
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic-rank Training
Require: Model parameters Θ, Training dataset D, Total epochs E, low-rank dimension k, Inflation epoch I ,

Deflation epoch D, Learning rate schedule η.
1: Initialize model parameters Θ in a low-rank form.
2: for t = 1→ E do
3: if t = I then
4: // Inflate model to full-rank
5: for low-rank weight (A,B) with base W0 in Θ do
6: W←W0 +AB⊤

7: Replace (W0,A,B) with W in Θ.
8: end for
9: end if

10: if t = D then
11: // Deflate model back to low-rank
12: for each full-rank weight matrix W in Θ do
13: Freeze the current weight Wf ←W.
14: Initialize new low-rank matrices A,B.
15: Replace W with (Wf ,A,B) in Θ.
16: end for
17: end if
18: Train the model on dataset D using Θ and ηt.
19: Update learning rate ηt+1 according to the schedule.
20: end for

A APPENDIX

The appendix is structured as follows:

• Section A.1 presents a pseudocode of the proposed dynamic-rank training framework.
• Section A.2 summarizes experimental settings corresponding to all the experimental results

reported in the main manuscript.
• Section A.3 describes how we inflate and deflate the model weights using Tucker and CP

decompositions.
• Section A.4 describes how we adjust the rank of model weights at convolution layers.
• Section A.5 presents a singular value spectrum ratio comparison among different model

rank adjustment settings.
• Section A.6 provides the results of additional ablation study on the impact of ϕ on model

accuracy.
• Section A.7 summarizes potential limitations of our proposed dynamic-rank training frame-

work.

We declare that an LLM was used to polish the writing. However, its purpose was solely to improve
presentation quality and check grammar.

A.1 ALGORITHM

Algorithm 1 shows a pseudocode of the proposed dynamic-rank training framework. In this pseu-
docode, we assume the model is reparameterized using SVD. It is straightforward to replace SVD
with other decomposition techniques. During E training epochs in total, if the epoch ID t becomes
I , the model is inflated following the previously discussed reconstruction steps (line 5 ∼ 8). Like-
wise, if the epoch ID t becomes D, the model is deflated (line 10 ∼ 17). Other steps are the same as
general neural network training process. Therefore, it does not have any dependencies on optimizers
or model architectures.

A.2 EXPERIMENTAL SETTINGS

CIFAR-10/CIFAR-100 datasets – We perform the typical image preprocessing used in many previ-
ous works (Lee et al., 2023) for CIFAR-10/100 datasets. 60,000 images with 50,000 images for train

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Hyper-parameter settings for experiments shown in Table 3. The ρ is the low-rank model’s
rank reduction ratio.

Dataset Batch Size Learning Rate Epochs (E) LR Decay Inflate/Deflate (I , D) Weight decay ρ

CIFAR-10 128 0.1
150 100, 130 55, 120 1e − 4

0.5CIFAR-100 200 150, 180 80, 170 5e − 4
Tiny ImageNet 64 100 70, 90 30, 80 5e − 4

dataset and 10,000 images for validation dataset. Each image is padded by 4 pixels on every dimen-
sion and then randomly cropped to the original size. Then, we normalize and standardize the values
for all individual pixels. Finally, with probability of 0.5 we randomly flip the image horizontally.

Tiny ImageNet dataset – For Tiny ImageNet with 200 classes, we augment the data samples during
training as follows: aspect ratio adjustment [0.8, 1.25], random resizing [256, 384] pixels on shorter
side, random cropping to 224×224 then resizing to 64 × 64, horizontal flipping with probability of
0.5, and HSV color augmentation (hue ±36 degree, saturation/brightness [0.6, 1.4]). We normalize
using ImageNet standard RGB values (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]). For
validation, we resize to 256 pixels on shorter side, center crop to 64 × 64, and apply the same
normalization. We used 60,000 images with 50,000 images for train dataset and 10,000 images for
validation dataset.

NLP datasets – We report performance on the GLUE development set following AdaLoRA (Zhang
et al., 2023).

• CoLA (Warstadt et al., 2019): Judges if an English sentence is grammatically acceptable.
(Train: 8.5k, Dev: 1k, Metric: Matthews Correlation Coefficient).

• MNLI (Williams et al., 2018): A 3-way classification task (entailment, neutral, contradic-
tion) for sentence pairs across multiple genres. We use matched development set. (Train:
393k, Dev: 9.8k, Metric: Accuracy).

• MRPC (Dolan & Brockett, 2005): A binary classification task to determine if two sen-
tences from online news are paraphrases. (Train: 3.7k, Dev: 408, Metric: Accuracy).

