
A Details on the averaged correlation matrices

A.1 Method details

Our goal is to measure how predictive a metric A is of another metric B. We measure the predic-
tiveness based on Spearman’s rank correlation coefficient between all combinations of metrics on
ID, OOD, corrupted and held-out OOD data. One issue with this measure however is that, while our
empirical study covers multiple tasks with multiple (ID, OOD) dataset pairs, a correlation coefficient
can only be computed for a specific dataset pair: pooling the data together from multiple dataset
pairs (experiments) would lead to skewed results. For instance, for one dataset pair the ID and
OOD datasets could be intrinsically hard, leading to low metric values, and for another dataset
pair, the datasets could be intrinsically easy, leading to high values. Pooling the data of those two
dataset pairs would lead to the impression of a clear (linear) trend which would not be necessarily
present when considering the dataset pairs individually. Hence, trends should only be considered
at the individual dataset level. Other studies circumvent this problem by reporting the correlation
coefficients for each dataset pair individually (e.g., see [35, Table 1]), but since we have a much larger
study with 172 dataset pairs, such a table would not be informative. Therefore, we report the averaged
correlation coefficient of the 172 dataset pairs. We note that this score cannot be interpreted as a
statistical correlation (due to the averaging) but still serves as a meaningful measure of predictiveness.
For example, if we think in terms of Pearson (rather than Spearman) correlations, then an average
(Pearson) correlation of 1 would mean that, on every dataset pair, we observe a linear dependency,
but the parameters of this dependency (slope and intercept) could be different for every dataset pair.
In particular, it would not mean that the pooled data lies on a single straight line.

The averaged correlation matrix is displayed in Fig. S1 and computed as follows. For a given (ID,
OOD) dataset pair, a metric A, and a metric B, we first compute the Spearman’s rank correlation
coefficient [121] of the metrics on that dataset pair. To this end, we pool the data of all model
architectures, augmentation and fine-tuning methods and compute the correlation of the corresponding
metric scores. Second, to obtain an aggregated predictiveness score over all dataset pairs, we computed
the weighted average of the correlation coefficients for all dataset pairs in each task. Since some
tasks entail more dataset pairs then others, we compute a weighted average, such that each task has
the same contribution to the final average predictiveness score. In summary, the averaged correlation
coefficient between metric A and metric B is

score(A,B) =
X

i2I

wicorr (A|IDi;B|OODi) ,

where A|IDi are the metric scores of metric A evaluated on the dataset IDi and B|OODi are the
metric scores of metric B evaluated on the dataset OODi. I is the index set of all dataset pairs. The
weight wi = 1/|Ti| normalizes by the number of dataset pairs in task Ti. See Appendix E on how
the tasks are defined. In addition to the (ID, OOD) dataset pairs, we also compute the correlation of
metrics on all other combinations of ID, OOD, and held-out OOD domains.

Remark: Pearson correlation coefficients. Instead of computing rank correlation coefficients
between metrics, we also tried using Pearson (linear) correlation coefficients. Qualitatively, this led
to similar results as using rank correlations (Fig. S1). The order of the predictiveness of metrics
stayed the same (e.g., ID classification error still had the highest correlation coefficient with OOD
classification error). However, since some trends are not linear (see Appendix D) we found that rank
correlation coefficients lead to more robust results.

Adjusted predictiveness scores. As briefly described in Section 4.3, we assess the usefulness of a
metric to explain OOD accuracy by the additional information they provide on top of what is already
explained by ID accuracy. The adjustment is similarly done as in [110]. For each (ID, OOD) dataset
pair, we first compute a linear regression between ID and OOD classification error. The residuals
of that regression is the variance in the data that is not explained by ID classification error. Second,
we compute the correlation coefficient of the metric of interest with the residuals, i.e., we compute
how informative the metric is of the variance that is not already explained by ID accuracy. Again, we
repeat this procedure for all (ID, OOD) dataset pairs and compute the weighted average as explained
in Section 4.3. The adjusted predictiveness scores are displayed in Fig. 3 (green bars).

The adjusted predictiveness scores give a better sense of the usefulness of the metrics. For instance,
inspecting Fig. S1, the averaged correlation between ID corrupted classification error and OOD

19

classification error is 0.44, which is only 0.05 points lower than the score for ID classification error.
Only looking at this number, we would be tempted to conclude that the ID corrupted classification
error is actually a good predictor of robustness and, hence, might be worth the additional compute
burden. However, if we compute the adjusted predictiveness score we obtain a score of 0.01, see
Fig. 3 (left, green bar). Hence, ID corrupted classification error provides no information that is
not already covered by the standard ID classification error. This is also reflected by the fact that
ID classification error and ID corrupted classification error are highly correlated (with an averaged
correlation coefficient of 0.68, see Fig. S1).

