
Under review as a conference paper at ICLR 2021

A CIFAR10 EXPERIMENTS

A.1 BIGGAN + DMAT EXPERIMENTS

For the baseline we use the author’s official PyTorch implementation
https://github.com/ajbrock/BigGAN-PyTorch. For our experiments on DMAT + BigGAN, we kept
the optimizer as Adam (Kingma & Ba, 2014) and used the hyperparameters β1 = 0.0, β2 = 0.9. We
did not change the model architecture parameters in any way. The best performance was achieved
with learning rate = 0.0002 for both the Generator and all the Discriminators. The batch size for the
G and all D is 50, and the latent dimension is chosen as 128. The initial value of Tt = 5 epochs,
and after the first discriminator is added, Tt is increased by 5 epochs every Tt epochs. The initial
value of αt = 1.5, and it is increased by a factor of 3.5 every time a discriminator is added. To check
whether to add another discriminator or not, we use 10 exemplar images, 1 from each CIFAR10
class. While assigning datapoints to each discriminator, we use an epsilon greedy approach. We
chose ε = 0.25, where the datapoint is assigned to a random discriminator with a probability ε.
The number of discriminator(s) updates per generator update is fixed at 4. We also use exponential
moving average for the generator weights with a decay of 0.9999.

A.2 SN-GAN + DMAT EXPERIMENTS

We used the SN-GAN implementation from https://github.com/GongXinyuu/sngan.pytorch,
which is the PyTorch version of the authors’ Chainer implementation https://github.com/pfnet-
research/sngan_projection. We kept the optimiser as Adam and used the hyperparameters β1 =
0.0, β2 = 0.9. The batch size for generator is 128 and for the discriminators is 64, and the latent
dimension is 128. The initial learning rate is 0.0002 for both generator and the discriminators. The
number of discriminator(s) updates per generator update is fixed at 7. The initial value of Tt = 2
epochs, and is increased by 1 epoch after every discriminator is added. αt is initialized as 1.5, and is
increased by a factor of 1.3 after a discriminator is added, till 20 epochs, after which it is increased
by a factor of 3.0. These larger increases in αt are required to prevent too many discriminators from
being added over all iterations. We chose ε = 0.3, where the datapoint is assigned to a random
discriminator with a probability ε. We use 10 exemplar images, 1 from each CIFAR10 class.

ResNet GAN: We use the same ResNet architecture as above, but remove the spectral normalization
from the model. The optimizer parameters, learning rate and batch sizes remain the same as well. The
number of discriminator(s) updates per generator update is fixed at 5. The initial value of Tt = 10
epochs, and is increased by 5 epochs after every discriminator is added. αt is initialized as 1.5, and is
increased by a factor of 2.0 after a discriminator is added. We chose ε = 0.2, where the datapoint is
assigned to a random discriminator with a probability ε. We use 10 exemplar images, 1 from each
CIFAR10 class.

ResNet WGAN-GP: In the above model, the hinge loss is replaced by the Wasserstein loss with
gradient penalty. The optimizer parameters, learning rate and batch sizes remain the same as well.The
number of discriminator(s) updates per generator update is fixed at 2. The initial value of Tt = 5
epochs, and is increased by 5 epochs after a discriminator is added. αt is initialized as 1.5, and is
increased by a factor of 3.0 after a discriminator is added. We chose ε = 0.2, where the datapoint is
assigned to a random discriminator with a probability ε. We use 10 exemplar images, 1 from each
CIFAR10 class. These images are chosen randomly from each class, and may not be the same as the
ones for other CIFAR10 experiments.

A.3 DCGAN + DMAT EXPERIMENTS

We used the standard CNN models for our DCGAN as shown in Table 6. We use the Adam optimizer
with hyperparameters β1 = 0.0, β2 = 0.9. The learning rate for generator was 0.0002, and the
learning rate for the discriminator(s) was 0.0001. The number of discriminators updates per generator
was fixed at 1. The initial value of Tt = 4 epochs, and is increased 5 epochs after a discriminator is
added. αt is initialized as 1.5 and is increased by a factor of 1.5 every time a discriminator is added.
We chose ε = 0.3, where the datapoint is assigned to a random discriminator with a probability ε. We
use 10 exemplar images, 1 from each CIFAR10 class.

12

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/GongXinyuu/sngan.pytorch
https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection


Under review as a conference paper at ICLR 2021

z ∈ R128 ∼ N (0, I)

dense→ 4× 4× 512

4× 4, stride=2 deconv. BN 256 ReLU

4× 4, stride=2 deconv. BN 128 ReLU

4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(a) Generator

x ∈ R32×32×3

3× 3, stride=1 conv. 64 lReLU
4× 4, stride=2 conv. 64 lReLU

3× 3, stride=1 conv. 128 lReLU
4× 4, stride=2 conv. 128 lReLU

3× 3, stride=1 conv. 256 lReLU
4× 4, stride=2 conv. 256 lReLU

3× 3, stride=1 conv. 512 lReLU

dense→ 1

(b) Discriminator

Table 6: DCGAN Architecture for CIFAR10

B STACKED MNIST EXPERIMENTS

Stacked MNIST provides us a test-bed to measure mode collapse. A three channel image is generated
by stacking randomly sampled MNIST classes, thus creating a data distribution if 1000 modes. We
use this dataset to show that, when generator oscillates to a different set of modes, catastrophic
forgetting is induced in discriminator and this prevents the generator to recover previous modes. To
study this phenomenon, we need to measure the correlation between number of modes the generator
covered and the catastrophic forgetting in the discriminator. Measuring the number of modes is
straight forward, we can by simply classify each channels of the generated images using a MNIST
pretrained classifier to find its corresponding mode. However, to measure catastrophic forgetting in
the discriminator, we use a proxy setting, where we take the high-level features of the real images
from the discriminator and train a simple classifier on top of that. The discriminative quality of the
features taken from the discriminator indirectly measure the ability of the network to remember the
modes. Finally, as a control experiment we randomize the weights of the discriminator, and train a
classifiers on the feature taken from randomized discriminator. This is to show that, extra parameters
in the classifier does not interfere our proxy measure for the catastrophic forgetting. Finally, we
train a DCGAN with a single discriminator, and a similar DCGAN architecture with our proposed
DMAT procedure, and measure the number of modes covered by the generator and the accuracy of
the discriminator.

