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A PRELIMINARIES FOR THE MATHEMATICAL TOOLS

A.1 THE DIFFERENTIAL GEOMETRY IN R"

We provide an in-depth discussion of our field construction which follows the introduction in Ap-
pendix A of Richter-Powell et al.| (2022)). Please refer to the work for more details. We first dis-
cussion the basic concept in the differential geometry for the introduction of differential form that
supports us to derive and prove our theorem in the paper.

We take a local coordinate chart for z € R"™ as ¢ = (x1,...,2,) and dz1,..,dz, denotes the
coordinate differentials, i.e. dz;(z) = z;, i € [n] = {1,...,n}, which is also the co-vector field
of the local coordinates. Note that we discuss R™ as an example and all the definition can be
extended for smooth manifold and well-defined but needs the construction of the local chart or other
mathematical manipulations. For more extensive introduction see|Do Carmo] (1998)); Morital (2001})).

Define the linear vector space **(R") for R™ as the space of the k-linear alternating map:

k times

——
p:R"x...R" = R. (17)

A Ek-linear alternating map ¢ is linear in each coordinate and satisfies the alternating property:

A(V1, .y Uiy U, Un) = —O(V1, -, Ugy ey Vg ey Up)e (18)

The basis of the space A¥(R™) can be denoted with the differentials by dz;, A --- A dx;,. The way
of the basis act on k-vectors, vy, ..., v € R"™ as:
1
dxi N+ Adxg, (v1, ..., 05) = o Z sgn(T)dzi, A- - -Adxi, (vr), - Vrk)) = det[dzi, (vs)]rsefr
" YeS,
(19)

where Sy, is a permutation for i1, ..., k.

More specifically, for y € A¥(R™) can be represented by the basis as:

X = Z Qi .. ipdTi, N ANdxy, = Za;dajl, (20)
I

11 <tg--<ip
where iy, . ..,i; € [n] and I = (i1, . ..,4) determining scalars a; and dz! = dx;, A -+ A dx;,.

The space of differential k-form A*(R™) (k-forms in the main content) is defined by the smooth
function wy : R" — Rasw € A¥(R") : R™ — AF(R"™):

w = Zwld:pI. Q21
I

Then the differential operator can be viewed as d : A°(R") — A} (R") as:

df@) =3 o/ (@) da;. 22)

The exterior derivative d : A¥(R™) — A¥*1(R™) is defined as a linear operator and can be calcu-
lated by:

dw(z) =Y dws Ada', (23)
I

where the calculating rules for the exterior product A for two forms w = Y, wrdz! and ¢« =
>~ tsdx’ can be derived by (with Eq. [19):

wAL= ZwILJd:EI/\de. 24)
1,0
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For the exterior derivative, an important property is dd = 0. It can be checked with the definition

Eq. and ai{;j = BZ{;M . It can be also extended to the general manifold M with the local chart
and t!

e similar proof.

The hodge operator * : A*¥(R™) — A"~*(R™) maps each k-form to (n — k)-form by functioning
as:

swy(dz!) = (=1)%9" Doy (da’), (25)
where T denotes the permutation (I, J) = (i1, ..., ik, J1, ---, Jn—k) ON [n]. We can also derive the
xk = (—l)k("fk) (26)

in R™ (the similar sign function result also holds in the general M). We can also define the codif-
ferential operator § : A¥(R™) — A"~F(R") as:

6= (—1)nHDFL 4 g« 27

Then for a vector field v = (v1, ..., v, ), we can represent it as 1-form v = Y _.* | v;dx;. Then the
divergence can be calculated as follows:

*d*v:*dZvi*dazi:*Zav%dfclA---/\dm‘n: Ovi (28)

n
)
T T;
i=1 i=1 Oz; i=1 Oz

where the equation holds with the fact dx; A dz; = 0.

Following the discussion above, we can also simply prove that our Eq. [3]is divergence free:
*d* v = *xdx xdp = (—=1)" xddp = 0, (29)

where r = (n — 1) for (n — 1)-form dy in R™.

There are various approaches to parameterize ;. One alternative involves directly parameterizing
using an antisymmetric matrix-valued function (Richter-Powell et al.|[2022) to characterize the anti-
symmetric property in hodge star and wedge product computation. Also, the codifferential operator
u = dv can also be employed to keep the properties required for v € A"~1(R"), and

v = xdiv. (30)

This form can be written as a vector representation with v and simplify the parameterization.

