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ABSTRACT

Domain reweighting is an emerging research area aimed at adjusting the relative
weights of different data sources to improve the effectiveness and efficiency of
language model pre-training. This paper demonstrates that the optimal composition
of training data from different domains is scale-dependent, challenging the existing
practice of determining optimal mixtures through small-scale experiments and
directly applying them at larger scales. We derive an analytical model for the
dependence of optimal weights on data scale and introduce AUTOSCALE, a novel,
practical approach for optimizing data compositions at potentially large training
data scales. AUTOSCALE first uses a principled optimization framework to find
optimal compositions at smaller, feasible scales, then predicts optimal compositions
at larger scales using our derived model. Our evaluation on GPT-2 Large and
BERT pre-training demonstrates AUTOSCALE’s effectiveness in improving training
convergence and downstream performance. Particularly, for GPT-2 Large on
RedPajama, AUTOSCALE decreases validation perplexity 28% faster than baselines,
with up to 38% speed-up over unweighted training, achieving the best performance
across downstream tasks. This work provides insights into the varying benefits
of data sources across training scales for language models, contributing to the
burgeoning research on scale-dependent data curation. Code is open-sourced1.

1 INTRODUCTION

Large language models (LLMs) are pre-trained on vast datasets sourced from diverse domains.
However, the immense computational demands of this process, coupled with limited resources, create
a pressing need to enhance the effectiveness and efficiency of pre-training. A promising approach
to address this challenge is through domain reweighting—adjusting the relative proportions of data
from different sources (1–6).

Showing encouraging potentials, though, current implementation techniques face significant limita-
tions. A prevailing technique is to first optimize data composition for a smaller proxy model and at
a smaller data scale (1; 5–7). Yet, this optimization often employs alternative objectives that may
not align with the primary goal of minimizing evaluation loss. Moreover, the optimized weights are
directly applied to training the target model on much larger data scales, implicitly assuming that the
"optimal data composition" remains constant across data scales. This assumption of scale-invariance,
however, may not hold in practice, potentially leading to suboptimal performance when scaling
up. While research has scale-dependent data selection at the individual data point level for vision
models (8; 9), it remains unclear whether this scale dependence applies to domain-level optimization,
or how such scaling behavior might manifest in language models.

In parallel, an increasingly popular practice is to directly adopt domain weights that were designed
for training previous models (10), such as those used for LLaMA (11). However, these weights are
optimized for specific applications that may differ from the desired use case of the target model. Given
the limitations of these approaches, many in the industry still rely on heuristics for mixing domain
data (12; 10; 13). These limitations highlight the ongoing need for more adaptive and scale-aware
methods to determine effective domain weights across various model sizes and target scenarios.

1https://anonymous.4open.science/r/AS25
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This work explicitly investigates and confirms the scale-dependence of optimal domain mixing,
characterizing its scaling behavior. Based on these findings, we develop a practical methodology:
optimizing domain weights at smaller, affordable scales and leveraging derived scaling laws to predict
optimal mixing at much larger target scales. We lay out an overview of this work and main results in
Fig. 1. Our contributions are summarized as follows.

1 Principled algorithmic framework for optimal domain mixing. Investigating the scaling law
of domain mixing extends beyond mere empirical study. It requires a mathematical definition of
optimal domain mixing and a tractable algorithm to solve for optimal weights. Our first contribution is
formulating the optimal mixing problem as a bi-level optimization. However, existing general bi-level
optimization techniques (14; 15) are intractable in this context due to their reliance on second-order
information. We propose a novel approach tailored to our problem context that leverages scaling
laws to estimate the dependence of the learned model’s loss on the weights, effectively reducing
the bi-level problem to a single level. Our algorithm requires retraining models only linearly in the
number of data domains, making it feasible for exploratory studies.

2 Uncovering and quantifying the scale-dependence of optimal domain composition.
Leveraging the algorithm developed in 1 , we conduct empirical studies to optimize domain weights
at different training data scales. Our results demonstrate that the optimal data composition varies
with the scale of the training data, suggesting that the common practice of empirically determining an
optimal composition using small-scale experiments will not yield optimal data mixtures for larger
scales. We further derive an analytical framework for modeling the functional relationship between
optimal data composition and training data scales.

3 Practical algorithm for optimal domain mixing. While the algorithm in 1 has made optimal
domain mixing feasible for exploratory studies, its retraining requirements limit its practicality to
smaller scales. To enable data composition optimization at large scales, we propose AUTOSCALE.
This method works by finding optimal data compositions at smaller, computationally feasible scales,
fitting a predictor using our analytical model for the scale-dependency of optimal composition
mentioned in 2 , and finally using this predictor to determine optimal data composition at larger
scales. Since one only needs to train models on small data scales where re-training is affordable,
AUTOSCALE does not require using proxy models with a smaller parameter size, avoiding transfer-
ability issues between domain weights optimized with different model sizes.

4 Robust performance gains across models and datasets. Our evaluation of AUTOSCALE on
both decoder-only and encoder-only models demonstrates its consistent ability to achieve significant
computational savings. For instance, in pre-training GPT-2 Large (16) on the RedPajama
dataset, AUTOSCALE decreases validation perplexity 28% faster than any baseline, with up to 38%
speed-up compared to training without reweighting. It also achieves the best overall performance
across downstream tasks. Additionally, we present intriguing findings regarding the varying benefits
of traditionally perceived high-quality and low-quality data sources across different training scales.
Specifically, we observe that data sources with standardized formats, such as Wikipedia and
scientific papers—often regarded as high-quality—are most beneficial at smaller scales but exhibit
sharp diminishing returns as the training data scales up. Conversely, with increased compute, data
sources containing diverse examples, such as CommonCrawl, demonstrate continued reductions in
training loss even at considerably large training data scales.

2 RELATED WORK

Domain Reweighting. An emerging line of research strives to optimize the composition of training
data for LLMs pre-training with domain reweighting , i.e., adjusting the relative proportion of data
from different data sources to "best" (in terms of training efficiency, final model performance, etc.)
train the model. DOREMI (1) first trains a small reference model, and then trains a second proxy
model with GroupDRO (17) to minimize the excessive domain loss relative to the reference model,
where the domain weights of the proxy model will be the output. DOGE (5) trains a proxy model
while tracking the first-order gradient of the model on evaluation domains (i.e., data influence) and
optimizes domain weights based on the gradients, relying on infinitesimal approximations which
may or may not be accurate for models trained with a practical learning rate. DATA MIXING LAWS
(6) trains a number of proxy models to run a coarse grid search on the space of data mixtures and
interpolate their performance with exponential functions to find the minimum. Similarly, RegMix(7)
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Figure 1: Overview and main results. I. Optimizing domain weights with the proposed Direct Data Optimization
(DDO) algorithm for pre-training 774M Decoder-only LMs (GPT-2 Large). Optimal domain weights depend
on the scale of training data. A consistent shift can be observed (data sources with standardized formats, such
as Wikipedia and scientific papers—often regarded as high-quality—are most beneficial at smaller scales
but exhibit sharp diminishing returns as the training data scales up. Conversely, with increased compute, data
sources containing diverse examples, such as CommonCrawl, demonstrate continued reductions in training
loss even at considerably large training data scales.). Using domain weights optimized for a different scale
yields sub-optimal results, failing to fully realize the benefits of domain reweighting. II. Optimal domain data
quantity (y-axis) for different training data scales (x-axis) shows high linearity (R2 = 0.998) on log-log plot,
suggesting the shifting pattern can be well predicted by exponential-style functions. We fit AUTOSCALE to
predict optimal domain weights for larger training scales. As we scale up, data sources with diverse samples
(e.g., C4) are upweighted relative to domains with standard format (e.g., Wikipedia). III. Training 774M
Decoder-only LMs for 10B tokens (96k steps). AUTOSCALE-predicted domain weights decrease validation PPL
at least 28% faster than any baseline with up to 38% speed up, achieving best overall task performance.
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trains a regression model to represent the relationship between training data mixtures and resulting
model performance and optimize data composition based on it.

These methods often rely on ad-hoc hyperparameter tuning via trial and error, achieving varying
results. Further, the optimized weights are directly applied to training the target model on magnitudes
of larger data scales. This implicitly poses a strong assumption that the "optimal data composition"
is invariant of model sizes or data scales. Yet, optimal data composition is likely to shift with data
size. Optimal curation at a smaller scale may not remain optimal at the target scale (8; 9). (18)
provides a recent survey for this fast-evolving field. We refer to App. B for broader discussions.

Scaling Laws. Extensive research shows that Neural Scaling Laws, predicting how the model
performance changes with the scale of training data, model parameters, and computation budget (19),
to be accurate in various tasks from vision and text processing (20) to LLM pre-training (13) and
evaluations (21). (22) proposes compute-optimal scaling for LLM pretraining data scales together
with the model’s parameter sizes. Yet, recent progress (23; 10) shows no sign of saturation in
pre-training even for models pre-trained on a considerably larger data scale than recommended by
(22). (24) shows that data from different sources generally scale at different rates. Seminal work (8)
sheds light on the possibility of attaining beyond-neural scaling law performance if one could find the
best training dataset for each training data scale. This work is connected to the research on scaling
laws in two ways. First, we leverage scaling laws to model the functional relationship between the
quantity of data from each domain and trained model performance, allowing optimizing the training
data composition in a reasonable time with high precision; further, this work contributes to a novel
dimension of scaling laws–scaling optimal data compositions with the training data scale, providing
original insights, clear empirical evidence, and theoretical frameworks which enable further analysis.

