
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CAUSAL-AWARE GRAPH NEURAL ARCHITECTURE
SEARCH UNDER DISTRIBUTION SHIFTS
(SUPPLEMENTARY MATERIALS)

Anonymous authors
Paper under double-blind review

A ALGORITHM

The overall framework and optimization procedure of the proposed CARNAS are summarized in
Figure 1 and Algorithm 1, respectively.

Algorithm 1 The overall algorithm of CARNAS
Require: Training Dataset Gtr,

Hyper-parameters t in Eq. (6), µ in Eq. (10), θ1, θ2 in Eq. (16)
1: Initialize all trainable parameters
2: for p = 1, . . . , P do
3: Set σp as Eq. (17)
4: Derive causal and non-causal subgraphs as Eq. (4) (5) (6)
5: Calculate graph representations of causal and non-causal subgraphs as Eq. (7) (8)
6: Calculate Lcpred using Eq. (9)
7: Sample Ns non-causal subgraphs as candidates
8: for causal subgraph Gc of graph G in Gtr do
9: Do interventions on Gc in latent space as Eq. (10)

10: Calculate architecture matrix Ac and {Avj} from causal subgraph and their intervention
graphs as Eq. (12)

11: end for
12: Calculate Lop using Eq. (13)
13: Calculate Lpred using Eq. (11) (14)
14: Calculate Larch using Eq. (15)
15: Calculate the overall loss Lall using Eq. (16)
16: Update parameters using gradient descends
17: end for

B REPRODUCIBILITY DETAILS

B.1 DEFINITION OF SEARCH SPACE

The number of layers in our model is predetermined before training, and the type of operator for each
layer can be selected from our defined operator search space O. We incorporate widely recognized
architectures GCN, GAT, GIN, SAGE, GraphConv, and MLP into our search space as candidate
operators in our experiments. This allows for the combination of various sub-architectures within a
single model, such as using GCN in the first layer and GAT in the second layer. Furthermore, we
consistently use standard global mean pooling at the end of the GNN architecture to generate a global
embedding.

B.2 DATASETS DETAILS

We utilize synthetic SPMotif datasets, which are characterized by three distinct degrees of distribution
shifts, and three different real-world datasets, each with varied components, following previous
works (21; 32; 29). Based on the statistics of each dataset as shown in Table 1, we conducted a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

comprehensive comparison across various scales and graph sizes. This approach has empirically
validated the scalability of our model.

Table 1: Statistics for different datasets.

Graphs Avg. Nodes Avg. Edges

ogbg-molhiv 41127 25.5 27.5
ogbg-molsider 1427 33.6 35.4
ogbg-molbace 1513 34.1 36.9
SPMotif-0.7/0.8/0.9 18000 26.1 36.3

Detailed description for real-world datasets The real-world datasets are 3 molecular property
prediction datasets in OGB (9), and are adopted from the MoleculeNet (31). Each graph represents a
molecule, where nodes are atoms, and edges are chemical bonds.

• The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen,
which tested the ability to inhibit HIV replication for over 40000 compounds. Screening results
were evaluated and placed into 2 categories: inactive (confirmed inactive CI) and active (confirmed
active CA and confirmed moderately active CM).

• The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions
(ADR). The version of the SIDER dataset in DeepChem has grouped drug side-effects into 27
system organ classes following MedDRA classifications measured for 1427 approved drugs
(following previous usage).

• The BACE dataset provides quantitative (IC50) and qualitative (binary label) binding results for a
set of inhibitors of human β-secretase 1 (BACE-1). It merged a collection of 1522 compounds
with their 2D structures and binary labels in MoleculeNet, built as a classification task.

The division of the datasets is based on scaffold values, designed to segregate molecules according
to their structural frameworks, thus introducing a significant challenge to the prediction of graph
properties.

B.3 DETAILED HYPER-PARAMETER SETTINGS

We fix the number of latent features Q = 4 in Eq. (4), number of intervention candidates Ns as batch
size in Eq. (10), σmin = 0.1, σmax = 0.7, P = 100 in Eq. (17), and the tuned hyper-parameters for
each dataset are as in Table 4.