• QNLI (Rajpurkar et al., 2016): A binary classification task to identify if a context sentence
contains the answer to a question. (Train: 105k, Dev: 5.4k, Metric: Accuracy).

• QQP (Iyer et al., 2017): A binary classification task to determine if two questions from
Quora are semantically equivalent. (Train: 364k, Dev: 40k, Metric: Accuracy).

• RTE (Giampiccolo et al., 2007): A smaller, 2-way textual entailment classification task
combining several datasets. (Train: 2.5k, Dev: 276, Metric: Accuracy).

• SST-2 (Socher et al., 2013): A binary sentiment classification task on sentences from movie
reviews. (Train: 67k, Dev: 872, Metric: Accuracy).

• STS-B (Cer et al., 2017): A regression task to predict a semantic similarity score (from 0
to 5) for sentence pairs. (Train: 5.7k, Dev: 1.5k, Metric: Pearson/Spearman Correlation).

Vision Experimental Settings – The Vision experiments detailed in Table 3 follow the configu-
rations summarized in Table 6. We employed SGD optimizer with 0.9 momentum and conducted
a grid search for learning rate, I , and D, executing each setting at least twice. The learning rate
was tuned among 0.2, 0.1, 0.01. The I and D were first set to the midpoints of the high-noise and
low-noise regimes, respectively. Then, each was finely tuned by grid search with a unit of 5. Table 6
presents the overall hyper-parameter settings we tuned.

NLP Experimental Settings – The NLP experiments presented in Table 4 are configured according
to Table 7. We used AdamW optimizer with momentum 0.9, weight decay 1e-2, beta values (0.9,
0.999), sequence length 128, and 10% warm-up period of total steps. Through grid search performed
at least twice per setting, we tuned learning rate among 1e-4, 5e-5, 2.5e-5, 1e-5, D from 2, 3, and λ
among 0.5, 0.3, 0.1. Table 7 summarizes the highly tuned hyper-parameter settings.

Experimental Settings of Rank Recovery Analysis – The rank recovery experiments outlined in
Table 5 follow the settings summarized in Table 8. We performed grid search for the algorithm-
specific parameter, λ (regularizer coefficient), from 1e-3, 5e-4, 1e-4, 5e-5, 1e-5.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Hyper-parameter settings for experiments shown in Table 4. The λ is the orthogonal
regularizer coefficient in AdaLoRA (Zhang et al., 2023).

Dataset Batch Size Learning Rate Epochs (E) LoRA rank α Algorithm-specific parameter Deflate (D)

COLA

16

5e − 5 10

16 16

λ = 0.5 5
MNLI 1e − 5 5 λ = 0.1

2MRPC 1e − 4 5 λ = 0.1
QNLI 1e − 5 5 λ = 0.1
QQP 1e − 5 5 λ = 0.1
RTE 5e − 5 10 λ = 0.1 5
SST-2 1e − 5 5 λ = 0.1 2SST-B 1e − 4 5 λ = 0.1

Table 8: Hyper-parameter settings for experiments shown in Table 5.
Method Batch Size Learning Rate Epochs (E) LR Decay Algorithm-specific parameter Inflate/Deflate (I , D) ρ

SO
32 0.1 150 100, 130

λ = 5e − 5
(55, 120) 0.5DSO λ = 5e − 5

SRIP+ λ = 5e − 4

Table 9: Hyper-parameter settings for experiments shown in Table 10.
Dataset Batch Size Learning Rate Epochs (E) LR Decay ϕ Inflate/Deflate (I , D) ρ

CIFAR-10 32 0.1 150 100, 130

0.1 92, 107

0.5
0.3 75, 120
0.5 60, 135
0.7 45, 150
0.9 15, 150

CIFAR-100 32 0.1 200 150, 180

0.1 140, 160

0.5
0.3 120, 180
0.5 100, 200
0.7 60, 200
0.9 20, 200

Experimental Settings of Ablation Study on Full-rank Epoch Budget – We conducted an abla-
tion study examining how the number of full-rank epochs affects model accuracy and computational
cost. Table 9 summarizes experimental settings corresponding to Table 10. We follow popularly
used hyperparameter settings (e.g., a batch size of 32 and a learning rate of 0.1, etc.) and adjusted
ϕ, I , and D. Given a fixed budget of ϕE full-rank epochs, we allocate half to the high-noise regime
and half to the low-noise regime.