A.2 The full correlation matrix

We display the full averaged correlation matrix in Fig. S1. It shows the pair-wise averaged correlation
coefficient between all combination of metrics and is computed as described in Appendix A.1. This
matrix is the main source for our evaluations. For instance, Fig. 3 highlights one part of this matrix,
focusing on the correlation of metrics with OOD classification error. The relevant row in the matrix
is marked by a green rectangle.

A.3 Analyzing each task separately

In Section 4.2 in the main text we argue that out-of-distribution generalization has many facets. Some
patterns observed in prior work actually only hold on a subsets of the tasks included in our study. To
investigate the stability of observations across different tasks we compute the averaged correlation
matrices for each task separately. For each task, we only include the datasets that belong to that tasks
(see Appendix E) and show the matrices in Figs. S2 and S3.

Some observations are stable across all tasks (e.g., classification error is always the strongest predictors
on ID and held-out data, respectively). For other metrics we observe large variability across tasks.
For instance for some tasks, demographic disparity has a strong positive link to OOD accuracy, for
others it is reversed (i.e., here lower demographic disparity leads to a higher classification error).
This also holds for calibration error. We marked the according cells in the task-specific correlation
matrices with a green square. We also observe mixed positive and negative links for multi-domain
calibration (held-out OOD ECE, marked by yellow squares in the plots). This is in contrast to the
claims by [64] that multi-domain calibration is generally a good indicator for OOD robustness since
it actually only holds on a subset of the tasks.

A.4 Analyzing each shift type separately

In this section we investigate how results change for different shift types. We define the shift type
based on ID dataset regime and the OOD dataset regime as follows. First, we label each dataset by
one of the domain types artificial and real, see Table S1. For instances, the label artificial refers to
datasets of images composed from sketches, clipart or simulated environments. Second, for an (ID,
OOD) dataset pair the shift is derived by the ID (source) domain type and the OOD (target) domain
type. E.g., the dataset pair: (OfficeHome-ClipArt, OfficeHome-RealWorld) is labeled by the shift
type artificial ! real.

Similarly, as in Appendix A.3, we compute the averaged correlation matrix for the subset of dataset
pairs corresponding to each shift type separately. The matrices are displayed in the figures Fig. S4.
For instance, for the shift type artificial ! real, corruption metrics are more predictive of OOD
accuracy then for the reversed shift type real ! artificial, see the highlighted green cells in the plots.

20

Figure S1: Rank correlation matrix averaged over all tasks. The matrix shows the predictiveness of a metric
(either evaluated on ID data, ID corrupted data, OOD, held-out OOD data or ImageNet) of another metric.
Positive values indicate a positive link between the metrics, i.e. better results for one metric tend to lead to better
results for the other metric. Negative values indicate a negative link, i.e. better results for one metric tend to
lead to worse results for the other metric. All averaged correlation coefficients are multiplied by a factor of 100
for better readability. As an example, the highlighted green rectangle shows how well metrics predict OOD
classification error, this information is shown separately as a bar plot in Fig. 3 (red bars) in the main text.

21

Figure S2: Averaged correlation matrices for each task separately. For each task we only consider the corre-
sponding datasets and compute the correlation coefficients separately. We highlight differences between tasks
for ID demographic disparity, ID calibration with green squares and differences for held-out ECE with yellow
squares.

22

Figure S3: Averaged correlation matrices for each task separately (continued). We highlight differences between
tasks for ID demographic disparity, ID calibration with green squares and differences for held-out ECE with
yellow squares. Note that for the tasks Camelyon17, FMOW, iWildcam and RXRX1, no held-out OOD data is
available (i.e., only one OOD split is provided).

23

Figure S4: Averaged correlation matrices for each shift type separately. The shift types are defined based on the
source and target domain, see Table S1. Using green squares we highlight differences of the corruption metrics
predicting OOD accuracy for the shift types real ! artificial and artificial ! real.

24

B Factor analysis: details and background

This section gives a short introduction to factor analysis, provides details about the data and the
pre-processing used for the factor analysis of Section 4.1 and presents the data’s scree plot in Fig. S5.

