ is a multiplicative term of parameter matrices {ulva tuq,v; ERPGTE [nl]} U
{A;: A; e RP*P j e [ng]} and constant matrix {I} such that deg(M) = deg(M') +
1,deg(A;; M) = deg(Aj; M'),j € [na],deg(uvl; M) = deg(uvl;M'),i € [2:n1] and
deg(uyvl; M) = deg(uvi; M') + 1.

Proof. By the definition of multiplicative terms, we know that there exist two multiplicative terms
My, M, of parameter matrices {u;v] : u;,v; € RP i€ [n1]} U {A; : Aj € RP*P j € [no]} and
constant matrix {I,,} such that

M = MlulvfMg,

where deg(M) = deg(My) + deg(Mg) + 1,deg(A;; M) = deg(A;; My) + deg(A;; Ma),j €
[n2], deg(u;vl; M) = deg(u;vl; My) + deg(uvl Mg) i € [2:n] and deg(uivi; M) =
deg(uyv?; My) + deg(uvf ,Mg) + 1. Therefore we have
tr (M) = tr (Mlulv{Mg) =tr (U,{'MQMlU,l) = ’U{MQMlul.

Note that M’ = MyM; satisfies that deg(M’) = deg(M) + deg(My), deg(A M) =
deg(Ay: My) + deg(A;: Ms). j € o], deg(usos M) = deg(ues M) + des(u?: Mo). i
[2:n1] and deg(uiv]; M) = deg(uivi; M) —|— deg(uyvl ,Mg) + 1. We have ﬁmshed the
proof. O

The following two lemmas focus on the expectation of the product of quadratic forms of the standard
normal samples. Lemma 6] focuses on single sample while 7] focuses on the same form with b i.i.d.
samples drawn from the standard normal distribution.

Lemma 6. Given matrices A; € RP*P_j e [m — 1], we have

Ny, ni
T T
Ez~/\/((),1p) [3?1‘ Ayxz” Ay Ape 1l‘$ = Z H M) M,

where N,, and n;,i € [N,,] are constants depending on m and {M;y, k € [0:n;],i € [Ny,]}
are multiplicative terms of parameter matrices {A;, j € [m — 1]} and constant matrix {I,}. Fur-
thermore, for every i € [Ny,], we have Y ;" deg(A;; M;,) = 1,j € [m — 1] and therefore

Sk gdeg (M) =m — 1.
Proof. See Magnus|(1978). O

Lemma 7. We are given matrices A; € RP*?, j € [m — 1] and random vectors x;,i € [b] indepen-
dently and identically drawn from N (0, I,). We assume that the multi-set S = {ij, iiij€ [m]}

satisfies that for every i € S, i is an element of [b] and the number of appearance of i in S is even.
Then

N

U2
Eri~N(O,IP) [l‘“.’lﬁ i Alng-r ity Ag - Ay 1L, Ly ] Z H tI‘ Mo, @)
i=1k=1

where N,,, and n; are constants depending on m (and independent of b) and M, k € [0:n;],i €
[N ] are multiplicative terms of parameter matrices {A;, j € [m — 1]} and constant matrix {I,,}.
Furthermore, for every i € [N,,], we have > ;"  deg(A;; M) = 1,5 € [m — 1] and therefore
/IL
Lodeg (M) =m — 1.
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Proof. Let (3;,4 € [b] be the number of appearances of i in S, which are even by assumption. We
induct on the quantity N = Z?zl 1{8; # 0}.

For the base case of N = 1, all elements in the multi-set S have the same value. Without loss of
generality, we assume i; = i’; = 1, j € [m]. Then

T T T T T T
Ey,~n0,1,) [xilxillAlxig i Am1Ti, ién] = Euyon(o,1,) 7121 Arzya] - A _yzyay |,
which is the statement of Lemmal[@l
Suppose the statement holds for N > 1, and we consider the case of N + 1. Note that 27, A; Ti;, =

J
11;+1ij¢; is a scalar so that we can move it around without changing the value of the expressiorﬂ

We distinguish two cases.

