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A EXPERIMENTS

In this section, we present numerical results to support the theorems in Section 3, to backup the
hypotheses discussed in the introduction, and provide further insights into the impact of the mini-
batch size on the dynamics of SGD. The experiments are conducted on four datasets and models
that are relatively small due to the computational cost of using large models and datasets.

Remark: We cannot present the complete numerical results in the main paper due to the space limit.
Therefore, we move the whole experimental section to Appendix. In order to keep a smooth reading,
some of the content is overlapping with Section 4.

A.1 DATASETS AND SETTINGS

For all experiments, we perform mini-batch SGD multiple times starting from the same initial
weights and following the same choice of the learning rates and other hyper-parameters, if applica-
ble. This enables us to calculate the variance of the gradient estimators and other statistics in each
iteration, where the randomness comes only from different samples of SGD. The learning rate αt is
selected to be inversely proportional to iteration t, or fixed, depending on the task at hand.

All models are implemented using PyTorch version 1.4 (Paszke et al., 2019) and trained on NVIDIA
2080Ti/1080 GPUs. We have also tested several other random initial weights and ground-truth
weights, and learning rates, and the results and conclusions are similar and not presented.

A.1.1 GRADUATE ADMISSION DATASET

The Graduate Admission dataset1 (Acharya et al., 2019) is to predict the chance of a graduate ad-
mission using linear regression. The dataset contains 500 samples with 6 features and is normalized
by mean and variance of each feature. This is a popular regression dataset with clean data. We build
a linear regression model to predict the chance of acceptance (we include the intercept term in the
model) and minimize the empirical L2 loss using mini-batch SGD, as stated in Section 3.1.

For the experiment in Figure 2(a), we randomly select an initial weight vectors w0 and run SGD for
2,000 iterations where it appears to converge. We record all statistics at every iteration. There are in
total 1,000 runs behind each observation which yields a p-value lower than 0.05. As for Figure 2(b),
we select 20 different b’s and run SGD from the same initial point for 40 iterations. There are in total
of 200,000 runs to make sure the p-value of all statistics are lower than 0.05. In all experiments, the
learning rate is chosen to be αt “ 1

2t , t P r2000s because this rate yields a theoretical convergence
guaranteed (factor 1/2 has been fine tuned). The purpose of this experiment is to empirically study
the rate of decrease of the variance. The theoretical study exhibited in Section 3.1 establishes the
non-increasing property but it does not state anything about the rate of decrease.

A.1.2 SYNTHETIC DATASET

We build a synthetic dataset of standard normal samples to study the setting in Section 3.2. We
fix the teacher network with 64 input neurons, 256 hidden neurons and 128 output neurons. We
optimize the population L2 loss by updating the two parameter matrices of the student network
using online SGD, as stated in Section 3.2. In this case we have proved the functional form of the
variance as a function of b and show the decreasing property of the variance of the stochastic gradient
estimators for large mini-batch sizes. However, we do not show the decreasing property for every b.
With this experiment we confirm that the conjecture likely holds. In the experiment, we randomly
select two initial weight matrices W0,1,W0,2 and the ground-truth weight matrices W˚

1 ,W
˚
2 . We

run SGD for 1,000 iterations which appears to be a good number for convergence while there are
1,000 runs of SGD in total to again give a p-value below 0.05. We record all statistics at every
iteration. The learning rate is chosen to be αt “ 1

10t , t P r1000s for the same reason as in the
regression experiment.

1https://www.kaggle.com/mohansacharya/graduate-admissions
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A.1.3 MNIST DATASET

The MNIST dataset is to recognize digits in handwritten images of digits. We use all 60,000 training
samples and 10,000 validation samples of MNIST. The images are normalized by mapping each
entry to r´1, 1s. We build a three-layer fully connected neural network with 1024, 512 and 10
neurons in each layer. For the two hidden layers, we use the ReLU activation function. The last
layer is the softmax layer which gives the prediction probabilities for the 10 digits. We use mini-
batch SGD to optimize the cross-entropy loss of the model. The model deviates from our analytical
setting since it has non-linear activations, it has the cross-entropy loss function (instead of L2), and
empirical loss (as opposed to population). MNIST is selected due to its fast training and popularity
in deep learning experiments. The goal is to verify the results in this different setting and to back up
our hypotheses.

We run SGD for 1,000 epochs on the training set which is enough for convergence. The learning
rate is a constant set to 3 ¨ 10´3 (which has been tuned). For the experiment in Figure 5, there are
in total 100 runs to give us the p-value below 0.05. For the experiment in Figure 4(a), we randomly
select five different initial points and we have 50 runs for each initial point. For the experiment
corresponding to Figure 4(b), we choose α “ 8 and σ “ 2 as in Simard et al. (2013). The initial
weights and other hyper-parameters are chosen to be the same as in Figure 5.

A.1.4 YELP REVIEW DATASET

The Yelp Review dataset from the Yelp Dataset Challenge (Zhang et al., 2015) contains 1,569,264
samples of customer reviews with positive/negative sentiment labels. We use 10,000 samples as our
training set and 1,000 samples as the validation set. We use XLNet (Yang et al., 2019) to perform
sentiment classification on this dataset. Our XLNet has 6 layers, the hidden size of 384, and 12
attention heads. There are in total 35,493,122 parameters. We intentionally reduce the number of
layers and hidden size of XLNet and select a relatively small size of the training and validation sets
since training of XLNet is very time-consuming (Yang et al. (2019) train on 512 TPU v3 chips for
5.5 days) and we need to train the model for multiple runs. This setting allows us to train our model
in several hours on a single GPU card. We train the model using the Adam weight decay optimizer,
and some other techniques, as suggested in Table 8 of Yang et al. (2019). This dataset represents
sequential data where we further consider the hypotheses.

We randomly select a set of initial parameters and run Adam with two different mini-batch sizes of
32 and 64. For computational tractability reasons, for each mini-batch size there are in total of 100
runs and each run corresponds to 20 epochs. We record the variance of the stochastic gradient, loss
and accuracy in every step of Adam. The statistics reported in Figure 6 are averaged through each
epoch. In all experiments, the learning rate is set to be 4 ¨10´5 and the ε parameter of Adam is set to
be 10´8 (these two have been tuned). The stochastic gradients of all parameter matrices are clipped
with threshold 1 in each iteration. We use the same setup for the learning rate warm-up strategy as
suggested in Yang et al. (2019). The maximum sequence length is set to be 128 and we pad the
sequences with length smaller than 128 with zeros.

