
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A PRELIMINARIES FOR THE MATHEMATICAL TOOLS

A.1 THE DIFFERENTIAL GEOMETRY IN Rn

We provide an in-depth discussion of our field construction which follows the introduction in Ap-
pendix A of Richter-Powell et al. (2022). Please refer to the work for more details. We first dis-
cussion the basic concept in the differential geometry for the introduction of differential form that
supports us to derive and prove our theorem in the paper.

We take a local coordinate chart for x ∈ Rn as x = (x1, ..., xn) and dx1, .., dxn denotes the
coordinate differentials, i.e. dxi(x) = xi, i ∈ [n] = {1, ..., n}, which is also the co-vector field
of the local coordinates. Note that we discuss Rn as an example and all the definition can be
extended for smooth manifold and well-defined but needs the construction of the local chart or other
mathematical manipulations. For more extensive introduction see Do Carmo (1998); Morita (2001).

Define the linear vector space ∗k(Rn) forRn as the space of the k-linear alternating map:

ϕ :

k times︷ ︸︸ ︷
Rn × . . .Rn → R. (17)

A k-linear alternating map ϕ is linear in each coordinate and satisfies the alternating property:

ϕ(v1, . . . , vi, . . . , vj , . . . , vn) = −ϕ(v1, . . . , vj , . . . , vi, . . . , vn). (18)

The basis of the space Λk(Rn) can be denoted with the differentials by dxi1 ∧ · · · ∧ dxik . The way
of the basis act on k-vectors, v1, ..., vk ∈ Rn as:

dxi1∧· · ·∧dxik(v1, ..., vk) =
1

k!

∑
Υ∈Sk

sgn(Υ)dxi1∧· · ·∧dxik(vΥ(1), ..., vΥ(k)) = det[dxir (vs)]r,s∈[k],

(19)
where Sk is a permutation for i1, ..., ik.

More specifically, for χ ∈ Λk(Rn) can be represented by the basis as:

χ =
∑

i1<i2···<ik

ai1,...,ikdxi1 ∧ · · · ∧ dxik =
∑
I

aIdx
I , (20)

where i1, . . . , ik ∈ [n] and I = (i1, . . . , ik) determining scalars aI and dxI = dxi1 ∧ · · · ∧ dxik .

The space of differential k-form Ak(Rn) (k-forms in the main content) is defined by the smooth
function wI : Rn → R as w ∈ Ak(Rn) : Rn → Λk(Rn):

w =
∑
I

wIdx
I . (21)

Then the differential operator can be viewed as d : A0(Rn)→ A1(Rn) as:

df(x) =

n∑
i=1

∂f

∂xi
(x)dxi. (22)

The exterior derivative d : Ak(Rn) → Ak+1(Rn) is defined as a linear operator and can be calcu-
lated by:

dw(x) =
∑
I

dwI ∧ dxI , (23)

where the calculating rules for the exterior product ∧ for two forms w =
∑

I wIdx
I and ι =∑

J ιJdx
J can be derived by (with Eq. 19):

w ∧ ι =
∑
I,J

wIιJdx
I ∧ dxJ . (24)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the exterior derivative, an important property is dd = 0. It can be checked with the definition
Eq. 23 and ∂f2

∂xi∂xj
= ∂f2

∂xj∂xi
. It can be also extended to the general manifoldM with the local chart

and the similar proof.

The hodge operator ∗ : Ak(Rn) → An−k(Rn) maps each k-form to (n − k)-form by functioning
as:

∗wI(dx
I) = (−1)sgn(Υ)wI(dx

J), (25)

where Υ denotes the permutation (I, J) = (i1, ..., ik, j1, ..., jn−k) on [n]. We can also derive the

∗∗ = (−1)k(n−k) (26)

in Rn (the similar sign function result also holds in the generalM). We can also define the codif-
ferential operator δ : Ak(Rn)→ An−k(Rn) as:

δ = (−1)n(k+1)+1 ∗ d ∗ . (27)

Then for a vector field v = (v1, ..., vn), we can represent it as 1-form v =
∑n

i=1 vidxi. Then the
divergence can be calculated as follows:

∗d ∗ v = ∗d
n∑

i=1

vi ∗ dxi = ∗
n∑

i=1

∂vi
∂xi

dx1 ∧ · · · ∧ dxn =

n∑
i=1

∂vi
∂xi

, (28)

where the equation holds with the fact dxi ∧ dxi = 0.

Following the discussion above, we can also simply prove that our Eq. 3 is divergence free:

∗d ∗ v = ∗d ∗ ∗dµ = (−1)r ∗ ddµ = 0, (29)

where r = (n− 1) for (n− 1)-form dµ inRn.

