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ABSTRACT
Due to the computational complexity of self-attention (SA), preva-
lent techniques for image deblurring often resort to either adopting
localized SA or employing coarse-grained global SA methods, both
of which exhibit drawbacks such as compromising global modeling
or lacking fine-grained correlation. In order to address this issue by
effectively modeling long-range dependencies without sacrificing
fine-grained details, we introduce a novel approach termed Local
Frequency Transformer (LoFormer). Within each unit of LoFormer,
we incorporate a Local Channel-wise SA in the frequency domain
(Freq-LC) to simultaneously capture cross-covariance within low-
and high-frequency local windows. These operations offer the ad-
vantage of (1) ensuring equitable learning opportunities for both
coarse-grained structures and fine-grained details, and (2) exploring
a broader range of representational properties compared to coarse-
grained global SA methods. Additionally, we introduce an MLP
Gating mechanism complementary to Freq-LC, which serves to
filter out irrelevant features while enhancing global learning capa-
bilities. Our experiments demonstrate that LoFormer significantly
improves performance in the image deblurring task, achieving a
PSNR of 34.09 dB on the GoPro dataset with 126G FLOPs. Code
will be released.

CCS CONCEPTS
• Computing methodologies → Reconstruction.

KEYWORDS
self-attention, frequency domain, image deblurring

1 INTRODUCTION
The field of image deblurring has made significant advances riding
on the wave of global feature learning methods. Some MLP-based
methods have been proposed, e.g., MAXIM [32] decomposes the
global MLP operation into window-MLP and grid-MLP in a sparse
manner (see Fig. 1(a)). In addition to MLP-based methods, recent
research explorations [31, 34, 40] have shown the ability of Trans-
formers in image deblurring task. Self-Attention (SA) [33], the key
to capturing long-range dependency, has quadratic computational
complexity w.r.t. the number of tokens, which is infeasible to be
applied to high-resolution images in image deblurring. To make
computation feasible, existing methods try various ways to reduce
the number of tokens for SA in spatial domain, which can be cat-
egorized into three groups. (1) Local Spatial-wise SA (we use the
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Figure 1: Different architectures of global feature learning. (a)
MLP method in MAXIM [32]; (b) Window Self-Attention in
Uformer [34]; (c) Strip Self-Attention in Stripformer [31]; (d)
Global Channel Self-Attention in Restormer [40]; (e) Local Fre-
quency Self-Attention in LoFormer. The vision tokens in spatial
domain are converted to the DCT coefficients (frequency tokens)
of different DCT basis images.
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Figure 2: PSNR vs. FLOPs on the GoPro and HIDE datasets.
Our method performs much better than other state-of-the-arts,
especially Transformer based methods highlighted in orange.

abbreviation Spa-LS to represent Spatial domain-Local Spatial-wise
SA). Uformer [34] proposes a local-enhanced window Transformer
block to capture local context (see Fig. 1 (b)), which hurts long-range
modeling. (2) Region-specific global SA. Stripformer [31] explores
horizontal and vertical intra-strip and inter-strip SA (Spa-SS repre-
sents Spatial domain-Strip Spatial-wise SA) (see Fig. 1 (c)), which
relies on a strong assumption that image blur is usually regionally
directional. (3) Coarse-grained global SA. Restormer [40] captures
long-range interactions via Global Channel-wise SA (Spa-GC rep-
resents Spatial domain-Global Channel-wise SA) (see Fig. 1 (d)).
Though Spa-GC can be learned, it inevitably focuses more on extract-
ing low-frequency components of the image due to two reasons: (i)
the energy of the image mainly lies in low-frequency, and (ii) when

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 3: The visualization of various generated kernels and their impact on the sharpness of images within both the spatial and
frequency domains. Specifically, the first row of the visualization pertains to the degraded image, while the second row illustrates the
generated kernel. Furthermore, the odd columns represent the spatial domain, while the even columns depict the frequency domain.

learned together, the high-frequency part is usually more difficult to
be processed than the lower-frequency part in practice [36]. Low-
frequency part exhibits the coarse-grained level information, e.g.,
the basic object structure, while the high-frequency part reflects fine-
grained level information, e.g., the texture details [38]. As is shown
in Fig. 3, the motion blur kernel would effect both high-frequency
and low-frequency of the sharp image. Thus, coarse global SA like
Spa-GC suffers from fine-grained correlation deficiency.