A.2 DISCUSSION

As observed in Figure 2(a), under the linear regression setting with the Graduate Admission dataset,
the variance of the stochastic gradient estimators and full gradients are all strictly decreasing func-
tions of b for all iterations. This result verifies the theorems in Section 3.1. Figure 2(b) further
studies the rate of decrease of the variance. From the proofs in Section 3.1 we see that var

`

gbt
ˇ

ˇF0

˘

is a polynomial of 1
b with degree t` 1. Therefore, for every t, we can approximate this polynomial

by sampling many different b’s and calculate the corresponding variances. We pick b to cover all
numbers that are either a power of 2 or multiple of 40 in r2, 500s (there are a total of 21 such values)
and fit a polynomial with degree 6 (an estimate from the analyses) at t “ 10, 20, 30, 40. Figure 2(b)
shows the fitted polynomials. As we observe, the value var

`

gbt
ˇ

ˇF0

˘

(approximated by the value of
the polynomial) is both decreasing with respect to the mini-batch size b and iteration t. Further, the
rate of decrease in b is slower as the b increasing. This provides a further insight into the dynamics
of training a linear regression problem with SGD.
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(a) Variance of stochastic gradients and full gradients (b) Fitting polynomials of mini-batch size b

Figure 2: Experimental results for the Graduate Admission dataset. Left: log
`

var
`

gbt
ˇ

ˇF0

˘˘

and
log

`

var
`

∇Lpwbt q
ˇ

ˇF0

˘˘

vs iteration t for 4 different mini-batch sizes. Right: The log of polynomial val-
ues when fitting polynomials on selected mini-batch sizes at certain iterations.

(a) Variance of gradients with respect to W1 (b) Variance of gradients with respect to W2

Figure 3: Experimental results for the Synthetic dataset. Left: log
`

var
`

gbt,1
ˇ

ˇF0

˘˘

and log
`

var
`

∇W1LpW b
t,1,W

b
t,2q

ˇ

ˇF0

˘˘

vs iteration t. Right: log
`

var
`

gbt,2
ˇ

ˇF0

˘˘

and
log

`

var
`

∇W2LpW b
t,1,W

b
t,2q

ˇ

ˇF0

˘˘

vs iteration t.

Under the two-layer linear network setting with the synthetic dataset, Figure 3 verifies that the
variance of the stochastic gradient estimators and full gradients are all strictly decreasing functions
of b for all iterations. This figure also empirically shows that the constant b0 in Theorem 5 could
be as small as b0 “ 4. In fact, we also experiment with the mini-batch size of 1 and 2, and the
decreasing property remains to hold. We also test this on multiple choices of initial weights and
learning rates and this pattern remains clear.

In aforementioned two experiments we use SGD in its original form by randomly sampling mini-
batches. In deep learning with large-scale training data such a strategy is computationally prohibitive
and thus samples are scanned in a cyclic order which implies fixed mini-batches are processed
many times. Therefore, in the next two datasets we perform standard “epoch” based training to
empirically study the remaining two hypotheses discussed in the introduction (decreasing loss and
error as a function of b) and sensitivity with respect to the initial weights. Note that we are using
cross-entropy loss in the MNIST dataset and the Adam optimizer in the Yelp dataset and thus these
experiments do not meet all of the assumptions of the analysis in Section 3.

As shown in Figure 4(a), we run SGD with two batch sizes 64 and 128 on five different initial
weights. This plot shows that, even the smallest value of the variance among the five different
initial weights with a mini-batch size of 64, is still larger than the largest variance of mini-batch size
128. We observe that the sensitivity to the initial weights is not large. This plot also empirically
verifies our conjecture in the introduction that the variance of the stochastic gradient estimators is
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(a) Different initial weights (b) Gap of accuracy (zoomed-in)

Figure 4: Experimental results for the MNIST dataset. Left: The median, min, and max of the log of variance
of the stochastic gradient estimators for two different mini-batch sizes (distinguished by colors) and five dif-
ferent initial weights. The solid lines show the median of all five initial weights while the highlighted regions
show the min and max of the log of variance. Right: The gap of accuracy on training and test sets vs epochs
starting from epoch 100.

(a) Log of loss for training and validation sets (b) Log of error for training and validation sets

Figure 5: Experimental results for the MNIST dataset. Left: The log of the training and validation loss vs
epochs. Right: The log of training and validation error vs epochs. Here error is defined as one minus predicting
accuracy. The plot does not show the epochs if error equals to zero.

(a) Variance of stochastic gradients (b) Training and validation loss (c) Training minus validation error

Figure 6: Experimental results for the XLNet model on the Yelp dataset. Left: The variance of stochastic
gradient estimators vs epochs. Middle: The training and validation loss vs epochs. Right: The training and
validation error vs epochs.

a decreasing function of the mini-batch size, for all iterations of SGD in a general deep learning
model.

In addition, we also conjecture that there exists the decreasing property for the expected loss, error
and the generalization ability with respect to the mini-batch size. Figure 5(a) shows that the expected
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loss (again, randomness comes from different runs of SGD through the different mini-batches with
the same initial weights and learning rates) on the training set is a decreasing function of b. However,
this decreasing property does not hold on the validation set when the loss tends to be stable or
increasing, in other words, the model starts to be over-fitting. We hypothesize that this is because
the learned weights start to bounce around a local minimum when the model is over-fitting. As the
larger mini-batch size brings smaller variance, the weights are closer to the local minimum found
by SGD, and therefore yield a smaller loss function value. Figure 5(b) shows that both the expected
error on training and validation sets are decreasing functions of b.

Figure 4(b) exhibits a relationship between the model’s generalization ability and the mini-batch
size. As suggested by (Simard et al., 2013), we build a test set by distorting the 10,000 images of the
validation set. The prediction accuracy is obtained on both training and test sets and we calculate
the gap between these two accuracies every 100 epochs. We use this gap to measure the model
generalization ability (the smaller the better). Figure 4(b) shows that the gap is an increasing function
of b starting at epoch 500, which partially aligns with our conjecture regarding the relationship
between the generalization ability and the mini-batch size. We also test this on multiple choices of
the hyper-parameters which control the degree of distortion in the test set and this pattern remains
clear.

Figure 6 shows the similar phenomenon that the variance of stochastic estimators and the expected
loss and error on both training and validation sets are decreasing functions of b even if we train
XLNet using Adam. This example gives us confidence that the decreasing properties are not merely
restricted on shallow neural networks or vanilla SGD algorithms. They actually appear in many
advanced models and optimization methods.

B LEMMAS AND PROOFS

B.1 LEMMAS AND PROOFS OF RESULTS IN SECTION 3.1

For two matrices A,B with the same dimension, we define the inner product xA,By fi tr
`

ATB
˘

.

Lemma 3. Suppose that fpxq and gpxq are both smooth, non-negative and decreasing functions of
x P R. Then hpxq “ fpxqgpxq is also a non-negative and decreasing function of x.

Proof. It is obvious that hpxq is non-negative for all x. The first-order derivative of h is

h1pxq “ f 1pxqgpxq ` fpxqg1pxq ď 0,

and thus hpxq is also a decreasing function of x.