Table 2: Hyper-parameter settings

Dataset t in Eq. (6) µ in Eq. (10) θ1 in Eq. (16) θ2 in Eq. (16)

SPMotif-0.7/0.8/0.9 0.85 0.26 0.36 0.010
ogbg-molhiv 0.46 0.68 0.94 0.007

ogbg-molsider 0.40 0.60 0.85 0.005
ogbg-molbace 0.49 0.54 0.80 0.003

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

C DEEPER ANALYSIS

C.1 SUPPLEMENTARY ANALYSIS OF THE EXPERIMENTAL RESULTS

60 65 70 75 80 85 90
AUC

CARNAS

w/o arch

w/o cpred

w/o arch \& cpred

Figure 1: Results of ablation studies on SIDER, where ‘w/o
Larch’ removes Larch from the overall loss in Eq. (??),
‘w/o Lcpred’ removes Lcpred, and ‘w/o Larch & Lcpred’
removes both of them. The error bars report the standard
deviations. Besides, the average and standard deviations
of the best-performed baseline on each dataset are denoted
as the dark and light thick dash lines respectively.

Sythetic datasets. We notice that the
performance of CARNAS is way bet-
ter than DIR (29), which also intro-
duces causality in their method, on syn-
thetic datasets. We provide an explana-
tion as follows: Our approach differs
from and enhances upon DIR in several
key points. Firstly, unlike DIR, which
uses normal GNN layers for embedding
nodes and edges to derive a causal sub-
graph, we employ disentangled GNN.
This allows for more effective capture
of latent features when extracting causal
subgraphs. Secondly, while DIR fo-
cuses on the causal relationship between
a graph instance and its label, our study
delves into the causal relationship be-
tween a graph instance and its optimal
architecture, subsequently using this ar-
chitecture to predict the label. Additionally, we incorporate NAS method, introducing an invariant
architecture customization module, which considers the impact of architecture on performance. Based
on these advancements, our method may outperform DIR.

Real-world datasets. We also notice that our methods improves a lot on the performance for the
second real-world dataset SIDER. We further conduct an ablation study on SIDER to confirm that
each proposed component contributes to its performance, as present in Figure 1. The model ‘w/o
Larch’ shows a slight decrease in performance, while ‘w/o Lcpred’ exhibits a substantial decline.
This indicates that both restricting the invariance of the influence of the causal subgraph on the
architecture via Larch, and ensuring that the causal subgraph retains crucial information from the
input graph via Lcpred, are vital for achieving high performance on SIDER, especially the latter
which empirically proves to be exceptionally effective.

C.2 DYNAMIC TRAINING PROCESS AND CONVERGENCE

For a deeper understanding of our model training process, and further remark the impact of the
dynamic σp in Eq.(17), we conduct experiments and compare the training process in the following
settings:

• ‘with Dynamic σ’ means we use the dynamic σp in Eq.(17) to adjust the training key point in each
epoch.

• ‘w/o Dynamic σ’ means we fix the σ in Eq.(16) as a constant value σmax+σmin

2 .

According to Figure 2, our method can converge rapidly in 10 epochs. Figure 2 also obviously reflects
that after 10 epochs the validation loss with dynamic σ keeps declining and its accuracy continuously
rising. However, in the setting without dynamic σ, the validation loss may rise again, and accuracy
cannot continue to improve.

These results verify our aim to adopt this σp to elevate the efficiency of model training in the way of
dynamically adjusting the training key point in each epoch by focusing more on the causal-aware
part (i.e. identifying suitable causal subgraph and learning vectors of operators) in the early stages
and focusing more on the performance of the customized super-network in the later stages. We also
empirically confirm that our method is not complex to train.