Background. Factor analysis is a well-established tool from statistics used to analyze tabular data,
such as data arising from a poll, where the columns would be the questions and the rows the answers
of each individual. It aims at finding a minimal amount of latent variables called factors that suffice
to explain the data and reflect the main dependencies between columns. In particular, given k factors
f1, f2, . . . , fk, each column ci gets approximated as ci = �i1f1+ · · ·�ikfk where the �ijs are called
factor loadings. Because columns get standardized prior to the analysis and factors are scaled to
have unit norm, the loadings lie between �1 and 1. While the factors are a priori abstract variables
with no pre-defined interpretation, one of the main challenges and goals of factor analysis is to
understand what variability they capture by analyzing their loadings. Note that the first k factors span
the subspace defined by the first k eigenvectors of the data matrix. However, the factors themselves
are only defined up to a rotation, since rotating the factors and the loadings accordingly, the cis
remain unchanged. Some rotations lead to factors whose loadings are easier to interpret than others.
Therefore, the typical workflow of a factor analysis is as follows. (1) Decompose the data into
eigenvectors and use the eigenvalues to choose the number k of factors to keep. The simplest rule of
thumb is to keep all eigenvectors with eigenvalues � 1. (2) Try out different rotations of the k first
eigenvectors, to make the loadings as easy as possible to explain or interpret. To do so, one typically
just tests several standard rotation methods such as the varimax, quartimax, or equamax methods
(which typically try to promote some form of sparse loadings). (3) Interpret the obtained factors and
conclude on the relations between the columns that they show.

Data preprocessing. We organize our data in a table with rows being fine-tuned networks and
columns the metrics. Specifically, each network is defined by its model architecture, the adaptation
dataset used for fine-tuning and the training parameters (augmentation strategy, learning rate, num-
ber of training epochs, and fine-tuning method), leading in theory to a total of 7776 networks (9
architectures ⇥ 36 datasets ⇥ 3 · 2 · 2 · 2 parameters). Note that we considered only those networks
finetuned on full datasets, ignoring the few-shot data. For each network, we considered a total
of 16 metrics: the 6 base metrics (cf. Section 2) computed respectively on the held-out test data
from the adaptation domain (the in-distribution metrics), on its corrupted variant (except adversarial
accuracy, which we did not compute on corrupted data), and, for each metric, its average over all
out-of-distribution datasets from the adaptation dataset’s task. Concerning the log-likelihood metric,
most values lied between 0 and 5, but some outliers could take values up to 1e10. We therefore
mapped all log-likelihood values through the following function: f(x) = 10(1�exp(�x/10)). Doing
so ensures that all typical log-likelihood values remain nearly unchanged up to a rescaling factor
(f is almost linear in 0), while bigger values saturate at 10. We used python’s factor_analyzer
package for the analysis.

Factor analysis and factor loading plot. The scree plot in Fig. S5 shows the eigenvalues of the
data in decreasing order. We decided to retain 4 factors, since only 4 eigenvalues were � 1. We then
used the equamax rotation method, but the results do not change significantly with other standard
methods. The factor loadings for each metric are shown in Fig. 1 in the main text and discussed there
(see Section 4.1).

25

Figure S5: Scree plot: Eigenvalues of the standardized data from the factor analysis, sorted by decreasing order
of magnitude. As explained in Section 4.1, we decided to take the first 4 factors, since only the first 4 eigenvalues
are above the usual threshold value of 1.

C Detailed analysis on the effect of the fine-tuning and augmentation
strategies

In the following we provide additional studies on the effect of the augmentation and fine-tuning
method on the ID and OOD performance. The main results are summarized in the main text in
Section 5.

C.1 The effect of the fine-tuning strategy

Appendix C.1 shows the average ID and OOD accuracy for the two considered fine-tuning strategies:
fine-tuning the full architecture and the linear probe classifier (fine-tuning the head only). To make
the difference of both strategies more clear we show the normalized accuracy gap of both fine-tuning
approaches in Appendix C.1. The gap is computed by

gap =
accfull � acchead only

accfull
, (S1)

where the accuracy terms are averaged over all datasets within a task. We find that fine-tuning the full
architecture is usually superior when using the full fine-tuning dataset. Interestingly, when having
access to less data (especially in the few-shot-10 setting), we observe that the linear probe classifier
can be better, especially when evaluating on OOD data. This may confirm the idea that changing the
last layer only leads to a higher inductive bias by the pre-training data. This is particularly beneficial
in low-data regimes when generalizing to OOD data. This insights are in line with previous work
(e.g., [122], Fig. 4).

C.2 The effect of the augmentation strategy

In addition to Fig. 5 in the main text, we report the average ID and OOD accuracy for each aug-
mentation method for each tasks separately. We do not observe a significant difference between the
tasks.