Proof of Lemma 1. Throughout the paper, We use Ckn “
n!

k!pn´kq! to denote the combinatorial num-
ber. Note that
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For any A P Rpˆp, we have
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Here Bi “ Ai ´
αt
n A; Bkli “ A if i “ k, i ‰ l, Bkli “ A if i “ l, i ‰ k, and Bkli equals the zero

matrix, otherwise.
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Proof of Lemma 4. Let Ci “ xix
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Bkli “

$

&

%

A i “ k, i ‰ l,

´A i “ l, i ‰ k,

0 otherwise,

we have

E

»

–

›

›

›

›

›

n
ÿ

i“1

Ai∇Li
`

wbt`1

˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl “ E

»

–

›

›

›

›

›

n
ÿ

i“1

Bi∇Li
`

wbt
˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl`
α2
t cb
n2

n
ÿ

k“1

n
ÿ

l“1

E

»

–

›

›

›

›

›

n
ÿ

i“1

Bkli ∇Li
`

wbt
˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl.

Proof of Theorem 1. We use induction to show this statement.

When t “ 0, E
”

›

›

řn
i“1Ai∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

“ }
řn
i“1Ai∇Li pw0q}

2 which is invariant of b. There-
fore, it is a decreasing function of b.
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Suppose the statement holds for t. For any set of matrices tA1, . . . , Anu in Rpˆp, by Lemma 2 we
know that there exist matrices tB1, ¨ ¨ ¨ , Bnu and

 

Bkli : i, k, l P rns
(

such that

E

»

–

›

›

›

›

›

n
ÿ

i“1

Ai∇Li
`

wbt`1

˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl “ E

»

–

›

›

›

›

›

n
ÿ

i“1

Bi∇Li
`

wbt
˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl`
α2
t cb
n2

n
ÿ

k“1

n
ÿ

l“1

E

»

–

›

›

›

›

›

n
ÿ

i“1

Bkli ∇Li
`

wbt
˘

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F0

fi

fl.

By induction, we know that E
”

›

›

řn
i“1Bi∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

and all E
”

›

›

řn
i“1B

kl
i ∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

are non-negative and decreasing functions of b. Besides, clearly α2
t cb
n2 “

α2
t pn´bq

bn3pn´1q is a non-negative

and decreasing function of b. By Lemma 3, we know that α2
t cb
n2 E

”

›

›

řn
i“1B

kl
i ∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is

also a non-negative and decreasing function of b. Finally, E
”

›

›

řn
i“1Ai∇Li

`

wbt`1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

, as the
sum of non-negative and decreasing functions in b, is a non-negative and decreasing function of b.

In order to prove Theorem 2, we split the task to two separate theorems about the full gradient and
the stochastic gradient and prove them one by one.

Theorem 6. Fixing initial weights w0, var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

is a decreasing function of mini-batch
size b for all b P rns, t P N, and all square matrices B P Rpˆp.

Theorem 7. Fixing initial weights w0, var
`

Bgbt
ˇ

ˇF0

˘

is a decreasing function of mini-batch size b
for all b P rns, t P N, and all square matrices B P Rpˆp.

Proof of Theorem 6. We induct on t to show that the statement holds. For t “ 0, we have
var

`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

“ 0 for any matrix B. Suppose the statement holds for t ´ 1 ě 0. Note
that from

∇L
`

wbt
˘

“
1

n

n
ÿ

i“1

xi
`

xTi w
b
t ´ yi

˘

“
1

n

n
ÿ

i“1

xi
`

xTi
`

wbt´1 ´ αtg
b
t´1

˘

´ yi
˘

“
1

n

n
ÿ

i“1

xi
`

xTi w
b
t´1 ´ yi

˘

´
αt
n

n
ÿ

i“1

xix
T
i g

b
t´1

“ ∇L
`

wbt´1

˘

´ αtCg
b
t´1,
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we have
var

`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

“ var
`

B∇L
`

wbt´1

˘

´ αtBCg
b
t´1

ˇ

ˇF0

˘

“ E
”

›

›B∇L
`

wbt´1

˘

´ αtBCg
b
t´1

›

›

2
ˇ

ˇ

ˇ
Fb0

ı

´
›

›E
“

B∇L
`

wbt´1

˘

´ αtBCg
b
t´1

ˇ

ˇFb0
‰
›

›

2

“ E
”

›

›B∇L
`

wbt´1

˘
›

›

2
´ 2αt

@

B∇L
`

wbt´1

˘

, BCgbt´1

D

` α2
t

›

›BCgbt´1

›

›

2
ˇ

ˇ

ˇ
Fb0

ı

´
›

›E
“

B∇L
`

wbt´1

˘

´ αtBCg
b
t´1

ˇ

ˇFb0
‰
›

›

2

“ E
”

›

›B∇L
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

` α2
tE

”

E
”

›

›BCgbt´1

›

›

2
ˇ

ˇ

ˇ
Fbt´1

ı
ˇ

ˇ

ˇ
Fb0

ı

´ 2αtE
“

E
“@

B∇L
`

wbt´1

˘

, BCgbt´1

D
ˇ

ˇFbt´1

‰
ˇ

ˇF0

‰

´
›

›E
“

E
“

B∇L
`

wbt´1

˘

´ αtBCg
b
t´1

ˇ

ˇFbt´1

‰
ˇ

ˇFb0
‰
›

›

2

“ E
”

›

›B∇L
`

wbt´1

˘›

›

2
ˇ

ˇ

ˇ
F0

ı

` α2
tE

«

cb

˜

1

n

n
ÿ

i“1

›

›BC∇Li
`

wbt´1

˘
›

›

2
´
›

›BC∇L
`

wbt´1

˘
›

›

2

¸

`
›

›BC∇L
`

wbt´1

˘
›

›

2

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

´ 2αtE
“@

B∇L
`

wbt´1

˘

, BC∇L
`

wbt´1

˘D
ˇ

ˇF0

‰

´
›

›E
“

B∇L
`

wbt´1

˘

´ αtBC∇L
`

wbt´1

˘
ˇ

ˇFb0
‰
›

›

2

(3)

“ E
”

›

›B pI ´ αtCq∇L
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
Fb0

ı

` α2
t cbE

«˜

1

n

n
ÿ

i“1

›

›BC∇Li
`

wbt´1

˘
›

›

2
´
›

›BC∇L
`

wbt´1

˘
›

›

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

´
›

›E
“

B pI ´ αtCq∇L
`

wbt´1

˘
ˇ

ˇFb0
‰
›

›

2

“ var
`

B pI ´ αtCq∇L
`

wbt´1

˘
ˇ

ˇF0

˘

` α2
t cb

˜

1

n

n
ÿ

i“1

E
”

›

›BC∇Li
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

´ E
”

›

›BC∇L
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

¸

“ var
`

B pI ´ αtCq∇L
`

wbt´1

˘
ˇ

ˇF0

˘

`
α2
t cb
n2

ÿ

i‰j

E
”

›

›BC∇Li
`

wbt´1

˘

´BC∇Lj
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

,

(4)
where (3) is by Lemma 1. By induction, we know that the first term of (4) is a decreasing function
of b. Taking Ai “ BC,Aj “ ´BC,Ak “ 0, k P rnszti, ju in Theorem 1, we know that

E
”

›

›BC∇Li
`

wbt´1

˘

´BC∇Lj
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is also a decreasing function of b. Note that α
2
t cb
n2 decreases as b increases. By Lemma 3 we learn

that (4) is a decreasing function of b and hence we have completed the induction.