3 OPTIMAL DATA COMPOSITION IS SCALE-DEPENDENT AND PREDICTABLE

For "compute-optimal" domain weights, the goal is to find an optimal training data composition such
that, for a given compute budget (i.e., training data size), the empirical validation loss, measured in
perplexity (PPL), is minimized (1; 3; 5). Formulating this as a bi-level optimization problem, in this
section, we first introduce an original solution approach via scaling law approximations, which allows
solving it efficiently and effectively. Then, with this solution approach, we solve for the optimal
domain weights under different training data scales. Our results demonstrate that the optimal data
composition for a fixed compute budget depends on the scale of the training data. Via the lens of
scaling laws, this work pioneers in deriving an analytical framework for modeling the functional
relationship between optimal data composition and training data scales.

3.1 COMPUTE-OPTIMAL TRAINING DATA COMPOSITIONS

Consider training an LLM on a data composition S from m domains, D1, D2, · · · , Dm. Let S =
{S1, S2, · · · , Sm} denote the training dataset where Si is the subset of training data from each
domain. The domain weights w = [w1, w2, · · · , wm]T are defined as the proportions of data for
each domain. Namely, letting N = |S| denote the amount of total tokens of training data, domain
weights are given as wi = Ni/N , where Ni denotes the amount of tokens for training subset Si.

Let θ∗(S) denote the parameters of a learning algorithm (i.e., the model) trained on data S with
empirical risk minimization (ERM), given as θ∗(S) := argminθL(θ, S) where L(θ, S) denotes the
loss of model parameterized by θ evaluated on data S, which is the training loss. Since training data
S can be equivalently defined by its data quantity and domain weights (N,w), we define a slight
change of notation θ∗(N,w) := θ∗(S) and will use S and (N,w) interchangeably. We would like to
maximize the amount of information gain and achieve maximum loss reduction during training, given
as minw∈Wm L(θ∗(N,w), Dv) = minw∈Wm

∑m
i=1 L(θ∗(N,w), Dv

i ), where Dv and Dv
i denote

total validation data and validation data of individual domain i, respectively; the space of weights
Wm is the hyperplane of the probability simplex Wm = {w|w1 + w2 + · · ·+ wm = 1} ∩ {w|0 ≤
wi ≤ 1,∀i ∈ {1, 2, · · · ,m}}. Define minor simplifications of notations for the validation losses
Lv(θ,Dv) := L(θ,Dv) and Lv

i (θ,D
v) := L(θ,Dv

i ). Then, the optimal domain weights, w∗, are
given as the minimizer of the objective,

w∗ = arg min
w∈Wm

m∑
i=1

Lv
i (θ

∗(N,w)) s.t. θ∗(N,w) = argmin
θ
L(θ, (N,w)) (1)

where perplexity is adopted as the loss metric. This formulation is a bi-level optimization problem,
where the outer problem seeks the optimal domain weights, while the inner problem is training the
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model with ERM on the data defined by certain weights. A general approach is to solve it with
gradient descent, wt+1 = wt − η · ∂Lv(θ

∗(N,wt))
∂w . Since there is no tractable form of analytical

expression for θ∗, this gradient needs to be estimated with empirical methods (e.g., approximated by
finite difference), requiring repetitive re-training of the model at each update (25).

3.1.1 SOLUTION VIA SCALING-LAW-INSPIRED APPROXIMATIONS

Directly optimizing training data composition by solving bi-level optimization problems involves
repetitive model retraining, which can be prohibitively expensive even at small scales. Current work
(1; 5–7) mostly employs heuristic methods to conduct this optimization on smaller models trained
with fewer data, achieving varying results in different cases. To crystalize the relationship between
optimal data compositions and training data scales and obtain a clear image of the complete landscape,
we propose an original approach to this problem. We propose to first fit a scaling function to the outer
loss (validation loss) Lv as a function of domain weights w, effectively reducing the bi-level problem
to a single level, which can be solved efficiently via regular gradient descent, allowing finding the
global optimum efficiently and accurately.

To begin with, neural scaling laws suggest the relationship between a model’s evaluation loss and
the size of its training data can be well-represented by power law functions (19) Lv(θ

∗(N,w)) =
N−γ + ℓ0 where constants ℓ0 denotes some irreducible loss and γ ≥ 0 is some scaling coefficient.
Drawing inspirations from (26), which formulates the scaling laws for transfer learning, we propose
the following approximation to model the scaling relationship between model loss and training data
quantity from different sources/domains.

Figure 2: Fitting validation loss with power-law func-
tions for 774M Decoder-only LMs (GPT-2 Large),
directly approximating how loss changes with each
domain’s data quantity. (X-axis depicts the quantity
of domain data relative to the original amount before
perturbation (e.g., 1.0=100%).)

Consider a model trained on data with size N and
domain weights w. Define constant N i

0 which
estimates the evaluation loss when the amount of
training data from domain i is zero (i.e., N ′

i = 0),
which effectively measures the effect of data from
all other domains. From this regard, N i

0 can be
interpreted as the equivalent data size for train-
ing data from domains other than i. Notably, this
formulation aligns with empirical findings in the
prior literature (26; 6). Then, for training data
defined by (N,w) where the amount of training
data from domain Di is Ni = N · wi, evalua-
tion loss can be expressed as a function of Ni:
Lv(θ

∗(N,w)) = (N i
0+Ni)

−γi + ℓi where γi, ℓi
are constants associated with domain i. If the
amount of training data from one domain Di is
changed from Ni to N ′

i with the amount of train-
ing from other domains unchanged, we approx-
imate the new model’s evaluation loss, L′

i, after
re-training with a power law function of N ′

i :

Lv(θ
∗(N ′,w′)) = (N i

0 +N ′
i)

−γi + ℓi := L′
i (2)

where N ′ = N + (N ′
i −Ni) denotes the updated amount of training data, and w′

i = N ′
i/N

′ denotes
the updated domain weights.

We propose the following procedure to fit the parameters in Eq. (2). We re-train two models with
different data quantities for domain i, N+

i and N−
i where N−

i < Ni < N+
i , and compute their

evaluation loss, L+
i and L−

i , respectively2. Then, together with evaluation loss L0
v = Lv(θ

∗(N,w))
for the original model trained with Ni, the parameters γi, ℓi and N i

0 can be estimated via ordinary
least square (OLS) fitting,
N i

0, γi, ℓi = arg min
Ni

0,γi,ℓi

[L0
v−(N i

0+Ni)
−γi−ℓi]

2+[L+
i −(N i

0+N+
i )−γi−ℓi]

2+[L−
i −(N i

0+N−
i )−γi−ℓi]

2

(3)
Compared to the original model, the difference in evaluation loss due to the change of data for domain
Di is given as Lv(θ

∗(N ′,w′))−Lv(θ
∗(N,w)) = (N i

0 +N ′
i)

−γi − (N i
0 +Ni)

−γi . Repeating this

2Empirically, we found setting the perturbation ratio, r = Ni/N
−
i = N+

i /Ni = 3, produces reliable results.
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process and fitting the scaling functions for each domain, finally, we express the evaluation loss
as a function of the amount of data from each domain as their summation: Lv(θ

∗(N ′,w′)) −
Lv(θ

∗(N,w)) =
∑m

i=1

[
(N i

0 +N ′
i)

−γi − (N i
0 +Ni)

−γi
]

where N ′ = N +
∑

i(N
′
i − Ni) and

w′
i = N ′

i/N
′. Empirically, evaluation loss is shown to be well represented by such function form as

depicted in Fig. (2), which shows fitting validation loss with the proposed power-law functions for
training 774M Decoder-only LMs (GPT-2 Large), directly approximating how loss changes with
each domain’s data quantity. Results with Encoder-only LMs (BERT) demonstrates the same trend
(Fig. 10(b)). This representation lends us an analytical form for the desired objective.

To derive the final objective, we add the constraint for the total amount of training data to be the
same as before, i.e.,

∑
i N

′
i = N ′ = N , which explicates our interest in reweighting data from

each domain without changing the training data size. Then, by definition, domain data quantity
N ′

i = w′
i ·N ′ = w′

i ·N . Note that (N i
0 +Ni)

−γi is independent of w′, making it orthogonal to the
optimization problem. Finally, our problem becomes

w∗ = arg min
w′∈Wm

m∑
i=1

[
(N i

0 +N ′
i)

−γi − (N i
0 +Ni)

−γi
]
= arg min

w′∈Wm

m∑
i=1

(N i
0 + w′

i ·N)−γi .

Since the objective is defined as the summation of convex functions, we end up with a convex
optimization problem. With the constraint on the probability simplex and the objective being easily
differentiable, the problem can be solved extremely efficiently using projected gradient descent (27).
We term this solution approach as DDO Algorithm (Direct Data Optimization). We provide its
pseudocode below and an operational pipeline in App. C.

