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A Notation

Let X be the data space, Z be the latent space, ⇥ be the parameter space. For a given neural network
architecture f and a parameter vector ✓ 2 ⇥, f✓ is a function

f✓ : X ! Z (1)
The discrete set C = {ci}i=1,...,C of classes induces a partition of the points in the data space. A
dataset is a collection of data point-class pairs (x, c) 2 X ⇥ C.

D = {(xi, ci)}i=1,...,D (2)
and it is itself partitioned by the classes into C sets

Dc = {(x0
, c

0) 2 D|c0 = c} ⇢ D 8c 2 C. (3)
We assume these sets always to contain at least one element Dc 6= ; and we use the notation |Dc| to
refer to their cardinalities. In the metric learning setting, instead of enforcing properties of a single
data point, the goal is to enforce relations between data points. Thus we will often make use of pairs
pij = ((xi, ci), (xj , cj)) 2 D2, specifically we use the terms

pij is positive pair if ci = cj (4)
pij is negative pair if ci 6= cj . (5)

To ease the later notation we will consider the trivial pairs composed by a data point with itself. We
then define the positive set and negative set, and compute their cardinalities, respectively

D2
pos := {p 2 D2 such that p is positive} |D2

pos| =
X

c2C
|Dc|2 (6)

D2
neg := {p 2 D2 such that p is negative} |D2

neg| =
X

ci,cj2C2

s.t. ci 6=cj

|Dci ||Dcj | (7)

A common trick in metric learning is to introduce a margin m 2 R+. The margin induces a further
partition of the D2

neg set into pairs with close or far embeddings. For any pair pij = ((xi, ci), (xj , cj))
we describe the pair as being

inside the margin if kf✓(xi) � f✓(xj)k  m (8)
outside the margin if kf✓(xi) � f✓(xj)k > m (9)
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irrespective of the classes ci and cj . We can make use of this definition to consider only the pairs
that have a non-zero loss. From this logic, it is convenient to define the set D2

neg inside := {p 2
D2

neg inside the margin}.

The target, or label, is the value that encodes the information we want to learn. In classical settings,
we have one scalar for each data point: a class for classification, a value for regression. In our setting,
we consider a target yij 2 R for every pair pij 2 D2. With this notation in mind, we can continue to
define the contrastive loss.

B Contrastive Loss

Recall the definition of the contrastive loss [1]

Lcon(✓) =
1

2
kf✓(xa) � f✓(xp)k2 +

1

2
max

�
0, m � kf✓(xa) � f✓(xn)k2

�
, (10)

where f is a network with parameters ✓ and xp is a data point the same class as the anchor xa and
different from the negative data point xn. The loss over the whole dataset is then informally defined
as Lcon(✓; D) = ED[Lcon(✓)], where the expectation is taken over tuples (xa, xp, xn) satisfying the
positive and negative constrains. This definition is intuitive and compact, but not formal enough to
show that the contrastive loss is in fact an unnormalized log posterior. The main issue is the explicit
notation for positive xp and negative xn, which at first glance seems innocent, but for later derivations
becomes cumbersome. Instead, we express the loss in an equivalent but more verbose way.

In order to understand that we are doing nothing more than a change in notation, it is first convenient
to express Eq. 10 as

Lcon(✓) =

8
<

:

1
2kf✓(xi) � f✓(xj)k2 if the pair pij is positive
0 if the pair pij is negative and outside the margin
m � 1

2kf✓(xi) � f✓(xj)k2 if the pair pij is negative and inside the margin
,

(11)

which reveals the three cases of the per-observation contrastive loss. Notice that, up to a neglectable
additive constant, all cases shares the same form of being scalar multiples of a distance between the
two embeddings zi = f✓(xi) and zj = f✓(xj). This allows us to combine the three scenarios into a
single-case per-observation contrastive loss, parametrized by a scalar y 2 R, as

Ly : Z2 �! R

zi, zj 7�! 1

2
ykzi � zjk2 (12)

and we later entrust the distinction between the three scenarios, as in Eq. 11, to the scalar y. Although
it is important to define this loss for a general target y 2 R (we will interpret it as a Von-Mises-Fisher
concentration parameter  in Appendix D), practically we will make use of the specific instances
y = yij 2 R with the target values defined for every data indexes i and j as

yij :=

8
><

>:

1
|D2

pos|
if the pair pij is positive

0 if the pair pij is negative and outside the margin
� 1

|D2
neg|

if the pair pij is negative and inside the margin
. (13)

We define the contrastive loss over the entire dataset L( ; D) : ⇥ ! R as a sum over all pairs of the
per-observation contrastive loss (12) with targets (13)

L(✓; D) :=
X

pij2D2

Lyij (f✓(xi)| {z }
zi

, f✓(xj)| {z }
zj

). (14)

Notice that we slightly overload the notation L and Ly for the dataset loss and the per-observation-loss,
respectively.
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Expanded expression. In order to better highlight the equivalence, it may be useful to express the
loss explicitly using all the previous definitions.