26

Figure S6: Each bar plot shows the average ID (left) and OOD accuracy (right) obtained by fine-tuning the
full architecture or the head only. We compare the results in the setting of training on the full dataset and the
few-shot settings (columns). In all plots, the black bars (which are very small and hence barely visible) indicate
the standard error.

Figure S7: Each bar plot shows the normalized accuracy gap between fine-tuning the full architecture or the
head only. We report the average ID (left) and OOD (right) accuracy in setting of training on the full dataset and
the few-shot settings (columns). In the low data regime fine-tuning the head only can be beneficial, especially
for OOD accuracy.

27

Figure S8: Each bar plot shows the average ID (left) and OOD accuracy (right) obtained by using the different
augmentation strategies. We compare the results in the setting of training on the full dataset and the few-shot
settings (columns). In all plots, the black bars (which are very small and hence barely visible) indicate the
standard error.

28

D Detailed scatter plots for the relationship of ID vs. OOD accuracy

Figure 2 in the main text shows four prototypical patterns of ID versus OOD accuracy plots, taken
from four exemplary dataset pairs out of the 172 dataset pairs considered in this study. This section
now shows all 172 ID-vs-OOD-accuracy scatter plots in Fig. S9, grouped by task. Each column cor-
responds to one adaptation (i.e., fine-tuning) dataset. Interestingly, the exemplary scatter plot patterns
described in Fig. 2 (functional relationship, vertical line/underspecification, no generalization/ hori-
zontal line, and random generalization/point-cloud) appear to be essentially task related. For example,
in OfficeHome and DomainNet, almost all (ID, OOD) dataset pairs exhibit a clear functional relation-
ship. In Terra Incognita, generalization never works (horizontal line) or is near-random (unstructured
point cloud). The SVIRO dataset pairs almost systematically fall into the underspecification/vertical
line category, and PACS and VLCS exhibit either a relatively clear functional relationships or an
underspecification pattern (vertical line).

For better readability, the plots do not include all degrees of freedom of our study. Specifically, we
plot only those networks that were trained on the full adaptation dataset (i.e., we do not include
the few-shot settings) and focus on the fine-tuning strategy where all weights of the network get
fine-tuned (in contrast to fine-tuning the head only).

29

(a) PACS: We observe either a clear functional relation-
ships or an “underspecified” regime (vertical line).

(b) VLCS: We observe similar patterns as for PACS.

(c) Office Home: For all dataset pairs we observe clear
functional relationships.

(d) Terra Incognita: Either no transfer (horizontal line)
or random associations (scattered point cloud).

Figure S9: ID versus OOD accuracy for various tasks and dataset pairs. Every point represents one fine-tuned
network. The domains on the x-axis are the ones used for fine-tuning and measuring the ID test accuracy. The
datasets on the y-axis are the OOD datasets. We plot only networks that were trained on the full dataset (no
few-shot datasets) and with all their weights (no head-only fine-tuning). All points in a same column with
the same x-axis value represent the same fine-tuned network. Interestingly, the different patterns described in
Fig. 2 (clear functional relationship, underspecification / vertical line, no generalization / horizontal line, random
generalization / point-cloud) appear to be essentially task dependent. The reader may want to focus on the
regions with higher point densities, since the networks outside those denser regions typically correspond to a
suboptimal combination of hyperparameters that did not allow to reach convergence.

30

(e) WILDS Camelyon17, FMoW, iWildCam, RXRX1: We observe underspecification (Camelyon17) or
clear functional relationships (others).

(f) Domain Net: For all dataset pairs we observe clear functional relationships.

Figure S9: (Continued) ID vs OOD accuracy for various tasks and dataset pairs. For a longer caption, see
previous page.

31

(g) SVIRO: almost always underspecified regime (vertical line).

Figure S9: (Continued) ID vs OOD accuracy for various tasks and dataset pairs. For a longer caption, see
previous page.

32

E Details on the tasks and datasets

We use 36 datasets collected from different benchmarks: DomainNet [83], PACS [84], SVIRO [85],
Terra Incognita [13] as well as the Caltech101 [86], VLCS [87], Sun09 [88], VOC2007 [89] and the
Wilds datasets [90]. We group the domains (datasets) into ten different tasks, see Table S1 list. For
all tasks besides the wilds tasks, we consider all possible (ID, OOD) dataset pairs, i.e., we fine-tune
on one dataset in the task (ID dataset) and evaluate the model on all the others (which are considered
to be the OOD datasets). For the Wilds datasets we use the predefined ID and OOD splits.

Table S1: Overview over tasks and their associated domains (datasets), along with a domain type tag.