C.3 COMPLEXITY ANALYSIS

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
Lo

ss

Comparison of Validation Loss on SPMotif-0.7
Val Loss w/o Dynamic
Val Loss with Dynamic

0 10 20 30 40 50
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy with Dynamic on SPMotif-0.7

Train Acc with Dynamic
Val Acc with Dynamic
Test Acc with Dynamic

0 10 20 30 40 50
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
Accuracy w/o Dynamic on SPMotif-0.7

Train Acc w/o Dynamic
Val Acc w/o Dynamic
Test Acc w/o Dynamic

Figure 2: Training process of synthetic datasets.

In this section, we analyze the complexity of
our proposed method in terms of its computa-
tional time and the quantity of parameters that
require optimization. Let’s denote by |V | the
number of nodes in a graph, by |E| the num-
ber of edges, by |O| the size of search space,
and by d the dimension of hidden representa-
tions within a traditional graph neural network
(GNN) framework. In our approach, d0 repre-
sents the dimension of the hidden representa-
tions within the identification network GNN0,
d1 represents the dimension of the hidden rep-
resentations within the shared graph encoder
GNN1, and ds denotes the dimension within
the tailored super-network. Notably, d0 encap-
sulates the combined dimension of Q chunks,
meaning the dimension per chunk is d0/Q.

C.3.1 TIME COMPLEXITY ANALYSIS

For most message-passing GNNs, the com-
putational time complexity is traditionally
O(|E|d + |V |d2). Following this framework,
the GNN0 in our model exhibits a time com-
plexity of O(|E|d0 + |V |d20), and the GNN1

in our model exhibits a time complexity of
O(|E|d1 + |V |d21). The most computation-
ally intensive operation in the invariant archi-
tecture customization module, which involves
the computation of Lop, leads to a time com-
plexity of O(|O|2d1). The time complexity
attributed to the customized super-network is
O(|O|(|E|ds + |V |d2s)). Consequently, the ag-
gregate time complexity of our method can be
summarized as O(|E|(d0 + d1 + |O|ds) + |V |(d20 + d21 + |O|d2s) + |O|2d1).

C.3.2 PARAMETER COMPLEXITY ANALYSIS

A typical message-passing GNN has a parameter complexity of O(d2). In our architecture, the
disentangled causal subgraph identification network GNN0 possesses O(d20) parameters, the shared
GNN encoder GNN1 possesses O(d21), the invariant architecture customization module contains
O(|O|d1) parameters and the customized super-network is characterized by O(|O|d2s) parameters.
Therefore, the total parameter complexity in our framework is expressed as O(d20 + d21 + |O|d1 +
|O|d2s).
The analyses underscore that the proposed method scales linearly with the number of nodes and edges
in the graph and maintains a constant number of learnable parameters, aligning it with the efficiency
of prior GNN and graph NAS methodologies. Moreover, given that |O| typically represents a modest
constant (for example, |O| = 6 in our search space) and that d0 and d1 is generally much less than
ds, the computational and parameter complexities are predominantly influenced by ds. To ensure
equitable comparisons with existing GNN baselines, we calibrate ds within our model such that the
parameter count, specifically |O|d2s, approximates d2, thereby achieving a balance between efficiency
and performance.

C.4 TRAINING EFFICIENCY

To further illustrate the efficiency of CARNAS, we provide a direct comparison with the best-
performed NAS baseline, DCGAS, based on the total runtime for 100 epochs. As shown in Table 3,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

CARNAS consistently requires less time across different datasets while achieving superior best
performance, demonstrating its enhanced efficiency and effectiveness.

Table 3: Comparison of runtime

Method SPMotif HIV BACE SIDER

DCGAS 104 min 270 min 12 min 11 min
CARNAS 76 min 220 min 8 min 8 min

C.5 HYPER-PARAMETERS SENSITIVITY

0.1 0.4 0.7 1.0

1

72

74

76

78

80

82

RO
C-

AU
C

(%
)

0.001 0.005 0.01 0.02

2

76

78

80

82

RO
C-

AU
C

(%
)

0.4 0.5 0.6 0.7
t

70

72

74

76

78

80

82

RO
C-

AU
C

(%
)

0.4 0.5 0.6 0.7

72

74

76

78

80

82

RO
C-

AU
C

(%
)

Figure 3: Hyper-parameters sensitivity analysis. The area shows the average ROC-AUC and standard
deviations. The green, yellow, grey dashed lines represent the average performance corresponding to
the fine-tuned hyper-parameters of CARNAS, best performed baseline DCGAS, 2nd best performed
baseline GraphConv, respectively.
We empirically observe that our model is insensitive to most hyper-parameters, which remain fixed
throughout our experiments. Consequently, the number of parameters requiring tuning in practice is
relatively small. t, µ, θ1 and θ2 have shown more sensitivity, prompting us to focus our tuning efforts
on these 4 hyper-parameters.