L(✓; D) =
X

pij2D2

Lyij (f✓(xi), f✓(xj)) (15)

=
X

pij2D2

1

2
yijkf✓(xi) � f✓(xj)k2 (16)

=
X

pij2D2
pos

1

2

1

|D2
pos|

kf✓(xi) � f✓(xj)k2 +
X

pij2D2
neg inside

�1

2

1

|D2
neg|

kf✓(xi) � f✓(xj)k2 (17)

=
1

|D2
pos|

X

pij2D2
pos

1

2
kf✓(xi) � f✓(xj)k2 � 1

|D2
neg|

X

pij2D2
neg inside

1

2
kf✓(xi) � f✓(xj)k2 (18)

The scaling factor 1
|D2

pos|
for positives and 1

|D2
neg|

for negatives, together with the sum over pairs, leads
to a per-type average. In this sense, we can informally say that L(✓) = E[Lcon(✓)] under a distribution
that assigns equal probabilities of a pair being positive or negative. We highlight that scaling is key in
order to ensure positive definiteness in Proposition F.3.

B.1 Minibatch

In the previous Section, we defined the contrastive loss for the entire dataset (14). However, in
practice it is approximated with minibatching. This approximation induces a bias that we can correct
by simply adjusting the target yij as in Eq. 20.

Minibatching recap. When dealing with a huge number of identically distributed data, it is common
to assume that a big enough arbitrary subset will follow the same distribution and thus have the same
properties, specifically we assume the expected value to be similar ES [f(s)] ⇡ ES0 [f(s)]. The idea
of minibatching relies on this to approximate a sum over a set S with a scaled sum over a subset
S 0 ✓ S ,

X

s2S
f(s) ⇡ |S|

|S 0|
X

s2S0

f(s) (19)

where S = D and S 0 is the set of data points in the minibatch.

Minibatching contrastive. Conversely, in the constrastive setting, we need to consider a subset of the
pairs (rather than single observations), i.e. S = D2. In practice this subset will not be representative
of the positive and negative ratio, thus we need a different scaling to account for that. This process can
be viewed as taking two independent minibatches at the same time, one representative of the positives
and one of the negatives. This intuition is formalized by the following Definition and Proposition.

Definition. Consider a minibatch set of pairs B ✓ D2 and its partition B = Bpos [ Bneg in positives
Bpos ✓ D2

pos and negatives Bneg ✓ D2
neg, then we can define a new scaled target as

y
B
ij :=

8
><

>:

|B|
|D2||Bpos| if the pair pij is positive
0 if the pair pij is negative and outside the margin
� |B|

|D2||Bneg| if the pair pij is negative and inside the margin
(20)

and so we can properly approximate the loss by minibatching positives and negatives independently
Proposition B.1. Assume that the positives in the batch are representative of the positives in the

whole dataset, and similarly for the negatives, i.e. ED2
pos

[Ly] ⇡ EBpos
[Ly] and ED2

neg
[Ly] ⇡ EBneg

[Ly].
Then the loss, as defined in Eq. 14, can be approximated by using the target in Eq. 20 with

L(✓; D) ⇡ |D2|
|B|

X

pij2B
LyB

ij
(f✓(xi), f✓(xj)) (21)

Proof. The equality is proven by applying the logic of Eq. 19 two times independently, once for the
positive pairs with Bpos = S 0 ✓ S = D2

pos and once for the negatives with Bneg = S 0 ✓ S = D2
neg
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and then rearranging the terms

L(✓; D) =
X

pij2D2

Lyij (f✓(xi), f✓(xj)) (22)

=
X

pij2D2
pos

Lyij (f✓(xi), f✓(xj)) +
X

pij2D2
neg

Lyij (f✓(xi), f✓(xj)) (23)

⇡
|D2

pos|
|Bpos|

X

pij2Bpos

Lyij (f✓(xi), f✓(xj)) +
|D2

neg|
|Bneg|

X

pij2Bneg

Lyij (f✓(xi), f✓(xj)) (24)

=
|D2|
|B|

0

@ |D2
pos|

|D2|
|B|

|Bpos|
X

pij2Bpos

Lyij (f✓(xi), f✓(xj)) +
|D2

neg|
|D2|

|B|
|Bneg|

X

pij2Bneg

Lyij (f✓(xi), f✓(xj))

1

A

(25)

=
|D2|
|B|

0

@pos%D2

pos%B

X

pij2Bpos

Lyij (f✓(xi), f✓(xj)) +
neg%D2

neg%
B

X

pij2Bneg

Lyij (f✓(xi), f✓(xj))

1

A

(26)

=
|D2|
|B|

0

@
X

pij2Bpos

LyB
ij

(f✓(xi), f✓(xj)) +
X

pij2Bneg

LyB
ij

(f✓(xi), f✓(xj))

1

A (27)

=
|D2|
|B|

X

pij2B
LyB

ij
(f✓(xi), f✓(xj)) (28)

where pos% and neg% are the percentage of respectively positives and negatives in a given set,
indicated in the subscript.

We highlight that this scaling is linear, and thus is reflected in both first and second-order derivatives.
This will later become important for scaling the Hessian.

C Normalization layer and Von Mises–Fisher

It is common in metric learning to add a normalization layer at the end of the neural network
architecture. This, besides improving performances, has an interesting geometric interpretation.
Moreover, happens to be fundamental in order to interpret the loss in a probabilistic way, and
consequently to apply the Laplace approximation in a meaningful way.

Adding an l
2-normalization layer is a practical way to enforce that all outputs lie on the unit sphere.

In other words, we are assuming our latent manifold to be

Z := S
Z ⇢ RZ+1

. (29)

We can generalize the concept of Gaussian to the unit sphere. Start from a normal distribution with
isotropic covariance �

2I and mean µ. Conditioning on kzk = 1 leads to a distribution on S
Z , the so-

called von Mises–Fisher distribution N S . More succinctly, the restriction of any isotropic multivariate
normal density to the unit hypersphere, gives a von Mises-Fisher density, up to normalization.