To model long-range dependency without compromise of fine-
grained details, we presents Local Frequency Transformer (Lo-
Former) for image deblurring. Concretely, we propose Frequency
domain-Local Channel-wise SA (Freq-LC) shown in Fig. 1 (e). First,
we transform features into the frequency domain via Discrete Cosine
Transform (DCT). DCT represents original features as the coeffi-
cients of different basis images. As shown in Fig. 1 (e), The basis
images can be arranged in a rectangular grid, with lower frequency
components in the top-left corner and higher frequency components
towards the bottom-right. The top-left basis image represents the
average intensity of the entire image, while the remaining basis
images capture increasingly finer details and textures. The token at
any frequency has global information. To allow equivalent learning
opportunities for coarse-grained structures and fine-grained details,
we design a window-based frequency feature extraction paradigm,
i.e., splitting frequency tokens into non-overlapping windows. The
window on top left consists of tokens with coarse-grained structures
(coarse tokens) and the one on bottom right consists of tokens with
fine-grained details (fine tokens). Then, SAs are applied within local
windows separately, capable of capturing cross-covariance within
low- to high-frequency windows in parallel.

We further propose an intra-window MLP Gating (MGate) on
the frequency axis complementary to Freq-LC, which performs a
gating operation on the feature learned via SA. It’s worth men-
tioning that the gating operation enhances the model capability of
global information learning. We term our Freq-LC and intra-window
MGate followed by a feed-forward network as Local Frequency
Transformer (LoFT) block, which is the basic building block of
LoFormer.

The main contributions can be summarized as follows:

• We propose simple yet effective Freq-LC to model long-
range dependency without compromise of fine-grained details

and introduce MGate which performs a gating operation and
learns global features complementary to Freq-LC for better
global information learning.

• We prove that Spa-GC equals to Freq-GC where coarse infor-
mation dominates the calculation and verify that our Freq-LC
has stronger capability in exploring divergent properties in
frequency than Spa-GC.

• Extensive experiments show LoFormer achieves state-of-the-
art results on image deblurring task, e.g., 34.09 dB in PSNR
for GoPro dataset. The PSNR (dB) vs. FLOPs (G) compared
with state-of-the-arts are shown in Fig. 2.

2 RELATED WORKS
2.1 Deep Image Deblurring
Based on paired blurry-sharp image datasets, many methods [3, 4,
6, 13, 14, 18, 20, 30, 32, 35, 41] adopt an end-to-end strategy to
train a deep neural network for image deblurring task. To achieve
better performance, most of the improvements revolve around the
network structure or the specific components. For example, MPR-
Net [41] proposes a multi-stage architecture, which learns restoration
functions progressively. MIMO-UNet [6] presents a multi-scale-
input multi-scale-output UNet architecture to ease the difficulty of
training. NAFNet [3] builds a network without activation and uses
LayerNorm [1] (LN) to stabilize the training process with a high
initial learning rate. Other methods such as Whang [35] introduces
diffusion-based method for deblurring.

2.2 Low-level Vision Transformers
Transformer [33] was first proposed for natural language process-
ing. Recently, several Transformer models are explored for low-
level vision tasks, such as image denoising [2, 34, 40], deblur-
ring [31, 34, 40], deraining [2, 34, 40], and super-resolution [15].
Like model from ViT [9], IPT [2] applies a pre-trained Transformer
model based on ImageNet [8] dataset for various image restora-
tion tasks. SwinIR [15] and Uformer [34] apply window-based
SA [16] to capture long-range dependencies. Stripformer [31] de-
composes the spatial-wise global SA into horizontal and vertical SA.
Restormer [40] models global context by applying SA across chan-
nels with linear complexity rather than spatial. Though extensive
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Figure 4: Architecture of LoFormer. The main backbone of LoFormer is an UNet [27] model built in Restormer [40]. The basic
building block of LoFormer is Local Frequency Transformer block (LoFT-block) , which consists of a Local Frequency Network
(LoFN) module and an Feed-Forward Network (FFN) module. The core components of LoFN are DCT-LN, Freq-LC and MGate on
frequency windows that perform global context aggregation.

Table 1: Hyper-parameters with LoFormer. [𝐿1 ∼ 𝐿4] and 𝐿𝑟
denote the number of LoFT block in stage-1,2,3,4 and refine-
ment. C is the feature dimension. PSNR(dB) is calculated on
GoPro [20] dataset. FLOPs (G) are calculated on an input RGB
image of size 256 × 256. Params are calculated in (M).

Model [𝐿1 ∼ 𝐿4] 𝐿𝑟 C PSNR Params FLOPs

Restormer [4,6,6,8] 4 48 32.92 26.12 135
LoFormer-S [2,4,6,14] 2 32 33.73 16.38 47
LoFormer-B [2,4,12,18] 2 36 33.99 27.93 73
LoFormer-L [2,4,12,18] 2 48 34.09 49.03 126

efforts have been made to capture long-range dependencies, either
conducting pixel-wise SA on a local window or learning global
context in a sparse manner, they neglect an important fact that inde-
pendent components within an image/feature should not be blindly
modeled altogether via SA operations. We propose to decompose
features into independent components, i.e., frequency tokens, by
projecting them onto orthogonal bases via DCT and conduct global
context learning within each partitioned frequency window.