Therefore, we conduct sensitivity analysis (on BACE) for the 4 important hyper-parameters, as shown
in Figure 4. The value selection for these parameters were deliberately varied evenly within a defined
range to assess sensitivity thoroughly. The specific hyper-parameter settings used for the CARNAS
reported in Table 2 (in main paper) are more finely tuned and demonstrate superior performance to
the also finely tuned other baselines. The sensitivity allows for potential performance improvements
through careful parameter tuning, and our results in sensitivity analysis outperform most baseline
methods, indicating a degree of stability and robustness in response to these hyper-parameters.

Mention that, the best performance of the fine-tuned DCGAS may exceed the performance of our
method without fine-tuning sometimes. This is because, DCGAS addresses the challenge of out-of-
distribution generalization through data augmentation, generating a sufficient quantity of graphs for
training. In contrast, CARNAS focuses on capturing and utilizing causal and stable subparts to guide
the architecture search process. The methodological differences and the resulting disparity in the
volume of data used could also contribute to the performance variations observed.

Limitation. Although the training time and search efficiency of our method is comparable to most
of the Graph NAS methods, we admit that it is less efficient than standard GNNs. At the same time,
in order to obtain the best performance for a certain application scenario, our method does need to
fine-tune four sensitive hyper-parameters.

D MORE COMPARISION WITH OOD GNN

In our initial experiment, we compared our model with two non-NAS-based graph OOD methods,
ASAP and DIR. We expanded our evaluation to include 13 well-known non-NAS-based graph
OOD methods (covering all the methods you mentioned), providing a comprehensive comparison.
The results, presented as below, demonstrate CARNAS not only performs well among NAS-based
methods but also significantly outperforms non-NAS graph OOD methods. This superior performance
is attributed to CARNAS’s ability to effectively discover and leverage the stable causal graph-
architecture relationships during the neural architecture search process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 4: Performance Comparison (ROC-AUC) ‘-’ denotes CIGA is not suitable for multi-task dataset

Class Method SIDER BACE HIV

Vanilla GNN

GCN 59.84 ± 1.54 68.93 ± 6.95 75.99 ± 1.19
GAT 57.40 ± 2.01 75.34 ± 2.36 76.80 ± 0.58
GIN 57.57 ± 1.56 73.46 ± 5.24 77.07 ± 1.49
SAGE 56.36 ± 1.32 74.85 ± 2.74 75.58 ± 1.40
GraphConv 56.09 ± 1.06 78.87 ± 1.74 74.46 ± 0.86
MLP 58.16 ± 1.41 71.60 ± 2.30 70.88 ± 0.83

OOD GNN

ASAP 55.77 ± 1.18 71.55 ± 2.74 73.81 ± 1.17
DIR 57.34 ± 0.36 76.03 ± 2.20 77.05 ± 0.57
MoleOOD 57.12 ± 0.82 76.65 ± 2.71 76.57 ± 1.11
CIGA - 77.53 ± 2.53 76.89 ± 0.85
iMoLD 60.76 ± 0.65 78.72 ± 1.75 77.17 ± 0.93
Coral 60.32 ± 1.04 78.65 ± 1.55 76.88 ± 1.75
DANN 59.52 ± 1.02 78.84 ± 1.11 76.98 ± 1.32
GIL 59.67 ± 0.32 75.72 ± 1.93 73.70 ± 1.14
GSAT 60.06 ± 1.11 78.47 ± 1.70 76.70 ± 0.98
Mixup 60.83 ± 0.74 78.16 ± 2.54 76.81 ± 1.31
GroupDRO 61.15 ± 1.06 79.24 ± 1.30 76.97 ± 1.36
IRM 59.50 ± 0.52 78.87 ± 1.50 76.77 ± 1.01
VREx 54.60 ± 0.91 75.77 ± 3.35 71.60 ± 1.56