Proof of Theorem 7. We have

var
`

Bgbt
ˇ

ˇF0

˘

“ E
”

›

›Bgbt
›

›

2
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

Bgbt
ˇ

ˇF0

‰
›

›

2

“ E
”

E
”

›

›Bgbt
›

›

2
ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

E
“

Bgbt
ˇ

ˇFbt
‰
ˇ

ˇF0

‰
›

›

2

“ cb

˜

1

n

n
ÿ

i“1

E
”

›

›B∇Li
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

´ E
”

›

›B∇L
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

¸

` E
”

›

›B∇L
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

B∇L
`

wbt
˘
ˇ

ˇF0

‰
›

›

2

“
cb
n2

ÿ

i‰j

E
”

›

›B∇Li
`

wbt
˘

´B∇Lj
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

` var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

.

Taking Ai “ B,Aj “ ´B,Ak “ 0, k P rnszti, ju in Theorem 1, we know that

E
”

›

›B∇Li
`

wbt
˘

´B∇Lj
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is a decreasing and non-negative function of b for all i, j P rns. By Theorem 6, we know that
var

`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

is also a decreasing function of b. Therefore, var
`

Bgbt
ˇ

ˇF0

˘

, as the sum of two
decreasing functions of b, is also a decreasing function of b.
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Proof of Corollary 1. Simply taking B “ Ip in Theorem 1 yields the proof.

B.2 PROOFS FOR RESULTS IN 3.2

Remark. We often rely on the trivial facts that x1x
T
2 “ x1Ipx

T
2 and x1x

T
2 x3x

T
4 “ x1x

T
2 Ipx3x

T
4 .

Lemma 5. Given a multiplicative term of parameter matrices
 

uiv
T
i : ui, vi P Rp, i P rn1s

(

YtAj :

Aj P Rpˆp, j P rn2su and constant matrix tIpu such that degpu1v
T
1 ;Mq ě 1, we have

tr pMq “ vT1 M
1u1,

where M 1 is a multiplicative term of parameter matrices
 

uiv
T
i : ui, vi P Rp, i P rn1s

(

Y

tAj : Aj P Rpˆp, j P rn2su and constant matrix tIpu such that degpMq “ degpM 1q `

1,degpAj ;Mq “ degpAj ;M
1q, j P rn2s,degpuiv

T
i ;Mq “ degpuiv

T
i ;M

1q, i P r2 : n1s and
degpu1v

T
1 ;Mq “ degpu1v

T
1 ;M

1q ` 1.

Proof. By the definition of multiplicative terms, we know that there exist two multiplicative terms
M1,M2 of parameter matrices

 

uiv
T
i : ui, vi P Rp, i P rn1s

(

Y tAj : Aj P Rpˆp, j P rn2su and
constant matrix tIpu such that

M “M1u1v
T
1 M2,

where degpMq “ degpM1q ` degpM2q ` 1,degpAj ;Mq “ degpAj ;M1q ` degpAj ;M2q, j P
rn2s,degpuiv

T
i ;Mq “ degpuiv

T
i ;M1q ` degpuiv

T
i ;M2q, i P r2 : n1s and degpu1v

T
1 ;Mq “

degpu1v
T
1 ;M1q ` degpu1v

T
1 ;M2q ` 1. Therefore we have

tr pMq “ tr
`

M1u1v
T
1 M2

˘

“ tr
`

vT1 M2M1u1

˘

“ vT1 M2M1u1.

Note that M 1 “ M2M1 satisfies that degpM 1q “ degpM1q ` degpM2q,degpAj ,M
1q “

degpAj ;M1q ` degpAj ;M2q, j P rn2s,degpuiv
T
i ;Mq “ degpuiv

T
i ;M1q ` degpuiv

T
i ;M2q, i P

r2 : n1s and degpu1v
T
1 ;M

1q “ degpu1v
T
1 ;M1q ` degpu1v

T
1 ;M2q ` 1. We have finished the

proof.

The following two lemmas focus on the expectation of the product of quadratic forms of the standard
normal samples. Lemma 6 focuses on single sample while 7 focuses on the same form with b i.i.d.
samples drawn from the standard normal distribution.

Lemma 6. Given matrices Aj P Rpˆp, j P rm´ 1s, we have

Ex„N p0,Ipq
“

xxTA1xx
TA2 ¨ ¨ ¨Am´1xx

T
‰

“

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0,

where Nm and ni, i P rNms are constants depending on m and tMik, k P r0 : nis , i P rNmsu
are multiplicative terms of parameter matrices tAj , j P rm´ 1su and constant matrix tIpu. Fur-
thermore, for every i P rNms, we have

řni
k“0 degpAj ;Mikq “ 1, j P rm ´ 1s and therefore

řni
k“0 deg pMikq “ m´ 1.

Proof. See Magnus (1978).

Lemma 7. We are given matrices Aj P Rpˆp, j P rm´ 1s and random vectors xi, i P rbs indepen-
dently and identically drawn from N p0, Ipq. We assume that the multi-set S “

 

ij , i
1
j : j P rms

(

satisfies that for every i P S, i is an element of rbs and the number of appearance of i in S is even.
Then

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m

ı

“

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0, (5)

where Nm and ni are constants depending on m (and independent of b) and Mik, k P r0 : nis , i P
rNms are multiplicative terms of parameter matrices tAj , j P rm´ 1su and constant matrix tIpu.
Furthermore, for every i P rNms, we have

řni
k“0 degpAj ;Mikq “ 1, j P rm ´ 1s and therefore

řni
k“0 deg pMikq “ m´ 1.
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Proof. Let βi, i P rbs be the number of appearances of i in S, which are even by assumption. We
induct on the quantity N “

řb
i“1 1 tβi ‰ 0u.

For the base case of N “ 1, all elements in the multi-set S have the same value. Without loss of
generality, we assume ij “ i1j “ 1, j P rms. Then

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
¨ ¨ ¨Am´1ximx

T
i1m

ı

“ Ex1„N p0,Ipq
“

x1x
T
1 A1x1x

T
1 ¨ ¨ ¨Am´1x1x

T
1

‰

,

which is the statement of Lemma 6.