There are various approaches to parameterize µ. One alternative involves directly parameterizing µ
using an antisymmetric matrix-valued function (Richter-Powell et al., 2022) to characterize the anti-
symmetric property in hodge star and wedge product computation. Also, the codifferential operator
µ = δν can also be employed to keep the properties required for ν ∈ An−1(Rn), and

v = ∗dδν. (30)

This form can be written as a vector representation with ν and simplify the parameterization.

We also propose a specific example to explore the relationship between the divergence-free field
construction through the differential operator and the classic approach involving the curl operator
(vector potential in fluid simulation) to enforce divergence-free.

We takeR3, µ = νxdx+ νydy+ νzdz for ν = (νx, νy, νz) and the differentials dX = (dx, dy, dz).
Then we can derive

v =

(
∂νx
∂y
− ∂νy

∂x

)
dz +

(
∂νy
∂z
− ∂νz

∂y

)
dx+

(
∂νx
∂z
− ∂νz

∂x

)
dy = ∗dµ = (∇× ν) · dX

= (curl ν) · dX.

(31)

With Eq. 3, we can deduce that v = ∗dµ is divergence-free. Additionally, it coincides with the
curl operator of the vector ν, which happens to be a vector field in R3. Consequently, the curl of a
vector field possesses zero divergence (div ◦ curl) in R3. This conclusion is frequently utilized in
simulations, known as the vector potential design (Elcott et al., 2007a; Chang et al., 2022), where
the divergence-free field construction leverages curl operator. However, for the general manifold,
it might be tricky to define each “curl” operator and the classical vector potential can not even be
simply designed as a vector, while the differential operator computation for the divergence-free field
construction can still work. We will next focus on the calculation of ∗d operator for the divergence-
free parameterization.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.2 INTRODUCTION TO THE CLOSEST POINT METHOD

We also discuss some preliminaries for the Closest Point Method. We follow the introduction in
King et al. (2023). For more details, please refer to King et al. (2023). Consider S embedded inR3.
The Closest Point Method utilizes a closest point surface representation, which is a mapping from
x ∈ R3 to the point cp(x) ∈ S . The point cp is defined as the closest point on S to x in Euclidean
distance, i.e.

cp(x) = argminy∈S∥x− y∥. (32)
For the smooth surfaces, cp is unique and well-defined in a sufficiently narrow tubular neighborhood
N (S) ⊂ R3 surrounding S (Marz & Macdonald, 2012) as an embedding in R3, which can be
formally described by:

N (S) = {x ∈ R|∥x− cp(x)∥ ≤ r}, (33)
where r is called the tube-radius. The method is designed for solving PDE on the surface. The
former definition enables us to formulate an embedding PDE on N (S), whose solution agrees with
the solution of the surface PDE at the points y ∈ S. More specifically, let ũ(y) for y ∈ S and
u(x) for x ∈ N (S) denote the solution to the surface PDE and the embedding PDE, respectively.
Fundamentally, the Closest Point Method (CPM) is based on extending surface from S onto N (S)
such that the data is constant in the normal direction of S. The task can be accomplished by the
closest point extension, i.e. we take u(x) = ũ(cp(x)) for all x ∈ N (S). We can observe that the
CP extension assigns surface data at the closest point of x to x itself. Then we solve the embedding
PDE u(x) and constrain the point on the surface to derive the solution. This extension also allows
the differential forms on the surface to be replaced with the differential forms on the Cartesian
differential forms (Ruuth & Merriman, 2008).

Hence, we can utilize the transform of differential forms on the surface to the differential forms on
the neighborhood, parameterizing with it to preserve the certain property (divergence-free). Then
we use the parametric functionals to solve u of PDEs on the Cartesian neighborhood and pull it
back to the surface with u(x) = ũ(cp(x)). Hence, our objective is to calculate the transformation
of differential form that is required in PDE. The basic differential operator transformations such as
exterior derivative, hodge star, wedge product d, ∗,∧ are showed in Li et al. (2023a) and Tab. 2. We
next employ them to calculate the differential operator that we need to construct the corresponding
divergence free field.

B PROOFS AND DERIVATIONS

B.1 PROOF FOR THEOREM 3.1

We first propose the exterior calculus rules on 3D in Tab. 2, where f(k) means the k-form of f . f
and g represent the scalar function and u,v,w represent vector functions.