2.3 Frequency Domain Applications
A growing literature corpus has proposed methods extracting infor-
mation from the frequency domain to fulfill different tasks [26, 37,
45]. FcaNet [23] generalizes the channel attention in the frequency
domain for image classification; GFNet [24] learns long-term spatial
dependencies in the frequency domain. Zhong [44] proposes a novel

frequency enhancement module to detect camouflaged objects in
the frequency domain. LaMa [29] uses the structure of fast fourier
convolution [5] as the building block to image inpainting. Deep-
RFT [18] introduces a simple res-fft-relu-block into deep networks
for image deblurring. FourierUp [39] explores down/up-sampling
operators in Fourier domain. DDCN [11] and CARD [19] make
use of block discrete cosine transform to reduce compression arti-
facts. FADN [36] divides the input feature into multiple components
based on a frequency-domain predictor for image super-resolution.
Inspired by the success of frequency domain, we propose an LoFT
block which enables (1) independent components decomposition
via DCT, (2) globally independent context learning in a frequency
window, and (3) low computation complexity.

3 METHOD
3.1 Main Backbone
An overview of LoFormer architecture is shown in Fig. 4. LoFormer
employs a UNet [27] architecture proposed by Restormer [40] as the
backbone. In Restormer, each stage of encoder-decoder contains mul-
tiple Transformer blocks. We design a Local Frequency Transformer
(LoFT) block as our building block. As illustrated in Table 1, we put
more building blocks to lower stages for efficiency, i.e., from stage-1
to stage-4, the number of LoFT blocks are [2, 4, 6, 14] (LoFormer-S),
[2, 4, 12, 18] (LoFormer-B and LoFormer-L) and number of atten-
tion heads are [1, 2, 4, 8]. Besides, the stage-refinement contains two
LoFT blocks.
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Figure 5: LayerNorm is added after DCT to force frequency
tokens to be distributed equally.

3.2 Local Frequency Transformer Block
LoFT block consists of a proposed Local Frequency Network (LoFN)
and a Feed-Forward Network (FFN). As shown in Fig. 4, the LoFN
consists of (i) LayerNorm after DCT (DCT-LN), (ii) Frequency
domain-Local Channel-wise SA (Freq-LC), (iii) intra-window MLP
Gating in the frequency domain (MGate). For FFN, we adopt the
Gated-Dconv Feed-forward Network (GDFN) in Restormer [40].

First, we apply DCT transform on feature map X𝑐
in of 𝑐th channel

via:

Zℎ,𝑤,𝑐

dct =

H−1∑︁
𝑢=0

W−1∑︁
𝑣=0

X𝑢,𝑣,𝑐

in · B𝑢,𝑣

ℎ,𝑤
, (1)

where Z𝑐
dct ∈ RH×W is the DCT frequency tokens, H and W are

height and width of X𝑐
in, respectively. Bℎ,𝑤 ∈ RH×W is the basis

image of the corresponding DCT coefficient located in Zℎ,𝑤,𝑐

dct , and
there are H × W basis images for X𝑐

in. Given indices ℎ,𝑤 :

B𝑢,𝑣

ℎ,𝑤
= 𝐹 (𝑢)𝐹 (𝑣) cos( 𝜋ℎ

H
(𝑢 + 1

2
)) cos( 𝜋𝑤

W
(𝑣 + 1

2
)) (2)

𝑠 .𝑡 . 𝑢 ∈ {0, 1, ...,H − 1}, 𝑣 ∈ {0, 1, ...,W − 1},

where 𝐹 (𝑢) =
{ 1√

2
𝑢 = 0

1 𝑢 > 0
, 𝐹 (𝑣) =

{ 1√
2

𝑣 = 0

1 𝑣 > 0
.

Next, we describe DCT-LN, Freq-LC and MGate, respectively.

DCT-LN. LN [1] has been widely adopted in computer vision
tasks due to its ability of stabilizing the training process [3]. Given
the feature in spatial domain Xin ∈ RH×W×C, as shown in Fig. 5, we
first apply DCT to obtain the frequency tokens Zdct = DCT(Xin) ∈
RH×W×C. Then, the LN after DCT can be defined as:

Znorm =
Zdct − Z̄dct

¤Zdct
× 𝛾 + 𝛽, (3)

where Z̄dct =
1
C
∑C
𝑐=1 Z𝑐

dct, and ¤Zdct =
√︃

1
C
∑C
𝑐=1 (Z

𝑐
dct − Z̄dct)2 + 𝜖

is the standard deviation of Zdct along the channel dimension. 𝛾
and 𝛽 are learnable parameters, and 𝜖 = 10−5. After DCT, The
distribution of frequency tokens varies greatly. Large amount of
information stored in low frequency, and less information stored in
the rest frequency. Thus, we adopt LN to force frequency tokens to
be distributed equally, which is important to stabilize the training
process. It is worth mentioning that applying LN before DCT would
be equivalent of applying convolution in frequency domain (resulting

Table 2: Explanation of some symbols.