Task Domain Domain type
PACS art_painting Artificial

cartoon Artificial
photo Real
sketch Artificial

VLCS Caltech101 Real
LabelMe Real
SUN09 Real
VOC2007 Real

domain_net clipart Artificial
infograph Artificial
painting Artificial
quickdraw Artificial
real Real
sketch Artificial

office_home Art Artificial
Clipart Artificial
Product Real
Real_World Real

sviro aclass Artificial
escape Artificial
hilux Artificial
i3 Artificial
lexus Artificial
tesla Artificial
tiguan Artificial
tucson Artificial
x5 Artificial
zoe Artificial

terra_incognita location_100 Real
location_38 Real
location_43 Real
location_46 Real

wilds-camelyon17 camelyon17-id Real
camelyon17-ood Real

wilds-fmow fmow-id Real
fmow-ood Real

wilds-iwildcam iwildcam-id Real
iwildcam-ood Real

wilds-rxrx1 rxrx1-id Real
rxrx1-ood Real

33

Figure S10: TOP: Mean accuracy on ID data and OOD data for each task (averaged over all datasets in the task,
architectures, augmentation and fine-tuning strategies, c.f. Table S1). BOTTOM: Normalized mean ID vs. OOD
accuracy gap for each task, see Eq. (S2). This indicates the average difficulty of the domain generalization. In
all plots, the black bars indicate the standard deviation (not the standard error as in the other plots) across the
datasets within the task if the tasks contains multiple dataset pairs.

E.1 Comparison of the task difficulty

In the following we discuss the difficulty of the different tasks. In our context, the difficulty of a
task might be defined by how hard it is to transfer from the ID dataset to the OOD dataset. In other
words, a task is more difficult if the distribution of the OOD data is more distant from the distribution
of the ID data. It is not obvious how to measure this distance and multiple approaches have been
proposed [e.g., 12, 123]. Here we choose a more direct measure and compare the ID and OOD
performance for each task averaged over all dataset pairs in the task, and all models and training
hyperparameters. Fig. S10 shows the average accuracy obtained on all datasets within each task. In
the top plot we compare the average ID accuracy and OOD accuracy. In the bottom plot we display
the normalized ID vs. OOD accuracy gap computed by

gap =
accID � accOOD

accID
, (S2)

where the accuracy terms are averaged over all datasets within a task. The average ID vs. OOD
accuracy gap can serve as a proxy measure of the difficulty of a task. It indicates how hard the OOD
prediction task is in average for a model that was trained on the ID data.

Next we discuss how the predictiveness of the different metrics depend on the task difficulty. Fig. S11
shows the correlation coefficients (between the ID metrics and OOD prediction error) as a function
of task difficulty. We observe that ID error is the best predictor of the ID error for most difficulty
levels. Besides this observation we find that the results are noisy and no clear pattern can be observed.
Surprisingly, the correlation coefficients seem to be rather independent of the task difficulty.

34

Figure S11: Each line shows the correlation coefficients between an ID metric and the OOD prediction error as
a function of task difficulty. The task difficulty was computed by the normalized ID vs. OOD gap as shown
in Fig. S10 and was linearly mapped to values between 0 and 1. No clear pattern is visible and the correlation
coefficients seem to be rather independent of the task difficulty.

F Detailed comparison of model performances

We compare the in-distribution (ID) and out-of-distribution (OOD) performance for each model on
all tasks. Here we follow the scenario where the hyperparameters are selected on an held-out ID
validation split (this mimics the usual hyperparameter selection approach used in practice). We then
compute the ID performance on the ID test set and the mean OOD performance on all other (OOD)
domains of a task. Finally, we report the mean ID and OOD accuracy within each task and the gap
between ID and OOD performance in Table S2. The numbers in gray represent the standard error of
these means. This table represents a more details view on the performance of each individual model
compared to Table 2 in the main text, where the performance is averaged over tasks.

Table S2: Average ID and OOD accuracy of each model on each task over all domains in the task.

Model Domain ID Error OOD Error OOD-ID Gap

Deit PACS 0.033 ± 0.003 0.333 ± 0.022 0.299 ± 0.023
VLCS 0.118 ± 0.010 0.328 ± 0.017 0.210 ± 0.022
domain_net 0.316 ± 0.009 0.703 ± 0.014 0.387 ± 0.017
office_home 0.131 ± 0.008 0.341 ± 0.017 0.209 ± 0.020
sviro 0.014 ± 0.001 0.219 ± 0.005 0.205 ± 0.005
terra_incognita 0.127 ± 0.011 0.661 ± 0.013 0.533 ± 0.020
wilds-camelyon17 0.022 ± 0.007 0.156 ± 0.036 0.134 ± 0.040
wilds-fmow 0.468 ± 0.036 0.543 ± 0.030 0.074 ± 0.007
wilds-iwildcam 0.275 ± 0.007 0.289 ± 0.009 0.014 ± 0.006
wilds-rxrx1 0.925 ± 0.005 0.939 ± 0.004 0.014 ± 0.002