Output type Wedge product ∧ Interior product iu Exterior derivative d Hodge star ∗
0-form f(0) ∧ g(0) = (fg)(0) iuw(1) = (u ·w)(0) N/A ∗f(3) = f(0)
1-form f(0) ∧ u(1) = fu(1) iuw(2) = (w × u)(1) df(0) = (∇f)(1) ∗u(2) = u(1)

2-form u(1) ∧ v(1) = (u× v)(2) iuf(3) = fu(2) du(1) = (∇× u)(2) ∗u(1) = u(2)

3-form u(1) ∧ v(2) = (u · v)(3) N/A du(2) = (∇ · u)(3) ∗f(0) = f(3)

Table 2: Exterior calculus operators in 3D.

Based on Li et al. (2023a), we can further write down the exterior calculus with the Closest Point
Method via cp∗. It allows us to emulate the operators on S (denoted with a superscript S) using the
operators onR3 (denoted with a superscriptR3):

CP-wedge product: cp∗(α ∧S β) = (cp∗α) ∧R
3

(cp∗β), (34a)

CP-interior product: cp∗(iSFuα) = iR
3

u cp∗α, (34b)

CP-exterior derivative: cp∗(dSα) = dR
3

cp∗α, (34c)

CP-hodge star: cp∗(∗Sα)|j(S) = in ∗R
3

(cp∗α)|j(S), (34d)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where F = d(j ◦ cp) denotes the Jacobian and CP-hodge star is only applicable directly at the
surface.

Proof for Theorem 3.1: We prove our theorem 3.1 by mathematical manipulations. As we state in
Sec. 3.1, we need to construct v = ∗SdSσ via σ on the surface. Then we apply cp∗ on both side,
we derive

cp∗v = cp∗(∗SdSσ)

= in ∗R
3

(cp∗dSσ)

= in ∗R
3

dR
3

cp∗σ

= in ∗R
3

∇(cp∗σ)(1)
= in∇(cp∗σ)(2)
= ∇(cp∗σ)× n.

(35)

Then on the surface, we have (cp∗v)(j(x)) = v(cp ◦ j(x)) = v(x) (the closest point for the surface
point is itself). Hence, we can derive

v = (∇(cp∗σ) ◦ j(x))× n. (36)

Then for the vorticity function in 2D, it is defined by w = curlv as a scalar. For the surface, we
derive the vorticity function via the hodge decomposition. We need to derive the divergence-free
component of v (as “curl” on surfaces), which actually is ∗dv. Then we can derive

cp∗ω = cp∗(∗SdSv)

= in ∗R
3

(cp∗dSv)

= in ∗R
3

dR
3

(cp∗v)(1)

= in ∗R
3

(∇× (cp∗v))(2)

= in ∗R
3

(∇× (cp∗v))(1)

= ∇(cp∗v) · n.

(37)

Similar with Eq. 35, we achieve
ω = (∇× v) · n. (38)

Note that on the surface, the rules work like ones in 2D: the stream and the vorticity functions are
both scalars (compared with the vector potential functions in R3 (Elcott et al., 2007a; Chang et al.,
2022)). It can also be verified with the exterior calculus. If σ is not 0-form but 1-form instead, we
can not derive v as 1-form but 0-form, which brings trouble for our neural representation.

Remark: We can next parameterize the σ (with NN) and compute v and ω by sampling points and
do calculus with Eqs. 36 and 38. The theorem provides a continuous and analytic formulation on
the vorticity function on the surfaces with the help of the Closest Point Method in Tab. 2 while
the classic method (Azencot et al., 2014) needs to compute the discretized differential form with
the triangle meshes. CPM enables us to parameterize the surface field on the ambient space and
facilitate the neural representation.

C CONDITIONING PROPERTY OF OUR FRAMEWORK

For the generation problems, to verify the capability, we mirror the architecture of variation auto-
encoder. Let’s consider images as an example input, and our objective is to provide a model that re-
ceive the coordinate x and image conditions as an input and generate a divergence-free field of which
vorticity ω resembles the corresponding conditioned images silhouette in visualization. Images q are
encoded by the parametric encoder with θq and the features are provided with the reparameteriza-
tion trick zq(θq, q) ∼ N (ξ(θq, q), τ(θq, q)) (Kingma & Welling, 2013), where ξ(θq, q), τ(θq, q) is
the mean and variance output by the encoder. The encoded feature z = (zq, zaux), where zaux
is auxiliary information such as the image class, is input together with positional embedding (like

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

siren) from x. Then the decoder translates the feature to σ function and further derive ω with The-
orem 3.1. The loss function consists of two parts: One is ∥ω(σ(θ, z(θq))) − G(q)∥2, where G is
mapping from the image color space to vorticity space. This term supervises the vorticity field to
shape as the silhouette of the corresponding images. The other term is Kullback-Leibler divergence
to constrain the distribution of zq to be normal, as given by ∥ξ2+ τ2− log τ2+1∥2 with ξ, τ ∈ Rr,
where r is the dimension of zq and log operation is computed element-wise. With such design, we
could derive a simple conditioning framework, which enables more data prior into the simulation
via a more end-to-end manner. More details are also provided in Appendix G. Our neural parame-
terization provides more direct and effective approach to involve the semantic information and show
more potential to combine with the advanced generation methods in 3D or language model.