C A FAIR COMPARISON ON DISCRIMINATOR CAPACITY

Our DMAT approach incrementally adds new discriminators to the GAN frameworks, and its overall
capacity increases over time. Therefore, it is not fair to compare a model with DMAT training
procedure with its corresponding the single discriminator model. As a fair comparison to our DMAT
algorithm, we ran single discriminator model with approximately matching its discriminator capacity
to the final DMAT model. For example, SN-GAN with DMAT learning scheme uses 4 discriminators
at the end of its training. Therefore we use a discriminator with four times more parameters for the
single discriminator SN-GAN model. This is done by increasing the convolutional fillters in the
discriminator. Table 7 shows that, even after matching the network capacity, the single discriminator
models do not perform well as compared to our DMAT learning.

D SYNTHETIC DATA EXPERIMENTS

We add flow-based non-linearity (Algorithm 1) to a synthetic 8-Gaussian ring dataset. We chose
K = 5 as our non-linearity depth and chose a randomly initiated 5 layer MLP as our non-linear
functions. We use an MLP as our GAN generator and discriminator (Table 8). We use the Adam
optimizer with hyperparameters β1 = 0.0, β2 = 0.9. The learning rate for the generator and
discriminator was 0.0002. The number of discriminator updates per generator update is fixed to 1,
and the batch size is kept 64. The initial value of Tt = 5 epochs, and is increased by 10 every time a

13



Under review as a conference paper at ICLR 2021

Table 7

Scores DCGAN ResNetGAN WGAN-GP SN-GAN BigGAN

#of Param of D 1.10 M 3.22 M 2.06 M 4.20 M 8.42 M
w/o DMAT IS 5.97 ± 0.08 6.59 ± 0.09 7.72 ± 0.06 8.24 ± 0.05 9.14 ± 0.05

FID 34.7 36.4 19.1 14.5 10.5

#of Param of D 1.02 M 3 × 1.05 M 2 × 1.05 M 4 × 1.05 M 8.50 M
+ DMAT IS 6.32 ± 0.06 8.1 ± 0.04 7.80 ± 0.07 8.34 ± 0.04 9.51 ± 0.06

FID 30.14 16.35 17.2 13.8 6.11

Figure 4: GAN training visualization: (Figure contains animated graphics, better viewed in Adobe Acrobat
Reader) Training trajectories of an MLP in table 8 (leftmost panel) and an MLP trained with our DMAT
procedure (Algorithm 3) (rest three panels) on a 784-dimensional synthetic dataset. Green dots represent real
samples and the blue dots represent the generated samples. The vanilla GAN samples are overlayed against
discriminator’s output heatmap where the warm yellow color indicates a high probability of being real and
cold violet indicates fake. In the DMAT + GAN panels, the discriminator landscapes are shown separately
for both discriminators with the second discriminator being spawned at iteration 4000 (Algorithm 2). The 2D
visualizations of the 784D data space is facilitated by our synthetic data generation procedure (Algorithm 1).

discriminator is added. αt is initialized as 1.5, and is increased by a factor of 1.5 after a discriminator
is added for the first 50 epochs. After that αt is increased by a factor of 3. We chose ε = 0.25, where
the datapoint is assigned to a random discriminator with a probability ε. 1 random datapoint from
each of the 8 modes is selected as the exemplar image.

Figure 4 shows the difference in performance of a standard MLP GAN (8 and the same MLP GAN
with DMAT. The GIF on the lefts shows a cyclic mode collapse due the discriminator suffering from
catastrophic forgetting. The same GAN with is able to completely mitigate catastrophic forgetting
with just 2 discriminators added dynamically, on a 728-dimensional synthetic data.

z ∈ R25 ∼ N (0, I)

dense→ 128, BN 128 ReLU

dense→ 128, BN 128 ReLU

dense→ 512, BN 512 ReLU

dense→ 1024, BN 1024 ReLU

dense→ 2, Tanh

(a) Generator

x ∈ R2

dense→ 128 ReLU

dense→ 512 ReLU

dense→ 1 Sigmoid

(b) Discriminator

Table 8: MLP architecture for Synthetic Dataset

14


	Introduction
	Related Works
	Mitigating Mode Collapse in GANs
	Multi-adversarial Approaches
	Overcoming Catastrophic Forgetting in GAN

	Proposed Method
	Synthetic Data Generation with Normalizing flows
	Dynamic Multi Adversarial Training

	Results
	Synthetic Data
	Stacked MNIST
	CIFAR10

	Conclusion
	CIFAR10 Experiments
	BigGAN + DMAT Experiments
	SN-GAN + DMAT Experiments
	DCGAN + DMAT Experiments

	Stacked MNIST Experiments
	A Fair comparison on discriminator capacity
	Synthetic Data Experiments

	anm3: 
	3.47: 
	3.46: 
	3.45: 
	3.44: 
	3.43: 
	3.42: 
	3.41: 
	3.40: 
	3.39: 
	3.38: 
	3.37: 
	3.36: 
	3.35: 
	3.34: 
	3.33: 
	3.32: 
	3.31: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