DenseNet169 PACS 0.061 ± 0.006 0.523 ± 0.031 0.463 ± 0.031
VLCS 0.137 ± 0.011 0.365 ± 0.018 0.228 ± 0.024
domain_net 0.387 ± 0.011 0.788 ± 0.012 0.401 ± 0.015
office_home 0.209 ± 0.010 0.496 ± 0.017 0.287 ± 0.019
sviro 0.047 ± 0.003 0.274 ± 0.005 0.227 ± 0.006
terra_incognita 0.186 ± 0.015 0.725 ± 0.015 0.539 ± 0.019
wilds-camelyon17 0.036 ± 0.012 0.169 ± 0.038 0.133 ± 0.047
wilds-fmow 0.526 ± 0.046 0.593 ± 0.037 0.067 ± 0.009
wilds-iwildcam 0.319 ± 0.010 0.364 ± 0.012 0.046 ± 0.021
wilds-rxrx1 0.911 ± 0.039 0.937 ± 0.027 0.026 ± 0.014

EfficientNet2 PACS 0.053 ± 0.005 0.469 ± 0.032 0.416 ± 0.032
VLCS 0.140 ± 0.012 0.374 ± 0.018 0.234 ± 0.023
domain_net 0.369 ± 0.012 0.734 ± 0.014 0.365 ± 0.017
office_home 0.172 ± 0.009 0.403 ± 0.015 0.230 ± 0.017
sviro 0.031 ± 0.002 0.249 ± 0.005 0.218 ± 0.005
terra_incognita 0.187 ± 0.016 0.703 ± 0.013 0.516 ± 0.017
wilds-camelyon17 0.039 ± 0.015 0.194 ± 0.039 0.155 ± 0.049
wilds-fmow 0.530 ± 0.053 0.588 ± 0.047 0.059 ± 0.006
wilds-iwildcam 0.325 ± 0.022 0.383 ± 0.017 0.058 ± 0.009
wilds-rxrx1 0.901 ± 0.032 0.927 ± 0.022 0.025 ± 0.013

GMLP PACS 0.070 ± 0.007 0.434 ± 0.026 0.363 ± 0.027
VLCS 0.136 ± 0.011 0.361 ± 0.016 0.225 ± 0.022

Continued on next page

35

Model Domain ID Error OOD Error OOD-ID Gap

domain_net 0.404 ± 0.012 0.753 ± 0.013 0.348 ± 0.017
office_home 0.195 ± 0.009 0.409 ± 0.016 0.214 ± 0.020
sviro 0.034 ± 0.002 0.260 ± 0.006 0.226 ± 0.006
terra_incognita 0.180 ± 0.016 0.708 ± 0.010 0.528 ± 0.021
wilds-camelyon17 0.041 ± 0.016 0.214 ± 0.032 0.173 ± 0.042
wilds-fmow 0.556 ± 0.056 0.624 ± 0.046 0.069 ± 0.011
wilds-iwildcam 0.338 ± 0.009 0.329 ± 0.006 -0.008 ± 0.011
wilds-rxrx1 0.972 ± 0.008 0.977 ± 0.006 0.005 ± 0.002

Mixer PACS 0.091 ± 0.009 0.469 ± 0.028 0.378 ± 0.029
VLCS 0.150 ± 0.011 0.386 ± 0.017 0.236 ± 0.022
domain_net 0.433 ± 0.014 0.785 ± 0.012 0.352 ± 0.016
office_home 0.215 ± 0.011 0.472 ± 0.016 0.257 ± 0.020
sviro 0.023 ± 0.001 0.251 ± 0.005 0.228 ± 0.005
terra_incognita 0.172 ± 0.015 0.737 ± 0.013 0.565 ± 0.018
wilds-camelyon17 0.025 ± 0.008 0.154 ± 0.029 0.129 ± 0.036
wilds-fmow 0.534 ± 0.042 0.608 ± 0.038 0.074 ± 0.005
wilds-iwildcam 0.333 ± 0.005 0.374 ± 0.009 0.041 ± 0.012
wilds-rxrx1 0.983 ± 0.006 0.985 ± 0.005 0.002 ± 0.001