Remark: The idea of the conditioning resonates with the eigen-decomposition of the fluid fields, as
discussed in Cui et al. (2021). This method decomposes the vector field v into several divergence-
free basis ui, i.e. v =

∑r
i=1 wiui and ui is the eigenfunction of the Laplacian operator. It’s

noteworthy that wi can serve as the encoding z in our formulation. If we strengthen our neural
represented velocity field to become eigenfunctions of the Laplacian operator on surfaces, we can
derive similar decomposition weights through the conditioning process described above.

D PSEUDOCODE FOR ADVECTION

Algorithm 1 Advection for Neural Flow on Surfaces.
Input: Initial velocity field v0, vorticity field ω0, timestep size h, number of timesteps N , surface
S, training steps E, sample size k, learning rate α
Fitting the initial network weight θ0 and non-zero harmonic term η with v0 and ω0.
for n = 1 to N do
θn+1 ← θn
for i = 1 to E do

Sample k point on S as sample setM.
Compute the stream function σ(θn+1) onM.
Compute the velocity v(θn), v(θn+1) and vorticity ω(θn), ω(θn+1) with Eqs. 4 and 5 for
time n and n+ 1 with σ(θn), σ(θn+1) and η.
Construct loss function Lθn+1 with Eq. 15 forM.
θn+1 ← θn+1 − α∇Lθn+1

end for
end for

E ADDITIONAL EXPERIMENTAL RESULTS

We include additional experiments to verify the performances of our method as a supplementary.
We provide the quantitative study for the flow on the inclined plane, the ablation and comparison on
the sphere jet flow and the convergence study for our flow on the implicit neural representation.

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

En
er

gy
 E

rr
or

h=2e-3:ours; Error: 1e-6
h=5e-4:ours; Error: 3e-6
h=2e-3:functional; Error: 1e-6
h=5e-4:functional; Error: 1e-6
h=5e-4:Rk4; Error: 5e-4
h=5e-4:INSR; Error: 1e-3

(b)

Figure 7: Results for rotating sphere flow. (a) Qualitative results for rotating sphere. (b) Quantitative
results for energy preservation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.1 RESULTS FOR ROTATING SPHERE FLOW

We verify the energy conservation property of our method by examining the rotating sphere flow, us-
ing an analytic solution as validated by Azencot et al. (2014). This approach allows us to rigorously
test our simulator’s reliability in preserving energy over time. The initial flow conditions combine a
Killing vector field with a rotated gradient of an eigenfunction of the Laplace-Beltrami operator on
the surface. Killing vector filed is a vector field whose Lie derivative of the metric vanishes, mean-
ing that the flow generated by the vector field remains constant in advection (Jost & Jost, 2008). A
classic example on the sphere is the vector field (−y, x, 0) around z-axis. The eigenfunctions of the
Laplace-Beltrami operator on the sphere are well-known as Spherical Harmonics functions. We also
apply the rotation on them for better identification. Actually, this rotating sphere flow appears as if
the sphere with the vector field is rotating over time when observed from a fixed point. It can be
demonstrated that the energy of inviscid flow with these initial conditions remains constant, making
this configuration an excellent test case for energy conservation. As the results showed in Fig. 7 (a),
the results exhibit periodic patterns resembling the sphere rotating.

We also plot the energy change across the entire sphere, comparing it with Functional Fluid on
Surfaces (Azencot et al., 2014), the classic method with Runge-Kutta (RK) time integrator and
Implicit Neural Spatial Representations (INSR) (Chen et al., 2023) with semi-Lagrangian advection
as the loss function. The results indicate that our method achieves a relative change in energy on the
order of 10−5, which is comparable to the results from the Functional Fluid on Surfaces method for
both larger and smaller time steps. Conversely, the RK method and INSR suffers from larger energy
losses, even for smaller time steps.

E.2 MORE RESULTS FOR THE TAYLOR VORTICES ON THE INCLINED PLANE

Time 0s Time 4s Time 11s Time 15s

Figure 8: Dynamic Results for Taylor vortices on inclined plane.

We include the qualitative results of our simulation dynamics for Taylor vortices in Fig. 8 and more
comparison results are provided in the supplementary video. We can observe a clear vortex pair and
the phenomenon of separation.

