Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic-rank Training

Require: Model parameters ©, Training dataset D, Total epochs F, low-rank dimension k, Inflation epoch I,
Deflation epoch D, Learning rate schedule 7.
1: Initialize model parameters © in a low-rank form.
2: fort=1— Edo
3: ift = I then

4 // Inflate model to full-rank
5 for low-rank weight (A, B) with base Wy in © do
6: W+ Wi +AB'
7: Replace (Wo, A, B) with W in ©.
8: end for
9:  endif
10:  ift = D then
11: // Deflate model back to low-rank
12: for each full-rank weight matrix W in © do
13: Freeze the current weight W < W.
14: Initialize new low-rank matrices A, B.
15: Replace W with (W, A, B) in ©.
16: end for
17:  endif

18:  Train the model on dataset D using © and 7;.
19:  Update learning rate 7);41 according to the schedule.
20: end for

A APPENDIX

The appendix is structured as follows:

* Section A.1 presents a pseudocode of the proposed dynamic-rank training framework.

» Section A.2 summarizes experimental settings corresponding to all the experimental results
reported in the main manuscript.

» Section A.3 describes how we inflate and deflate the model weights using Tucker and CP
decompositions.

* Section A.4 describes how we adjust the rank of model weights at convolution layers.

* Section A.5 presents a singular value spectrum ratio comparison among different model
rank adjustment settings.

* Section A.6 provides the results of additional ablation study on the impact of ¢ on model
accuracy.

 Section A.7 summarizes potential limitations of our proposed dynamic-rank training frame-
work.

We declare that an LLM was used to polish the writing. However, its purpose was solely to improve
presentation quality and check grammar.

A.1 ALGORITHM

Algorithm 1 shows a pseudocode of the proposed dynamic-rank training framework. In this pseu-
docode, we assume the model is reparameterized using SVD. It is straightforward to replace SVD
with other decomposition techniques. During E training epochs in total, if the epoch ID ¢ becomes
1, the model is inflated following the previously discussed reconstruction steps (line 5 ~ 8). Like-
wise, if the epoch ID ¢ becomes D, the model is deflated (line 10 ~ 17). Other steps are the same as
general neural network training process. Therefore, it does not have any dependencies on optimizers
or model architectures.

A.2 EXPERIMENTAL SETTINGS

CIFAR-10/CIFAR-100 datasets — We perform the typical image preprocessing used in many previ-
ous works (Lee et al., 2023) for CIFAR-10/100 datasets. 60,000 images with 50,000 images for train

13



Under review as a conference paper at ICLR 2026

Table 6: Hyper-parameter settings for experiments shown in Table 3. The p is the low-rank model’s
rank reduction ratio.

Dataset Batch Size  Learning Rate  Epochs (E)) LR Decay  Inflate/Deflate (I, D)  Weight decay P
CIFAR-10 128 150 100, 130 55,120 le — 4
CIFAR-100 0.1 200 150, 180 80, 170 5e — 4 0.5
Tiny ImageNet 64 100 70, 90 30, 80 5e — 4

dataset and 10,000 images for validation dataset. Each image is padded by 4 pixels on every dimen-
sion and then randomly cropped to the original size. Then, we normalize and standardize the values
for all individual pixels. Finally, with probability of 0.5 we randomly flip the image horizontally.

Tiny ImageNet dataset — For Tiny ImageNet with 200 classes, we augment the data samples during
training as follows: aspect ratio adjustment [0.8, 1.25], random resizing [256, 384] pixels on shorter
side, random cropping to 224x224 then resizing to 64 x 64, horizontal flipping with probability of
0.5, and HSV color augmentation (hue +36 degree, saturation/brightness [0.6, 1.4]). We normalize
using ImageNet standard RGB values (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]). For
validation, we resize to 256 pixels on shorter side, center crop to 64 x 64, and apply the same
normalization. We used 60,000 images with 50,000 images for train dataset and 10,000 images for
validation dataset.

NLP datasets — We report performance on the GLUE development set following AdaLoRA (Zhang
et al., 2023).

* CoLA (Warstadt et al., 2019): Judges if an English sentence is grammatically acceptable.
(Train: 8.5k, Dev: 1k, Metric: Matthews Correlation Coefficient).

e MNLI (Williams et al., 2018): A 3-way classification task (entailment, neutral, contradic-
tion) for sentence pairs across multiple genres. We use matched development set. (Train:
393k, Dev: 9.8k, Metric: Accuracy).