Algorithm 1 Direct Data Optimization (DDO)

Require: m domains (data sources) with data D1 . . . Dm, data budget N0 (≪ for full-scale training),
training dataset S, model parameters θ, validation loss Lv , perturbation ratio r > 1 (e.g., r = 3).
Initialize weights for all domains ∀i ∈ {1, . . .m}: wi ← 1/m;
Initialize training data for all domains ∀i ∈ {1, . . .m}: sample Si ⊂ Di where |Si| = wi ·N ;
Train the model on data S = {S1 . . . Sm} and evaluate its loss L0

v ← Lv(θ
∗(S));

for j from 1 to m do
w+

j ← r · wj ; ▷ Perturb domain weights (+)
Resample S+

j ⊂ Dj where |S+
j | = w+

j ·N ;
Train the model on data S = ({S1 . . . Sm} \Sj)∪S+

j and evaluate its loss L+
j ← Lv(θ

∗(S));
w−

j ← 1
r · wj ; ▷ Perturb domain weights (-)

Resample S−
j ⊂ Dj where |S−

j | = w−
j ·N ;

Train the model on data S = ({S1 . . . Sm} \Sj)∪S−
j and evaluate its loss L−

j ← Lv(θ
∗(S));

OLS fit for scaling functions N i
0, γi, ℓi = argminNi

0,γi,ℓi [L
0
v − (N i

0 +Ni)
−γi − ℓi]

2 + [L+
i −

(N i
0 +N+

i )−γi − ℓi]
2 + [L−

i − (N i
0 +N−

i )−γi − ℓi]
2;

end for
Output optimized domain weights w∗ = argminw′∈Wm

∑m
i=1(N

i
0 + w′

i ·N)−γi .

3.2 OPTIMAL DATA COMPOSITIONS ARE SCALE-DEPENDENT

With the DDO algorithm, for a fixed model training pipeline and data sources, we conducted
empirical studies to optimize domain weights at different training data scales. Our results demonstrate
that the optimal data composition for a fixed compute budget depends on the scale of the training
data, suggesting that the common practice of empirically determining an optimal composition using
small-scale experiments will not yield optimal data mixtures for larger models.

Fig. 1(a)(b) shows the results on optimizing domain weights with DDO algorithm for pre-training
774M Decoder-only LMs (GPT-2 Large). Optimal domain weights depend on the scale of training
data. A consistent shift can be observed. Using domain weights optimized for a different scale yields
sub-optimal results, failing to realize the benefits of domain reweighting fully. These results clearly
show that the hypothesis, "optimal data composition is invariant of data scales", implicitly assumed
by many existing works, is largely untrue. On the contrary, a consistent pattern can be observed
in how optimal data compositions shift with the scale of training data. For example, data sources
with standard format such as Wikipedia and scientific papers, regarded as high quality, are most
beneficial at smaller scales but observe sharp diminishing returns as training data scales up. With
more compute, data sources with diverse examples, such as CommonCrawl, demonstrate continued
reductions in training loss even for larger training data scales.

Foreshadowed by (8; 9), beyond-neural scaling law performance might be attained if one could find
the best training dataset for each training data scale. This treasure chest remains unexplored in the
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context of training LLMs. This consistent pattern of shifts suggests predictability in the relationship
between optimal composition and training data scales, holding the promise to unlock substantial
improvements in training efficiency and model performance.

3.3 DERIVING SCALING LAWS FOR PREDICTING OPTIMAL DATA COMPOSITION

Following the above findings, this work pioneers in deriving an analytical framework for modeling
the functional relationship between optimal data composition and training data scales. Via the lens of
scaling laws, the analysis lays out theoretical foundations that could be of independent interest.

Recall that neural scaling laws give the relationship between evaluation loss and training data
quantity as L = N−γ + ℓ0 where L is the evaluation loss (e.g., perplexity), ℓ0 denotes some
irreducible loss, and γ ≥ 0 are some constant. (ℓ0, γ) can be fitted empirically. Without loss of
generality, consider a standard case where the evaluation metric is aggregated loss over multiple
independent tasks where each training sample will only contribute to a single task and the loss
of each task only scales with the amount of training data contributing to this task as a power
law function. Then, for a total of m tasks, the aggregated evaluation loss scales as the following
L = ℓ0 +

∑m
i=1 βi · N−γi

i , where ℓ0 denotes some irreducible loss, Ni denotes the quantity of
data contributing to task i and constants βi ≥ 0 and γi ≥ 0 are coefficients associated with task i.
Define diagonal matrix N = diag{N1, N2, · · ·Nm}. For a training data scale N =

∑
i Ni, define

compute-optimal data composition N = diag{N∗
1 , N

∗
2 , · · ·N∗

m} as the minimizer of L, given as
N∗ = argmin∑

i Ni=N ℓ0 +
∑m

i=1 βi ·N−γi

i . We propose the following theorem, which states the
optimal data composition scales in exponential-style functions with the amount of training data and
can be directly predictable from that of smaller scales.

Theorem 1. Consider the following optimization problem minN

{∑m
i=1 βiN

−γi

i

∣∣∣∣∣∑m
i=1 Ni = N

}
.

For any two compute budgets N (1) ̸= N (2), let N(1)∗ and N(2)∗ be their respective minimizers. Then,
for any third compute budget N (3) such that N (1) ̸= N (3) ̸= N (2), the corresponding minimizer
N(3)∗ must satisfy N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗.

See App. D.1 for the formal theorem statement and a complete proof. Examples for illustration are
also provided in D.1. We built our theory from a standardized example which assumes the evaluation
metric is composed of independent tasks with separate scaling laws. In App. D.2, we further extend
this theory to a general case where the same conclusion can be reached without the independence
assumption, where we consider the evaluation to be composed of a number of independent sub-tasks
("latent skills" (28)) which are hidden variables. Finally, we note that empirical results are shown to
be highly consistent with the derivations above: In Fig. 1(c), optimal domain data quantity (y-axis)
for different training data scales (x-axis) shows high linearity (R2 = 0.998) on log-log plot, suggesting
the shifting pattern can be well-described by the exponential-style function forms described above.

4 TOWARDS A PRACTICAL ALGORITHM FOR FINDING OPTIMAL COMPOSITIONS

Algorithm 2 AUTOSCALE

Require: Optimal domain weights (obtained from DDO) w(1)∗at
data scale N (1) and w(2)∗ at data scale N (2), target data scale
N (t), where N (1) < N (2) < N (t).
Optimal domain data N(1)∗ ← w(1)∗ ·N (1);
Optimal domain data N(2)∗ ← w(2)∗ ·N (2);
Next optimal domain data N(x)∗ ← N(2)∗(N(1)∗)−1N(2)∗;
Next data scale N (x) ←

∑
i N

(x)∗
i ;

while N (x) < N (t) do
Next optimal domain data N(x)∗ ← N(2)∗(N(1)∗)−1N(2)∗;
Next data scale N (x) ←

∑
i N

(x)∗
i ;

end while
Output predicted optimal domain weights w(t)∗ ← N(x)∗/N (x).

In this section, we introduce a practical
paradigm for finding optimal data compo-
sitions developed based on the theoretical
analyses and empirical insights introduced
above. Having shown the consistent pat-
tern of shifts in optimal data composition
with the scale of training data and unveiled
its predictability from scaling law analy-
sis, moving forward, this paper presents a
novel tool–AUTOSCALE, which automati-
cally predicts optimal training data composi-
tions at larger scales based on compositions
optimized at smaller scales.

Theoretical analysis above shows that the optimal quantity for each domain scales in exponential-style
functions with training data size. We leverage this result to enable the automatic prediction of optimal
training data compositions at larger scales from optimal compositions at small scales. First, for
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two smaller training data scales N (1) and N (2) where N (1) ̸= N (2), find their optimal training
data compositions N(1)∗ and N(2)∗ where

∑
i N

(1)∗
i = N (1) and

∑
i N

(2)∗
i = N (2) using DDO

algorithm provided in Sec. 3. Models trained at scales N and N ′ are considered proxy models
where re-training these models is affordable. Since N (1) and N (2) are small data scales where
re-training these models is affordable, AUTOSCALE does not require using proxy models with a
smaller parameter size, avoiding the transferability issue between domain weights optimized on
different models. Then, N(1)∗ and N(2)∗ yield the optimal training data composition at the next
scale as N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗, where N

(3)∗
i = (N

(2)∗
i )2/N

(1)∗
i is the optimal amount

of training data for each domain. This gives that for data scale N (3) =
∑

i N
(3)∗
i , optimal domain

weights are given as w(3)∗
i = N

(3)∗
i /N (3). Then, N(3)∗ can be combined with either N(1)∗ or N(2)∗

to make the next prediction. Repeat this process until the target training data scale is reached. The
procedure is described in the pseudocode above with an operational pipeline provided in App. C.

5 EMPIRICAL RESULTS

Two sets of empirical studies are conducted: Causal Language Modeling (CLM) in Sec. 5.2, and
Masked Language Modeling (MLM) in Sec. 5.3. We train models with up to 10B tokens and report
the number of steps saved to reach the same evaluation loss (perplexity). We also report downstream
task performance to benchmark performance improvements after training the same number of steps.