N S(z|µ, ) ⇠ P(z) = ce
� kz�µk2

2 (30)

where, importantly, the normalization constant c 2 R only depends on  and not on µ. The
von Mises-Fisher distribution is parametrized with a directional mean µ and a scalar concentration
parameter , which can be interpreted as the inverse of an isotropic covariance  = 1

�2 .

Being both µ and z of the unitary norm, the norm kz �µk2 can be more efficiently computed through
the scalar product hz, µi, that is the reason it is also called Arccos distance. Moreover, we highlight
that on the unit sphere, the equivalence

kz � µk2 = 2 � hz, µi = 4 � kz + µk2 (31)
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holds. This will be key in proving the equivalence of the probabilistic setting from Eq. 44 to Eq. 45.

Parameters estimators. Having access to N samples drawn from a Gaussian distribution with
unknown mean and variance, it is common to compute an empirical estimate of such parameters.
Various estimators exists, each satisfying different properties like being unbiased [3].

In a similar fashion, for Von-Mises-Fisher distributions we make use of two empirical estimators Sra
[9] of the parameters µ and  = 1

�2 . We compute the empirical mean direction

µ̄ =
µ

R̄
, R̄ = kµk, µ =

1

N

NX

i=0

zi, (32)

from these samples and the approximate concentration parameter

̄ =
R̄(D � R̄

2)

1 � R̄2
. (33)

D Probabilistic view

In the metric learning framework, a dataset D plays two very different roles at the same time. This
happens in the same spirit as, in electrostatics, a charged particle at the same time generates an
electric field and interact with the existing electric field. This subtle difference, although being
neglectable in the classic non-Bayesian setting, is conceptually important in the probabilistic setting.
Thus, for now, we assume to be given a generating dataset DG and an interacting dataset DI . Only
after the derivations, we will set them to be equal.

For some fixed value  > 0, each data point x 2 X induces two Von Mises-Fisher distributions on
the latent space

P��(z|x, ✓) ⇠ N S(z|f✓(x), ) (34)

P��(z|x, ✓) ⇠ N S(z| � f✓(x), ) (35)

one centered in the embedding point f✓(x) and one centered in the antipodal point �f✓(x). It is
convenient to explicit the densities of these two distributions, according to Eq. 30

P��(z|x, ✓) = c exp

✓
�

kz � f✓(x)k2

2

◆
(36)

P��(z|x, ✓) = c exp

✓
�

kz + f✓(x)k2

2

◆
. (37)

<latexit sha1_base64="8BAGZAeRiDqePi/qQHiTwoVifK4=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXinosevFYwX7AdinZNNuGZpMlmRXL0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrW9sbhW3Szu7e/sH5cOjtlGppqxFlVC6GxLDBJesBRwE6yaakTgUrBOOb2d+55Fpw5V8gEnCgpgMJY84JWAlP+r3YMSAVJ/O++WKW3PnwKvEy0kF5Wj2y1+9gaJpzCRQQYzxPTeBICMaOBVsWuqlhiWEjsmQ+ZZKEjMTZPOTp/jMKgMcKW1LAp6rvycyEhsziUPbGRMYmWVvJv7n+SlE10HGZZICk3SxKEoFBoVn/+MB14yCmFhCqOb2VkxHRBMKNqWSDcFbfnmVtC9q3mWtfl+vNG7yOIroBJ2iKvLQFWqgO9RELUSRQs/oFb054Lw4787HorXg5DPH6A+czx/KdZDx</latexit>

f✓(x)
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f✓(x)

<latexit sha1_base64="RHwJTs4WZHA2nLQPUdaymHdVZx0="></latexit>

P��(z|x, ✓)
<latexit sha1_base64="VennvU1pd1S7BFxyflSj5Fh1ljA="></latexit>

P��(z|x, ✓)

Figure 1: Representation of the Von Mises-Fisher densities P�� and P�� in the one-dimensional
unit circle Z = S1. Intuitively, the distribution corresponding to an attractive force is supported near
the embedding z = f✓(x), while the distribution corresponding to a repulsive force is supported far
from the embedding, i.e. close to the antipodal z = �f✓(x). The higher the value of  is, the higher
the precision, the lower the variance and the narrower the support.

6



The generating dataset DG induces a distribution Pc
Z 2 �(Z) on the latent space for each class

c 2 C defined by

Pc
Z(z|DG, ✓) =

c

|DG|
Y

(xj ,cj)2DG
s.t. cj=c

P��(z|xj , ✓)
Y

(xj ,cj)2DG

s.t. cj 6=c

P��(z|xj , ✓) (38)

that is a product of one attractive term P�� for all anchor points of the same class, times a repulsive

term P�� for all anchor points of different classes. In the same spirit as the product of Gaussian
densities is a Gaussian density, we can show that Pc

Z is a Von Mises-Fisher distribution itself, the
precision of which is the sum of the precisions. This implies that the normalization constant only
depends on  for this distribution as well.