NAS

DARTS 60.64 ± 1.37 76.71 ± 1.83 74.04 ± 1.75
PAS 59.31 ± 1.48 76.59 ± 1.87 71.19 ± 2.28
GRACES 61.85 ± 2.58 79.46 ± 3.04 77.31 ± 1.00
DCGAS 63.46 ± 1.42 81.31 ± 1.94 78.04 ± 0.71
CARNAS 83.36 ± 0.62 81.73 ± 2.92 78.33 ± 0.64

Table 5: Comparison of Time and Memory Cost between OOD GNN and CARNAS

Method SIDER BACE HIV

Time (Mins) Mem. (MiB) Time Mem. Time Mem.

DIR 5 4328 5 4323 103 4769
MoleOOD 5 4317 5 4315 96 4650
CIGA - - 4 4309 86 4510
iMoLD 3 4184 3 4182 65 4377
Coral 3 4323 2 4323 70 4795
DANN 2 4309 2 4314 47 4505
GIL 26 4386 33 4373 412 6225
GSAT 4 4318 4 4310 49 4600
GroupDRO 4 4311 10 4309 50 4509
IRM 4 975 3 978 80 1301
VREx 6 4313 16 4314 51 4516

CARNAS 8 2556 8 2547 220 2672

Regarding time and memory costs, Table below shows that CARNAS is competitive with non-NAS-
based graph OOD methods, as we search the architecture and learn its weights simultaneously. The
time and memory efficiency of CARNAS make it a practical choice. Thus, we experimentally verify
that the proposed CARNAS does make sense, for addressing the graph OOD problem by diving into
the NAS process from causal perspective.

E CASE STUDY

For graphs with different motif shapes (causal subparts), we present the learned operation probabilities
for each layer (in expectation) in the table below. The values that are notably higher than others for
each layer are highlighted in bold, and the most preferred operators for each layer are listed in the
last row.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

layer1 layer2 layer3

GCN

GIN

GAT

SAGE

GraphConv

MLP

Cycle

layer1 layer2 layer3

House

layer1 layer2 layer3

Crane

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4: Comparison of operation probabilities for graphs with different motif shapes.

We observe that different motif shapes indeed prefer different architectures, e.g., graphs with cycle
prefer GAT in the third layer, while this operator is seldomly chosen in neither layer of the other
two types of graphs; the operator distributions are similar for graphs with cycle and house in the
first layer, but differ in other layers. To be specific, Motif-Cycle is characterized by a closed-loop
structure where each node is connected to two neighbors, displaying both symmetry and periodicity.
For graphs with this motif, CARNAS identifies SAGE-GCN-GAT as the most suitable architecture.
Motif-House, on the other hand, features a combination of triangular and quadrilateral structures,
introducing a certain level of hierarchy and asymmetry. For graphs with this shape, CARNAS
determines that GIN-MLP-GCN is the optimal configuration. Lastly, Motif-Crane presents more
complex cross-connections between nodes compared to the previous two motifs, and CARNAS
optimally configures graphs with it with a GIN-SAGE-GCN architecture.

By effectively integrating various operations and customizing specific architectures for different
causal subparts (motifs) with diverse features, our NAS-based CARNAS can further improve the
OOD generalization.

F RELATED WORK

F.1 GRAPH NEURAL ARCHITECTURE SEARCH

In the rapidly evolving domain of automatic machine learning, Neural Architecture Search (NAS)
represents a groundbreaking shift towards automating the discovery of optimal neural network ar-
chitectures. This shift is significant, moving away from the traditional approach that heavily relies
on manual expertise to craft models. NAS stands out by its capacity to autonomously identify archi-
tectures that are finely tuned for specific tasks, demonstrating superior performance over manually
engineered counterparts. The exploration of NAS has led to the development of diverse strategies,
including reinforcement learning (RL)-based approaches (36; 10), evolutionary algorithms-based
techniques (22; 17), and methods that leverage gradient information (16; 33). Among these, graph
neural architecture search has garnered considerable attention.