5.1 EXPERIMENTAL SETUP

In Sec. 5.2, we pretrain 774M Decoder-only LMs (GPT-2 Large architecture (16)) from scratch
on the RedPajama dataset (29). RedPajama dataset is an open-source reproduction of the training
data used for LLaMA-1/2 models (11), totaling 1.2T tokens from 7 data domains with proportions:
Common Crawl (67%), C4 (30) (15%), GitHub (4.5%), Wikipedia (4.5%), ArXiv (2.5%),
and StackExchange (2.0%). In Sec. 5.3, we pretrain 110M Encoder-only LMs (BERT-base
architecture (31)) from scratch on data from 5 typical sources—Amazon Reviews, Arxiv,
Books, Wikipedia, and Open WebText Corpus (32). Further details are in App. E.1 and
E.2. Runtime and GPU hours are documented in App. E.7.

5.2 CAUSAL LANGUAGE MODELING WITH DECODER-ONLY LMS (GPT)

Evaluation We test the perplexity on the held-out dataset, comprising 10K samples each from
the 7 domains. For downstream tasks, we include: BoolQ (33) (zero-shot), HellaSwag (34)
(zero-shot, 10-shot), PIQA (35) (zero-shot), TruthfulQA (36) (zero-shot), PubMedQA (37) (10-
shot), CrowsPairs (38) (25-shot), and ARC-Easy (39) (zero-shot). Additionally, BBH Novel
Concepts (40) task is added to the aggregated results for models trained beyond 10B tokens,
making a total of 9 tasks. We select tasks that ensure the model’s performance surpasses random
guessing, spanning from question answering and commonsense inference to bias identification and
scientific problem solving. These tasks provide a comprehensive assessment of model performance
(10; 21). We adopt the evaluation framework from (41). More details are available in App. E.4.

Baselines We report results for our methods (DDO and AUTOSCALE) and 5 baselines–UNIFORM,
LLAMA WEIGHTS (curated), DOREMI (LLaMA weights initialization), DATA MIXING LAWS from
(6) and DOREMI from (1) (uniform initialization). Uniform weights uniformly sample data from all
domains, resulting in the same number of training tokens from each domain. LLaMA weights are a
set of curated domain weights heuristically tuned for training LLaMA-1/2 models. We implemented
DOREMI proposed in (1). DOREMI trains two smaller-scale auxiliary models (proxy models).
First, a reference model is trained with the dataset’s original domain weights, which are the LLaMA
weights for RedPajama dataset. Then, optimized domain weights are obtained by using a proxy
model to minimize the worst-case excess loss across different domains. We train both auxiliary
models for 50K steps. Implementation details are available in App. E.3. Besides, we compare with
2 domain weights from existing literature, which are optimized on the same dataset, RedPajama,
with similar Decoder-only LMs. DATA MIXING LAWS (6) first performs a grid search on the space
of possible data mixtures and records evaluation loss for proxy models trained on these mixtures.
Then, the loss is interpolated with exponential functions to find the optimal domain weights for the
proxy model. DOGE (5) also implements DOREMI (1) with auxiliary models trained for 50K steps
but with the reference model trained with uniform weights. We evaluate the model trained on these
domain weights to present a complete landscape.
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Direct Data Optimization (DDO): We conduct DDO Algorithm to optimize domain weights for
models (774M Decoder-only LMs) trained from scratch with 30M to 1.2B tokens. As depicted in
Fig. 1(a), optimal domain weights for each training data scale are visibly different and demonstrate
a clear shifting pattern. We found data sources with standard format such as Wikipedia and
scientific papers, regarded as high quality, are most beneficial at smaller scales and observe sharp
diminishing returns as the training data scales up. With more compute, data sources with diverse
examples, such as CommonCrawl, continue to reduce training loss for even larger training data
scales. In Fig. 1(b), we validated this observation in Fig. 1(b), where we trained two models with
0.3B tokens with domain weights optimized at 0.3B tokens and 1.2B tokens, and two models with
1.2B tokens with these weights, respectively. Takeaway 1: the results show that, the optimal weights
are only optimal at the scale it is optimized and become suboptimal when applied on other scales.

Predicting Optimal Weights at Larger Scales with AUTOSCALE: With DDO-optimized weights
from models trained up to 0.6B tokens, we fit AUTOSCALE predictor and use it to visualize how
the optimal domain weights will shift as we continue scaling up training data. Depicted in Fig. 1(d)
and Fig. 6, as the training data scale grows, data sources with diverse examples, such as C4 and
CommonCrawl, will take up a considerable proportion of training data. Therefore, we expect
LLaMA weights will perform better when the training data scale is sufficiently large. The results also
suggest training on data from Books domain will continue to provide benefits. Takeaway 2: thus,
AUTOSCALE-predicted domain weights give a larger weight to Books domain compared to baselines
which counterintuitively downweight high-quality book contents.

Method/Task truthfulqa pubmedqa piqa hellaswag crows_pairs boolq arc_easy hellaswag Avg
_mc2 (10-shot) _english (zero-shot)

Uniform Weights 0.4526 0.438 0.6115 0.2923 0.5886 0.5636 0.3742 0.2907 0.4514
LLaMA Weights 0.434 0.492 0.6055 0.2944 0.5903 0.5612 0.3956 0.2952 0.4585
Data Mixing Laws (ref) 0.4537 0.468 0.6061 0.2951 0.5778 0.6162 0.3771 0.2938 0.4610
DoReMi (ref) 0.4505 0.468 0.5985 0.2886 0.5742 0.5410 0.3750 0.2896 0.4482

AutoScale (ours) 0.4385 0.536 0.6202 0.3021 0.585 0.6141 0.3977 0.303 0.4746

Table 1: Downstream task performance for 774M Decoder-only LMs trained for 3B tokens. Models
trained with AUTOSCALE-predicted weights achieve the best overall performance across the tasks.

Subsequently, to examine AUTOSCALE-predicted weights, we train models on larger scales with
3B, 5B, and 10B tokens. On 3B training data, we compare AUTOSCALE-predicted weights with
Uniform weights, LLaMA weights, DOREMI weights from (5) (uniform initialization), and DATA
MIXING LAWS weights from (6). In both 3B and 5B results (Fig. 7), AUTOSCALE achieves the
lowest validation perplexity after the same steps, at least 25% faster than any baseline with up
to 37% speed up. Provided in Table 6, AUTOSCALE-predicted weights significantly reduced the
loss on Books domain and also achieved much lower worst-domain perplexity. When testing the
few-shot performance on 8 downstream tasks, the model trained with AUTOSCALE-predicted weights
achieves the best overall performance (Table 1). Results for models trained with 10B tokens are
depicted in Fig. 1(e)(f), where we added the comparison with DOREMI initialized with LLaMA
weights. Takeaway 3: AUTOSCALE-predicted weights consistently outperform any baseline with a
28% to 38% margin and demonstrate advantageous performance on downstream tasks. Echoing our
predictions, as training data scales up, LLaMA weights visibly outperform uniform domain weights.
See App. E.5 for additional results .

5.3 MASKED LANGUAGE MODELING WITH ENCODER-ONLY LMS (BERT)

We evaluate the model’s MLM loss on held-out validation datasets, comprising 10K samples each
from the 5 training domains. Additionally, as an auxiliary evaluation, we test the MLM loss on 3
non-training held-out domains. To be consistent with the perplexity loss used in CLM, we report
the exponential cross-entropy loss for MLM. We evaluate the model’s task performance on GLUE
benchmark (42) (with 8 diverse tasks for natural language understanding (NLU)) and SQuAD (43) (a
large-scale QA dataset). See App. E.4 for more details. Uniform weights are used as the baseline.

Direct Data Optimization (DDO): We conduct DDO Algorithm to optimize domain weights for
proxy models (110M Encoder-only LMs) trained from scratch with MLM on 1GB data. Results for
DDO-optimized weights are shown in Fig. 3. Takeaway 3a: DDO visibly decreased the model’s
validation loss on all training domains as well as held-out non-training domains, demonstrating its
effectiveness in improving training efficiency and model utility. When testing on GLUE benchmark
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and SQuAD dataset, consistent with the reduced evaluation loss, DDO-optimized weights are shown
to improve the model’s performance on downstream tasks by a notable margin.

(a) Validation Loss (↓ lower is better) (b) Task Performance (↑ higher is better)

Figure 3: Optimizing domain weights with DDO algorithm for pre-training Encoder-only LMs (BERT). DDO
substantially reduces validation loss. After reweighting, all training domains’ loss either decreased or remained
unchanged. Out-of-domain loss on non-training domains also decreased considerably. Enhanced performance is
observed on all GLUE tasks (eval metric: cola: Matt. corr., stsb: Pearson corr., rest: acc.) and SQuAD (acc.).

Predicting Optimal Weights at Larger Scales with AUTOSCALE: With DDO-optimized weights
from models trained up to 0.5B tokens, we fit AUTOSCALE predictor and use it to predict how the
optimal domain weights will shift as we continue scaling up training data. Depicted in Fig. 11, similar
to the pattern described above, as the training data scale grows, data sources with diverse examples,
such as WebText and Amazon Reviews, become increasingly important over standard domains,
such as Wikipedia and Arxiv. One hypothesis is such data sources contain samples on diverse
topics and language styles, providing rich information compared to domains with clean, standard
text. We train models with MLM for up to 288k steps (∼ 120% of the pertaining data size for
original BERT-base (44)). Table 7 shows that, compared to without reweighting (uniform weights),
AUTOSCALE-predicted weights speed up training by 16.7% on most data scales with a 10% speedup
on the largest scale, validating its consistent effectiveness. Takeaway 4: nonetheless, the speedup
is less impressive than in the results for Decoder-only LMs, demonstrating the different response to
domain reweighting for models with different architecture or language modeling objectives. This
is also hinted in Fig. 10(b), where the evaluation loss has a similar response to data from different
domains, suggesting limited potential for performance improvements from domain reweighting.