ResMLP PACS 0.066 ± 0.006 0.465 ± 0.026 0.398 ± 0.026
VLCS 0.145 ± 0.011 0.395 ± 0.017 0.250 ± 0.022
domain_net 0.398 ± 0.011 0.764 ± 0.012 0.367 ± 0.016
office_home 0.203 ± 0.010 0.453 ± 0.018 0.250 ± 0.021
sviro 0.027 ± 0.001 0.245 ± 0.005 0.218 ± 0.005
terra_incognita 0.164 ± 0.014 0.694 ± 0.013 0.530 ± 0.020
wilds-camelyon17 0.032 ± 0.012 0.157 ± 0.015 0.125 ± 0.025
wilds-fmow 0.544 ± 0.047 0.613 ± 0.039 0.069 ± 0.009
wilds-iwildcam 0.317 ± 0.006 0.343 ± 0.009 0.026 ± 0.008
wilds-rxrx1 0.949 ± 0.010 0.959 ± 0.005 0.010 ± 0.005

ResNet50 PACS 0.054 ± 0.005 0.499 ± 0.032 0.445 ± 0.033
VLCS 0.137 ± 0.011 0.325 ± 0.017 0.189 ± 0.022
domain_net 0.359 ± 0.011 0.749 ± 0.014 0.390 ± 0.016
office_home 0.180 ± 0.010 0.431 ± 0.017 0.251 ± 0.020
sviro 0.025 ± 0.001 0.244 ± 0.005 0.220 ± 0.006
terra_incognita 0.176 ± 0.014 0.698 ± 0.015 0.521 ± 0.019
wilds-camelyon17 0.036 ± 0.013 0.195 ± 0.045 0.159 ± 0.052
wilds-fmow 0.512 ± 0.045 0.579 ± 0.036 0.067 ± 0.010
wilds-iwildcam 0.313 ± 0.015 0.328 ± 0.007 0.015 ± 0.010
wilds-rxrx1 0.894 ± 0.032 0.925 ± 0.021 0.030 ± 0.012

Swin PACS 0.048 ± 0.006 0.393 ± 0.027 0.345 ± 0.027
VLCS 0.121 ± 0.010 0.350 ± 0.017 0.230 ± 0.021
domain_net 0.340 ± 0.010 0.718 ± 0.014 0.378 ± 0.017
office_home 0.152 ± 0.009 0.351 ± 0.018 0.199 ± 0.022
sviro 0.019 ± 0.001 0.218 ± 0.005 0.199 ± 0.005
terra_incognita 0.144 ± 0.012 0.643 ± 0.013 0.498 ± 0.019
wilds-camelyon17 0.026 ± 0.010 0.137 ± 0.020 0.111 ± 0.028
wilds-fmow 0.481 ± 0.053 0.548 ± 0.045 0.067 ± 0.008
wilds-iwildcam 0.290 ± 0.004 0.282 ± 0.004 -0.007 ± 0.004
wilds-rxrx1 0.875 ± 0.042 0.905 ± 0.027 0.029 ± 0.016

ViT-B PACS 0.063 ± 0.008 0.415 ± 0.027 0.352 ± 0.027
VLCS 0.137 ± 0.011 0.341 ± 0.017 0.205 ± 0.020
domain_net 0.378 ± 0.013 0.736 ± 0.014 0.357 ± 0.017
office_home 0.163 ± 0.011 0.367 ± 0.019 0.204 ± 0.023
sviro 0.023 ± 0.001 0.223 ± 0.006 0.200 ± 0.006
terra_incognita 0.155 ± 0.012 0.697 ± 0.011 0.542 ± 0.018
wilds-camelyon17 0.024 ± 0.007 0.148 ± 0.022 0.124 ± 0.029
wilds-fmow 0.495 ± 0.038 0.565 ± 0.033 0.070 ± 0.006
wilds-iwildcam 0.303 ± 0.006 0.334 ± 0.021 0.031 ± 0.017
wilds-rxrx1 0.951 ± 0.013 0.966 ± 0.008 0.015 ± 0.005

G Details on the metrics

We choose a representative set of six metrics used in the robustness literature and describe the details
below.

Some quantities are standard metrics, such as classification error (top-1 classification error) and
negative log-likelihood (NLL). To account for outliers we capped the extreme values of the NLL in
the factor analysis as described in B.

We also evaluate the expected calibration error (ECE) [104]. The ECE is zero for perfectly calibrated
models, i.e., if the predicted probabilities by the model match their true probabilities. We calculate
the ECE using 10 bins.

36

Additionally, two variants of adversarial classification error are evaluated by perturbing each test set
image using the APGD (Automated Projected Gradient Descent) adversarial attack [124] with an
`2-attack of size 0.001 and of size 0.02. If not noted otherwise, we only report the mean classification
error resulting from both attack sizes.