Sym Explanation Sym Explanation

H : Height N = HW: Resolution of tensor
W: Width Ĉ = C/r: Channel for SA
C : Channel n = b2 : Resolution of window
b : Window m = N/n: Numbers of windows
r : SA heads

from a simple calculation), which do not help in balancing the
distribution of frequency tokens.

Freq-LC. Given the feature Xnorm ∈ RH×W×C, we first apply 1×1
convolutions to obtain frequency-wise cross-channel context, and
then 3 × 3 depth-wise convolutions are employed to gather channel-
wise frequency local context. Through this way, we acquire Q̂, K̂
and V̂ ∈ Rr×Ĉ×N representing queries, keys, and values, where N, Ĉ
and r are indicated in Table 2. Noted that we use different channels
to represent multi-head. Then we design a window partition method
and split Q̂, K̂ and V̂ into non-overlapping windows with the window
size of b×b, acquiring Q̃, K̃, and Ṽ ∈ Rm×r×Ĉ×n, where m and n are
indicated in Table 2. As shown in Fig. 4, we perform Local SA on the
channel axis of Q̃, K̃, and Ṽ. From each window 𝑖, features Q̃𝑖 , K̃𝑖 ,
and Ṽ𝑖 ∈ RĈ×n can be obtained via flattening and transposing
operations. Next, we perform SA to generate a transposed-attention
map Ã𝑖 ∈ RC×C for window 𝑖. The process can be defined as Ã𝑖 =

Softmax(Q̃𝑖 · K̃⊤
𝑖 /𝛼) and Attention(Q̃𝑖 , K̃𝑖 , Ṽ𝑖 ) = Ã𝑖 · Ṽ𝑖 .

The transposed-attention map for all windows can be written as
Ã = {Ã1, Ã2, ..., Ãm}, where Ã ∈ Rm×r×Ĉ×Ĉ, and 𝛼 is a trainable
scaling parameter.

MGate. To emphasize on the frequency, and control which com-
plementary features should flow forward combined with Freq-LC,
we apply MGate through intra-window MLP shown in Fig. 4 while
sharing parameters on the other axes:

MGate(Ṽ𝑖 ) = 𝜎 (Linear(Ṽ𝑖 )), (4)

where 𝜎 indicates GELU operation. The intra-window MGate opera-
tion achieves local frequency mixing via aggregating cross-frequency
context. Due to the global properties of each token in the frequency
domain, it enhances the global information learned by Freq-LC
from a different point of view. By combining Freq-LC and MGate
branches together via element-wise multiplication, LoFT block can
achieve superior performance to other counterparts.

After combining the output from Freq-LC and MGate by dot
product, we perform window reverse to transpose the feature back
to size H × W × C, and apply 1 × 1 convolutions to fuse cross-
channel context indicated as Zaxis. Correspondingly, we perform
inverse DCT transform on feature map Zaxis, whose feature on the
𝑐th channel is Z𝑐

axis:

X𝑐
idct =

H−1∑︁
ℎ=0

W−1∑︁
𝑤=0

Zℎ,𝑤,𝑐

axis · Bℎ,𝑤 , (5)

where Bℎ,𝑤 ∈ RH×W is the basis image for the corresponding DCT
coefficient, X𝑐

idct ∈ R
H×W is the feature on the 𝑐th channel of Xidct.
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Table 3: Comparison of different SAs. Spa, Freq, LS, GC, and
LC mean Spatial, Frequency, Local Spatial-wise SA, Global
Channel-wise SA, and Local Channel-wise SA, respectively. Spa
Filter-GC means performing pass filters of different frequencies
on the spatial feature, and then aggregating all global informa-
tion. Symbols in computation complexity are indicated in Table 2.
FLOPs (M) are calculated based on H = W = 256,C = 32, b =

8, r = 1.

SA Model Computation Complexity FLOPs

Spa-LS Uformer 2NCn 268
Spa-GC Restormer 2NCĈ 134
Freq-GC - 2NC(Ĉ + log2 (N) ) 201

Spa Filter-GC - 2NC(NĈ + log2 (N) ) ≫ 103

Freq-LC LoFormer 2NC(Ĉ + log2 (N) ) 201

Complexity analysis. As shown in Table 3, our Freq-LC shares
the same computation complexity of Convolution and Attention
compared with Spa-GC in Restormer [40]. Furthermore, the compu-
tational complexity of DCT required by the proposed approach only
increases a manageable O(Nlog2 (N)) while providing a significant
improvement in performance.