T

e Leti; # ¢/ . Without loss of generality, we assume i; = 1. We can always change the
order of z;; Ajx;,,,,j € [m — 1] (and flip it to be IiTHliji; if necessary) such that all
i '

x1’s appear in the form of z27:

T T T T T T
xill‘illAlxi2xil2A2 s Am—lximxi'm =X (.’I}i/lAlxiz.Ti/QAQ s Am—ll‘im) Q’Ji/m

T

-/
m

= xlxlTAlxlxlTAg e A%l_ xlxlTA%l%x

where ¥ € {z;,i € [b]},T # 1 and A;’s are multiplicative terms of parameter matri-
ces {zuxl : u,v € [2:b]} U {A;:j€[m— 1]} and constant matrix {I,} such that

B1 ~ B1 ~
D ve[2:b] 2akm1 deg(z,zl; Ay) = m— % —land ), deg(A;; Ay) = 1,5 € [m— 1]

Applying Lemma|[6]and the law of iterative expectations, we have

T T T TF TF T
Ey~n(0,1,) [%%31‘11%% - 'Am—lxz‘m%;n] =Kz [wlwl Arzizy Ap - Ay

Nm ny
= E@z,... T l(z H tr (MZ‘ ) Mi()) A%%xz/:n

i=1k=1
m n;

-

= > By, | | | ] tr (Mir) Mg Ag Ty,
i=1 k=1

where NV, and n; are constant depending on m (and independent of b) and M,k €
[0:n;],4 € [Ny;,] are multiplicative terms of parameter matrices {/TJ, je [% - 1]} and
constant matrix {I,,}. Furthermore, for every i € [N,,], we have >, deg(ﬁj; M) =
1,5 € [2 — 1] and therefore 3} deg (M;x) = 21 —

Combining the definition of A;’s, we know that My, k € [0: n;] ,i € [N,,] are multiplica-
tive terms of parameter matrices {z, 2L : u,v € [2:b]} U{4; : j € [m — 1]} and constant

2For example, we can rewrite
xilwiTllAlxizxiTéAgxi?’mi =z (IZ; Alxiz) [a:z/;Agmig] 3312 =z, |:ZBZ;A21'¢3:| (Z‘Z;Alxlé) :Bz;
= x;, [xlT/z <miT/1A1x¢2) Azxig} CCz/; =T [%2142 (xz:lAlfig) Iis] SUZ/;
3For example, we can rewrite
$1$5A1$1$?A2$333§A3$1$2 =T (nglwl) |:${A2$3:| {I?Ag.%‘l} T2 = I1 (LE?AﬂEQ) [$5A2$1] {LE{A:;:IZ’:;} o
=I1ITA11‘25L‘§A21L‘1${A31'31'2 = I1I?g1w11‘{22‘%1‘27

where Al = Alzrzzrg,TAQ, /Tg = As and T = x3. Besides, m = 4, 81 = 4, thus the degree of xu:ch in all Ek
sum up to m — %1 -1=1
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matrix {I,} such that for every i € [Ny,], we have 35, 1o St deg(zuals Mix) =
m———landz odeg(Aj; M) = 1,7 € [m —1].
Applying Lemma [5| for every k € [0:n;] and every i € [N,,], there exists u;x, vir €

{z;:7€[2:b]} and multiplicative term M, of parameter matrices {z,zl : wu,v
[2:b]} U {A, : j € [m — 1]} and constant matrix {I,,} such that

m

tr (Mlk) = ULkM kVik-

Therefore, we have

Uz

ng
T ¥ T T .
<H tr (M, ) A/sl Fal i n M}, vik) Z()Aﬁl Taj = ZOA71 H (ui, M vr) zy = U;.