We also propose a specific example to explore the relationship between the divergence-free field
construction through the differential operator and the classic approach involving the curl operator
(vector potential in fluid simulation) to enforce divergence-free.

We take R3, ji = vydz + vydy + v.dz for v = (v, v, v,) and the differentials dX = (dz, dy, dz).

Then we can derive
_ (Ovy Oy % ov, ov, Ov, B B
v—(ay 8x>dz+<az ay)dm+(az é)Qc)dy—*oiu—(V><1/)d

= (curl v)-dX.

X
31

With Eq. 3] we can deduce that v = xdu is divergence-free. Additionally, it coincides with the
curl operator of the vector v, which happens to be a vector field in R®. Consequently, the curl of a
vector field possesses zero divergence (div o curl) in R3. This conclusion is frequently utilized in
simulations, known as the vector potential design (Elcott et al. [2007a; |[Chang et al.l |2022), where
the divergence-free field construction leverages curl operator. However, for the general manifold,
it might be tricky to define each “curl” operator and the classical vector potential can not even be
simply designed as a vector, while the differential operator computation for the divergence-free field
construction can still work. We will next focus on the calculation of *d operator for the divergence-
free parameterization.

18



Under review as a conference paper at ICLR 2025

A.2 INTRODUCTION TO THE CLOSEST POINT METHOD

We also discuss some preliminaries for the Closest Point Method. We follow the introduction in
King et al.|(2023). For more details, please refer to King et al. (2023). Consider S embedded in R3.
The Closest Point Method utilizes a closest point surface representation, which is a mapping from
x € R3 to the point cp(x) € S. The point cp is defined as the closest point on S to z in Euclidean
distance, i.e.

cp(z) = argmin, ||z — y||. (32)
For the smooth surfaces, cp is unique and well-defined in a sufficiently narrow tubular neighborhood
N (8§ c R3 surrounding S (Marz & Macdonald, [2012) as an embedding in R3, which can be
formally described by:

N(8) = {z € Rlllz — ep(a)]| < 7}, (33)
where 7 is called the tube-radius. The method is designed for solving PDE on the surface. The
former definition enables us to formulate an embedding PDE on A/ (S), whose solution agrees with
the solution of the surface PDE at the points y € S. More specifically, let @(y) for y € S and
u(z) for x € N(S) denote the solution to the surface PDE and the embedding PDE, respectively.
Fundamentally, the Closest Point Method (CPM) is based on extending surface from S onto N'(S)
such that the data is constant in the normal direction of S. The task can be accomplished by the
closest point extension, i.e. we take u(z) = @(cp(z)) for all z € N (S). We can observe that the
CP extension assigns surface data at the closest point of x to x itself. Then we solve the embedding
PDE u(z) and constrain the point on the surface to derive the solution. This extension also allows
the differential forms on the surface to be replaced with the differential forms on the Cartesian
differential forms (Ruuth & Merriman, 2008)).

Hence, we can utilize the transform of differential forms on the surface to the differential forms on
the neighborhood, parameterizing with it to preserve the certain property (divergence-free). Then
we use the parametric functionals to solve u of PDEs on the Cartesian neighborhood and pull it
back to the surface with u(x) = @(cp(x)). Hence, our objective is to calculate the transformation
of differential form that is required in PDE. The basic differential operator transformations such as
exterior derivative, hodge star, wedge product d, *, A are showed in|Li et al.[{(2023a) and Tab. 2| We
next employ them to calculate the differential operator that we need to construct the corresponding
divergence free field.

B PROOFS AND DERIVATIONS

B.1 PROOF FOR THEOREM [3.1]

We first propose the exterior calculus rules on 3D in Tab. [2| where f(;) means the k-form of f. f
and g represent the scalar function and u, v, w represent vector functions.

Output type Wedge product A Interior product 7, Exterior derivative d Hodge star
0-form foy N gy = (f9) ) ww() = (u-w)o) NA *f3) = fo)
1-form f(o) AN U(l) = fU(l) iuW(g) = (W X u)(l) df(o) = (Vf)(l) *U(g) = U(l)
2-form U() A vVa) = (11 X V)(g) ’iuf(3) = fU(Q) dU(l) = (V X u)(2) *U(1) = W(2)
3-form 11(1) A V() = u - V)(3) /A dU(g) = (V . u)(g) *f(O) = f(3)

Table 2: Exterior calculus operators in 3D.