Suppose the statement holds forN ě 1, and we consider the case ofN`1. Note that xTi1jAjxij`1
“

xTij`1
Ajxi1j is a scalar so that we can move it around without changing the value of the expression2.

We distinguish two cases.

• Let i1 ‰ i1m. Without loss of generality, we assume i1 “ 1. We can always change the
order of xTi1jAjxij`1

, j P rm ´ 1s (and flip it to be xTij`1
Ajxi1j if necessary) such that all

x1’s appear in the form of x1x
T
1 :

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m
“ x1

´

xTi11A1xi2x
T
i12
A2 ¨ ¨ ¨Am´1xim

¯

xTi1m

“ x1x
T
1
rA1x1x

T
1
rA2 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1
rA β1

2
rxxTi1m

where rx P txi, i P rbsu , rx ‰ x1 and rAi’s are multiplicative terms of parameter matri-
ces txuxTv : u, v P r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that
ř

u,vPr2:bs

ř

β1
2

k“1 degpxux
T
v ;

rAkq “ m´ β1

2 ´1 and
ř

β1
2

k“1 degpAj ;
rAkq “ 1, j P rm´1s3.

Applying Lemma 6 and the law of iterative expectations, we have

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
¨ ¨ ¨Am´1ximx

T
i1m

ı

“ Ex1,¨¨¨ ,xb

”

x1x
T
1
rA1x1x

T
1
rA2 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1
rA β1

2
rxxTi1m

ı

“ Ex2,¨¨¨ ,xb

«˜

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m

ff

“

Nm
ÿ

i“1

Ex2,¨¨¨ ,xb

«˜

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m

ff

,

where Nm and ni are constant depending on m (and independent of b) and Mik, k P

r0 : nis , i P rNms are multiplicative terms of parameter matrices
!

rAj , j P r
β1

2 ´ 1s
)

and

constant matrix tIpu. Furthermore, for every i P rNms, we have
řni
k“0 degp

rAj ;Mikq “

1, j P rβ1

2 ´ 1s and therefore
řni
k“0 deg pMikq “

β1

2 ´ 1.

Combining the definition of rAj’s, we know thatMik, k P r0 : nis , i P rNms are multiplica-
tive terms of parameter matrices txuxTv : u, v P r2 : bsuY tAj : j P rm´ 1su and constant

2For example, we can rewrite

xi1x
T
i11
A1xi2x

T
i12
A2xi3x

T
i13
“ xi1

´

xTi11A1xi2

¯ ”

xTi12A2xi3

ı

xTi13 “ xi1

”

xTi12A2xi3

ı ´

xTi11A1xi2

¯

xTi13

“ xi1

”

xTi12

´

xTi11A1xi2

¯

A2xi3

ı

xTi13 “ xi1

”

xTi12A2

´

xTi11A1xi2

¯

xi3

ı

xTi13 .

3For example, we can rewrite

x1x
T
2 A1x1x

T
1 A2x3x

T
3 A3x1x2 “ x1

´

xT2 A1x1
¯ ”

xT1 A2x3
ı !

xT3 A3x1
)

x2 “ x1
´

xT1 A1x2
¯ ”

xT3 A2x1
ı !

xT1 A3x3
)

x2

“x1x
T
1 A1x2x

T
3 A2x1x

T
1 A3x3x2 “ x1x

T
1
rA1x1x

T
1
rA2rxx2,

where rA1 “ A1x2x
T
3 A2, rA2 “ A3 and rx “ x3. Besides, m “ 4, β1 “ 4, thus the degree of xuxTv in all rAk

sum up to m´ β1
2
´ 1 “ 1
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matrix tIpu such that for every i P rNms, we have
ř

u,vPr2:bs

řni
k“0 degpxux

T
v ;Mikq “

m´ β1

2 ´ 1 and
řni
k“0 degpAj ;Mikq “ 1, j P rm´ 1s.

Applying Lemma 5, for every k P r0 : nis and every i P rNms, there exists uik, vik P
txj : j P r2 : bsu and multiplicative term M 1

ik of parameter matrices txuxTv : u, v P

r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that

tr pMikq “ uTikM
1
ikvik.

Therefore, we have
˜

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m “

ni
ź

k“1

`

uTikM
1
ikvik

˘

Mi0
rA β1

2
rxxTi1m “Mi0

rA β1
2
rx
ni
ź

k“1

`

uTikM
1
ikvik

˘

xTi1m fi Ui.

Note that for every i P rNms, we have

m´1
ÿ

j“1

degpxi;Ajq “
ni
ÿ

k“1

degpxi;M
1
ikq ` degpxi;Mi0q ` deg

´

xi; rA β1
2

¯

` degpxi; rxq ` deg
´

xi;x
T
i1m

¯

,

and for every j P rm´ 1s, we have
ni
ÿ

k“1

degpAj ;M
1
ikq ` degpAj ;Mi0q ` deg

´

Aj ; rA β1
2

¯

“ 1.

In other words, for every i P rNms, Ui has the form of
pA0xpi1x

T
pi11

pA1xpi2x
T
pi12
¨ ¨ ¨ pAm´1xpim1

xTi1m
pAm1 but there is no appearance of x1. Here

x
pij
, x

pij
P txj , j P r2 : bsu, and pAi, i P r0 :ms are multiplicative terms of parameter

matrices tAj , j P rm´ 1su and constant matrix tIpu. Furthermore, for every j P rm´ 1s,
we have

řni
k“0 degpAj ;

pAiq “ 1. Note that here we use the liberty of adding identity
matrices if more than two consecutive x’s appear. Since we have reduced N ` 1 by
one, we can use induction on x

pi1
xT
pi11

pA1xpi2x
T
pi12
¨ ¨ ¨ pAm´1xpim1

xTi1m and finish the proof.

The two constant matrices pA0 and pAm do not change the result of expectation since
E
´

pA0X pAm1
¯

“ pA0EpXq pAm1 .

• If i1 “ i1m, without loss of generality we assume, i11 “ 1 and i11 ‰ i1 (note that all
xTi1j
Ajxij`1

, j P rm ´ 1s are inter-changeable and there is at least one element in S that

is not equal to i1). We change the orders of xTi1jAjxij`1 , j P rm ´ 1s (and flip it to be

xTij`1
Ajxi1j if necessary) such that all x1’s appear in a consecutive form of x1x

T
1 :

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m
“ xi1

´

xTi11A1xi2x
T
i12
A2 ¨ ¨ ¨Am´1xim

¯

xTi1m

“ xi1

´

rxT1
rA0

”

x1x
T
1
rA1 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1

ı

rA β1
2
rx2

¯

xTi1m ,

where rx1, rx2 P txi, i P rbsu , rx1, rx2 ‰ x1 and rAi’s are multiplicative terms of parameter
matrices txuxTv : u, v P r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that

ÿ

u,vPr2:bs

β1
2
ÿ

k“0

degpxux
T
v ;

rAkq “ m´
β1

2
´ 2

and
ř

β1
2

k“0 degpAj ;
rAkq “ 1, j P rm ´ 1s. The remaining reasoning is the same as the

previous case.
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Remark. If one of the βi numbers of appearance of xj , j P rbs is odd, then it is easy to see that the
result in (5) is the zero matrix.