* MRPC (Dolan & Brockett, 2005): A binary classification task to determine if two sen-
tences from online news are paraphrases. (Train: 3.7k, Dev: 408, Metric: Accuracy).

e QNLI (Rajpurkar et al., 2016): A binary classification task to identify if a context sentence
contains the answer to a question. (Train: 105k, Dev: 5.4k, Metric: Accuracy).

* QQP (Iyer et al., 2017): A binary classification task to determine if two questions from
Quora are semantically equivalent. (Train: 364k, Dev: 40k, Metric: Accuracy).

* RTE (Giampiccolo et al., 2007): A smaller, 2-way textual entailment classification task
combining several datasets. (Train: 2.5k, Dev: 276, Metric: Accuracy).

* SST-2 (Socher et al., 2013): A binary sentiment classification task on sentences from movie
reviews. (Train: 67k, Dev: 872, Metric: Accuracy).

* STS-B (Cer et al., 2017): A regression task to predict a semantic similarity score (from 0
to 5) for sentence pairs. (Train: 5.7k, Dev: 1.5k, Metric: Pearson/Spearman Correlation).

Vision Experimental Settings — The Vision experiments detailed in Table 3 follow the configu-
rations summarized in Table 6. We employed SGD optimizer with 0.9 momentum and conducted
a grid search for learning rate, I, and D, executing each setting at least twice. The learning rate
was tuned among 0.2, 0.1, 0.01. The I and D were first set to the midpoints of the high-noise and
low-noise regimes, respectively. Then, each was finely tuned by grid search with a unit of 5. Table 6
presents the overall hyper-parameter settings we tuned.

NLP Experimental Settings — The NLP experiments presented in Table 4 are configured according
to Table 7. We used AdamW optimizer with momentum 0.9, weight decay le-2, beta values (0.9,
0.999), sequence length 128, and 10% warm-up period of total steps. Through grid search performed
at least twice per setting, we tuned learning rate among le-4, Se-5, 2.5e-5, le-5, D from 2, 3, and A
among 0.5, 0.3, 0.1. Table 7 summarizes the highly tuned hyper-parameter settings.

Experimental Settings of Rank Recovery Analysis — The rank recovery experiments outlined in
Table 5 follow the settings summarized in Table 8. We performed grid search for the algorithm-
specific parameter, A (regularizer coefficient), from le-3, Se-4, le-4, Se-5, le-5.

14



Under review as a conference paper at ICLR 2026

Table 7: Hyper-parameter settings for experiments shown in Table 4. The A is the orthogonal
regularizer coefficient in AdaLoRA (Zhang et al., 2023).

Dataset ~ Batch Size  Learning Rate  Epochs (E)  LoRA rank @ Algorithm-specific parameter ~ Deflate (D)

COLA 5e — 5 10 A=05 5
MNLI le—5 5 A=0.1
MRPC le—4 5 A=0.1 s
QNLI le—5 5 A=0.1
QQP 16 le—5 5 16 16 A=0.1
RTE 5e — 5 10 A=0.1 5
SST-2 le—5 5 A=0.1 5
SST-B le—4 5 A=0.1

Table 8: Hyper-parameter settings for experiments shown in Table 5.

Method  Batch Size  Learning Rate  Epochs (E) LR Decay  Algorithm-specific parameter  Inflate/Deflate (I, D) p

SO A=5e—5
DSO 32 0.1 150 100, 130 A=5e—5 (55, 120) 0.5
SRIPT A =5e—4

Table 9: Hyper-parameter settings for experiments shown in Table 10.
Dataset Batch Size Learning Rate Epochs (E) LR Decay o) Inflate/Deflate (I, D) p

0.1 92,107

0.3 75,120
CIFAR-10 32 0.1 150 100, 130 0.5 60,135 05

0.7 45,150

0.9 15,150

0.1 140, 160

0.3 120, 180
CIFAR-100 32 0.1 200 150, 180 0.5 100,200 0.5

0.7 60, 200

0.9 20, 200

Experimental Settings of Ablation Study on Full-rank Epoch Budget — We conducted an abla-
tion study examining how the number of full-rank epochs affects model accuracy and computational
cost. Table 9 summarizes experimental settings corresponding to Table 10. We follow popularly
used hyperparameter settings (e.g., a batch size of 32 and a learning rate of 0.1, etc.) and adjusted
¢, I, and D. Given a fixed budget of ¢ F full-rank epochs, we allocate half to the high-noise regime
and half to the low-noise regime.