Based on |L1 et al.| (2023a)), we can further write down the exterior calculus with the Closest Point
Method via cp*. It allows us to emulate the operators on S (denoted with a superscript S) using the
operators on R? (denoted with a superscript R?):

CP-wedge product: cp*(a AS B) = (cp*a) AR’ (ep™B), (34a)
CP-interior product: cp*(ig,a) = 253 cp*a, (34b)
CP-exterior derivative: cp*(da) = d®’ cp*a, (34¢)
CP-hodge star: cp* (x5 ) ;(s) = in e (ep™@)lj(s), (344)
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where F = d(j o ¢p) denotes the Jacobian and CP-hodge star is only applicable directly at the
surface.

Proof for Theorem [3.1; We prove our theorem [3.1| by mathematical manipulations. As we state in
Sec. we need to construct v = *°dSo via o on the surface. Then we apply cp* on both side,
we derive
cp*v = ep* (x°d°0)
- (cp*d®o)

. 3 3
=in %% d¥ epto

5 (35
=iy *° V(ep*o) )

— V()

=V(epo) X n.

Then on the surface, we have (cp*v)(j(z)) = v(epoj(z)) = v(x) (the closest point for the surface
point is itself). Hence, we can derive

v = (V(ep*o)oj(x)) x n. (36)
Then for the vorticity function in 2D, it is defined by w = curl v as a scalar. For the surface, we

derive the vorticity function via the hodge decomposition. We need to derive the divergence-free
component of v (as “curl” on surfaces), which actually is *xdv. Then we can derive

cp*w = ep* (x°dSv)

- (cp*d®v)

. 3 3 *
=1in « 7 qR (cp 'U)(l) 37)
. R3 *
=in " (VX (cp'v))2)
. 3 *
=in %% (VX (cp v)) (1)
= V(ep™v) - n.
Similar with Eq. [33] we achieve
w=(Vxv) n. (38)
O

Note that on the surface, the rules work like ones in 2D: the stream and the vorticity functions are
both scalars (compared with the vector potential functions in R3 (Elcott et al.| [2007a; Chang et al.}
2022)). It can also be verified with the exterior calculus. If ¢ is not O-form but 1-form instead, we
can not derive v as 1-form but 0-form, which brings trouble for our neural representation.

Remark: We can next parameterize the o (with NN) and compute v and w by sampling points and
do calculus with Egs. and [38] The theorem provides a continuous and analytic formulation on
the vorticity function on the surfaces with the help of the Closest Point Method in Tab. [2] while
the classic method (Azencot et al.| [2014) needs to compute the discretized differential form with
the triangle meshes. CPM enables us to parameterize the surface field on the ambient space and
facilitate the neural representation.

C CONDITIONING PROPERTY OF OUR FRAMEWORK

For the generation problems, to verify the capability, we mirror the architecture of variation auto-
encoder. Let’s consider images as an example input, and our objective is to provide a model that re-
ceive the coordinate x and image conditions as an input and generate a divergence-free field of which
vorticity w resembles the corresponding conditioned images silhouette in visualization. Images g are
encoded by the parametric encoder with 6, and the features are provided with the reparameteriza-
tion trick z4(6q,q) ~ N(&(04,9),7(04,¢)) (Kingma & Welling, [2013), where £(6, q), 7(04, q) is
the mean and variance output by the encoder. The encoded feature z = (zg, Zqugz ), Where zgys
is auxiliary information such as the image class, is input together with positional embedding (like
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siren) from x. Then the decoder translates the feature to ¢ function and further derive w with The-
orem [3.1] The loss function consists of two parts: One is |lw(c (6, 2(6,))) — G(q)||2, where G is
mapping from the image color space to vorticity space. This term supervises the vorticity field to
shape as the silhouette of the corresponding images. The other term is Kullback-Leibler divergence
to constrain the distribution of z, to be normal, as given by ||£2 4+ 72 —log 72 + 1||2 with §, 7 € R,
where 7 is the dimension of z, and log operation is computed element-wise. With such design, we
could derive a simple conditioning framework, which enables more data prior into the simulation
via a more end-to-end manner. More details are also provided in Appendix [G} Our neural parame-
terization provides more direct and effective approach to involve the semantic information and show
more potential to combine with the advanced generation methods in 3D or language model.