The pioneering work of GraphNAS (6) introduced the use of RL for navigating the search space of
graph neural network (GNN) architectures, incorporating successful designs from the GNN literature
such as GCN, GAT, etc. This initiative has sparked a wave of research (6; 26; 21; 3; 8; 35; 7), leading
to the discovery of innovative and effective architectures. Recent years have seen a broadening of
focus within Graph NAS towards tackling graph classification tasks, which are particularly relevant
for datasets comprised of graphs, such as those found in protein molecule studies. This research area
has been enriched by investigations into graph classification on datasets that are either independently
identically distributed (26) or non-independently identically distributed, with GRACES (21) and
DCGAS (32) being notable examples of the latter. Through these efforts, the field of NAS continues
to expand its impact, offering tailored solutions across a wide range of applications and datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

F.2 GRAPH OUT-OF-DISTRIBUTION GENERALIZATION

In the realm of machine learning, a pervasive assumption posits the existence of identical distributions
between training and testing data. However, real-world scenarios frequently challenge this assumption
with inevitable shifts in distribution, presenting significant hurdles to model performance in out-of-
distribution (OOD) scenarios (23). The drastic deterioration in performance becomes evident when
models lack robust OOD generalization capabilities, a concern particularly pertinent in the domain of
Graph Neural Networks (GNNs), which have gained prominence within the graph community (12).
Several noteworthy studies (28; 27; 13; 5; 24; 15; 25) have tackled this challenge by focusing on
identifying environment-invariant subgraphs to mitigate distribution shifts. These approaches typically
rely on pre-defined or dynamically generated environment labels from various training scenarios to
discern variant information and facilitate the learning of invariant subgraphs. Moreover, the existing
methods usually adopt a fixed GNN encoder in the whole optimization process, neglecting the role of
graph architectures in out-of-distribution generalization. In this paper, we focus on automating the
design of generalized graph architectures by discovering causal relationships between graphs and
architectures, and thus handle distribution shifts on graphs.

F.3 CAUSAL LEARNING ON GRAPHS

The field of causal learning investigates the intricate connections between variables (20; 19), offering
profound insights that have significantly enhanced deep learning methodologies. Leveraging causal
relationships, numerous techniques have made remarkable strides across diverse computer vision
applications (34; 18). Additionally, recent research has delved into the realm of graphs. For
instance, (30) implements interventions on non-causal components to generate representations,
facilitating the discovery of underlying graph rationales. (5) decomposes graphs into causal and
bias subgraphs, mitigating dataset biases. (14) introduces invariance into self-supervised learning,
preserving stable semantic information. (4) ensures out-of-distribution generalization by capturing
graph invariance. (11) tackled the challenge of learning causal graphs involving latent variables,
which are derived from a mixture of observational and interventional distributions with unknown
interventional objectives. To mitigate this issue, the study proposed an approach leveraging a Ψ-
Markov property. (1) introduced a randomized algorithm, featuring p-colliders, for recovering the
complete causal graph while minimizing intervention costs. Additionally, (2) presented an adaptable
method for causality detection, which notably benefits from various types of interventional data and
incorporates sophisticated neural architectures such as normalizing flows, operating under continuous
constraints. However, these methods adopt a fixed GNN architecture in the optimization process,
neglecting the role of architectures in causal learning on graphs. In contrast, in this paper, we focus
on handling distribution shifts in the graph architecture search process from the causal perspective by
discovering the causal relationship between graphs and architectures.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

REFERENCES

[1] Raghavendra Addanki, Shiva Kasiviswanathan, Andrew McGregor, and Cameron Musco.
Efficient intervention design for causal discovery with latents. In International Conference on
Machine Learning, pages 63–73. PMLR, 2020.