As pointed out in the Section 1, the difficulty of studying the dynamics of SGD is how to connect
the quantities in iteration t with fixed variables, like initial weights W0,1,W0,2 and mini-batch size
b. We overcome this challenge by the following two lemmas. Lemma 8 provides the relationship
between gbt,i, i “ 1, 2 and W b

t,i, i “ 1, 2 by taking expectation over the distribution of random
samples in Bbt . Lemma 9 shows the relationship between W b

t,i, i “ 1, 2 and gbt´1,i, i “ 1, 2 using
(1) and (2).

Lemma 8. For multiplicative terms Mi, i P r0 :ms of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree di, respectively, we denote
M “

śm
i“1 tr pMiqM0 and d “

řm
i“0 di. There exists a set of multiplicative terms

 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter matrices
 

W b
t,1,W

b
t,2

(

and constant ma-
trices tW˚

1 ,W
˚
2 u such that

E
“

M
ˇ

ˇFbt
‰

“ N0 `N1
1

b
` ¨ ¨ ¨ `Nd

1

bd
,

where Nk “
řmk
i“1

śmki
j“1 tr

`

Mk
ij

˘

Mk
i0, k P r0 : ds. Here mk,mki are constants independent of b,

and
řmki
j“0 deg

`

Mk
ij

˘

ď 3d`
řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

.

Lemma 9. For multiplicative term Mi, i P r0 :ms of parameter matrices
 

W b
t,1,W

b
t,2

(

and con-
stant matrices tW˚

1 ,W
˚
2 u of degree di, let d “ 2d0`¨¨¨`dm . There exists a set of multiplica-

tive terms tMik, i P r0 :ms , k P rdsu of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

such that

m
ź

i“1

tr pMiqM0 “

d
ÿ

k“1

m
ź

i“1

tr pMikqM0k,

where
řm
i“0 deg pMikq ď d.

Proof of Lemma 8. By (1) and (2) we have

M “

m
ź

i“1

tr pMiqM0 “
1

bd

bd
ÿ

k“1

m
ź

i“1

tr pMkiqMk0, (6)

where each Mki, k P rbds, i P r0 :ms is a multiplicative term of parameter matrices
 

xt,ix
T
t,i, i P rbs

(

and constant matrices
 

W b
t,1,W

b
t,2,Wb

t

(

. Let ĂMk “
śm
i“1 tr pMkiqMk0, k P

“

bd
‰

. We split set
!

ĂMk : k P
“

bd
‰

)

into disjoint and non-empty sets (equivalent classes)
S1, . . . , SnM such that

1. for every i P rnM s and every M1,M2 P Si, we have E
“

M1

ˇ

ˇFbt
‰

“ E
“

M2

ˇ

ˇFbt
‰

,

2. for every i, j P rnM s, i ‰ j and every M1 P Si and M2 P Sj , we have E
“

M1

ˇ

ˇFbt
‰

‰

E
“

M2

ˇ

ˇFbt
‰

.

Note thatYnMi“1Si “
!

ĂMk : k P
“

bd
‰

)

. Let xMk P Sk represent the equivalent class Sk (it can be any

member of Sk). For every i P rnM s, we can always write |Si| “ ei,0` ei,1b` ¨ ¨ ¨` ei,db
d such that

ei,j P N, ei,j ă b, j P r0 : ds (actually ei,j’s are the digits of the base-b representation of |Si|). Then
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we have

E
“

M
ˇ

ˇFbt
‰

“ E

»

–

1

bd

bd
ÿ

k“1

ĂMk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fbt

fi

fl “
1

bd
E

«

nM
ÿ

i“1

`

ei,0 ` ei,1b` ¨ ¨ ¨ ` ei,db
d
˘

xMi

ˇ

ˇ

ˇ

ˇ

ˇ

Fbt

ff

“
1

bd

nM
ÿ

i“1

`

ei,0 ` ei,1b` ¨ ¨ ¨ ` ei,db
d
˘

E
”

xMi

ˇ

ˇ

ˇ
Fbt

ı

(7)

“

nM
ÿ

i“1

ˆ

ei,d ` ei,d´1
1

b
` ¨ ¨ ¨ ` ei,0

1

bd

˙

E
”

xMi

ˇ

ˇ

ˇ
Fbt

ı

.

It is important to note that nM , the number of different equivalent classes, is independent
of b. This follows from the fact that each E

”

ĂMk

ˇ

ˇ

ˇ
Fbt

ı

(and so as E
”

xMk

ˇ

ˇ

ˇ
Fbt

ı

) includes

a finite number of weight matrices W b
t,1 and W b

t,2 with degree less than or equal to 3d `
řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

(see Lemma 7). Thus the number of partition sets is
bounded by a quantity independent of b.

Note that each Mki can be represented as

Mki “ Aki0 x
ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

xkit,idi
T
Akidi

for some matrices Aki0 , . . . , A
ki
di

that are multiplicative term of parameter matrices
 

W b
t,1,W

b
t,2andWb

t

(

constant matrix tIpu (we stress again that some A matrices can be
identities, based on the definition of multiplicative terms), and xkit,i1 , . . . , x

ki
t,idi

P txt,1, . . . , xt,bu.
We have

tr pMkiq “ tr
´

Aki0 x
ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

xkit,idi
T
Akidi

¯

“ xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

.

For every k P
“

bd
‰

, we have

m
ź

i“1

tr pMkiqMk0 “

«

m
ź

i“1

xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

ff

Ak0
0 xk0

t,i1x
k0
t,i1

T
Ak0

1 ¨ ¨ ¨Ak0
d0´1x

k0
t,id0

xk0
t,id0

T
Ak0
d0

“

«

m
ź

i“1

xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

ff

”

xk0
t,i1

T
Ak0

1 ¨ ¨ ¨Ak0
d0´1x

k0
t,id0

ı

Ak0
0 xk0

t,i1x
k0
t,id0

T
Ak0
d0 ,

which can be rewritten as

ĂMk “

m
ź

i“1

tr pMkiqMk0 “

˜

d
ź

j“1

xTt,̄ijA
k
jxt,̄i1j

¸

Ak0
0 xk0

t,i1x
k0
t,id0

T
Ak0
d0 .