Having access to a likelihood in the latent space, the interacting dataset likelihood is then classically
defined as the product

P(DI |DG, ✓) =
Y

(xi,ci)2DI

Pci
Z (z|DG, ✓)

��
z=f✓(xi)

(39)

Using the definition in Eq. 38 and rearranging the terms, we can rewrite this likelihood in extended
form as

P(DI |DG, ✓) = c̄

Y

pij2DI⇥DG

s.t. pij is positive

P��(z|xj , ✓)
��
z=f✓(xi)

Y

pij2DI⇥DG

s.t. pij is negative

P��(z|xj , ✓)
��
z=f✓(xi)

(40)

Setting the generating and interacting dataset to be the same, we can define the constrastive learning
dataset likelihood as

P(D|✓) := P(DI |DG, ✓)
��
DI=DG=D (41)

D.1 Equivalence of the two settings

The contrastive term for a single pair is equivalent to the negative log-likelihood of a von Mises-Fisher
distribution, up to additive constants. Specifically, a positive target y =  > 0 is related to the
attractive term P��

L(f✓(xe), f✓(xa)) =
1

2
kf✓(xe) � f✓(xa)k2 (42)

= log(c) � log P��(f✓(xe)|xa, ✓) (43)

while a negative target y = � < 0 is related to the repulsive term P��

L�(f✓(xe), f✓(xa)) = �1

2
kf✓(xe) � f✓(xa)k2 (44)

= �2 +
1

2
kf✓(xe) + f✓(xa)k2 (45)

= �2 + log(c) � log P��(f✓(xe)|xa, ✓). (46)

This equivalence is reflected in the equivalence between the contrastive loss and the dataset negative
log-likelihood, up to an additive constant. Expanding the definition of dataset likelihood we have

P(D|✓) =
Y

(xi,ci)2D

Pci
Z (f✓(xi)|D, ✓) (47)

= c̄

Y

pij2D2

s.t. pij is positive

P��(z|xj , ✓)
��
z=f✓(xi)

Y

pij2D2

s.t. pij is negative

P��(z|xj , ✓)
��
z=f✓(xi)

(48)

= c̄c
|D|


Y

pij2D2

s.t. pij is positive

exp

✓
�

kf✓(xi) � f✓(xj)k2

2

◆ Y

pij2D2

s.t. pij is negative

exp

✓
�

kf✓(xi) + f✓(xj)k2

2

◆

(49)
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Considering the log-likelihood

log P(D|✓) =
X

(xi,ci)2D

log Pci
Z (f✓(xi)|D, ✓) (50)

= log(c̄) +
X

pij2D2

s.t. pij is positive

log P��(z|xj , ✓)
��
z=f✓(xi)

+
X

pij2D2

s.t. pij is negative

log P��(z|xj , ✓)
��
z=f✓(xi)

(51)

= const() �
X

pij2D2

s.t. pij is positive

L(f✓(xi), f✓(xj)) �
X

pij2D2

s.t. pij is negative

L�(f✓(xi), f✓(xj))

(52)
= const() � L(✓; D) (53)

thus the loss is equal, up to an additive constant, to the negative log-likelihood and we can proceed
with the Bayesian interpretation. We highlight that const() is not dependent on ✓, and so is neglected
by the derivatives

r✓ log P(D|✓) = �r✓L(✓; D) (54)

r2
✓ log P(D|✓) = �r2

✓L(✓; D). (55)
This shows that contrastive loss minimization is indeed a likelihood maximization. We highlight that
this proof assumes margin m > 2, i.e. all negatives are inside the margin (because on the manifold
SZ the maximum distance is 2). Following the exact same structure, a proof can be done with
arbitrary m. The only difference would be in the definition Eq. 37, instead of a Von Mises-Fisher it
would be a discontinuous density and the normalization constants would depend on both  and m.

E Bayesian Metric learning

Having defined the dataset likelihood P(D|✓) conditioned to the parameter ✓, the parameter likelihood
P(✓|D) conditioned to the dataset is defined according to Bayes rule as

P(✓|D) =
P(D|✓)P(✓)

P(D)
. (56)

The aim of metric learning is to maximise such likelihood with respect to the parameter ✓, specifically,
it aims at finding the Maximum A Posteriori

✓
MAP 2 arg max

✓2⇥
P(✓|D). (57)

We highlight that the argmax is the same in log-scale
arg max

✓2⇥
P(✓|D) = arg max

✓2⇥
log P(✓|D) = arg max

✓2⇥
log P(D|✓) + log P(✓) (58)

where the log-prior takes the form of a standard l
2 regularize (weight decay), and, as shown before,

maximizing the log-likelihood log p(D|✓) is equivalent to minimizing of the contrastive loss L(✓; D).

However in the Bayesian setting, we do not seek a maximum, but we seek an expression of the
whole distribution P(✓|D), for which we use the notation q(✓). We do that by maximizing the
dataset likelihood P(D) by integrating out ✓ with P(D) = E✓⇠q[P(D|✓)]. This maximization is
then defined by

q
⇤(✓) := P⇤(✓|D) 2 arg max

P(✓|D)2G(⇥)
E✓⇠P(✓|D)[P(D|✓)] (59)

Notice that, limited by the ability to parametrize distributions, we aim at finding such a maximum on
q over only some subspace of distributions on ⇥. To this end, we consider the Laplace approximation,
which is one way of choosing a subspace of the parameter distribution. In Laplace post-hoc we restrict
ourselves to the space of Gaussians G(⇥) ⇢ �(⇥) centered in ✓

MAP. This is a strong assumption
since there are (1) no guarantees of p(✓|D) being Gaussian and (2) no guarantees of the distribution
to be centered in ✓

MAP. Online Laplace lifts the latter assumption, and only assumes the parameters
to be Gaussian distributed.