Remark: The idea of the conditioning resonates with the eigen-decomposition of the fluid fields, as
discussed in|Cui et al.|(2021)). This method decomposes the vector field v into several divergence-
free basis u;, i.e. v = .., w;u; and u; is the eigenfunction of the Laplacian operator. It’s
noteworthy that w; can serve as the encoding z in our formulation. If we strengthen our neural
represented velocity field to become eigenfunctions of the Laplacian operator on surfaces, we can
derive similar decomposition weights through the conditioning process described above.

D PSEUDOCODE FOR ADVECTION

Algorithm 1 Advection for Neural Flow on Surfaces.

Input: Initial velocity field v, vorticity field wq, timestep size h, number of timesteps N, surface
S, training steps E, sample size k, learning rate o
Fitting the initial network weight 6y and non-zero harmonic term 7 with vy and wy.
forn =1to N do
0n+1 <~ an
fori=1to E do
Sample k point on S as sample set M.
Compute the stream function o(6,,41) on M.
Compute the velocity v(6,,), v(6,,+1) and vorticity w(6,,), w(#,+1) with Egs. [4] and [§ for
time n and n + 1 with o(60,,), 0(0,,41) and 7.
Construct loss function £y, , with Eq. |E] for M.
Ont1 < Onp1 —aVLy
end for
end for

n41
n41

E ADDITIONAL EXPERIMENTAL RESULTS

We include additional experiments to verify the performances of our method as a supplementary.
We provide the quantitative study for the flow on the inclined plane, the ablation and comparison on
the sphere jet flow and the convergence study for our flow on the implicit neural representation.

1.0000 ——

ee

0.9992 h=2e-3:functional; Error: le-6
“ —— h=5e-4:functional; Error: 1e-6
09990 —— h=5e-4:Rk4; Error: 5e-4
’ —— h=5e-4:INSR; Error: 1le-3

() (b)

0.9996

0.9994  —— h=2e-3:0urs; Error: 1e-6
h=>5e-4:ours; Error: 3e-6

Energy Error

Figure 7: Results for rotating sphere flow. (a) Qualitative results for rotating sphere. (b) Quantitative
results for energy preservation.
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E.1 RESULTS FOR ROTATING SPHERE FLOW

We verify the energy conservation property of our method by examining the rotating sphere flow, us-
ing an analytic solution as validated by |Azencot et al.|(2014). This approach allows us to rigorously
test our simulator’s reliability in preserving energy over time. The initial flow conditions combine a
Killing vector field with a rotated gradient of an eigenfunction of the Laplace-Beltrami operator on
the surface. Killing vector filed is a vector field whose Lie derivative of the metric vanishes, mean-
ing that the flow generated by the vector field remains constant in advection 2008). A
classic example on the sphere is the vector field (—y, x, 0) around z-axis. The eigenfunctions of the
Laplace-Beltrami operator on the sphere are well-known as Spherical Harmonics functions. We also
apply the rotation on them for better identification. Actually, this rotating sphere flow appears as if
the sphere with the vector field is rotating over time when observed from a fixed point. It can be
demonstrated that the energy of inviscid flow with these initial conditions remains constant, making
this configuration an excellent test case for energy conservation. As the results showed in Fig. [7] (a),
the results exhibit periodic patterns resembling the sphere rotating.

We also plot the energy change across the entire sphere, comparing it with Functional Fluid on
Surfaces (Azencot et al 2014), the classic method with Runge-Kutta (RK) time integrator and
Implicit Neural Spatial Representations (INSR) (Chen et al.,[2023)) with semi-Lagrangian advection
as the loss function. The results indicate that our method achieves a relative change in energy on the
order of 10~°, which is comparable to the results from the Functional Fluid on Surfaces method for
both larger and smaller time steps. Conversely, the RK method and INSR suffers from larger energy
losses, even for smaller time steps.

E.2 MORE RESULTS FOR THE TAYLOR VORTICES ON THE INCLINED PLANE

Time 0s Time 4s Time 11s Time 15s

Figure 8: Dynamic Results for Taylor vortices on inclined plane.