Note that the randomness of each ĂMk given Fbt only comes from the randomness of xt,j’s, i.e. for
all k P

“

bd
‰

we have

E
”

ĂMk

ˇ

ˇ

ˇ
Fbt

ı

“ Ext,j„N p0,Iq

«˜

d
ź

j“1

xTt,ijA
k
jxt,i1j

¸

Ak0xt,i10x
T
t,i0A

k
0

1

ff

“ Ext,j„N p0,Iq

«

Ak0xt,i10

˜

d
ź

j“1

xTt,ijA
k
jxt,i1j

¸

xTt,i0A
k
0

1

ff

(8)

“

nkM
ÿ

i“1

nki
ź

j“1

tr
´

ĂMk
ij

¯

ĂMk
i0,
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where the last equation comes from Lemma 7. Here nkM , n
k
i , i P

“

nkM
‰

, k P
“

bd
‰

are constants inde-
pendent of b, Mk

ij’s are multiplicative terms of parameter matrices
 

W b
t,1,W

b
t,2,Wb

t

(

and constant
matrix tIpu such that for every i P

“

nkM
‰

, we have

nki
ÿ

j“0

deg
´

Wb
t ;
ĂMk
ij

¯

“ d (9)

and
nki
ÿ

j“0

´

deg
´

W b
t,1;

ĂMk
ij

¯

` deg
´

W b
t,2;

ĂMk
ij

¯¯

“ d`
m
ÿ

r“0

`

deg
`

W b
t,1;Mr

˘

` degpW b
t,2;Mrq

˘

. (10)

These degree relationships can be observed from (1), (2), and the fact that each gbt,1 or gbt,1 con-

tributes one Wb
t and one of W b

t,1 or W b
t,2 in

śnki
j“1 tr

´

ĂMk
ij

¯

ĂMk
i0. Note that Wt “ W b

t,2W
b
t,2 ´

W˚
2 W

˚
1 . For every i P

“

nkM
‰

, if we replace all appearances of Wb
t in

śnki
j“1 tr

´

ĂMk
ij

¯

ĂMk
i0 and

expand all parentheses of
`

W b
t,2W

b
t,2 ´W

˚
2 W

˚
1

˘

, we have

nki
ź

j“1

tr
´

ĂMk
ij

¯

ĂMk
i0 “

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0 , (11)

where ĂMkl
ij ’s are multiplicative terms of parameter matrices

 

W b
t,1,W

b
t,2

(

and constant matrices
tW˚

1 ,W
˚
2 u such that

nki
ÿ

j“0

´

deg
´

W b
t,1;

ĂMkl
ij

¯

` deg
´

W b
t,2;

ĂMkl
ij

¯¯

ď 3d`
m
ÿ

r“0

`

deg
`

W b
t,1;Mr

˘

` degpW b
t,2;Mrq

˘

,

(12)
where the inequality comes from (9) and (10) and the fact that each gbt,1 or gbt,2 contributes 2 or 0
degrees in the form of W b

t,2W
b
t,1 or W˚

2 W
˚
1 , respectively.

Combining (7), (8) and (11), we have

E
“

M
ˇ

ˇFbt
‰

“

nM
ÿ

k“1

ˆ

ek,d ` ek,d´1
1

b
` ¨ ¨ ¨ ` ek,0

1

bd

˙

E
”

xMk

ˇ

ˇ

ˇ
Fbt

ı

“

nM
ÿ

k“1

ˆ

ek,d ` ek,d´1
1

b
` ¨ ¨ ¨ ` ek,0

1

bd

˙ n
sk
M
ÿ

i“1

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0

“ N0 `N1
1

b
` ¨ ¨ ¨ `Nd

1

bd
,

where

Nr “
nM
ÿ

k“1

ek,d´r

¨

˝

n
sk
M
ÿ

i“1

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0

˛

‚. (13)

Note that all constants in (13) are independent of b and combining with (12), we have finished the
proof.

Proof of Lemma 9. Simply using the fact that W b
t,i “ W b

t´1,i ´ αtg
b
t´1,i, i “ 1, 2, if we replace

each W b
t,i in the left-hand-side of (13) by W b

t´1,i ´ αtg
b
t´1,i and expand all the parentheses, then

each Mi, i P r0 :ms becomes the sum of 2di multiplicative terms of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree at most di. As a result,
śm
i“1 tr pMiqM0

becomes the sum of 2d terms in the form of
śm
i“1 tr pMikqM0k where deg pMikq ď 2di , and

therefore
řm
i“0 deg pMikq ď

śm
i“0 2

di “ d.
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Proof of Theorem 3. We use induction on t to show this result. The base case of t “ 0 it is the same
as the statement in Lemma 8.

Suppose that the statement holds for t ě 0, and we consider the case of t ` 1. By Lemma 8,
there exists a set of multiplicative terms

 

Mk
t`1,i,j , i P rmt`1,ks, j P r0 :mt`1,k,is , k P r0 : ds

(

of
parameter matrices

 

W b
t`1,1,W

b
t`1,2

(

and constant matrices tW˚
1 ,W

˚
2 u such that

E
“

M
ˇ

ˇFbt`1

‰

“ Nt`1,0 `Nt`1,1
1

b
` ¨ ¨ ¨ `Nt`1,d

1

bd
, (14)

where Nt`1,k “
řmt`1,k

i“1

śmt`1,k,i

j“1 tr
`

Mk
t`1,i,j

˘

Mk
t`1,i,0, k P r0 : ds. Here mt`1,k,mt`1,k,i are

constants independent of b, and
řmt`1,k,i

j“0 deg
`

Mk
t`1,i,j

˘

ď 3d` d1.

For each i P rmt`1,ks and each k P r0 : ds, by Lemma 9, there exists a set of multiplicative terms
tMt,i,j,k,l, j P rmt`1,i,ks , l P rdt,i,ksu of parameter matrices

 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

such that

mt`1,k,i
ź

j“1

tr
`

Mk
t`1,i,j

˘

Mk
t`1,i,0 “

dt,i,k
ÿ

l“1

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l, (15)

where dt,i,k “ 2
řmt`1,k,i
j“0 pdegpW b

t,1;Mt,i,j,k,lq`degpW b
t,2;Mt,i,j,k,lqq is a constant independent of b and

mt`1,k,i
ÿ

j“0

deg pMt,i,j,k,lq ď 3d` d1, (16)

and
mt`1,k,i
ÿ

j“0

pdeg pWt,1;Mt,i,j,k,lq ` deg pWt,2;Mt,i,j,k,lqq ď 3d` d1. (17)

Combining (14) and (15), we have for every k P r0 : ds

Nt`1,k “

mt`1,k
ÿ

i“1

dt,i,k
ÿ

l“1

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l. (18)