Note that for every ¢ € [V, ], we have
Z o(z;; A Z deg(z;; Mj),) + deg(z;; Myo) + deg ( gil) + deg(z4; T) + deg (xl,xg ) ,
s

and for every j € [m — 1], we have

> deg(Aj; Mj,) + deg(Aj; Mig) + deg (A ﬁ%)
—1
In other words, for every i e [N,n], U; has the form of

Aoy af, Avay ad - Ay qa;  xf Ay but there is no appearance of x;.  Here
A A

T
T; T € {z;,j€[2:b]}, and A;,i € [0:m] are multiplicative terms of parameter
matrices {A;,j € [m — 11} and constant matrix {I,,}. Furthermore, for every j € [m — 1],
we have > ;" deg(A;; A;) = 1. Note that here we use the liberty of adding identity
matrices if more than two consecutive z’s appear. Since we have reduced N + 1 by

one, we can use induction on a:;lm% Ala%a:;T, +++Apm_1m; xl and finish the proof.
1 2 m m

The two constant matrices ﬁo and /Tm do not change the result of expectation since

E (ﬁoxﬁm,) = AgE(X) A,

e If i3 = 4/ , without loss of generality we assume, 7j = 1 and i} # i; (note that all

zl Ajxi;, ., j € [m — 1] are inter-changeable and there is at least one element in S that
J

is not equal to 4;). We change the orders of xz; Ajxi; ., j € [m — 1] (and flip it to be
T

a:iHlAja:i/, if necessary) such that all ;s appear in a consecutive form of z27
J

T T T T T T
(Eilxi/l A1$i2$i/2A2 e Am,lximxi;ﬁ = Ty, (%Alxm%fb s Amfll'im) SUI-/
~T F TKx e T
=z, (xl Ap [mlxl Ay Ap 17177 ] A[il x2) Ty
2

where T, %2 € {z;,i € [b]},T1,T2 # x1 and A;’s are multiplicative terms of parameter
matrices {z,xl : u,v € [2:b]} U {A; : j € [m — 1]} and constant matrix {I,,} such that

B
2 Z deg(zyzl; Ay) = m — % -2
u,ve[2:b] k=0

1 ~
and Zkio deg(A;; Ax) = 1,7 € [m — 1]. The remaining reasoning is the same as the
previous case.

O
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Remark. If one of the 3; numbers of appearance of x;, j € [b] is odd, then it is easy to see that the
result in (B)) is the zero matrix.

As pointed out in the Section [T} the difficulty of studying the dynamics of SGD is how to connect
the quantities in iteration ¢ with fixed variables, like initial weights Wy 1, Wy o and mini-batch size
b. We overcome this challenge by the following two lemmas. Lemma [ pr0V1des the relationship
between gt it = 1,2 and Wt ;»t = 1,2 by taking expectation over the dlstrlbutlon of random

samples in Bb Lemmal?] shows the relationship between Wtb i = 1,2 and g*_, 4t = 1,2 using
1) and ).

Lemma 8. For multiplicative terms M;,i € [0:m] of parameter matrices {ggl,gfg}
and constant matrices {Wtbyl,Wtb,Q,Wl* ,WQ*} with degree d;, respectively, we denote

= ]_[ "ot (M) My and d = " d;. There exists a set of multiplicative terms
{ Ny ] € [0:mi], k€ [0:q]} of parameter matrices {W},,W},} and constant ma-
trices {W1 ,WQ } such that

1 1
E[M‘ff]=N0+ng+"'+Ndb7,

where Ny, = >0 [T tr (M}) My, k € [0:d]. Here my,, my; are constants independent of b,
and 7" deg (Mf) < 3d + 33, (deg (WP 5 M;) + deg(W)y; M;)).

Lemma 9. For multiplicative term M;,i € [0 : m] of parameter matrices {Wtb)l, Wtb’Q} and con-
stant matrices {Wi, W} of degree d;, let d = 2%+ +dm_ There exists a set of multiplica-
tive terms {My,i € [0:m],k € [d]} of parameter matrices {g},, g} ,} and constant matrices
{Why, Wpy, Wi, W5} such that

where Y o deg (M;;,) < d.