6 CONCLUSIONS
In this work, we demonstrate that the optimal data composition for a fixed compute budget varies
depending on the scale of the training data, showcasing that the common practice of empirically
determining an optimal composition using small-scale experiments will not yield the optimal data
mixtures when scaling up to the final model. Addressing this challenge, we propose AUTOSCALE, an
automated tool that finds a compute-optimal data composition for training at any desired target scale.
In empirical studies with pre-training 774M Decoder-only and Encoder-only LMs, AUTOSCALE
decreases validation perplexity at least 28% faster than any baseline with up to 38% speed up
compared to without reweighting, achieving the best overall performance across downstream tasks.

Limitations & Future Work The promising results achieved by AUTOSCALE in optimizing data
composition for large-scale language model pretraining open up some intriguing avenues for future
exploration. (1) Generalizability: It will be interesting to extend this research to larger-scale settings,
other data modalities, and more comprehensive evaluation benchmarks, and re-examine the validity of
insights provided by experiments at the scale that we work on. (2) Direct optimization of downstream
performance: In practice, the capabilities of LLMs are characterized by their performance on various
downstream tasks, and the perplexity loss that we focused on in this study is only a rough, inaccurate
proxy for downstream performance. It will be interesting to extend AUTOSCALE to directly optimize
downstream performance. (3) More fine-grained data curation: AUTOSCALE works with fixed data
domains and only optimizes how the domains are mixed together, confining the optimization space.
Intuitively, if one can strategically select the corpus within each domain and even adapt the data
selection strategy to different stages of training, further improvements could be achieved.
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[53] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

[54] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling. arXiv preprint arXiv:2302.03169, 2023.

[55] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[56] Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu Jahagirdar, Yuanzhi Zhang, Rongxing
Du, Anit Kumar Sahu, and Ruoxi Jia. Get more for less: Principled data selection for warming
up fine-tuning in llms. 12th International Conference on Learning Representations, ICLR, 2024.

[57] Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting
high-quality data for training language models. arXiv preprint arXiv:2402.09739, 2024.

[58] Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly.
Rephrasing the web: A recipe for compute and data-efficient language modeling. arXiv preprint
arXiv:2401.16380, 2024.

[59] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton
Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open
dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

[60] Rafid Mahmood, James Lucas, David Acuna, Daiqing Li, Jonah Philion, Jose M Alvarez,
Zhiding Yu, Sanja Fidler, and Marc T Law. How much more data do i need? estimating
requirements for downstream tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 275–284, 2022.

[61] Rafid Mahmood, James Lucas, Jose M Alvarez, Sanja Fidler, and Marc Law. Optimizing
data collection for machine learning. Advances in Neural Information Processing Systems,
35:29915–29928, 2022.

[62] Feiyang Kang, Hoang Anh Just, Anit Kumar Sahu, and Ruoxi Jia. Performance scaling via
optimal transport: Enabling data selection from partially revealed sources. arXiv preprint
arXiv:2307.02460, 2023.

[63] Hoang Anh Just, I-Fan Chen, Feiyang Kang, Yuanzhi Zhang, Anit Kumar Sahu, and Ruoxi
Jia. Asr data selection from multiple sources: A practical approach on performance scaling.
NeurIPS 2023 Workshop on Efficient Natural Language and Speech Processing (ENLSP), 2023.

[64] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for contin-
ual learning and streaming. Advances in Neural Information Processing Systems, 33:14879–
14890, 2020.

[65] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[66] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. arXiv preprint arXiv:1908.08619, 2019.

[67] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[68] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[69] Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi
Jia. Lava: Data valuation without pre-specified learning algorithms. In 11th International
Conference on Learning Representations, ICLR, page to appear, 2023.

[70] Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data
value. arXiv preprint arXiv:2304.07718, 2023.

[71] Stephanie Schoch, Ritwick Mishra, and Yangfeng Ji. Data selection for fine-tuning large
language models using transferred shapley values. arXiv preprint arXiv:2306.10165, 2023.

[72] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendices

A Broader Impacts 17

B Extended Related Work 17

C Operational Pipeline for Algorithms 17

D Proofs for Sec. 4 18

D.1 Theorem 1: Scaling Law for Optimal Data Compositions . . . . . . . . . . . . . . 18

D.2 Scaling Latent Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E Experimental Details and Additional Results 22

E.1 Experimental Details of Sec. 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E.2 Experimental Details of Sec. 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.3 Implementation Details of Baselines . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.4 Evaluation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.5 Additional Results of Sec. 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.6 Additional Results of Sec. 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.7 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX A BROADER IMPACTS

Reducing the complexity and resource requirements associated with pretraining LLMs, AUTOSCALE
contributes to the democratization of AI. Smaller organizations, academic institutions, and individual
researchers can more easily participate in cutting-edge AI research and development, fostering
innovation and collaboration across the AI community. Moreover, learning from massive amounts of
data requires large and costly computational resources, which not only consume substantial energy
but also generate a significant carbon footprint, contributing to environmental issues. Furthermore,
these resources quickly become obsolete due to the rapid pace of technological advancements, leading
to e-waste. This research makes contributions to mitigating these issues by improving the efficiency
of resource utilization in AI training.

APPENDIX B EXTENDED RELATED WORK

Training Data Curation Data selection problems have been extensively studied for a variety of
applications such as vision (45–48), speech (49; 50), and language models (45; 48; 51), and have
been attracting growing interest over recent years. For LLMs, a line of research focuses on data
selection for pre-training (also known as pre-training data curation) (52; 53; 22) from scratch or
continued pre-training. (53) shows that continuing pre-training the model on the domain-specific
dataset improves its performance on tasks of this domain; (54) uses importance resampling on simple
bi-gram features with 10k bins to select millions of samples for domain/task adaptive pre-training.
Problem-specific heuristic methods employ simple criteria to distinguish data quality for a given
language model on particular datasets (e.g., via perceived relevance between how the dataset is created
and training objectives of the LLM (55)). The effectiveness of these methods for data selection is
often limited to specific use cases and easily fails when migrated to different problems (54). More
recently, (56) selects samples for fine-tuning pre-trained LLMs via gradients of Optimal Transport
distance. (57) curates pre-training data using GPT-4 to rate and select samples based on a number of
quality criteria; further, (58) uses pre-trained LLMs to re-write the entire training corpus to improves
its quality for pre-training other LLMs. (18) provides a recent survey for this fast-evolving field.
Pre-training data curation is also studied for multimodal foundation models (MMFM)–e.g., (12) for
vision-language models (VLMs), and (59; 9) for CLIP (Contrastive Language-Image Pretraining).
Aside from pre-training LLMs, domain reweighting problems have been studied in research on
collecting data for vision, audio, and text applications (60–63).

Besides, Coresets (64; 65) aim to find a representative subset of samples to speed up the training
process, which may be formulated as an optimization problem. This process is considerably com-
putationally intensive and hard to be applied on a practical scale for language applications. Data
Valuation methods aim to measure the contribution of each sample to the model performance, which
naturally provides a viable tool for data selection. Notable examples includes model-based approaches
Shapley (66; 67), LOO (67; 68), and model-agnostic methods (69; 70). Achieving fruitful results in
their respective applications and providing valuable insights, though, these methods are commonly
known for their scalability issues. Model-based approaches require repetitive model training and
often struggle to apply to a few thousand samples. A recent example, (71) uses a sampling approach
to speed up a Shapley-style method for selecting data for fine-tuning LLMs and scales up to selecting
from 7.28k subsets. It is hardly imaginable to apply it to the scale of practical language datasets. (69)
utilizes the gradients of an Optimal Transport problem to provide an efficient measure of data values,
yet the selection based on gradients does not necessarily align with the target distribution, resulting in
mediocre performance in general cases.

APPENDIX C OPERATIONAL PIPELINE FOR ALGORITHMS

Operational Pipeline (DDO)

1. Train a base proxy model with uniform weights (or reference weights, if available);
2. At each time, add/reduce data quantity for one domain and re-train the proxy model;
3. Fit power law scaling functions and solve the optimization problem;
4. Iterate the process if necessary.
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Figure 4: LLMs are pre-trained using data from different sources or domains, yet determining the
optimal data composition is challenging. We propose AUTOSCALE, an automated tool that finds
a compute-optimal data composition for training at any desired target scale. AUTOSCALE first
determines the optimal composition at a small scale using a novel bi-level optimization framework,
Direct Data Optimization (DDO), and then fits a predictor to estimate the optimal composition at
larger scales. The predictor’s design is inspired by our theoretical analysis of scaling laws related
to data composition, which could be of independent interest. In empirical studies, AUTOSCALE
decreases validation perplexity at least 25% faster than any baseline with up to 38% speed up
compared to without reweighting, achieving the best overall performance across downstream tasks.