We include the qualitative results of our simulation dynamics for Taylor vortices in Fig. [§]and more
comparison results are provided in the supplementary video. We can observe a clear vortex pair and
the phenomenon of separation.

Methods Error Time Storage
PINN 4.16e5 9.6 h 568.1KB
INSR 3.45¢3 16.8 h 516.3KB
Small-E.S. 3.21e2 0.2h 535.6KB
HomoLBM 8.92el 3.8h 4.3MB
Small-E.S. 3.21e2 0.2h 535.6KB
Ours 1.71el 12.7h 521.3KB
GT N/A 23h 3964.0KB

Table 3: Quantitative results for the Taylor vortices on inclined plane. Error: mean square error
(MSE) averaged by 120 time steps with resolution of 400. The storage of our high resolution ground
truth is 7.6 times than ours.

We also include the quantitative results for the Taylor vortices in Tab. [3] together with more com-
parison with classic methods on the 2D plane for benchmark studies, including Stable Fluid (with
a resolution of 1024x1024) [1999) and high-order Lattice Boltzmann methods (not parallel
version with a resolution of 512x512) 2023b). The corresponding qualitative results are
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presented in Fig. The results demonstrate that our method enables high accuracy while show-
ing high memory-efficiency, compared with both classical and recent advanced methods under the
similar memory cost.

h

HHEE

GT (High-reso Ours Homo-LBM Stable Fluid
Functional Fluid)

Figure 9: Qualitative results for the Taylor vortices compared with 2D classical methods.

E.3 MORE COMPARISON RESULTS ON THE SPHERE JET FLOW

Eigen-Net Eigen-Net NSF

No divfree divfree No divfree INSR Ours er

Figure 10: Qualitative results for the sphere jet flow compared with eigen-net and NSF.

We compare with other surface field representation methods to verify the effectiveness of our pro-
posed framework. We try to adapt two methods into our framework. One is Koestler et al.
2022), which proposes a surface field representation via the eigenfunction of the Laplacian-
beltrami operator (eigen-net) on the surface and the other is Xue et al. [2023) that utilizes
the MLP and projection operator (NSF). We implement them on the sphere jet flow case for compar-
ison since the Laplacian-beltrami operator can be analytically computed by Spherical Harmonics.
To further verify the effectiveness of our field function design, for eigen-net, we implemented two
variations as ablations: one that incorporates our divergence-free design along with the covariant
derivative advection, and another that avoids our divergence-free approach in favor of the traditional
advection and divergence projection; for NSF we adopted the method without our divergence-free
design, as incorporating it would result in a configuration similar to our own framework, with the
primary distinction being the hyper-parameters of the MLP or siren. We show the quantitative results
in the Tab. @] and the corresponding qualitative results in Fig.

Both quantitative and qualitative results demonstrate that our proposed framework achieves higher
accuracy and memory-efficiency in the incompressible Euler flow simulation, compared with pure
eigen-net or NSF surface field representations. The ablation results also indicate that that our pro-
posed divergence-free field design framework significantly improves the accuracy of the eigen-net.
Ours avoid the divergence-free projection, which reduces the extra fitting error and cascading error
effects. The results also illustrate that our proposed divergence-free design is robust with the ways
of parameterization (MLP, siren or eigen-net).
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Methods Error Time Storage
Eigen-net without divergence-free design 6.82e6 13.5h 632.5KB
NSF without divergence-free design 9.76e4 12.8 h 501.3 KB
Eigen-net with divergence-free 1.13e3 16.7h 622.4KB
Ours 2.89¢2 16.5h 532.8KB

Table 4: Quantitative results for the sphere jet flow compared with eigen-net and NSF. Error: mean
square error (MSE) averaged by 100 time steps on 81924 mesh vertices.

Methods Error  Time  Storage
Elcott et al. 2007 1.27e4 6.8h 2643.0KB
Stable Fluid 8.62e5 0.2h 972.8KB
Small-E.S. 5.34e3  0.8h 583.8KB
Ours 2.89¢2 16.5h 532.8KB
GT N/A 83h 2643.0KB

Table 5: More Quantitative results for the sphere jet flow with classic methods.

We also include more results of classical solvers for reference, including Stable Fluid (with a reso-
lution of 256x256) (Staml |1999) and Elcott et al. (Elcott et al.||2007a) (using the same mesh as GT).
The quantitative results are shown in Tab. [5] and the qualitative results are presented in Fig.