4 UNDERSTANDING SA IN THE FREQUENCY
DOMAIN

4.1 Spa-GC is equivalent to Freq-GC
For better reading, Table 3 lists different SA methods. To understand
the physical meaning of matrix multiplication in the frequency do-
main, we explore the relationship between Spa-GC and Freq-GC.
We have the proposition below:

PROPOSITION 1. Spa-GC: O = Attention(Q,K,V) and Freq-GC:
Ô𝑓 = 𝐼𝐷𝐶𝑇 (Ô) = 𝐼𝐷𝐶𝑇 (Attention(Q̂, K̂, V̂)) are identical, without
considering depth-wise convolutions and DCT-LN, where queries,
keys, and values are Q, K, V in the spatial domain, and Q̂, K̂, V̂ in
the frequency domain.

Proof for Proposition 1. For simplicity, we elaborate the deviation
in 2D matrices instead of 3D tensors, e.g., simplifying the size of the
features Ĉ×H×W to Ĉ×N, where N = HW, shown below. The output
features represented in the spatial domain after performing global
SA on queries, keys, and values on the spatial (Q,K,V ∈ RĈ×N)
and frequency (Q̂, K̂, V̂ ∈ RĈ×𝑁 ) domains can be obtained via:

O = Softmax(Q · K⊤) · V (6)

Ô𝑓 = IDCT(Ô) = Softmax(Q̂ · K̂⊤) · V̂ · D

= Softmax(Q · D · DT · K⊤) · V · D · D⊤

= Softmax(Q · K⊤) · V
= O, (7)

where D ∈ RN×N is the matrix representation of DCT coefficients,
and Ô𝑓 means the SA which is calculated in the frequency domain
and then transformed back to the spatial domain via inverse DCT.

4.2 Analysis of Freq-LC from Spatial Perspective
We argue that our Freq-LC learns both coarse- and fine-grained
global features, and explores different properties in representation.
In this section, we analyze Freq-LC in the frequency domain from a
new perspective.

As illustrated in Eq. 5, for an image with the size of H×W, it can
be represented as the sum of a series of basis images Bℎ,𝑤 ∈ RH×W

with the corresponding DCT coefficient, whereℎ ∈ {0, ...,H−1},𝑤 ∈
{0, ...,W − 1}. We have the following proposition holds:

PROPOSITION 2. Our Freq-LC can be seen as performing pass
filters on a spatial feature, by representing the frequency tokens
within a specific window as the summation of their corresponding
basis images in the spatial domain. Compared to Freq-LC which ap-
plies Local Channel-wise SA on specific frequency tokens, realizing
Freq-LC in the spatial domain would result in a significant increase
in both memory and computation complexity.

Proof for Proposition 2. We design a window partition method
(window size = b × b) and obtain Q̃, K̃ and Ṽ ∈ Rm×Ĉ×n, where
n = b2 and m = N/n after the window partition on Q, K and V,
respectively. From each window 𝑖, features Q̃𝑖 , K̃𝑖 , Ṽ𝑖 ∈ RĈ×𝑛 can
be obtained via flattening and transposing operations. Let’s assume
padding Q̃𝑖 , K̃𝑖 , and Ṽ𝑖 to size Ĉ × N with zeros, obtaining ¥Q𝑖 , ¥K𝑖

and ¥V𝑖 . ¥Q𝑖 , ¥K𝑖 and ¥V𝑖 can be regarded as the frequency spectrum
after applying corresponding pass filters on features in the spatial
domain. The output frequency features after applying SA for the 𝑖th
window on Q̃𝑖 , K̃𝑖 , and Ṽ𝑖 before padding and on ¥Q𝑖 , ¥K𝑖 and ¥V𝑖

after padding can be calculated as:

Õ𝑖 = Softmax(Q̃𝑖 · K̃⊤
𝑖 ) · Ṽ𝑖 (8)

¥O𝑖 = Softmax( ¥Q𝑖 · ¥K
⊤
𝑖 ) · ¥V𝑖 , (9)

Noted that Q̃𝑖 · K̃⊤
𝑖 = ¥Q𝑖 · ¥K

⊤
𝑖 . Thus, after window reverse (𝑤𝑟 )

operation, the total output of local SA is aggregated by:

¥O =

m∑︁
𝑖=1

¥O𝑖 =

m∑︁
𝑖=1

Softmax( ¥Q𝑖 · ¥K
⊤
𝑖 ) · ¥V𝑖

=

m∑︁
𝑖=1

Softmax(Q̃𝑖 · K̃⊤
𝑖 ) · ¥V𝑖 (10)

Õ𝑤 = 𝑤𝑟 (Õ𝑖 ) = 𝑤𝑟 (Softmax(Q̃𝑖 · K̃⊤
𝑖 ) · Ṽ𝑖 )

=

m∑︁
𝑖=1

Softmax(Q̃𝑖 · K̃⊤
𝑖 ) · ¥V𝑖

= ¥O, (11)

where Õ𝑤 means the SA calculated in local windows and then
window reversing to obtain the total output.

Although the above two operations lead to identical results in
terms of accuracy, they have different efficiency. We summarize
the computation complexity of different SAs in Table 3, including
SAs used in popular methods such as Uformer and Restormer. Our
Freq-LC (see Freq-LC (LoFormer) in Table 3) is much more efficient
compared with aggregating global SAs in spatial (see Spa Filter-GC
in Table 3).
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Figure 6: Examples on the GoPro test dataset. LoFormer produces better result.