Lastly we report Demographic disparity, which can be interpreted as a measure of invariance. We
first split the data into two environments using the method of [77], which maximizes the invariant
risk minimization penalty [76]. As the transfer data comes from a single distribution, we would not
expect meaningful partitions of the data with systematic differences in the predictions, which we
measure with the metric introduced in [103]. Note that, while this metric was introduced to evaluate
fairness, it should not be interpreted as such in this paper. The discovered groups may not have any
semantic meaning nor fairness implication, so it should not be used to justify that a particular model
is fairer than another.

H Details on the degrees of freedom and hyperparameter selection

In our study, we evaluate each model listed in Table S4 for all combinations of the hyperparameters
listed in Table S3. In order to reduce the overall number of models to train, we first derived good
candidates for the learning rate and number of epochs hyperparameters by a larger sweep on a
subset of the datasets. For all models we run a large sweep on the the datasets VLCS-Caltech101,
OfficeHome-RealWorld and DomainNet-Infograph on the the extended grid of hyperparameters:
learning rate (5e�5, 5e�4, 5e�3, 5e�2) and the number of training epochs (3, 10, 100, 1000). From
this we derived the 2 ⇥ 2 grid of the parameters listed in Table S3. We chose the reduced grid of
hyperparameter that lead to the best performance for all models (we made sure that for each model,
the best performance is attained by at least one of the hyperparameter combinations in the selected
grid). A similar hyperparameter pre-selection strategy was used in [105].

Table S3: In our study, each model is trained for all combinations of hyperparameters listed in this table.

Training set size Learning Rate Train Epochs Fine-tune Augmentations
full

few-shot-10
few-shot-100

5e�4
5e�5

10
100

Only head
Whole model

No augmentation
RandAugment

AugMix

Table S4: The list of models used in our study. The pre-trained weights were taken from the PyTorch Image
Models package [100] using the displayed model names.

Model Timm model name
Deit deit_base_distilled_patch16_224
DenseNet densenet169
EfficientNetV2 efficientnetv2_rw_s
gMLP gmlp_s16_224
MLP-Mixer mixer_b16_224
ResMLP resmlp_24_224
ResNet50d resnet50d
Swin Transformer swin_small_patch4_window7_224
Vision Transformer vit_base_patch16_224

I Societal impact, limitations and hardware overview

I.1 Limitations

Despite best efforts, a large scale experiment like this can never be fully extensive in terms of
hyperparameter selection, the choice of model architectures, the evaluated metrics and the overall
statistics. We address the limitations by cautious interpretation of the experimental results and the
conclusions, see Sections 4 and 5 and particularly the take-away messages therein.

37

I.2 Societal impact

This work analyzes how in-distribution metrics relate to out-of-distribution performance. Such
questions are often highly relevant when deploying machine learning algorithms to real world systems,
since those algorithms get typically trained in specific, possibly idealized environments, which
differ from the application environment. Understanding the in- to out-of-distribution generalization
properties can therefore easily become relevant for the customer’s satisfaction and security. The
challenge for improved in- and out-of-distribution generalization is also closely linked to algorithmic
fairness [106], which has become a highly relevant societal topic.

I.3 Computer overview

All 31k experiments were conducted on a cloud hosted cluster using Nvidia T4 GPUs. The aggregated
compute time is 17 (GPU-)years.

38

	Introduction
	Experimental setup
	Additional related work
	A broad look at out-of-distribution generalization
	The main latent factors that explain the empirical results
	The many facets of out-of-distribution generalization
	What are good proxies to measuring robustness to distribution shifts?
	Overall classification error is the best general predictor of OOD robustness
	What can we learn from other metrics beyond accuracy?

	On the transfer of metrics from ID to OOD data

	The effect of the training strategy on out-of-distribution robustness
	The effect of augmentations, fine-tuning strategy and few-shot learning
	The effect of the model architecture

	Conclusions
	Details on the averaged correlation matrices
	Method details
	The full correlation matrix
	Analyzing each task separately
	Analyzing each shift type separately

	Factor analysis: details and background
	Detailed analysis on the effect of the fine-tuning and augmentation strategies
	The effect of the fine-tuning strategy
	The effect of the augmentation strategy

	Detailed scatter plots for the relationship of ID vs. OOD accuracy
	Details on the tasks and datasets
	Comparison of the task difficulty

	Detailed comparison of model performances
	Details on the metrics
	Details on the degrees of freedom and hyperparameter selection
	Societal impact, limitations and hardware overview
	Limitations
	Societal impact
	Computer overview