With the general Bayesian framework in mind, we now proceed to derive post-hoc and online Laplace.
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E.1 Laplace post-hoc

The Bayes rule

P(✓|D) =
P(D|✓)P(✓)

P(D)
(60)

implies that
r2

✓ log P(✓|D) = r2
✓ log P(D|✓) + r2

✓ log P(✓). (61)

Assuming an isotropic Gaussian prior P(✓) ⇠ N (✓|0, �
2
priorI) implies r2

✓ log P(✓) = ��
�2
priorI and

we have
r2

✓ log P(✓|D) = r2
✓ log P(D|✓) � �

�2
priorI (62)

= �r2
✓L(✓; D) � �

�2
priorI. (63)

Thus, we have two options:

• IF P(✓|D) is a Gaussian it holds 8✓
⇤ 2 ⇥

P(✓|D) ⇠ N (✓|µ = ✓
MAP

, ⌃ = (r2
✓L(✓⇤; D) + �

�2
priorI)

�1) (64)

• ELSE we can do a second order Taylor approximation of log P(✓|D) around ✓
MAP and we

have the approximation

P(✓|D) ⇠ N (✓|µ = ✓
MAP

, ⌃ = (r2
✓L(✓MAP; D) + �

�2
priorI)

�1) (65)

E.2 Laplace online

At every step t we have some Gaussian on the parameter space
q

t(✓) ⇠ N (✓|µ = ✓t, ⌃ = (Ht)
�1) (66)

Where the values ✓t and Ht are iteratively defined as
✓t+1 = ✓t + �r✓L(✓t; D) ✓0 = µprior (67)

and
Ht+1 = (1 � ↵)Ht + r2

✓L(✓t; D) H0 = �
�2
priorI (68)

For some learning rate � and memory factor ↵. This means that q
0(✓) is actually the prior distribution,

which is updated with the first and second order derivatives of the loss. The updates can be improved
by computing the derivatives not only in the single point ✓t, but rather on the expected value with ✓

following the distribution q
t. This leads to the update rules

✓t+1 = ✓t + �E✓⇠qt(✓)[r✓L(✓; D)] ✓0 = µprior (69)
and

Ht+1 = (1 � ↵)Ht + E✓⇠qt(✓)[r2
✓L(✓; D)] H0 = �

�2
priorI (70)

F Derivatives

In order to perform the Laplace based learning, we need to compute the second-order derivative of
the loss with respect to the parameter ✓. Let us start by fixing a target y 2 R and two data points
x1, x2 2 X and compute the second order derivative of one contrastive term Ly(f✓(x1), f✓(x2)).
This term can be viewed as a composition of functions, graphically represented as

x1

f✓
��������! z1

x2 ��������!
f✓

z2

Ly
��������! l (71)

To make the derivation cleaner is it useful to define, for a given function f✓ : X ! Z , and auxiliary
function F✓ : X 2 ! Z2 defined by F✓(x1, x2) := (f✓(x1), f✓(x2)). In this way the graphical
representation is

✓
x1

x2

◆ F✓
��������!

✓
z1

z2

◆ Ly
��������! l (72)
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and we can directly apply the chain rule. Before doing so, it is convenient to expand some derivatives
to express the Z2-size matrix as two Z-size submatrixes. The Jacobian of F evaluated in (x1, x2),
is an operator from the tangent space T✓⇥ to the tangent space T(z1,z2)Z2, which can be written in
block matrix form as

J✓F✓(x1, x2) =

✓
J✓f✓(x1)
J✓f✓(x2)

◆
(73)

and, similarly, the Hessian of Ly(z1, z2) can be written in block form as

r2
(z1,z2)

Ly(z1, z2) =

✓
r2

z1
Ly(z1, z2) rz1rz2Ly(z1, z2)

rz2rz1Ly(z1, z2) r2
z2

Ly(z1, z2)

◆
(74)

The Hessian of the per-observation Contrastive loss is then

r2
✓Ly(f✓(x1), f✓(x2)) = r2

✓Ly(F✓(x1, x2)) (75)
GGN⇡ J✓F✓(x1, x2)

> · r2
(z1,z2)

Ly(z1, z2) · J✓F✓(x1, x2) (76)

=

✓
J✓f✓(x1)
J✓f✓(x2)

◆>✓ r2
z1

Ly(z1, z2) rz1rz2Ly(z1, z2)
rz2rz1Ly(z1, z2) r2

z2
Ly(z1, z2)

◆✓
J✓f✓(x1)
J✓f✓(x2)

◆

(77)

where (z1, z2) = h✓(x1, x2) is the point where we have to evaluate the derivative wrt to z. Conse-
quently, the Hessian of the contrastive loss is

r2
✓L(✓; D) =

X

pij2D2

r2
✓Lyij (f✓(xi), f✓(xj)) (78)

=
X

pij2D2

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓ r2
zi

Lyij (zi, zj) rzjrzjLyij (zi, zj)
rzjrziLyij (zi, zj) r2

zj
Lyij (zi, zj)

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆

(79)

We now proceed to find the derivatives of the per-observation loss Ly wrt. the Neural Network
outputs zi = f✓(xi) and zj = f✓(xj). The derivatives varies based on the specific loss term that we
consider. In the following we derive the derivatives for Euclidean LE

y and Arccos LA
y cases.