Table 4: Summary of five public datasets.

Task Dataset Train Val Test Types

Motion Deblur

GoPro [20] 2,103 - 1,111 synthetic
HIDE [28] - - 2,025 synthetic
RealBlur-R [25] 3,758 - 980 real-world
RealBlur-J [25] 3,758 - 980 real-world
REDS [21] 24,000 3,000 300 synthetic

Table 5: Comparison on GoPro [20], HIDE [28] datasets for
setting A. Transformer-based methods are highlighted in blue.

GoPro HIDE Params FLOPs
Method PSNR SSIM PSNR SSIM M G

DeepDeblur [20] 29.08 0.914 25.73 0.874 11.7 336
DeblurGAN [13] 28.70 0.858 24.51 0.871 - -
DMPHN [42] 31.20 0.940 29.09 0.924 - -
DBGAN [43] 31.10 0.942 28.94 0.915 11.6 760
MT-RNN [22] 31.15 0.945 29.15 0.918 - -
MPRNet [41] 32.66 0.959 30.96 0.939 20.1 588
HINet [4] 32.71 0.959 30.32 0.932 88.7 171
MIMO-UNet+ [6] 32.45 0.957 29.99 0.930 16.1 154
NAFNet64 [3] 33.69 0.967 31.32 0.943 65.0 64
DeepRFT+ [18] 33.52 0.965 31.66 0.946 23.0 187
UFPNet [10] 34.06 0.968 31.74 0.947 80.3 243

Uformer [34] 33.06 0.967 30.90 0.953 50.9 90
Restormer [40] 32.92 0.961 31.22 0.942 26.1 135
Stripformer [31] 33.08 0.962 31.03 0.940 20.0 170

LoFormer-S 33.73 0.966 31.51 0.946 16.4 47
LoFormer-B 33.99 0.968 31.71 0.948 27.9 73
LoFormer-L 34.09 0.969 31.86 0.949 49.0 126

5 EXPERIMENT
5.1 Experimental Setup

Dataset. We evaluate our method on the five datasets summarized
in Table 4. Since existing methods adopt different experimental
settings, we summarize them and report three groups of results:

A . train on GoPro, and test on GoPro / HIDE respectively;
B . train and test on RealBlur-J / RealBlur-R respectively;
C. train and test on REDS dataset (follow HINet [4]).

Implementation Details. We adopt the training strategy used in
Restormer [40] unless otherwise specified. I.e., the network training
hyperparameters (and the default values we use) are learning strat-
egy (progressive learning), data augmentation (horizontal and ver-
tical flips), training iterations (600k), optimizer AdamW (𝛽1 = 0.9,
𝛽2 = 0.999, weight decay 1×10−4), initial learning rate (3×10−4).
The learning rate is steadily decreased to 1×10−6 using the cosine
annealing strategy [17]. For LoFormer-S and LoFormer-B, we start
training with patch size 128×128 and batch size 64. The patch size
and the batch size pairs are updated to [(160, 40), (192, 32), (256, 16),
(320, 8), (384, 8)] at iterations [184K, 312K, 408, 480K, 552K]. Due
to statistics distribution shifts between training and testing [7], we
utilize a step of 352 to perform 384×384 size sliding window with
an overlap-size of 32 for testing. We set b = 8 for LoFormer-S and
LoFormer-B. In the selection of the loss function, two kinds of loss
functions are utilized: (1) L1 loss: L1 = | |Ŝ−S| |1, and (2) Frequency
Reconstruction (FR) loss [6, 18, 32]: L𝑓 𝑟 = | |F (Ŝ)−F (S) | |1. Where
Ŝ, S and F (·) represent the predicted sharp image, the groundtruth
sharp image and 2D Fast Fourier Transform, respectively. For Lo-
Former, the loss function L = L1 + 0.01L𝑓 𝑟 .

Evaluation metric. Performances in terms of PSNR and SSIM
over all testing sets, as well as the number of parameters and FLOPs
are calculated using official algorithms.

5.2 Main Results
Setting A .. For setting A, we train our model on 2,103 image

pairs from GoPro [20], and compare them with several SOTA meth-
ods through the test set of GoPro [20] and HIDE [28]. As shown
in Table 5 and Fig. 6, LoFormer outperforms the other CNN-based,
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Table 6: Comparison on RealBlur [25] dataset for setting B.