The results show that our method achieves high performance and low energy dissipation compared
to classic methods. However, this improvement comes with the trade-off of higher time consumption
as discuss in Appendix

E.4 CONVERGENCE VERIFICATION FOR THE FLOW ON THE IMPLICIT REPRESENTED

SURFACES
Marching Cubes resolution Average steps of Crashing Storage
64 36.5 117.18 KB
128 534 768.32 KB
240 68.7 1123.15 KB
GT Mesh 88.6 1419.48 KB
Ours N/A 523.4 KB

Table 6: Time steps that the classic method (Azencot et al., 2014) with Marching Cubes on implicit
neural represented surfaces crashes. We repeat the process with 10 times and derive the averaged
results. However, ours can work well with the implicit neural representation.

For the case of implicit represented surfaces, as previously stated in the main context (Sec. [5.2)),
for the classical method it is not convergent, leading to non-referable results. To substantiate our
claim regarding non-convergence, we include a new Tab. [6 that lists the simulation crashing time
steps across different marching cube resolutions for the traditional methods. This data will offer
a quantitative perspective on the limitations of the classic methods in robustness. We also include
the reference qualitative results in the supplementary video to exhibit the simulation process and
describe the non convergence on different resolutions. The results demonstrate that our meshless and
end-to-end method can achieve high adaptability and robustness for the simulation on the implicit
neural representation, while the classical method fails in marching cube meshes and needs further
complex geometry processing schemes to improve the mesh quality.

E.5 ABLATION STUDIES FOR THE NETWORK AND TRAINING DESIGN
We also include the ablation studies on the network size and sample count on our sphere jet case.

The results are exhibited in Tab. [7]and Tab. [§] which indicate that our method is relatively insensitive
to these settings unless the width is extremely small.
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al.
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Figure 11: Qualitative results for the sphere jet flow compared with more classical methods.

Stable
Fluid

Network Size Error

4 layers, 128 2.89¢e2
4 layers, 256 2.21e2
4 layers, 64 4.57e2

Table 7: Ablation studies for network size for the sphere jet flow.

F DISCUSSIONS AND LIMITATIONS

F.1 DISCUSSIONS AND LIMITATIONS ON THE TOPOLOGY PROBLEMS

The first limitation is about the singularity problem. We don’t focus heavily on the singularity issues
related to topology, such as those highlighted by the Poincaré-Hopf Theorem, which is a complex
challenge. Our main interest lies in using neural approaches to simulate fluid dynamics and model
vortex dynamics on surfaces for visual effects (as described in Eq. [6), rather than dealing with
arbitrary vector fields. The scenes chosen in both |Azencot et al.|(2014)); |Ando et al.| (2015) (which
do not mention the issue) and ours typically maintain non-zero measure zero velocity and avoid
poles to simplify the analysis. We initialize the simulation with finite vorticity, which makes it
hard for advection to generate infinite vorticity (or singularities) within our settings. Furthermore,
we employ the stream and curl regularization to avoid extreme values in the singularity points and
preserve system stability. According to Sard’s theorem, the number of poles has zero measure in
our simple cases, we maintain a very small probability of sampling at the poles, which improves
the stability of the simulation. Though the velocity field near singularities will be underfitted and
approximated by the network, potentially leading to inaccuracies and numerical dissipation near the
“cyclone”, the overall results provide empirically reasonable visual effects, which is the primary
goal of our application.

To further validate the effectiveness of our regularization and sampling, we applied our framework
to fit the velocity (— sin(f), cos(¢)) on a sphere with spherical coordinates (1,6, ¢), which keeps a
singularity at the northern/southern pole ((1,0,0), (1,7, 0)). The errors and velocity magnitude are
shown in Fig. [I2] where we achieve the desired velocity pattern. Although some errors appear in the
initial epochs, they become negligible over time, which is sufficient for graphics and visual effects.

Training Samples (millions) Error

60 2.89¢2
40 3.12¢e2
80 2.792

Table 8: Ablation studies for sample number for the sphere jet flow.
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Figure 12: Qualitative results of the numerical studies (Velocity magnitude and error) for the con-
stant sphere flow. (Views from the northern and southern poles)

ours Ref. (Function Fluids on Surfaces)

Ours Ref. (Function Fluids on Surfaces)

Figure 13: Qualitative results for the sphere jet flow on the explicit torus and double torus.