Split choice. The GGN assumes access to a composition of two functions, the specific split choice
affects the result. As said in Appendix C it is common to have a normalization layer at the end of the
Neural Network. This can be schematized as follow

✓
x1

x2

◆
NN

��������!
✓

z1

z2

◆
`2-norm

����������!
✓ z1

kz1k
z2

kz2k

◆ distance
��������! l (80)

and this leads to (at least) two possible split choices, wheter we include the normalization layer in
the network left or right function, which we proceed to study further. We highlight that these two
split choices can be interpreted as different loss function or, equivalently, as different distance metric:
Euclidean or Arccos.

F.1 Euclidean distance

If we consider the `2-normalization layer as part of the Neural Network f

✓
x1

x2

◆
NN

��������!
✓

z1

z2

◆
`2-norm

����������!
✓ z1

kz1k
z2

kz2k

◆ distance
��������!
| {z }

LE
y

l (81)

then the loss Ly = LE
y = is the Euclidean distance defined as

LE
y (zi, zj) :=

1

2
ykzi � zjk2 (82)
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and it holds

r2
z1

LE
y (z1, z2) = r2

z2
LE

y (z1, z2) = yI (83)

rz1rz2LE
y (z1, z2) = rz2rz1LE

y (z1, z2) = �yI (84)

which leads to

r2
(z1,z2)

LE
y (z1, z2) = y

✓
I �I

�I I

◆
. (85)

We highlight that the matrix
✓

I �I
�I I

◆
is positive semi-definite, this will be useful in Proposition F.3.

Intuition. The overall Hessian expression can be further simplified by considering the matrix square
root.

r2
✓L(✓; D) =

X

pij2D2

r2
✓Ly(pij)(f✓(xi), f✓(xj)) (86)

=
X

pij2D2

yij

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓ I �I
�I I

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆
(87)

=
1

2

X

pij2D2

yij

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓ I �I
�I I

◆✓
I �I

�I I

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆
(88)

=
1

2

X

pij2D2

yij

✓
J✓f✓(xi) � J✓f✓(xj)
J✓f✓(xj) � J✓f✓(xi)

◆>✓
J✓f✓(xi) � J✓f✓(xj)
J✓f✓(xj) � J✓f✓(xi)

◆
(89)

=
X

pij2D2

yij (J✓f✓(xi) � J✓f✓(xj))
>

(J✓f✓(xi) � J✓f✓(xj)) . (90)

This expression give raise to two interpretations. (1) This formulation draws parallels with the GGN
approximation of the MSE loss. (2) It can be viewed as the squared distance of the jacobians product,
where the sign yij determines the sign. This is parallel with the contrastive loss

L(✓; D) =
1

2

X

pij2D2

yijkf✓(xi) � f✓(xj)k2 (91)

=
1

2

X

pij2D2

yij (f✓(xi) � f✓(xj))
>

(f✓(xi) � f✓(xj)) (92)

with the only difference being the Jacobian operator (and the 2 factor).

F.2 Arccos distance

If we consider the `2-normalization layer as part of the loss function Ly

✓
x1

x2

◆
NN

��������!
✓

z1

z2

◆
`2-norm

����������!
✓ z1

kz1k
z2

kz2k

◆ distance
��������!

| {z }
LA

y

l (93)

then the loss Ly = LA
y is the Arccos distance defined as

LA
y (zi, zj) :=

1

2
y

����
zi

kzik
� zj

kzjk

����
2

= y

✓
1 �

⌧
zi

kzik
,

zj

kzjk

�◆
(94)
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and it holds

r2
z1

LA
y (z1, z2) =

y

kz1k2

✓⌧
z1

kz1k
,

z2

kz2k

�
I +

z
>
1 z2 + z

>
2 z1

kz1kkz2k
� 3

⌧
z1

kz1k
,

z2

kz2k

�
z
>
1 z1

kz1k2

◆

(95)

rz2rz1LA
y (z1, z2) =

y

kz1kkz2k

✓
�I +

z
>
1 z1

kz1k2
+

z
>
2 z2

kz2k2
�
⌧

z1

kz1k
,

z2

kz2k

�
z
>
1 z2

kz1kkz2k

◆
(96)

r2
z2

LA
y (z1, z2) =

y

kz2k2

✓⌧
z1

kz1k
,

z2

kz2k

�
I +

z
>
1 z2 + z

>
2 z1

kz1kkz2k
� 3

⌧
z1

kz1k
,

z2

kz2k

�
z
>
2 z2

kz2k2

◆

(97)

F.3 Hessian approximations

In classification and regression tasks, the Generalized Gauss Newton approximation is sufficient to
guarantee positive definiteness, this is because the Hessian of the loss with respect to the Neural
Network output r2

zLy(z) is positive definite both for MSE and cross-entropy. The overall loss
in those cases is a sum over data points, without subtraction, and thus a positive matrix. For the
contrastive loss, on the other hand, positive pairs contribute positively while negative pairs contribute
negatively, and thus there is no guarantee in general. Moreover, with the Arccos loss there is not even
the guarantee that r2

zLA
y (z) is positive definite. Therefore, we consider three approximations of the

Hessian of the contrastive loss: full, positives, fixed, that ensures it to positive definite.