A.3 MODEL INFLATION / DEFLATION WITH VARIOUS DECOMPOSITION TECHNIQUES

Our dynamic-rank training method is compatible with various decomposition techniques. In the
main manuscript, we described how to inflate and deflate models using SVD as an example. Here,
we explain how model weights are reparameterized using Tucker and CP decompositions. Let F
denote the number of output channels, C the number of input channels, h the kernel height, w the
kernel width, and k the reduced rank.

Model Inflation with Tucker decomposition – We define the model inflation process with Tucker
decomposition (Kim et al., 2015) as follows. Given low-rank layer weights A ∈ R1×1×C×k ,
Core ∈ Rh×w×k×k, B ∈ R1×1×k×F and base parameter W0 ∈ Rh×w×C×F , the model is inflated
such that W←W0 +ACoreB.

Model Deflation with Tucker decomposition – Given a model weight W, the model is deflated
by attaching a low-rank adaptor path next to the original weight such that Wf +ACoreB←W,
where Wf ∈ Rh×w×C×F is the given model weight matrix and A ∈ Rh×w×C×F and A ∈
R1×1×C×k , Core ∈ Rh×w×k×k, and B ∈ R1×1×k×F are low-rank model weights. The provided
weight matrix is frozen as Wf and A, Core and B are trained instead. One can initialize A and B
using either random distributions or zero matrices.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 50 150100 50 150100 50 150100 50 150100 50 150100 50 150100

50

150

100

𝜆

Epoch

a) Low-rank (SVD=0.5) b) Inflated (𝐼 = 100) c) Inflated (𝐼 = 75) d) Inflated (𝐼 = 50) e) Full-rank (𝐼 = 0) f) Dynamic-rank

(𝐼 = 60, 𝐷 = 120)

Figure 5: The singular value spectrum ratio λ comparison. The red dotted lines indicate the epoch
where the rank of model weights are adjusted.

Model Inflation with CP decomposition – We define the model inflation process with CP de-
composition (Lebedev et al., 2014) as follows. Given low-rank layer weights A ∈ R1×1×C×k ,
C1 ∈ Rh×1×k×k, C2 ∈ R1×w×k×k, B ∈ R1×1×k×F and base parameter W0 ∈ Rh×w×C×F , the
model is inflated such that W←W0 +AC1C2B.

Model Deflation with CP decomposition – Given a model weight W, the model is deflated by
attaching a low-rank adaptor path next to the original weight such that Wf + AC1C2B ← W,
where Wf ∈ Rm×n is the given model weight matrix and A ∈ R1×1×C×k , C1 ∈ Rh×1×k×k,
C2 ∈ R1×w×k×k, and B ∈ R1×1×k×F are low-rank model weights. The provided weight matrix
is frozen as Wf and A, C1, C2 and B are trained instead. One can initialize A and B using either
random distributions or zero matrices.

A.4 RANK ADJUSTMENT AN CONVOLUTION LAYERS

Let F denote the number of output channels, C the number of input channels, h the kernel height,
w the kernel width, and k the reduced rank. Note that we use a SVD-based approach as an example.
Given low-rank convolution layer weights A ∈ Rh×w×C×k, B ∈ R1×1×k×F and base convolution
layer weight W0 ∈ Rh×w×C×F , convolution layer is inflated such that W←−W0+AB. Note that
we assume k < r ≤ n. If low-rank convolution follows the standard low-rank reparameterization
method, the initial weight matrix W0 is set to zero matrix, i.e., 0h×w×C×F. Consequently, the
maximum available rank is increased from k to n by training with inflated convolution layer. The
deflation process follows the same steps, but in reverse order.

A.5 SINGULAR VALUE SPECTRUM RATIO COMPARISON

To analyze the impact of interleaving full-rank epochs within low-rank training, we visualize the
singular value spectrum ratio λl, l ∈ [L] with various model inflation settings. Figure 5 presents the
layer-wise λ curves of five different inflation settings. As I decreases, the full-rank epochs take up a
large portion of the total epoch budget. We first observe that as I decreases, the λl values are more
effectively suppressed, resulting in stable λl curves across most layers. For example, in the full-rank
curves shown in Figure 5.e), all curves remain below λl < 20. When the model is inflated too late
(e.g., I = 100), the curves stay relatively high, indicating that the model weights have lost their
rank. As shown in Figure 5.f), when I is sufficiently small, the λl values are significantly reduced
in most layers. Even after the model rank is deflated at D = 120, the λl values remain low until the
end of training. This comparison provides clear insights into how to dynamically adjust the model
rank during training to maximize the rank of the model weights.