RealBlur-R RealBlur-J Params FLOPs
Method PSNR SSIM PSNR SSIM M G

DeblurGAN-v2 [14] 36.44 0.935 29.69 0.870 - -
SRN [30] 38.65 0.965 31.38 0.909 - -
MPRNet [41] 39.31 0.972 31.76 0.922 20.1 777
MAXIM [32] 39.45 0.962 32.84 0.935 22.2 339
DeepRFT+ [18] 40.01 0.973 32.63 0.933 23.0 187

Stripformer [31] 39.84 0.974 32.48 0.929 20.0 170
FFTformer [12] 40.11 0.975 32.62 0.933 16.6 132

LoFormer-B 40.23 0.974 32.90 0.933 27.9 73

Table 7: Comparison on the REDS-val-300 from REDS [21]
dataset of NTIRE 2021 Image Deblurring Challenge Track 2
JPEG artifacts for setting C.

Model PSNR SSIM FLOPs Params

MPRNet 28.79 0.811 777 20.1
HINet 28.83 0.862 171 88.7
MAXIM 28.93 0.865 339 22.2
NAFNet64 29.09 0.867 64 65.0

LoFormer-B 29.20 0.869 73 27.9

Transformer-based and MLP-based methods in both PSNR and
SSIM on the GoPro test set. Under the same training strategy, our
LoFormer-L achieves 1.17 dB gain over Restormer [40] with sim-
ilar FLOPs (126G vs. 135G). Besides, LoFormer-L obtains robust
results on other datasets. For HIDE test set, LoFormer-L achieves
31.86dB, 0.64dB higher than Restormer. Note that as mentioned
in the introduction, Spa-LS in Uformer hurts long-range modeling,
Spa-SS in Stripformer relies on a strong assumption, and Spa-GC
in Restormer suffers from fine-grained correlation deficiency, while
our Freq-LC consists of simple yet effective operations to model
long-range dependency without losing fine-grained details. More
comparisons between Freq-LC and Spa-GC are analyzed in depth in
the introduction.

Setting B .. As can be seen in Table 6, LoFormer-B achieves
32.90dB on RealBlur-J test set, 0.42dB higher than Stripformer [31]
with fewer FLOPs (73G vs. 170G). For RealBlur-R, LoFormer-B
also gets a better outcome (40.23dB) than Stripformer (39.84dB).

Setting C.. Moreover, LoFormer-B achieves a competitive result
with other methods for REDS [21] dataset shown Table 7, e.g.,
0.27dB better than MAXIM. In brief, the quantitative experimental
results indicate that our LoFormer has a good ability to handle
motion deblurring tasks under different conditions.

5.3 Analysis and Discussion
Extensive ablation studies are conducted to verify the effective-
ness of LoFT block w.r.t. different components. The models are

Table 8: Ablation studies. LN-DCT: LayerNorm followed by
DCT. DC: Dilated Channel-wise SA with a dilated stride of
[H/b,W/b]. CGate: applying Linear on the channel axis.

Attention LN-DCT DCT-LN MGate PSNR FLOPs

Spa-GC × × × 32.74 43.33

Freq-GC ✓ × × 32.68 44.46
× ✓ × 32.84 44.46

Freq-DC ✓ × × 32.75 44.46
× ✓ × 32.90 44.46

Freq-LS ✓ × × 32.95 45.90
× ✓ × 33.15 45.90

Freq-LC

✓ × × 32.91 44.46
✓ × ✓ 32.94 46.97
× ✓ × 33.17 44.46
× ✓ CGate 32.97 47.95
× ✓ ✓ 33.23 46.97

LoFormer-B × ✓ × 33.54 69.68
× ✓ ✓ 33.99 73.04

(b) Image and feature map

Blur Sharp

Spa-GC Freq-LC

28

30

32

20% 40% 60% 80% 100%

Spa-GC

Freq-LC
P

S
N

R
(d

B
)

frequency ratio
(a) PSNR vs. details

Figure 7: (a) PSNR vs. details on GoPro. The higher ratio means
in testing, more high-frequency information (details) of the re-
stored images (like Fig. S2) is included when calculating PSNR.
Freq-LC performs better than Spa-GC on details. (b) Feature
maps of Spa-GC and Freq-LC. Freq-LC gets better details than
Spa-LC (red arrows).

trained on GoPro with progressive learning strategy for 300K itera-
tions. The training starts with patch size 128×128 and batch size 32,
which shares the same hyper-parameters of the model design with
LoFormer-S.

5.4 Effectiveness of DCT-LN
We propose to conduct Layer Normalization (LN) on the frequency-
transformed matrix Xdct rather than the input matrix Xin, aiming to
ensure an equitable distribution of frequency tokens, thereby promot-
ing training stability. As demonstrated in Table 8, the utilization of
DCT-LN alongside Freq-LC results in superior performance, yield-
ing a 0.26 dB improvement compared to employing LN-DCT (32.91
dB). Similarly, for Freq-GC, employing DCT-LN contributes to a
gain of 0.16 dB.