[2] Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and
Alexandre Drouin. Differentiable causal discovery from interventional data. Advances in Neural
Information Processing Systems, 33:21865–21877, 2020.

[3] Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming
Huang. Rethinking graph neural architecture search from message-passing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6657–6666,
2021.

[4] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang
Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-
distribution generalization on graphs. Advances in Neural Information Processing Systems,
35:22131–22148, 2022.

[5] Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, and Jian Tang. Debiasing graph neural
networks via learning disentangled causal substructure. In NeurIPS, 2022.

[6] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search.
In International joint conference on artificial intelligence. International Joint Conference on
Artificial Intelligence, 2021.

[7] Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph
neural architecture search. In International Conference on Machine Learning, pages 7968–7981.
PMLR, 2022.

[8] Chaoyu Guan, Xin Wang, and Wenwu Zhu. Autoattend: Automated attention representation
search. In International conference on machine learning, pages 3864–3874. PMLR, 2021.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[10] Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. Reinforcement
learning for neural architecture search: A review. Image and Vision Computing, 89:57–66,
2019.

[11] Amin Jaber, Murat Kocaoglu, Karthikeyan Shanmugam, and Elias Bareinboim. Causal discovery
from soft interventions with unknown targets: Characterization and learning. Advances in neural
information processing systems, 33:9551–9561, 2020.

[12] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. arXiv preprint arXiv:2202.07987, 2022.

[13] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. Advances in Neural Information Processing Systems,
35:11828–11841, 2022.

[14] Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let
invariant rationale discovery inspire graph contrastive learning. In ICML, pages 13052–13065,
2022.

[15] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In Proceedings of the 28th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2022.

[16] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

[17] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural networks and learning
systems, 2021.

[18] Jovana Mitrovic, Brian McWilliams, Jacob C Walker, Lars Holger Buesing, and Charles
Blundell. Representation learning via invariant causal mechanisms. In ICLR, 2020.

[19] Judea Pearl. Causality. Cambridge university press, 2009.

[20] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016.

[21] Yijian Qin, Xin Wang, Ziwei Zhang, Pengtao Xie, and Wenwu Zhu. Graph neural architecture
search under distribution shifts. In International Conference on Machine Learning, pages
18083–18095. PMLR, 2022.

[22] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
conference on machine learning, pages 2902–2911. PMLR, 2017.

[23] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui.
Towards out-of-distribution generalization: A survey. arXiv:2108.13624, 2021.

[24] Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal
attention for interpretable and generalizable graph classification. Proceedings of the 28th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2022.

[25] Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and
Xiangnan He. Unleashing the power of graph data augmentation on covariate distribution shift.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[26] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for
graph classification. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 2091–2100, 2021.

[27] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. International Conference on Learning Representations, 2022.

[28] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022.

[29] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2021.

[30] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022.

[31] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[32] Yang Yao, Xin Wang, Yijian Qin, Ziwei Zhang, Wenwu Zhu, and Hong Mei. Data-augmented
curriculum graph neural architecture search under distribution shifts. 2024.

[33] Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. beta-darts: Beta-
decay regularization for differentiable architecture search. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 10864–10873. IEEE, 2022.

[34] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal interven-
tion for weakly-supervised semantic segmentation. NeurIPS, pages 655–666, 2020.

[35] Zeyang Zhang, Ziwei Zhang, Xin Wang, Yijian Qin, Zhou Qin, and Wenwu Zhu. Dynamic
heterogeneous graph attention neural architecture search. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[36] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations, 2016.

11

	Algorithm
	Reproducibility Details
	Definition of Search Space
	Datasets Details
	Detailed Hyper-parameter Settings

	Deeper Analysis
	Supplementary Analysis of the Experimental Results
	Dynamic Training Process and Convergence
	Complexity Analysis
	Time complexity analysis
	Parameter complexity analysis

	Training Efficiency
	Hyper-parameters Sensitivity

	More comparision with OOD GNN
	Case study
	Related Work
	Graph Neural Architecture Search
	Graph Out-of-Distribution Generalization
	Causal Learning on Graphs