Operational Pipeline (AUTOSCALE)

1. For two smaller training data scales N (1) and N (2) where re-training the model is affordable,
find their corresponding optimal training data compositions N(1)∗ and N(2)∗ using DDO
Algorithm described above;

2. Predict the next optimal training data composition as N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗,
yielding optimal domain weights w(3)∗

i = N
(3)∗
i /N (3) at new training data scale N (3) =∑

i N
(3)∗
i ;

3. Repeat this process until the target training data scale is reached.

APPENDIX D PROOFS FOR SEC. 4

D.1 THEOREM 1: SCALING LAW FOR OPTIMAL DATA COMPOSITIONS

Theorem 1 (Scaling Law for Optimal Data Compositions (restated)). Consider the following
optimization problem

min
N

{
m∑
i=1

βiN
−γi

i

∣∣∣∣∣
m∑
i=1

Ni = N

}

For any two compute budgets N (1) ̸= N (2), let N(1)∗ and N(2)∗ be their respective minimizers. Then,
for any third compute budget N (3) such that N (1) ̸= N (3) ̸= N (2), the corresponding minimizer
N(3)∗ must satisfy N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗.

Proof. For the evaluation loss given as

L =

m∑
i=1

βi ·N−γi

i ,
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at an optimal data composition, KKT condition (27) gives that we have the partial derivative of the
loss function w.r.t. the amount of data from each domain equal to each other. This gives, for any two
domains a and b (w.l.o.g, we simplify the derivation to the case of two domains) with optimal data
quantity N∗

a and N∗
b , respectively, we have

∂L
∂Na

= −βa · γa ·N−γa−1
a

∂L
∂Nb

= −βb · γb ·N−γb−1
b

∂L
∂Na

∣∣∣∣
Na=N∗

a

=
∂L
∂Nb

∣∣∣∣
Nb=N∗

b

With straightforward derivations, this gives

−βa · γa · (N∗
a )

−γa−1 = −βb · γb · (N∗
b )

−γb−1

βa · γa
βb · γb

=
(N∗

a )
γa+1

(N∗
b )

γb+1

(N∗
a )

γa+1 =
βaγa
βbγb

(N∗
b )

γb+1

N∗
a =

[
βaγa
βbγb

(N∗
b )

γb+1

] 1
γa+1

(4)

Let N (2)∗
a , N

(2)∗
b be the optimal data quantity for domains a and b at a different data scale N (2) =

N
(2)∗
a +N

(2)∗
b ̸= N . Assuming we have the optimal data quantity for domain b becoming m times

than N∗
b , namely,

N
(2)∗
b := m ·N∗

b

Then, from Eq. 4, the optimal data quantity for domain a can be given as

N (2)∗
a =

[
βaγa
βbγb

(N
(2)∗
b )γb+1

] 1
γa+1

=

[
βaγa
βbγb

(m ·N∗
b )

γb+1

] 1
γa+1

= m
γb+1

γa+1 ·
[
βaγa
βbγb

(N∗
b )

γb+1

] 1
γa+1

= m
γb+1

γa+1 ·N∗
a

(5)

It can be immediately seen that the optimal domain data N∗
a and N∗

b scale at different rates–new
optimal data quantity for domain a does not become m times than before. This implies that the
optimal data composition is scale-dependent and is different for different training data scales. This
implies that the optimal data composition is scale-dependent and is different for different training
data scales, establishing the main argument of this paper.

Since the ratio from Eq. 5, (γb + 1)/(γa + 1), is constant and invariant to the change in the training
data scale, it can be utilized to provide a direct approach for predicting the scaling of optimal data
compositions–given as

N (2)∗
a = (

N
(2)∗
b

N∗
b

)
γb+1

γa+1N∗
a

Equivalently, taking the logarithm for both sides of the equation, we have

logN (2)∗
a = log(

N
(2)∗
b

N∗
b

)
γb+1

γa+1 + logN∗
a
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Further, we show that one does not need to estimate any of the coefficients (γa, γb) from the loss
function to predict the optimal data quantity for each domain. Assume one have obtained the optimal
data quantity for domains a and b, N (1)∗

a , N
(1)∗
b , at a data scale N (1) = N

(1)∗
a + N

(1)∗
b and the

optimal data quantity N
(2)∗
a , N

(2)∗
b at a data scale N (2) = N

(2)∗
a +N

(2)∗
b where N (1) ̸= N (2). This

gives

logN (2)∗
a =

γb + 1

γa + 1
· (logN (2)∗

b − logN
(1)∗
b ) + logN (1)∗

a

Then, for a different data scale where the optimal data quantity for domain b is N (3)∗
b , the optimal

data quantity for domain a can be given as

logN (3)∗
a =

γb + 1

γa + 1
· (logN (3)∗

b − logN
(2)∗
b ) + logN (2)∗

a

=
logN

(2)∗
a − logN

(1)∗
a

logN
(2)∗
b − logN

(1)∗
b

· (logN (3)∗
b − logN

(2)∗
b ) + logN (2)∗

a

W.l.o.g., consider N
(3)∗
b

N
(2)∗
b

=
N

(2)∗
b

N
(1)∗
b

where logN (2)∗
b − logN

(1)∗
b = logN

(3)∗
b − logN

(2)∗
b , the equation

above can be simplified to
logN (3)∗

a = 2 logN (2)∗
a − logN (1)∗

a

and equivalently,

N (3)∗
a =

(N
(2)∗
a )2

N
(1)∗
a

Defining compact representations N(i)∗ = diag{N (i)∗
a , N

(i)∗
b }, the above results can be written as

N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗

which concludes the proof.

The process can be iterated (e.g., replacing N(1)∗ or N(2)∗ with N(3)∗) to obtain optimal domain
data quantity for different data scales. The example below provides a straightforward look on how
this result can be operationalized.

Remark 1 (An example). This example helps visualize the operation pipeline.

If at training data scale N (1) = N
(1)
a +N

(1)
b = 200, we have optimal domain data composition as

N
(1)∗
a = 100, N

(1)∗
b = 100 (50%−50%); and at scale N (2) = N

(2)
a +N

(2)
b = 500, we have optimal

domain data composition as N
(2)∗
a = 300, N

(2)∗
b = 200 (60% − 40%). Then, from the theorem,

when the optimal domain data composition has N (3)∗
a = (N

(2)∗
a )2/N

(1)∗
a = 900, we can predict

N
(3)∗
b = (N

(2)∗
b )2/N

(1)∗
b = 400, which gives the optimal ratio at N (3) = N

(3)
a +N

(3)
b = 1300 as

69%− 31%.

Similarly,

For N (4)∗
a = 2700, we have N

(4)∗
b = 800, which gives the optimal ratio at N (4) = 3500 as 77%− 23%

For N (5)∗
a = 8100, we have N

(5)∗
b = 1600, which gives the optimal ratio at N (5) = 9700 as 84%− 16%

For N (6)∗
a = 24300, we have N

(6)∗
b = 3200, which gives the optimal ratio at N (6) = 27500 as 88%− 12%

For N (7)∗
a = 72900, we have N

(7)∗
b = 6400, which gives the optimal ratio at N (7) = 79300 as 92%− 8%

For N (8)∗
a = 218700, we have N (8)∗

b = 12800, which gives the optimal ratio at N (8) = 231500 as 94%− 6%

For N (9)∗
a = 656100, we have N (9)∗

b = 25600, which gives the optimal ratio at N (9) = 681700 as 96%− 4%

We visualize it in Fig. 5.

D.2 SCALING LATENT SKILLS

We extend this theory to a general case where the evaluation loss is the perplexity averaged over
training domains. Consider the evaluation is composed of a number of independent sub-tasks
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Figure 5: Illustration: optimal data composition scales in exponential-style functions with training
data quantity.

("latent skills" (28)) which are hidden variables, where each of them observes a power law scaling
law relationship with the amount of data contributing to this task ("equivalent data size"), L =
ℓ0 + βa ·K−γa

a + βb ·K−γb

b + βc ·K−γc
c + · · · where scalar Kj ≥ 0 denote equivalent data size for

skillj , and constants (βj , γj) ≥ 0 are coefficients associated with skillj , respectively. Mathematically,
these latent skills can be seen as an orthogonal basis that spans the space of evaluation loss.

Consider training data from each domain Di contributes to these skills to varying degrees, where
Equivalent data size for skillj , Kj , is given as Kj = cj,1 ·N1 + cj,2 ·N2 + · · · where Ni = wi ·N
denotes the amount of training data from domain Di and constant cj,i is the coefficient measuring
the degree of contribution between domain Di and skillj . Defining diagonal matrices for training
data composition N = diag{N1, N2, · · · } and skill data composition K = diag{Ka,Kb, · · · },
we have K = AN, where Aji = cj,i is the matrix for coefficients. For simplicity, we consider
training data from each domain will be distributed to the skills such that ∀i,

∑
j Ni = 1. This gives

the amount of total training data from all domains is identical to the amount of total equivalent
data for all skills,

∑
j Kj =

∑
i Ni. For a training data scale N =

∑
i Ni =

∑
j Kj , define

optimal skill data composition K∗ = diag{K∗
a ,K

∗
b , · · · } as the minimizer of L, given as K∗ =

argmin∑
j Kj=Nℓ0+βa ·K−γa

a +βb ·K−γb

b + · · · . Theoretically, there can be an infinite number of
latent skills. For analysis, we consider a finite number of k independent skills most important for the
evaluation. This can considered as performing Principal Components Analysis (PCA) with orthogonal
transformation and selecting the first k independent components. We consider the standard scenario
with an equal number of relevant skills and data domains where k = m and A is a square matrix with
full rank. This describes the case where this optimization problem is well-defined. We discuss in
App. D.2 what will happen in other scenarios. In this case, A is invertible and the corresponding
optimal training data composition for K∗ can be given as N∗ = A−1K∗.