Proof of Lemma(8] By (1) and (2)) we have

bt m
M = Htr( Z 1_[ (Mg;) Mo, (6)
; k=1i=1

where each M,k € [b%],i € [0:m] is a multiplicative term of parameter matrices
{av 2], i€ [b]} and constant matrices {WP, WPy WP}, Let My = [}, tr (My;) Myo, k €
[bd]. We split set {Mk tke [bd]} into disjoint and non-empty sets (equivalent classes)
S1,..., 50, such that

1. forevery i € [nps] and every My, My € S;, we have E [M1|}'f] =E [MQ‘.Ftb],

2. for every i,j € [nar],i # j and every My € S; and My € S;, we have E [M;|F}] #
E [Ms|F?].

Note that UM S; = {]\7 K ke [b] } Let My, € S represent the equivalent class Sy, (it can be any

member of S). For every i € [ny/], we can always write |S;| = e; 0+ €; 16+ - - - + e; 4b? such that
ei,j €N,e; ; <b,je[0:d] (actually e; ;’s are the digits of the base-b representation of |S;|). Then
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we have
1 L 1 s —~
E[M|]—'f]=E ijMkff de Z(ei70+ei,1b+"'+€i,dbd)Mi]:tb
k=1 i=1
1 —~
=5 Z (ei,o +eib+---+ ei7dbd) E [MZ t] (7
i=1

nm

1 1 —~
= Z <€z',d + ei,d—lg +F ei’obd) E [Ml t].
i=1

It is important to note that n,;, the number of different equivalent classes, is independent
of b. This follows from the fact that each E [Mk‘ff] (and so as E [M\k’]-"tb]) includes

a finite number of weight matrices Wt , and I/th2 with degree less than or equal to 3d +

Yo (deg (WP s M;) + deg(WPy; M;)) (see Lemma (7] ' Thus the number of partition sets is
bounded by a quantity 1ndependent of b.

Note that each My; can be represented as

ki kz ki ki k"L
A tzl tl] A Ad —1T¢ Jid, mt Jid, A
for some matrices AKX ... ,A’jf that are multiplicative term of parameter matrices
{Wp,WpyandW}} constant matrix {I,} (we stress again that some A matrices can be
identities, based on the definition of multiplicative terms), and x%* e :cflzd €{Te1,.--, Tep)
We have
_ ki _ ki ki ki
tr (Mkl) - <A t7,1 tzl A Ad —1T¢ Jid, xt Vid; A )
_ ki pki kz ke ki k:z
- tld A A tll tll A : A 71 t’Ld
For every k € [b%], we have
m m T
_ ki pki kz ki ki k?l kO kO kO kO |
ntr (Mk"b) Mko - t’Ld A A t’Ll tll A ' A 71 tZd A tZl t’Ll A Ado*
i=1 i=1
= T
_ ki pki kz ke ki ki kO kO |
- t’Ld A A t’Ll tll A : A ‘—lxtld [ t’Ll A Ado 1 t’Ld ]
i=1
which can be rewritten as
L T
7 T 4k ] kO kO
My =] Jtr (Myi) Mo = (] ] wls Afey | APl e, T A
i=1 j=1

Note that the randomness of each M, given F? only comes from the randomness of z; ;’s, i.e. for
all k € [b¢] we have

d
b T 4k k T E
I:Mk)j::l = :L’t,j~./\/’(0,l) Hmt,ijAj'rt,i; ont)iloxt,iDAO
el

k T gk
= Ex,«,,jM/\/(O,I) AOxt,i6 Ty ’LJA Ty, 'Lj xt,i()AO (8)

H:&

-3 1o () m,
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where the last equation comes from Lemmal[J] Here nk,, nf,i € [nk, ], k € [b?] are constants inde-
pendent of b, M;’s are multiplicative terms of parameter matrices {W}, W5, W7} and constant
matrix {,} such that for every i € [n%,], we have

k

S deg (Wi dat) = d ©)
=0

and
k

% (deg (Wtﬁl%m?) +deg (Wiﬂ%’})) i (deg (W15 M,) + deg(W}y; M,)) . (10)
=0 =

These degree relationships can be observed from (]II), (), and the fact that each gf;l or gf,l con-
tributes one W? and one of Wt 1 or Wt o In H Lotr (]\7 k) ]\Z’“O Note that Wt = Wtb,2Wtb,2 -