Full. The first possible approach is to forcefully ensure that the matrix only has positive values. This
is formalized by applying an elementwise ReLU, that is

⇥
r2

✓L(✓; D)
⇤
nm

⇡ max
�
0,
⇥
r2

✓L(✓; D)
⇤
nm

�
8n, m (98)

Positives. An alternative approach is to consider only the contribution of the positive pairs

r2
✓L(✓; D) ⇡

X

pij2D2
pos

r2
✓Lyij (f✓(xi), f✓(xj)) (99)

neglecting the contribution of the negative pairs
P

D2
neg

. This approximation will be far from the truth
and there is no theoretical justification. This approximation strategy is inspired by Shi and Jain [8],
which only uses positive pairs to train the network responsible for predicting the variance.

Fixed. The third approach is to consider the contrastive term as a function of one data point at a time,
assuming the other fixed. This idea can be formalized by making use of the stop gradient notation: sg.
The per-observation contrastive Eq. 12 can be written as

Ly(z1, z2) =
1

2
Ly(sg[z1], z2) +

1

2
Ly(z1, sg[z2]). (100)

We highlight that, with this definition, the zero- and first-order derivative does not change, and
thus the loss and gradient are exactly the same as for the standard contrastive loss. However, the
second-order derivative looses the cross term

r2
(z1,z2)

Ly(z1, z2) =

✓
r2

z1
Ly(z1, z2) 0

0 r2
z2

Ly(z1, z2)

◆
(101)

and the Hessian of the loss can then be more compactly written as

r2
✓L(✓; D) =

X

pij2D2

r2
✓Lyij (f✓(xi), f✓(xj))

=
X

pij2D2

yij

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓r2
zi

Lyij (zi, zj) 0
0 r2

zj
Lyij (zi, zj)

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆

= 2
X

pij2D2

yij J✓f✓(xi)
>r2

zi
Lyij (zi, zj) J✓f✓(xi). (102)

Proposition F.1. Consider the full approximation. Using only the diagonal of the Hessian =)
positive definiteness.
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Proof. The eigenvalues of a diagonal matrix are exactly the values on the diagonal. Enforcing these
elements to be positive is equivalent to enforcing that all eigenvalues are positive. This implies the
positive definiteness of the matrix.

Proposition F.2. Consider the positives approximation. Euclidean loss =) positive definiteness.

Proof. Consider the Hessian of Eq. 99 and substitute the expression Eq. 85

r2
✓L(✓; D) ⇡

X

pij2D2
pos

r2
✓Lyij (f✓(xi), f✓(xj)) (103)

=
X

pij2D2
pos

yij

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓ I �I
�I I

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆
(104)

=
1

|D2
pos|

X

pij2D2
pos

✓
J✓f✓(xi)
J✓f✓(xj)

◆>✓ I �I
�I I

◆✓
J✓f✓(xi)
J✓f✓(xj)

◆
(105)

which is a sum of positive definite matrixes.

Proposition F.3. Consider the fixed approximation. Euclidean loss =) positive definiteness.

Proof. Consider the Hessian of Eq. 102 and substitute the expression Eq. 85

r2
✓L(✓; D) = 2

X

pij2D2

yij J✓f✓(xi)
>

J✓f✓(xi) (106)

= 2
X

xi,ci2D

X

xj ,cj2D
yij J✓f✓(xi)

>
J✓f✓(xi) (107)

= 2
X

xi,ci2D

0

@
X

xj ,cj2D
yij

1

A J✓f✓(xi)
>

J✓f✓(xi) (108)

= 2
X

xi,ci2D

 
|D2

pos(xi)|
|D2

pos(xi)|
�

|D2
neg inside(xi)|
|D2

neg(xi)|

!
J✓f✓(xi)

>
J✓f✓(xi) (109)

= 2
X

xi,ci2D

 
1 �

|D2
neg inside(xi)|
|D2

neg(xi)|

!

| {z }
�0

J✓f✓(xi)
>

J✓f✓(xi) (110)

where |D2
pos(xi)| is the number of positive pairs containing the point xi, and similarly for |D2

neg(xi)|
and |D2

neg inside(xi)|. The Hessian is then equivalent to a sum of positive definite matrixes multiplied
by a non-negative factor, and thus it is positive definite.

We highlight, as we can see from the last Proposition’s proof, that if all the negatives are inside the
margin, the Hessian is exactly 0. The more negatives are outside the margin, the more positive the
Hessian is.

G Experimental details

In this section, we provide details on the experiments. We highlight that code for all experiments
and baselines are available at https://github.com/****/bayesian-metric-learning. (sup-
plementary)
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G.1 Datasets

FashionMnist. We use the standard test-train split for FashionMnist [15] and for MNIST [5]. We
normalize the images in the range [0, 1] and do not perform any data augmentation during training.
We train with RMSProp with learning rate 10�3 and default PyTorch settings, and with exponential
learning rate decay with � = exp(�0.1). We use a memory factor of 0.0001 and maximum 5000
pairs per train step. We trained for 20 epochs.

CIFAR10. We use the standard test-train split for CIFAR [] and for SVHN []. We normalize the
images in the range [0, 1] and do not perform any data augmentation during training. We train with
RMSProp with learning rate 10�5 and default PyTorch settings, and with exponential learning rate
decay with � = exp(�0.1). We use a memory factor of 0.0001 and maximum 5000 pairs per train
step. We trained for 20 epochs.