We provide the following theorem, which states that for the scenario described above, optimal training
data composition scales in exponential-style functions with training data quantity and can be directly
predictable from that of smaller scales without needing to identify the latent skills.

Theorem 2 (Scaling Latent Skills). Consider the evaluation is composed of a number of inde-
pendent sub-tasks ("latent skills") where each of them observes a power law scaling law re-
lationship with the amount of data contributing to this task ("equivalent data size"). Namely,
L = ℓ0 + βa · K−γa

a + βb · K−γb

b + βc · K−γc
c + · · · where scalar Kj ≥ 0 denote equivalent

data size for skillj , and constants (βj , γj) ≥ 0 are coefficients associated with skillj , respec-
tively. Define diagonal matrices for training data composition N = diag{N1, N2, · · · } and skill
data composition K = diag{Ka,Kb, · · · }. Consider training data from each domain Di con-
tributes to these skills to varying degrees, given as K = AN where Aji = cj,i is the matrix
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for coefficients. Assume the amount of total training data from all domains is identical to the
amount of total equivalent data for all skills,

∑
j Kj =

∑
i Ni. Assume there is a finite number

of latent skills and data domains and A is a square matrix with full rank. For a training data
scale N =

∑
i Ni =

∑
j Kj , define optimal skill data composition K∗ = diag{K∗

a ,K
∗
b , · · · }

as the minimizer of L s.t.
∑

j Kj = N with corresponding optimal training data composition

If we have optimal data compositions N(1)∗ = diag{N (1)∗
a , N

(1)∗
b , · · · } where its corresponding

skill data composition K(1)∗ = diag{K(1)∗
a ,K

(1)∗
b , · · · } = AN(1)∗ minimizes L s.t.

∑
j Kj =∑

i N
(1)∗ = N (1), and N(2)∗ = diag{N (2)∗

a , N
(2)∗
b , ...} where its corresponding skill data compo-

sition K(2)∗ = diag{K(2)∗
a ,K

(2)∗
b , ...} = AN(2)∗ minimizes L s.t.

∑
j K

(2)∗
j =

∑
i N

(2)∗ = N (2)

where N (2) ̸= N (1), then, other optimal data compositions N(3)∗ = diag{N (3)∗
a , N

(3)∗
b , ...}

where its corresponding skill data composition K(3)∗ = diag{K(3)∗
a ,K

(3)∗
b , · · · } = AN(3)∗

minimizes L s.t.
∑

j K
(3)∗
j =

∑
i N

(3)∗ = N (3) where N (3) ̸= N (2) ̸= N (1) can be given as
N(3)∗ = N(2)∗(N(1)∗)−1N(2)∗.

Proof. By definition, we have

AN(1)∗ = K(1)∗, AN(2)∗ = K(2)∗, AN(3)∗ = K(3)∗

From results of Theorem 1, we have
K(3)∗ = K(2)∗(K(1)∗)−1K(2)∗

which gives
AN(3)∗ = (AN(2)∗)(AN(1)∗)−1AN(2)∗

Since A is invertible and N and K are diagonal matrices, naturally,

(AN(1)∗)−1 = (N(1)∗)−1A−1

and we have
AN(3)∗ = AN(2)∗[(N(1)∗)−1A−1]AN(2)∗ = AN(2)∗(N(1)∗)−1N(2)∗

This directly gives

N(3)∗ = A−1AN(2)∗(N(1)∗)−1N(2)∗ = N(2)∗(N(1)∗)−1N(2)∗

which completes the proof.

The above result does not require identifying the latent skills or observing skill data compositions
K. Rather, the theorem gives that as long as the coefficient matrix A is invertible, the scaling of N
complies to the same scaling law as in Sec. 3.3.

Remark 2 (what happens when A is not invertible.). In general, if A is not invertible, scaling for
optimal training data composition is not directly predictable. Specifically, if A does not have full rank,
there exists redundant domains/data sources where their contribution to the skills are identical/exact
multipliers of each other. Some data sources may not be needed at any scale; if A has more rows than
columns (more domains than skills), this suggests multiple training data compositions can achieve the
same skills data composition and the optimal training data compositions are non-unique (infinitely
many). If A has more columns than rows (more skills than domains), this means there are too many
skills to optimize for. No optimal training data composition exists and one has to make trade-offs.
If this is relevant to the practical needs, training data may be processed with additional techniques
such as clustering and split into more different domains.

APPENDIX E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

E.1 EXPERIMENTAL DETAILS OF SEC. 5.2

Model Training GPT-2 Large is a variant of the GPT-2 architecture, featuring an embedding
dimension of 1280, 36 transformer layers, and 20 attention heads. We rely on the Hugging Face
Transformers library for implementation (72). Specific training hyperparameters are detailed in Table
2.
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Architecture gpt2
Optimizer AdamW
Tokenizer Vocabulary Size 50257
Batch Size Per Device 1
Gradient Accumulation Steps 10
Maximum Learning Rate 2e-4
LR Schedule Linear
Weight Decay 1e-2
Warm-up Ratio 10%
Epochs 3
GPU Hardware 8x NVIDIA A100/8x NVIDIA H100

Table 2: The list of hyperparameters for GPT-2 Large pretraining.

Dataset Details The RedPajama dataset is available at: https://huggingface.co/
datasets/togethercomputer/RedPajama-Data-1T. The 7 domains involved are char-
acterized as follows:

• Commoncrawl: A vast repository of web-crawled data, providing a heterogeneous mix of
internet text.

• C4: The Colossal Clean Crawled Corpus, filtered to remove low-quality content, thus
ensuring the reliability and cleanliness of the data.

• GitHub: This domain includes a compilation of publicly available code repositories,
offering a rich source of syntactic and semantic patterns inherent in programming languages.

• Books: A collection of textual content from published books, providing diverse narrative
styles and complex character developments.

• ArXiv: Comprising scientific papers primarily from the fields of physics, mathematics,
computer science, and quantitative biology, this domain offers high-quality, scholarly con-
tent.

• Wikipedia: A well-organized and meticulously curated dataset of encyclopedia articles,
delivering a broad spectrum of knowledge across multiple disciplines. We only use English
samples with ’en’ in meta-data.

• StackExchange: This domain captures a variety of user-generated content from discus-
sions and question-answer sessions across numerous technical topics.

Given copyright restrictions with the Books domain on Hugging Face, we have opted for an
alternative source available at https://yknzhu.wixsite.com/mbweb.

For each domain, we ensure only samples with more than 1000 characters are retained. For each
sample, the first 1000 characters are truncated, with the exception of the ArXiv and GitHub
domains where we randomly extract a continuous block of 1000 characters. For the Wikipedia
domain, we keep only those samples that are in English. Samples are selected without replacement,
based on the computed data volume for each domain. Additionally, for each domain, a held-out
dataset comprising 10K samples is reserved to evaluate the perplexity of the pretrained model.

E.2 EXPERIMENTAL DETAILS OF SEC. 5.3

Model Training We employ the BERT-base-uncased model from the Hugging Face Trans-
formers library. Originally, BERT’s pretraining scheme involved MLM and next sentence prediction
(NSP); however, in our experiments, we exclusively utilize MLM. Detailed training hyperparameters
can be found in Table 3.

Dataset Details The 5 domains of training data utilized are listed as follows:

• Amazon Reviews: A compilation of customer reviews from Amazon, widely utilized
in sentiment analysis studies, available at: https://huggingface.co/datasets/
amazon_us_reviews.
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Architecture bert-base-uncased
Max Token Length 300
Mask Token Percentage 15%
Optimizer AdamW
Batch Size Per Device 12
Devices 4
Maximum Learning Rate 1e-4
LR Schedule Linear
Weight Decay 1e-2
Warm-up Steps 3000
Epochs 1 ∼ 4
GPU Hardware 4x NVIDIA RTX A6000

Table 3: The list of hyperparameters for BERT pretraining.

• Arxiv: Comprises 1.7 million articles from arXiv, available at: https://www.
tensorflow.org/datasets/catalog/scientific_papers.

• Books: A corpus of 11,038 novels by unpublished authors across 16 genres, available at:
https://yknzhu.wixsite.com/mbweb.

• Wikipedia: Offers datasets extracted from Wikipedia in various languages, available at:
https://www.tensorflow.org/datasets/catalog/wikipedia. We only
use English samples with ’en’ in meta-data.

• Open WebText Corpus (OWTC): A corpus of English web texts from Reddit posts,
available at: https://skylion007.github.io/OpenWebTextCorpus/.