Note that

E rM |F0s “ E
“

E
“

M
ˇ

ˇFbt`1

‰
ˇ

ˇF0

‰

“ E rNt`1,0|F0s ` E rNt`1,1|F0s
1

b
` ¨ ¨ ¨ ` E rNt`1,d|F0s

1

bd

“

mt`1,0
ÿ

i“1

dt,i,0
ÿ

l“1

E

«

mt`1,0,i
ź

j“1

tr pMt,i,j,0,lqMt,i,0,0,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

`

`

mt`1,1
ÿ

i“1

dt,i,1
ÿ

l“1

E

«

mt`1,1,i
ź

j“1

tr pMt,i,j,1,lqMt,i,0,1,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

1

b
` ¨ ¨ ¨`

`

mt`1,d
ÿ

i“1

dt,i,d
ÿ

l“1

E

«

mt`1,d,i
ź

j“1

tr pMt,i,j,d,lqMt,i,0,d,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

1

bd
, (19)

and each Mt,i,j,k,l is a multiplicative term of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
tW b

t,1,W
b
t,2,W

˚
1 ,W

˚
2 u such that the degree is at most 1. Therefore, by induction, for every i, k, l,

we have

E

«

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

“ Nt,i,k,l,0 `Nt,i,k,l,1
1

b
` ¨ ¨ ¨Nt,i,k,l,qt

1

bqt
, (20)

where qt ď d1 ` 1
2 p3

t ´ 1qp3d` d1q and Nt,i,k,l,0, ¨ ¨ ¨ , Nt,i,k,l,qt are sum of multiplicative terms of
parameter matrices

 

W b
0,1,W

b
0,2

(

and constant matrices tW˚
1 ,W

˚
2 u with degree at most d ¨ 3t.
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Combining (19) and (20), we can rewrite

E rM |F0s “ N0 `N1
1

b
` ¨ ¨ ¨ `Nq

1

bq
,

in the same form as in the statement. Here q ď d ` 3qt ď
1
2 p3

t`2 ´ 1qd ` 1
2 p3

t`1 ´ 1qd1 and
řmki
j“0 deg

`

Mk
ij

˘

ď 3ˆ 3tp3d` d1q “ 3t`1p3d` d1q follow from (16) and (17).

In conclusion, we have shown that the statement holds for t` 1, and therefore finishes the proof.

By changing the role of parameter and constant matrices in Theorem 3, we obtain the following
corollary.
Corollary 2. Given t ě 0, for any multiplicative terms Mi, i P r0 :ms of parameter matri-
ces

 

W b
t,1,W

b
t,2,Wb

t

(

and constant matrices tW˚
1 ,W

˚
2 u such that

ř2
i“1 deg

`

W b
t,i;M

˘

“ d and
deg

`

Wb
t ;M

˘

“ d1, we denote M “
śm
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Proof of Corollary 2. We simply note that M can be written as the sum of at most 2d multiplica-
tive terms of parameter matrices
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and constant matrix tI0u. Then we apply
Lemmas 8 and 9 iteratively in the same way as in the proof of Theorem 3 to finish the proof.

Proof of Theorem 4. We only show the case for gt,1 since the proof for gt,2 can be tackled similarly.
Note that

var
`

gbt,1
ˇ

ˇF0

˘

“ var

˜

1

b

b
ÿ

i“1

W b
t,2

TWb
t xt,ix

T
t,i

ˇ

ˇ

ˇ

ˇ

ˇ

F0

¸

“
1

b2

b
ÿ

i“1

var
´

W b
t,2

TWb
t xt,ix

T
t,i

ˇ

ˇ

ˇ
F0

¯

“
1

b
var

´

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

¯

“
1

b

ˆ

E
„

›

›

›
W b
t,2

TWb
t xt,1x

T
t,1

›

›

›

2
ˇ

ˇ

ˇ

ˇ

F0



´

›

›

›
E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

tr
´

xt,1x
T
t,1Wb

t

T
W b
t,2W

b
t,2

TWb
t xt,1x

T
t,1

¯
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

E
”

tr
´

xt,1x
T
t,1Wb

t

T
W b
t,2W

b
t,2

TWb
t xt,1x

T
t,1

¯
ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

pp` 2qtr
´

Wb
t

T
W b
t,2W

b
t,2

TWb
t

¯
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

pp` 2qtr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

.

“
1

b

ˆ

pp` 2qtr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

.

Here we have used the fact that Ex„N p0,Ipqtr
`

xxTAxxT
˘

“ pp`2qtr pAq. By Corollary 2 we know
that there exists a set of multiplicative terms

 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter
matrices

 

W b
0,1,W

b
0,2

(

and constant matrices tW˚
1 ,W

˚
2 u such that

tr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

“ γ0 ` γ1
1

b
` ¨ ¨ ¨ ` γq

1

bq
, (21)

28



Under review as a conference paper at ICLR 2021

where γk “
řmk
i“1

śmki
j“0 tr

`

Mk
ij

˘

, k P r0 : qs. Here mk,mki and q ď 6 ¨ 3t are constants indepen-
dent of b, and
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ď 6 ¨ 3t. Note that W b
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b
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are constants independent of b.

Similarly we observe that there exist constants q1 ď 2 ¨ 3t`1 and γ1k, k P r0 : q
1s such that
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By defining γi “ 0, i ą q and γ1i “ 0, i ą q1, and combining (21) and (22) we have
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Note that γk’s and γ1k’s are all constants independent of b, and max tq, q1u ď 2¨3t`1. This completes
the proof.

Proof of Theorem 5. We first show that in
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B.3 EXTENSION TO DEEP LINEAR NETWORKS

The extension from two-layer linear network to deep linear network is straightforward. Here we
only provide the ideas on how to translate the proof of two-layer network to d-layer network, but not
the strict proof. For simplicity, we remove all superscripts b of matrices in this subsection.

Assume that the d-layer linear network is given by fpx;wq “ WdWd´1 ¨ ¨ ¨W2W1x, where Wi, i P
rds is the parameter matrix on the i-th layer and w “ pW1, . . . ,Wdq. The population loss is defined
as

Lpwq “ Ex„N p0,Ipq

„

1

2
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˚
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˚
1 x}

2



.

Similar to (1) and (2), we have
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We denoteWt “ Wt,d ¨ ¨ ¨Wt,1 ´W
˚
d ¨ ¨ ¨W

˚
1 . The remaining are all the same as the proofs in Ap-

pendix B.2, except we should replace all appearance of tWt,2,Wt,1u to tWt,d,Wt,d´1, ¨ ¨ ¨ ,Wt,1u

and all tW˚
2 ,W

˚
1 u to

 

W˚
d ,W

˚
d´1, ¨ ¨ ¨ ,W

˚
1

(

. We can do this because the stochastic gradient
gt,k is still the sum of multiplicative terms of parameter matrices txt,iu and constant matrices
tWt,d, ¨ ¨ ¨ ,Wt,1,W

˚
d , ¨ ¨ ¨ ,W

˚
1 u so the Lemmas in Appendix B.2 still apply.

In conclusion, we can again represent var pgt,k|F0q, k P rds as a polynomial of 1
b with finite degree

and without the constant term. By the same approach in the proof of Theorem 5, we can show that
the variance is a decreasing function of the mini-batch size b.
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