WFWi. For every i € [nk/], if we replace all appearances of W? in H Cotr <J\7L’3) MF and
expand all parentheses of (WtbﬁWtbﬁ — W W1*) we have

nf 2d nf
[Tt (M{;) My =Tt (M;;l) MEL (11)
j=1 1=1j=1

where M}/’s are multiplicative terms of parameter matrices {W/,, W¢,} and constant matrices
{Wi¥ Wi} such that

'n/k m
Z (deg (Wtb1§ M} ) + deg (Wt 2 Mk )) 3d + Z (deg (Wtb,ﬁ Mr) + deg(Wt%; Mr)) )
j=0 r=0

(12)
where the inequality comes from (9) and (I0) and the fact that each 9?,1 or gf’Q contributes 2 or 0
degrees in the form of W/, WP, or W5 W, respectively.

Combining (7)., () and (1)), we have

b nny 1 1 . ,
E [M|]:t] = Z (ek,d + Chd=17 +F ek’obd> E [Mk’}'t]
k=1

Sk
na n,p 29 n

=) (ek,d + €k,d71% +tex Obd> > H tr (J\Z’;l) MY

k=1 i=1]=1j=1
1 1
=N0+N15+ "+Ndb7,
where
nyk od nk
N, Zekd . ZZHtr(MZ§Z>J\Z%I . (13)
i=1]=1j=1

Note that all constants in (T3) are independent of b and combining with (T2)), we have finished the
proof.

O

Proof of Lemma(9 Simply using the fact that Wtb,i = tb717i - atgffu,i = 1,2, if we replace
each W}, in the left-hand-side of (13) by W/, ; — cug}_, ; and expand all the parentheses, then
each M;, i € [0:m] becomes the sum of 2% multiplicative terms of parameter matrices {g7 1,97, }
and constant matrices { W}, W),, Wi, Wi} with degree at most d;. As aresult, [ ", tr (M;) My
becomes the sum of 2¢ terms in the form of [[;", tr (M;x) Moj, where deg (M;x) < 2%, and
therefore > ", deg (M) < []1~, 2% = d. O

26



Under review as a conference paper at ICLR 2021

Proof of Theorem[3] We use induction on ¢ to show this result. The base case of ¢t = 0 it is the same
as the statement in Lemma[8]

Suppose that the statement holds for ¢ > 0, and we consider the case of ¢ + 1. By Lemma [§]
there exists a set of multiplicative terms {MF,, ; ;i € [mys1k],5 € [0:myp1 k], k€ [0:d]} of
parameter matrices {W/, | ;, W/, ,} and constant matrices {W*, W5} such that

1 1
E [M|F} ] = Nes1o + Nesiag 4+ Nivtagg, (14)
where Nyp1p = Doy M T2y tr (MEL ;) ME ook € [0:d]. Here myy1 g, Mgk, are
constants independent of b, and Y7 deg (M, ,; ;) < 3d +d'.

For each i € [my1,] and each k € [0: d], by Lemmal9} there exists a set of multiplicative terms
{Miijk1.J € [mes1ik],l € [dik]} of parameter matrices {9317932} and constant matrices
{Wtb,h Wtb,27 Wi, WQ*} such that

Mitt1,k,i dt,ik Mit1,k,i
k k
H tr (Mfy145) Mit10 = Z H tr (Myijkt) Mokl (15)
=1 =1 j=1

BA (deg(W 15My i j k1) +deg(WY oMy i j k1))

where d¢ ; . = 2%i=0 is a constant independent of b and

Mi41,k,i

D deg(Myjri) <3d+d, (16)
=0
and
Mi+1,k,i
Z (deg (W13 My jia) + deg (Weos My i) < 3d+d. 17
=0

Combining (T4) and (T3), we have for every k € [0 : d]