Another intriguing observation is that the λ values at a few layers remain high regardless of rank
adjustment. Notably, these layers consistently include the first and last layers across all experiments.
Since their inputs or outputs remain fixed during training, their weights may rapidly fit to data
patterns. If their rank can be suppressed, the model’s overall capacity may be more effectively
utilized, potentially achieving higher accuracy within the same epoch budget. We consider this an
interesting direction for future research.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Ablation study on how ϕ = (D− I)/E affects the performance of dynamic-rank training.
Low-Rank SVD is used for all experiments. When ϕ = 0.0, it becomes the conventional low-rank
training. In contrast, when ϕ = 1.0, it becomes full-rank training. The I and D are set to perform
the same number of full-rank epochs in the high-noise and low-noise regimes.

Setting Rank Comp. CIFAR-10 CIFAR-100Ratio ρ

ϕ = 0.1

0.25

0.36 90.54 ± 0.3% 76.29 ± 0.1%
ϕ = 0.3 0.51 91.43 ± 0.1% 77.03 ± 0.4%
ϕ = 0.5 0.64 92.01 ± 0.3% 78.61 ± 0.2%
ϕ = 0.7 0.79 92.08 ± 0.4% 78.75 ± 0.1%
ϕ = 0.9 0.93 92.14 ± 0.2% 78.63 ± 0.3%

ϕ = 0.1

0.5

0.61 91.28 ± 0.1% 76.84 ± 0.1%
ϕ = 0.3 0.69 91.57 ± 0.1% 77.51 ± 0.2%
ϕ = 0.5 0.78 92.11 ± 0.2% 78.41 ± 0.3%
ϕ = 0.7 0.87 92.15 ± 0.2% 78.39 ± 0.1%
ϕ = 0.9 0.96 92.11 ± 0.1% 78.47 ± 0.3%

A.6 ADDITIONAL ABLATION STUDY

In our empirical study, we found that dynamic-rank training performs well when D and I are set
to allocate a similar number of full-rank epochs to both the high-noise and low-noise regimes. We
now conduct a simple ablation study to examine how the number of full-rank epochs affects model
accuracy. Table 10 presents the results. SVD-based low-rank training is evaluated on the CIFAR-10
and CIFAR-100 benchmarks. For convenience, we define ϕ = (D − I)/E as the ratio of full-rank
epochs to the total training budget. When ϕ = 0.0, it corresponds to conventional low-rank training;
when ϕ = 1.0, it becomes full-rank training. On both benchmarks, accuracy starts to drop when
ϕ goes below 0.5, particularly in the range ϕ ∈ [0.3, 0.5]. We therefore recommend starting with
ϕ = 0.5 and adjusting downward as needed.

A.7 POTENTIAL LIMITATIONS AND FUTURE WORK

Potential Limitations – Our proposed method has a relatively more expensive computational cost
compared to the conventional low-rank training methods. Since the number of trainable parameters
increases during D − I full-rank epochs, the overall cost is increased as shown in Comp. column in
Table 3. However, the cost still remains substantially lower than that of the full-rank training, and we
argue that the dynamic-rank training is a practical option for large-scale deep learning applications.

In addition, the extra hyperparameters, I and D, can introduce a non-trivial tuning overhead. How-
ever, Section 4.2 provides useful guidance on how to select good values for I and D based on
learning rate decay schedules. In our empirical study, we find that I and D can be tuned easily
by following our suggestions, leading to substantial accuracy improvement while maintaining low
computational cost.

Future Work – We plan to extend our dynamic-rank training research to automate the inflation and
deflation steps. Our study reveals that the inflation should be located at the end of the high-noise
regime and the deflation should be as early as possible in the low-noise regime. If the noise scale
can be quantified at run time, rather than explicitly mapping it to the learning rate decay schedule,
appropriate timings for increasing and decreasing the model rank can be identified during training.
We believe this will make the dynamic-rank training framework significantly more practical. More-
over, we consider harmonizing the dynamic-rank training framework with other existing compute-
efficient training strategies as a promising direction for future work. Given the ever-increasing model
sizes in deep learning applications (e.g., LLMs), developing neural network training strategies that
balance accuracy and efficiency is a crucial research direction.

17


	Introduction
	Background
	Related Work
	Motivation

	Dynamic-rank Training Framework
	Model Rank Adjustment
	Model Rank Scheduling
	Unified Rank Adjustment Framework

	Experiments
	Comparative Study
	Computational Cost Analysis

	Conclusion
	Appendix
	Algorithm
	Experimental Settings
	Model Inflation / Deflation with Various Decomposition Techniques
	Rank Adjustment an Convolution Layers
	Singular Value Spectrum Ratio Comparison
	Additional Ablation Study
	Potential Limitations and Future Work