Another problem related with the topology is the cohomology term. Our method is mainly adopted
for the topology for genius zero, where the velocity can be estimated by the stream function with-
out more consideration of the time-variant cohomology component (as stated in
Proposition 5 for the surfaces removing several poles). For the surface with high genius, we find
it insufficient for the time-invariant cohomology term to handle highly turbulent flow and generate
complex visual effects. The problem can be further addressed by incorporating the solver in
with the neural network, which will be our future work. However, only for the visual
effects, our method still performs well for the high genius surfaces and shows the correct jet flow
behavior compared to the reference classic method. We plot the results in Fig. [[3| with simple torus
and double torus cases with explicit torus and double torus meshes. They do demonstrate reasonable
visual effects on high-genus surfaces even without considering the time-variant cohomology.

F.2 DISCUSSIONS AND LIMITATIONS ON THE GEOMETRY PROBLEMS

As stated in Sec. [3.2] our method needs SDF for the flow on the implicit surfaces. This can pose
challenges when calculating normals for open surfaces. To overcome this, one can use an unsigned
distance field (UDF) to extend our framework to open surfaces, which is well applied in

et al.| (2020); [Yang et al.|(2023)); Long et al.| (2023)).

Moreover, in the practical scenarios, the non-smooth surface, imperfect SDF (common problems in
implicit neural representations such as (2021)) and the complex surfaces (like unoriented
surfaces) can also limit our performances. Noisy surfaces and normals introduce numerical viscosity,
slowing down the simulation. But fortunately, we show that they do not drive our simulation to
crash, as the neural representation provides smoother and more robust results (as demonstrated in
Appendix[E-4]with GT mesh data) compared to traditional methods. To further solve these issues, we
can construct smooth approximator and utilize a large number of samples from a smaller tube radius
(as described in Kmé et a!. @) for improved performance. Additionally, the orientation problem
is addressed in |King et al. and the extension for our method can be similarly constructed.
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F.3 DISCUSSIONS AND LIMITATIONS ON THE TIME AND MEMORY CONSUMPTION

Our method actually keeps large advantages at the memory consumption albeit with the increased
time requirements. The low memory usage is crucial for handling and analyzing high-resolution
data. For example, a 2D simulation at a 4096x4096 resolution requires about 200MB per frame,
resulting in considerable memory demands for extended simulations. Similarly, high-resolution
3D grid simulations consume even more memory. Although mesh-based simulations can be more
efficient, they encounter mesh quality issues, as shown in the robustness tests in Appendix [E.4]
The time cost remains high, as methods like siren or simple MLPs are too global and inefficient
for optimization, and inference sampling (particularly for implicit neural representations) is time-
consuming. To address the time consumption issue, a hybrid simulator to achieve both high speed
and performances is necessary. Fortunately, recent advances in hybrid representations (Miiller et al.,
2022; |[Huang et al.l 2023) have shown promising results in reducing training time from hours to
seconds while maintaining the expressiveness. Employing these more efficient representations hold
great promise for improvements of our method. In the inference time, a sampler (Sharp & Jacobson,
2022) with high efficiency can be adopted, which will provide huge saving for the inference time
with KD hierarchies.

G MORE IMPLEMENTATION DETAILS

We provide our implementation details for our numerical studies. Our experiments are all imple-
mented with Jax library (Bradbury et al., 2018)) on an NVIDIA GeForce RTX 3090 GPU.

Sphere Jet: We adopt the 4-layers MLP (for shaper simulation results compared with siren) with
128 units for our implementation. The learning rate is set with the exponential decay from le — 5
to le — 7 with 60000 steps and batch size 1000 for each time step. The time step is chosen as
5e — 2. The initialization is the same as |Azencot et al.|(2014) and the initial vorticity is kept for the
whole simulation time. For the comparison, INSR uses the siren function with 4-layers 128 units
for advection, projection and correction respectively. The learning rate is set as 1le — 6. For each
process, the siren iterates for 40000 steps with batch size 5000. For the original PINN, we adopt
the MLP with 4-layers 128 units. The loss function is to enforce the incompressible Euler equation
directly, as showed in Appendix A.3 of |Chen et al.|(2023). The learning rate is set by le — 5 with
60000 steps and batch size 2000.