Mgtk dii ke Mtt1,k,i

Negve = >, >0 [ tr(Meijwes) Mo (18)

i=1 1=1 j=1

Note that
1 1
E [M|Fo] =E [E [M|F}1]|Fo] = E [Neg1,0/F0] + E [J\ft+1,1|f0]5 +---+E [Nt+1,d|]-'0]b—d
mey1,0 dt,i,0 [mit1,0,6
= Z Z E H tr (Mys.5,00) Misi00, -7:014'
i=1 =1 j=1
mit1,1 dein [mey1,1,4 1
+ Z Z E H tr (Myij1,0) Mo, }—01 ;tot
=1 [=1 7j=1
Myy1,d de,i,d [e41,d,i 1
+ E H tr (Myij.ai) Meio,d. }—0] Xk (19)
i=1 =1 | j=1

and each My ; ; ., is a multiplicative term of parameter matrices {g? 1, g7, } and constant matrices

{thjl, thi27 Wi, Wi} such that the degree is at most 1. Therefore, by induction, for every i, k, [,
we have

Mit+1,k,i
- 1
E n tr (Mg i) Mok ]'—01 = Niiki0+ Nt,i,k,l,lg +-- Nt,i,k,l,tha (20)
j=1
where ¢; < d' + %(3’5 —1)(3d+d’")and Ny ; k1.0, - » Ni,i k1, are sum of multiplicative terms of

parameter matrices {W{,, W ,} and constant matrices {W;*, W5} with degree at most d - 3.
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Combining (T9) and (20), we can rewrite
1 1
E[M‘fo] :NO+N16+.”+Nqb7q’
in the same form as in the statement. Here ¢ < d + 3¢, < (3'"2 — 1)d + $(3'*! — 1)d’ and
ity deg (MF) < 3 x 3%(3d + d') = 3*1(3d + d') follow from (T6) and (7).

In conclusion, we have shown that the statement holds for ¢ + 1, and therefore finishes the proof.

O

By changing the role of parameter and constant matrices in Theorem [3] we obtain the following
corollary.

Corollary 2. Given t > 0, for any multiplicative terms M;,i € [0:m] of parameter matri-
ces {WP, WPy, WP} and constant matrices {W, W5} such that Z?:l deg (WP;; M) = d and
deg (WP; M) = d', we denote M = T tr (M;) M. There exists a set of multiplicative terms
{Mi@-,i € [my],j € [0:my], k € [0: q]} of parameter matrices {W&l, W&Q} and constant matri-
ces {W*, W5} such that

1 1
E[M‘fo] :N0+N15+.“+Nqb7q’
where Ny, = 33" TT7 tr (M) Mj, k € [0:q]. Here my,my; and ¢ < 3" (d + 2d’) are con-

stants independent of b, and 37" deg (Mf) <3 (d+ 2d).

Proof of Corollary[2] We simply note that M can be written as the sum of at most 2¢ multiplica-
tive terms of parameter matrices {W},, W}/,, Wi, W5} and constant matrix {Iy}. Then we apply
Lemmas [8]and [J]iteratively in the same way as in the proof of Theorem 3] to finish the proof. [

Proof of Theoremd] We only show the case for g, ; since the proof for g; » can be tackled similarly.
Note that

b
1 T
b b T
]-"0> — 5 > var (Wm Woay il
=1

b
var (gf71|]-'0) = var (2 Z Wtb,QTfot,ixZi ]—"0)

i=1

b Tyas T
var (Wm W, T 1%

%)

=

[ 2
b Tyrb T
(Wh Whaaal |

7| - e [wt, ot 5]

&=

r T T T 2
tr (maa oW W W Wl ) |7 | - [ [, fot,lel‘]-"o]u>

&=

E [tr (voaaf oV W W Whaaol ) |72 || Fo] - [E[E [Wtﬁfwfxt,lel(ffﬂfo]H2>

(SIS S R S N B =at B~ ol S o B

S~ N/ N -7 N - N NN

E [(p + 2)tr (WfTthithbaTWf) ’}'0] - ‘E [Wt€2TWtb }‘0] ‘2)
(0 +2tr (B W Wiy Wi R |) - [ [, Wi 7 | 2) .

(0 + e (| Wiy Wi R |) — [ [, Wi 7 | 2) .