3 held-out non-training domains used in the evaluation include:

• Pubmed: Features 19,717 diabetes-related publications from the PubMed database, orga-
nized into three classes and linked by a network of 44,338 citations, available at: https:
//www.tensorflow.org/datasets/catalog/scientific_papers

• News: Comprises a significant collection of news articles derived from CommonCrawl,
specifically from 5000 news domains indexed by Google News, available at: https:
//github.com/rowanz/grover/blob/master/realnews/README.md

• GitHub: A curated selection from the RedPajama dataset, this segment includes an array
of open-source code projects, available at: https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

E.3 IMPLEMENTATION DETAILS OF BASELINES

Implementation details We followed the official implementation3 of DOREMI for our experiments.
We evaluated two sets of reference domain weights: (1) the domain weights utilized in the LLaMA-
2 paper (11) (referred to as LLaMA weights), and (2) uniform weights. Both the reference and
proxy models have 120M parameters and are trained from scratch. We use GPT-2 tokenizer with a
vocabulary size of roughly 50K. For LLaMA weights, we train each model for 20K, 50K and 200K
steps for comparison. For uniform weights, we train each model for 10K, 20K and 50K steps. Refer
to Table 4 for detailed hyperparameters. The effect of reference weights on the output DOREMI is
discussed in Fig.9.

E.4 EVALUATION DETAILS

GPT/CLM The following tasks are considered for downstream performance evaluation, in line with
the setup from (10; 21). For few-shot tasks, the demonstrations are sampled at random.

• BoolQ (33) consists of a question-answering format that requires binary yes/no answers.

3https://github.com/sangmichaelxie/doremi
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Architecture Decoder-only LM
Max Token Length 1024
Optimizer AdamW
Batch Size Per Device 8
Devices 8
Maximum Learning Rate 2e-4
LR Schedule Linear
Weight Decay 1e-2
Warm-up Steps 3000
Epochs 1
GPU Hardware 8x NVIDIA RTX A6000

Table 4: The list of hyperparameters for DOREMI.

• HellaSwag (34) challenges models on their ability to make commonsense inferences.

• PIQA (35) focuses on evaluating a model’s commonsense reasoning regarding physical
interactions.

• TruthfulQA (36) is designed to assess the ability of models to generate truthful and
factual responses.

• PubMedQA (37) offers a dataset for evaluating question-answering in the biomedical do-
main.

• CrowsPairs-English (38) tests models on their ability to identify and correct stereo-
typical biases in English text.

• ARC-Easy (39) presents a set of relatively simpler scientific reasoning questions, aimed at
evaluating a model’s basic understanding of scientific principles.

• BigBench-Novel Concepts (40) serves as a test of the model’s creative abstraction
skills, challenging it to make sense of scenarios that it could not have memorized during
training.

BERT/MLM For each task, we conduct supervised fine-tuning on the corresponding training data
and test the fine-tuned model on the validation data. The hyperparameters for supervised fine-tuning
are given in Table 5.

Architecture bert-base-uncased
Max Token Length 128
Batch Size Per Device 8 or 300
Optimizer AdamW
Devices 4
Maximum Learning Rate 2e-5 or 5e-5
Epochs 3
GPU Hardware 4x NVIDIA RTX A6000

Table 5: The list of hyperparameters for supervised fine-tuning of BERT.

E.5 ADDITIONAL RESULTS OF SEC. 5.2

Fig. 6 depicts AUTOSCALE-predicted domain weights for training 774M Decoder-only LMs. Optimal
data quantity for each domain grows in exponential-style functions with training data scale (left)
where data sources with diverse samples (e.g., C4) are upweighted relative to domains with standard
format (e.g., Wikipedia).

Fig. 7 shows that when training on up to 5B tokens, AUTOSCALE-predicted weights decreases val
loss at least 25% faster than any baseline with up to 37% speed up.

Fig. 8 visualizes domain weights used for training GPT-2 Large, given by different methods.
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(a) AUTOSCALE-predicted optimal data quan-
tity for each domain as training data scales up.

(b) AUTOSCALE-predicted optimal domain weights as
training data scales up.

Figure 6: AUTOSCALE-predicted domain weights for training 774M Decoder-only LMs. Optimal
data quantity for each domain grows in exponential-style functions with training data scale (left)
where data sources with diverse samples (e.g., C4) are upweighted relative to domains with standard
format (e.g., Wikipedia).

Table 6 examines the domain-specific perplexity of GPT-2 Large trained on 3 billion tokens,
respectively. Notably, AUTOSCALE achieves the lowest average validation perplexity and significantly
reduces the perplexity in the worst-performing domains.

Fig. 9 visualizes DOREMI optimized domain weights with different reference weights and training
steps. Training proxy/reference models for different steps gives different weights. It is unclear which
weights are optimal. DOREMI recommends 200k steps, which equals >100B tokens in the default
setup. Since optimization was conducted relative to the reference weights, reference weights have a
profound impact on DOREMI’s output.

Domain/Method AutoScale DoReMi (Ref) Data Mixing LLaMA Uniform
Laws (ref) (30% more tokens)

Common Crawl 25.598 24.116 30.824 21.464 28.351
Github 7.482 6.678 5.845 7.376 5.784
Books 29.162 33.324 34.450 35.533 31.14
Wikipedia 18.828 17.154 26.795 21.110 19.57
C4 34.242 39.429 38.521 37.393 40.323
Stack Exchange 15.991 15.393 14.519 20.133 13.890
Arxiv 16.558 15.638 12.372 17.598 13.082

Average 21.123 21.676 23.333 22.944 21.736

Worst-domain 34.242 39.429 38.521 37.393 40.323

Table 6: Domain perplexity for 774M Decoder-only LMs trained for 3B tokens. AUTOSCALE notably
achieves the lowest average validation perplexity while also significantly decreasing worse-domain
perplexity.

E.6 ADDITIONAL RESULTS OF SEC. 5.3

Fig. 10(b) shows the results on fitting validation loss with power-law functions, directly approximating
how loss changes with each domain’s data quantity. Compared to BERT models trained with MLM
(right), GPT models trained with CLM (left) demonstrate a much stronger response to domain
reweighting. In final results, GPT/CLM achieved > 2× speed-up margins relative to uniform weights
compared to BERT/MLM.

Fig. 11 depicts the AUTOSCALE-predicted domain weights for training BERT. It is evident that
optimal data quantity for each domain grows in exponential-style functions with training data scale
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(a) Training Decoder-only LMs for 3B tokens. (b) Training Decoder-only LMs for 5B tokens.

Figure 7: AUTOSCALE-predicted weights decreases val loss at least 25% faster than any baseline
with up to 37% speed up. Despite LLaMa weights being very different from uniform weights, they
yield highly similar training efficiency at these data scales.

Figure 8: Domain Weights used for training 774M Decoder-only LMs for 3B tokens. (Domain
weights for DATA MIXING LAWS and DOREMI are from references (6) and (5), respectively, which
are implemented on the same datasets/data domains with highly similar model architecture/model
size/tokenizers.)

where data sources with diverse samples (e.g., WebText) are upweighted relative to domains with
standard format (e.g., ArXiv).

Table 7 shows AUTOSCALE notably improving training efficiency for BERTmodels on all scales–even
for a considerably large scale, 288k steps, the speedup margin remains visible.

Data Scale/steps 18k 36k 72k 144k 288k

Final Loss (exp) 38.32 16.94 10.97 8.13 6.30
Steps Saved 5k (28%) 5k (14%) 10k (14%) 20k (14%) 20k (10%)

Table 7: AUTOSCALE notably improving training efficiency for BERT models on all scales–even for
a considerably large scale, 288k steps, the speedup margin remains visible.
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(a) with Uniform Reference Weights (b) with LLaMA Reference Weights (Default)

Figure 9: DOREMI with different reference weights and steps. Training proxy/reference models for
different steps gives different weights. It is unclear which weights are optimal. DOREMI recommends
200k steps, which equals >100B tokens in the default setup. Since optimization was conducted
relative to the reference weights, reference weights have a profound impact on DOREMI’s output.

(a) 774M Decoder-only LMs (GPT-2 Large) (b) Encoder-only LMs (BERT-case)

Figure 10: Fitting validation loss with power-law functions, directly approximating how loss changes
with each domain’s data quantity. Compared to BERT models trained with MLM (right), GPT models
trained with CLM (left) demonstrate a much stronger response to domain reweighting. In final results,
GPT/CLM achieved > 2× speed-up margins relative to uniform weights compared to BERT/MLM.

E.7 RUNTIME ANALYSIS

Training a GPT-2 large model from scratch for 3B tokens requires 15.5 hours on 8x NVIDIA
A100 40GB SXM GPUs or 9 hours on 8x NVIDIA H100 80GB GPUs. Training time increases
linearly with the number of training tokens on both types of GPUs.

Training BERT-base models takes 2 hours for every 18k steps on 4x NVIDIA A6000 48GB GPUs.
Computational time grows linearly with the number of training steps.

Training reference models for DOREMI takes one hour for every 10K steps on 8x NVIDIA A6000
48GB GPUs. Computational time grows linearly with the number of training steps. Similar runtime
for training proxy models for DOREMI.
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(a) AUTOSCALE-predicted optimal data
quantity for each domain as training data
scales up.

(b) AUTOSCALE-predicted optimal domain weights as
training data scales up.

Figure 11: AUTOSCALE-predicted domain weights for training Encoder-only LMs (BERT). Optimal
data quantity for each domain grows in exponential-style functions with training data scale (left)
where data sources with diverse samples (e.g., WebText) are upweighted relative to domains with
standard format (e.g., ArXiv).
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