Taylor vortices on inclined plane: We adopt 4-layer siren with 128 units representation to conduct
the positional encoding with the first layer frequency as 30. The time step is chosen as 5e — 3. The
initialization is set the same as |McKenzie| (2007), and we rotate the plane and make the normal be
(0.3,—0.5,0.8). The domain size is set [—, 7] with the periodic boundary condition. The time step
is set as 0.05. The learning rate is set with the piece-wise constant from le — 5 with a decay factor
0.1 on 40000 and 60000 steps for total 80000 steps and batch size 1000. For comparison, INSR
adopts the siren MLP with 4 layers and 128 units per layer for advection, projection and correction
respectively. The learning rate is set as 1e — 5. For each process, the siren iterates for 20000 steps
with batch size 1000. For the original PINN, we adopt MLP with 4 layers and 128 units. The loss
function consists of the governing equation part which is the same as the one in sphere jet case and
the periodic boundary condition part. The learning rate is set by 1le — 5 with 60000 iterations and
batch size 1000.

Rotating sphere flow: For the construction of o, we adopt 4-layer siren with 128 units represen-
tation (Sitzmann et al.l [2020) with the first layer frequency as 30. The learning rate is set with the
exponential decay from le —6 to 1e —8 with 40000 steps and batch size 1000 for each time step. The
time step is chosen as 5e — 4 and 2e — 3. The initialization of the velocity is set as the Killing field
(—y,x,0) with the rotated 4-degree Spherical Harmonics functions with order 4 and 5. For INSR
for our comparison, we adopt the siren function with 4-layers 64 units for advection, projection and
correction respectively. The learning rate is set as 5e — 4. For each process, the siren iterates for
10000 steps with batch size 1000.

Flow on the explicit meshes. We adopt a 4-layer siren with 128 units representation for both models
with the first layer frequency as 30. The learning rate is set with the exponential decay from le — 6
to 1le — 8 with 40000 steps and batch size 2400 for each time step. The time step is chosen as 5e — 2
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and 8e — 2 for the hand and spot respectively. The hand model is initialized by two vortices with the
geodesic 0.41 by |Crane et al.| (2013b) and the spot model is set with 0.3.

Flow on the implicit mesh. First, we adopt 4-layer siren with 256 units to reconstruct the im-
plicit neural representation of the SDF function based on |Sitzmann et al.| (2020) with the uniform
sampling. The in the simulation, we take the rejection rules in |Yang et al. (2021) to complete the
uniformly sampling for the simulation function and avoid the samples concentrating near the high
curvature area. The jet vortices are initialized by given two points on the mesh as an opposite pair.
Our simulation neural field is also implemented as 4-layer siren with 128 units representation with
the first layer frequency as 30. The learning rate is set with the exponential decay from le — 5 to
le — 7 with 40000 steps and batch size 1000 for each time step. The time step is set by 5e — 2 and
2e — 2 for Armadillo and Lucy respectively.

Flow with conditioning: We adopt the encoder consists of 2-layer feature extraction MLP to reduce
image data to a 32-dimension feature space; siren network to generate 128-dimensional feature
with the input position x as neural field representation and an one-hot class encoder for image
categorization. Note that the first layer frequency for the siren network above is also 30. The
decoder is a 2-layer MLP that transforms the concatenated features from the encoders to the stream
function o. Then following our Theorem 3.1} we can also derive the corresponding v and w taking
the derivative with respect to z. In the inference time 32-dimension random Gaussian vector and
the corresponding image class are input to concatenate with the positional encoding to generate the
field value at the spatial point. The learning rate for the training process is set with the exponential
decay from le — 4 to 1e — 5 with 400000 steps and batch size 1000. We map the color of the input
images to the vorticity function and try to make the velocity field preserving the vortices shape as
alphabets via Mean Least Square loss and KL loss.

Flow for Helmholtz decomposition: We adopt the atmosphere data (100-metre wind velocity) on
Jan, 2024 (Raoult et al.,2017). We adopt 4-layer siren with 128 units representation for both models
with the first layer frequency as 100. The learning rate is set with the exponential decay from le — 4
to le — 5 with 200000 steps and batch size 1000. We try to make our velocity results closer to the
given data and derive the divergence-free component, similar as Richter-Powell et al.| (2022).
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