A.3 MODEL INFLATION / DEFLATION WITH VARIOUS DECOMPOSITION TECHNIQUES

Our dynamic-rank training method is compatible with various decomposition techniques. In the
main manuscript, we described how to inflate and deflate models using SVD as an example. Here,
we explain how model weights are reparameterized using Tucker and CP decompositions. Let F'
denote the number of output channels, C' the number of input channels, & the kernel height, w the
kernel width, and k the reduced rank.

Model Inflation with Tucker decomposition — We define the model inflation process with Tucker
decomposition (Kim et al., 2015) as follows. Given low-rank layer weights A € RI*1xCxk
Core € Rixwxkxk B ¢ RIX1xEXF and base parameter W € RPXWXCXF the model is inflated
such that W < W, + ACoreB.

Model Deflation with Tucker decomposition — Given a model weight W, the model is deflated
by attaching a low-rank adaptor path next to the original weight such that W + ACoreB < W,
where W; € RMWXCOXFE 5 the given model weight matrix and A € R"XWXCXF and A €
RIXIXCxk Core € RiXwxkxk and B € R1*X1XkXF gre Jow-rank model weights. The provided
weight matrix is frozen as W and A, Core and B are trained instead. One can initialize A and B
using either random distributions or zero matrices.

15



Under review as a conference paper at ICLR 2026

0 i \i
AL L
A ’W f) V

,f /

50 100 150 50 100 150 50 100 150
Epoch
a) Low-rank (SVD=0.5) b) Inflated (I = 100) c) Inflated (I = 75) d) Inflated (I = 50) e) Full-rank (I = 0) ) Dynamic-rank
(I =60,D =120)

150

Figure 5: The singular value spectrum ratio A comparison. The red dotted lines indicate the epoch
where the rank of model weights are adjusted.

Model Inflation with CP decomposition — We define the model inflation process with CP de-
composition (Lebedev et al., 2014) as follows. Given low-rank layer weights A € R!*1xCxk
C, € RixIxkxk C, ¢ R““’Xk” B € RYX1XkXF and base parameter W € R/ XwxOx the
model is inflated such that W < WO + AC;C,B.

Model Deflation with CP decomposition — Given a model weight W, the model is deflated by
attaching a low-rank adaptor path next to the original weight such that Wy + AC1C2B +— W,
where W; € R™>" is the given model weight matrix and A € RIXIXCxk "Gy g RXIxkxk
Cy € RI*wxkxk and B € R !1XkXF are Jow-rank model weights. The provided weight matrix
is frozen as Wy and A, Cy, C2 and B are trained instead. One can initialize A and B using either
random distributions or zero matrices.

A.4 RANK ADJUSTMENT AN CONVOLUTION LAYERS

Let F' denote the number of output channels, C' the number of input channels, h the kernel height,
w the kernel width, and & the reduced rank. Note that we use a SVD-based approach as an example.
Given low-rank convolution layer weights A € R?*wxCxk B ¢ RIX1XEXF apd base convolution
layer weight Wo € R XwXCXF conyolution layer is inflated such that W <~ W+ AB. Note that
we assume k < r < n. If low-rank convolution follows the standard low-rank reparameterization
method, the initial weight matrix Wy is set to zero matrix, i.e., OhxwxcxF. Consequently, the
maximum available rank is increased from k to n by training with inflated convolution layer. The
deflation process follows the same steps, but in reverse order.

A.5 SINGULAR VALUE SPECTRUM RATIO COMPARISON

To analyze the impact of interleaving full-rank epochs within low-rank training, we visualize the
singular value spectrum ratio A', | € [L] with various model inflation settings. Figure 5 presents the
layer-wise A curves of five different inflation settings. As I decreases, the full-rank epochs take up a
large portion of the total epoch budget. We first observe that as I decreases, the A values are more
effectively suppressed, resulting in stable A’ curves across most layers. For example, in the full-rank
curves shown in Figure 5.¢), all curves remain below A! < 20. When the model is inflated too late
(e.g., I = 100), the curves stay relatively high, indicating that the model weights have lost their
rank. As shown in Figure 5.f), when I is sufficiently small, the \! values are significantly reduced
in most layers. Even after the model rank is deflated at D = 120, the \! values remain low until the
end of training. This comparison provides clear insights into how to dynamically adjust the model
rank during training to maximize the rank of the model weights.