Here we have used the fact that B, _xr(o, 1, tr (227 Azz™) = (p+2)tr (A). By Corollarywe know

that there exists a set of multiplicative terms { M}, i € [my],j € [0 : mp;], k € [0: q]} of parameter
matrices {W{,,W{,} and constant matrices {W;*, W5} such that

T T 1 1

tr (]E [Wtb WE,Wey Wy J—'OD =Y +my e Y 21)
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where . = > [T/ tr (M), k € [0: q]. Here my,, my; and ¢ < 6 - 3" are constants indepen-

dent of b, and 37" deg (M;) < 6 - 3'. Note that W ;, W , are fixed, and we have v4, k € [0 ¢

are constants independent of b.

Similarly we observe that there exist constants ¢’ < 2 - 3'"! and +},, k € [0 : ¢] such that
HE [Wt’jfwf J—"o] H2 =+ w{% ot bi/ :

By defining y; = 0,4 > g and v} = 0,4 > ¢/, and combining and we have

(22)

var (gf,1|.7:o) = % ((p + 2)tr (E [WETWtb,2Wtb72TWf‘FO]) _ HE [WtbﬂTWé"fo] ‘2>

pt2 1 1 1/, 1 1
=T\ ety g oty e T g
max{q,q'}
1
= Z ((p+1)7k—’m)b7-
k=1

Note that 7;,’s and ;,’s are all constants independent of b, and max {¢, ¢’} < 2.-3'*1. This completes
the proof.

O

Proof of Theorem[5] We first show that in
1 1
var (gf,i}fo) = 516 +oeeet ﬂrﬁ

we have 51 > 0. If r = 1, the statement obviously holds. Let us assume that the statement does not
hold for r > 1, i.e. 1 < 0. Taking b large enough such that 3;6" ! + Bob" "2 + - - - 4 B, < 0 yields

1
var (gf,i|}_o) = o (ﬁﬂ)r_l + BQbT_Q + e+ ,87) <0,
which contradicts the fact that var (gf)i ’]'—0) > 0. Therefore, we have §; > 0.

Let by be large enough such that for all b > by, we have 816" 1 + 286" 2 + .- + rB3, = 0. We
denote f(b) = B13 + Bois + -+ + Br= = 0. For all b > by we have

1
f'(b) = T+l (ﬂlbr_l + 280" 2 e Tﬁr) <0.

Therefore, for all b > by we have (var (g;|Fo)) = —35f(b) + =f(b) < 0, and thus
var (g? ;| 7o) is a decreasing function of b for all b > by.

O

B.3 EXTENSION TO DEEP LINEAR NETWORKS

The extension from two-layer linear network to deep linear network is straightforward. Here we
only provide the ideas on how to translate the proof of two-layer network to d-layer network, but not
the strict proof. For simplicity, we remove all superscripts b of matrices in this subsection.

Assume that the d-layer linear network is given by f(z;w) = WyWy_1 - - WoWiz, where W;, i €
[d] is the parameter matrix on the i-th layer and w = (W7, ..., Wy). The population loss is defined
as

1
£(u) = Baictosy | 3 IWa - Wia =g - weal?].
Similar to () and (2), we have
)

b
Z Wt?k+1"'WtTd (Wd"'Wl - W;Wf)xt i$Z:thTl"'WtTk 1 ke [d]
i=1

b
1 1
Gk =3 ;VWM (2 Wea--Wipae, — Wi Wia,;

S| =
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We denote Wy = Wy g--- Wy 1 — W - - Wi, The remaining are all the same as the proofs in Ap-
pendix except we should replace all appearance of {W; o, Wy 1} to {W, ¢, Wy a1, , Wi 1}
and all {W, W} to {W;, Wi, ,Wl*} We can do this because the stochastic gradient
ge.k is still the sum of multiplicative terms of parameter matrices {x;;} and constant matrices
{(Wea, -+, W1, WE, -+, Wi} so the Lemmas in Appendix [B.2]still apply.

In conclusion, we can again represent var (g, x|Fo), k € [d] as a polynomial of 1 with finite degree
and without the constant term. By the same approach in the proof of Theorem [5] we can show that
the variance is a decreasing function of the mini-batch size b.
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