CUB200. The CUB-200-2011 dataset [11] consists of 11 788 images of 200 bird species. The birds
are captured from different perspectives and in different environments, making this a challenging
dataset for image retrieval. We follow the procedure of Musgrave et al. [7] and divide the first 100
classes into the training set and the last 100 classes into the test set. In this zero-shot setting, the
trained models have not seen any of the bird species in the test set, and the learned features must
generalize well across species. Similarly to Warburg et al. [14], we use the Stanford Car-196 [4]
dataset as OoD data. The Car-196 dataset is composed of 16 185 images of 196 classes of cars. We
conduct a similar split as Musgrave et al. [7], and only evaluate on the last 98 classes. This constitutes
a very challenging zero-shot OoD dataset, where the model at test time needs to distinguish cars from
birds, however, the model has not seen any of the bird species at training time. We use imagenet
normalization and during training augment with random resized crops and random horizontal flipping.
We image 224x224 image resolution. We train with RMSProp with learning rate 10�7 and default
PyTorch settings, and with exponential learning rate decay with � = exp(�0.1). We use a memory
factor of 0.0001 and maximum 30 pairs per train step. We trained for 20 epochs.

LFW. We use the face recognition dataset LFW [2] with the standard zero-shot train/test split,
CUB200 as OoD data. It is challenging because of the high number of classes and few observations
per class. LFW [2] consists of 13 000 images of 5 749 people using the standard zero-shot train/test
split. One reason reliable uncertainties are important for face recognition systems is to avoid granting
access based on an erroneous prediction. An example of such failure happened with the initial release
of the Apple Face ID software, which failed to recognize underrepresented groups that were missing
or underrepresented in the training distribution [10]. Reliable uncertainties and OoD detection might
have mitigated such issues. We use imagenet normalization and during training augment with random
resized crops and random horizontal flipping. We image 224x224 image resolution. We train with
RMSProp with learning rate 10�7 and default PyTorch settings, and with exponential learning rate
decay with � = exp(�0.1). We use a memory factor of 0.0001 maximum 30 pairs per train step. We
trained for 200 epochs.

MSLS. We use standard zero-shot train/val/test split [13]. We image 224x224 image resolution. We
train with RMSProp with learning rate 10�7 and default PyTorch settings, and with exponential
learning rate decay with � = exp(�0.1). We use a memory factor of 0.0001 maximum 10 pairs per
train step. We trained for 200 epochs.

G.2 Model Architectures

For all experiments, we use a last-layer diagonal LA. Across all experiments, our networks fol-
low standard practices in image retrieval. For FashionMnist, the network is [conv2d(1,32),
relu, conv2d(32, 64), relu, maxpool2d(2), Flatten, Linear(9216)] and for Ci-
FAR10, the network is [conv2d(1,32), relu, conv2d(32, 64), relu, maxpool2d(2),
conv2d(64,64), relu, Flatten, Linear(9216)]. For CUB200 and LFW, we use a pre-
trained ResNet50 backbone followed by a Generalized-Mean pooling layer and a dimension-
preserving learned whitening layer (linear layer). The weight posterior is learned only for the
last layer
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G.3 Metrics

Evaluating the models’ uncertainty estimates is tricky. We propose four metrics that capture both
interpolation and extrapolation behaviors uncertainty estimates. To measure extrapolation behavior,
we measure the performance of out-of-distribution (OOD) detection and report Area Under Receiver
Operator Curve (AUROC) and Area Under Precision-Recall Curve (AUPRC). These metrics describe
the model’s ability to assign high uncertainty to observations it has not seen during training (e.g.,
we train a model on birds and use images of cars as out-of-distribution examples), and are often
used in unsupervised representation learning [6]. To measure interpolation behavior, we measure the
models’ ability to assign reliable uncertainties to in-distribution data. Similarly to Wang and Deng
[12], we measure the Area Under the Sparsification Curve. The sparsification curve is computed
by iteratively removing the observation with the highest variance and recomputing the predictive
performance (mAP@1). Lastly, for closed set datasets, we propose a method to compute Expected
Calibration Error (ECE) for image retrieval. This is done by sampling 100 latent variables zi from
the predicted latent distributions p(z|I). We then perform nearest neighbor classification on these
samples to obtain ci predictions. We use the mode as the model prediction and the consensus with
mode as the confidence, e.g., if they constitute 60 samples, then the prediction has 60% confidence.
We compare the estimated confidence with accuracy with

ECE =
NX

i

1

|Bi|
|acc(Bi) � conf(Bi)| , (111)

where we acc(Bi) and conf(Bi) is the accuracy and confidence of the i
th bin.

G.4 Details on baselines

If nothing else is stated we use the same architecture and training/evaluation code for all models. We
also release all baseline models.

• Deterministic: we train with the contrastive loss.
• MC dropout: we train with dropout between all trainable layers (except for the ResNet50

blocks). We use a dropout rate 0.2. Dropout was enabled during test time.
• Deep Ensemble: Each ensemble consists of 5 models, each initialized with different seeds.
• PFE: We add an uncertainty module that learns the variance. The rest of the model is

frozen during training and initialized with a deterministically trained model. The uncertainty
model consists of [linear, batchnorm1d, relu, linear, batchnorm1d]. We ex-
perimented with the last batch normalization (BN) layer sharing parameters or just a standard
BN layer. We found the former to work slightly better.

• HIB: We use the same uncertainty module as in PFE, and a kl weight of 10�4. We use 8
samples during training to compute the loss.
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