Another intriguing observation is that the A\ values at a few layers remain high regardless of rank
adjustment. Notably, these layers consistently include the first and last layers across all experiments.
Since their inputs or outputs remain fixed during training, their weights may rapidly fit to data
patterns. If their rank can be suppressed, the model’s overall capacity may be more effectively
utilized, potentially achieving higher accuracy within the same epoch budget. We consider this an
interesting direction for future research.

16



Under review as a conference paper at ICLR 2026

Table 10: Ablation study on how ¢ = (D — I)/ E affects the performance of dynamic-rank training.
Low-Rank SVD is used for all experiments. When ¢ = 0.0, it becomes the conventional low-rank
training. In contrast, when ¢ = 1.0, it becomes full-rank training. The I and D are set to perform
the same number of full-rank epochs in the high-noise and low-noise regimes.

Rank

Setting Ratio p Comp.  CIFAR-10 CIFAR-100
¢ =0.1 0.36 90.54 £0.3% 76.29 £0.1%
¢ =0.3 051 91.434+0.1% 77.03 4+ 0.4%
¢=0.5 025 064 92.014£0.3% 78.61%0.2%
¢ =0.7 0.79 92.08+0.4% 78.75+0.1%
¢ =0.9 093 92.144+0.2% 78.63 +0.3%
¢ =0.1 0.61 91.284+0.1% 76.84+0.1%
¢ =0.3 0.69 91.57+0.1% 77.51 £0.2%
¢=05 05 078 92.114+0.2% 78.41 4+ 0.3%
¢ =0.7 0.87 92.154+0.2% 78.39 £0.1%
¢ =0.9 096 92.114+0.1% 78.47 4+ 0.3%

A.6 ADDITIONAL ABLATION STUDY

In our empirical study, we found that dynamic-rank training performs well when D and I are set
to allocate a similar number of full-rank epochs to both the high-noise and low-noise regimes. We
now conduct a simple ablation study to examine how the number of full-rank epochs affects model
accuracy. Table 10 presents the results. SVD-based low-rank training is evaluated on the CIFAR-10
and CIFAR-100 benchmarks. For convenience, we define ¢ = (D — I)/E as the ratio of full-rank
epochs to the total training budget. When ¢ = 0.0, it corresponds to conventional low-rank training;
when ¢ = 1.0, it becomes full-rank training. On both benchmarks, accuracy starts to drop when
¢ goes below 0.5, particularly in the range ¢ € [0.3,0.5]. We therefore recommend starting with
¢ = 0.5 and adjusting downward as needed.

A.7 POTENTIAL LIMITATIONS AND FUTURE WORK

Potential Limitations — Our proposed method has a relatively more expensive computational cost
compared to the conventional low-rank training methods. Since the number of trainable parameters
increases during D — I full-rank epochs, the overall cost is increased as shown in Comp. column in
Table 3. However, the cost still remains substantially lower than that of the full-rank training, and we
argue that the dynamic-rank training is a practical option for large-scale deep learning applications.

In addition, the extra hyperparameters, I and D, can introduce a non-trivial tuning overhead. How-
ever, Section 4.2 provides useful guidance on how to select good values for I and D based on
learning rate decay schedules. In our empirical study, we find that I and D can be tuned easily
by following our suggestions, leading to substantial accuracy improvement while maintaining low
computational cost.

Future Work — We plan to extend our dynamic-rank training research to automate the inflation and
deflation steps. Our study reveals that the inflation should be located at the end of the high-noise
regime and the deflation should be as early as possible in the low-noise regime. If the noise scale
can be quantified at run time, rather than explicitly mapping it to the learning rate decay schedule,
appropriate timings for increasing and decreasing the model rank can be identified during training.
We believe this will make the dynamic-rank training framework significantly more practical. More-
over, we consider harmonizing the dynamic-rank training framework with other existing compute-
efficient training strategies as a promising direction for future work. Given the ever-increasing model
sizes in deep learning applications (e.g., LLMs), developing neural network training strategies that
balance accuracy and efficiency is a crucial research direction.

17



	Introduction
	Background
	Related Work
	Motivation

	Dynamic-rank Training Framework
	Model Rank Adjustment
	Model Rank Scheduling
	Unified Rank Adjustment Framework

	Experiments
	Comparative Study
	Computational Cost Analysis

	Conclusion
	Appendix
	Algorithm
	Experimental Settings
	Model Inflation / Deflation with Various Decomposition Techniques
	Rank Adjustment an Convolution Layers
	Singular Value Spectrum Ratio Comparison
	Additional Ablation Study
	Potential Limitations and Future Work