5.5 Effectiveness of Local Attention
In the frequency domain, we can easily acquire global information of
the input feature Xin within a local window of Xdct. Compared with
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Figure 8: The analysis for Spa-GC and Freq-LC on GoPro
dataset. (a) PSNR vs. proportions of Low-frequency (LF) or
High-frequency (HF); (b) The cosine similarity of Spa-GC be-
tween the source attention map calculated through different
ratios of LF/HF and the target attention map calculated through
all the information. A detailed illustration on the horizontal axis
is shown in supplementary.

Freq-GC (32.68dB) in Table 8, Freq-LC acquires a gain of 0.23 dB in
PSNR (32.91dB). Fig. 7 (a) shows masking different detail ratios of
restored images when computing PSNRs. Freq-LC is more capable
of capturing high-frequency details, which are suppressed by struc-
ture features in popular Spa-GC (see Fig. 8(a)). In addition, Fig. 7
(b) further indicates that Freq-LC acquires better feature details
than Spa-GC for deblurring. Freq-LC performs similarly to Spa-
GC in low-freq, but it achieves better results when involving more
high-freq, showing Freq-LC restores details better than Spa-GC.
Moreover, we design a Dilated Channel-wise SA in the frequency
domain (Freq-DC) to further verify the effectiveness of learning
coarse-and-fine information separately in SA. Even applying DCT-
LN to make frequency tokens to be distributed equally, Freq-DC
(32.90dB) performs 0.27dB worse than Freq-LC (33.17dB).

5.6 Effectiveness of MGate
Table 8 shows that MGate boosts the effectiveness of Freq-LC in lin-
ear time, and helps Freq-LC filter out the invalid information, which
let LoFormer-B develop deeper (33.99dB w/ MGate vs. 33.54dB
w/o MGate). Additionally, we perform MLP on the channel axis
of Xdct, named as CGate. The performance drops compared with
MGate (32.97dB vs. 33.23dB in Table 8), showing the complemen-
tary feature provided via MGate operation.

5.7 Discussion
Spatial or Channel. As delineated in Table 8, the efficacy of Freq-

LS (33.15 dB, 45.90G) exhibits a comparative level to that of Freq-
LC (33.17 dB, 44.46G), with the former incurring slightly elevated
computational complexity. Consequently, we opt to integrate Freq-
LC into the LoFormer architecture.

Superiority of Freq-LC. To demonstrate the superior ability of
Freq-LC over Spa-GC in learning fine-grained high-frequency fea-
tures, a comparison is made between the two methods by plotting
PSNR curves against low-/high-frequency ratio on Fig. 8 (a). The
purpose of this analysis is to highlight the advantage of Freq-LC in

HF

LF

HF

(a) Freq-GC (b) Freq-LC

i

j

Figure 9: Cross cosine similarity among attention maps of differ-
ent windows along the diagonal line in Stage-1. For example, the
value in position (𝑖, 𝑗) means the cosine similarity between Ã𝑖,𝑖

and Ã𝑗, 𝑗 , where 𝑖 ∈ RH/b, 𝑗 ∈ RW/b and Ã ∈ RH/b×W/b×C×C.

capturing subtle details that may be suppressed by structure features
in Spa-GC. We test LoFormer framework with Freq-LC and Spa-GC,
but with different selected frequency ratios. Our Freq-LC observes a
performance boost at a faster rate (see Freq-LC-LF and Spa-GC-LF)
when involving more and more high-frequency parts. Conversely,
involving more low-frequency parts does not change the perfor-
mance of Freq-LC dramatically like Spa-GC (see Freq-LC-HF and
Spa-GC-HF), which proves that high-frequency information plays a
more important role in Freq-LC than Spa-GC. Similarly, Fig. 8 (b)
shows Spa-GC does not effectively learn high-frequency information,
whose cosine similarity with the attention map of Spa-GC is small
(see Spa-GC-HF). Besides, computing SA within different frequency
windows helps to explore divergent properties in representation.

Attention Maps. To better understand whether the attention maps
learned from each local window are the same or different, we calcu-
late the Cosine Similarity matrices of the attention maps in stage-1.
As shown in Fig. 9, the attention maps in Freq-GC (32.84dB) are
similar to each other, which suppresses the network’s learning ability
for high-frequency (fine) information. While the attention maps in
Freq-LC (33.17dB) are quite different from each other, indicating
that different independent local windows provide information in
different ways for image deblurring.

6 CONCLUSIONS
We introduce a novel approach termed Local Frequency Transformer
(LoFormer) for image deblurring. In contrast to prior transformer-
based methodologies that focus on either learning localized self-
attention (SA) mechanisms or adopting coarse-grained global SA
strategies to mitigate computational complexity, LoFormer offers a
unique solution. It simultaneously captures both coarse- and fine-
grained long-range dependencies by employing channel-wise self-
attention within localized frequency token windows. Moreover, we
incorporate MLP Gating to augment global learning capabilities
and eliminate irrelevant features. Extensive experiments across five
image deblurring datasets demonstrates the superior performance of
our proposed LoFormer.
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