Methods Error Time Storage
PINN 4.16e5 9.6 h 568.1KB
INSR 3.45e3 16.8 h 516.3KB
Small-F.S. 3.21e2 0.2h 535.6KB
HomoLBM 8.92e1 3.8 h 4.3MB
Small-F.S. 3.21e2 0.2h 535.6KB
Ours 1.71e1 12.7 h 521.3KB
GT N/A 2.3 h 3964.0KB

Table 3: Quantitative results for the Taylor vortices on inclined plane. Error: mean square error
(MSE) averaged by 120 time steps with resolution of 400. The storage of our high resolution ground
truth is 7.6 times than ours.

We also include the quantitative results for the Taylor vortices in Tab. 3, together with more com-
parison with classic methods on the 2D plane for benchmark studies, including Stable Fluid (with
a resolution of 1024x1024) (Stam, 1999) and high-order Lattice Boltzmann methods (not parallel
version with a resolution of 512x512) (Li et al., 2023b). The corresponding qualitative results are

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

presented in Fig. 9. The results demonstrate that our method enables high accuracy while show-
ing high memory-efficiency, compared with both classical and recent advanced methods under the
similar memory cost.

GT (High-reso

 Functional Fluid)

Ours Homo-LBM Stable Fluid

Time 1

Time 2

Time 3

Figure 9: Qualitative results for the Taylor vortices compared with 2D classical methods.

E.3 MORE COMPARISON RESULTS ON THE SPHERE JET FLOW

Eigen-Net

No divfree
Eigen-Net

divfree
NSF

No divfree
INSR Ours GT

Figure 10: Qualitative results for the sphere jet flow compared with eigen-net and NSF.

We compare with other surface field representation methods to verify the effectiveness of our pro-
posed framework. We try to adapt two methods into our framework. One is Koestler et al. (Koestler
et al., 2022), which proposes a surface field representation via the eigenfunction of the Laplacian-
beltrami operator (eigen-net) on the surface and the other is Xue et al. (Xue et al., 2023) that utilizes
the MLP and projection operator (NSF). We implement them on the sphere jet flow case for compar-
ison since the Laplacian-beltrami operator can be analytically computed by Spherical Harmonics.
To further verify the effectiveness of our field function design, for eigen-net, we implemented two
variations as ablations: one that incorporates our divergence-free design along with the covariant
derivative advection, and another that avoids our divergence-free approach in favor of the traditional
advection and divergence projection; for NSF we adopted the method without our divergence-free
design, as incorporating it would result in a configuration similar to our own framework, with the
primary distinction being the hyper-parameters of the MLP or siren. We show the quantitative results
in the Tab. 4 and the corresponding qualitative results in Fig. 10.

Both quantitative and qualitative results demonstrate that our proposed framework achieves higher
accuracy and memory-efficiency in the incompressible Euler flow simulation, compared with pure
eigen-net or NSF surface field representations. The ablation results also indicate that that our pro-
posed divergence-free field design framework significantly improves the accuracy of the eigen-net.
Ours avoid the divergence-free projection, which reduces the extra fitting error and cascading error
effects. The results also illustrate that our proposed divergence-free design is robust with the ways
of parameterization (MLP, siren or eigen-net).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Methods Error Time Storage
Eigen-net without divergence-free design 6.82e6 13.5 h 632.5KB
NSF without divergence-free design 9.76e4 12.8 h 501.3 KB
Eigen-net with divergence-free 1.13e3 16.7h 622.4KB
Ours 2.89e2 16.5 h 532.8KB

Table 4: Quantitative results for the sphere jet flow compared with eigen-net and NSF. Error: mean
square error (MSE) averaged by 100 time steps on 81924 mesh vertices.

Methods Error Time Storage
Elcott et al. 2007 1.27e4 6.8h 2643.0KB
Stable Fluid 8.62e5 0.2h 972.8KB
Small-F.S. 5.34e3 0.8h 583.8KB
Ours 2.89e2 16.5 h 532.8KB
GT N/A 8.3 h 2643.0 KB

Table 5: More Quantitative results for the sphere jet flow with classic methods.

We also include more results of classical solvers for reference, including Stable Fluid (with a reso-
lution of 256x256) (Stam, 1999) and Elcott et al. (Elcott et al., 2007a) (using the same mesh as GT).
The quantitative results are shown in Tab. 5, and the qualitative results are presented in Fig. 11.

The results show that our method achieves high performance and low energy dissipation compared
to classic methods. However, this improvement comes with the trade-off of higher time consumption
as discuss in Appendix F.3.

E.4 CONVERGENCE VERIFICATION FOR THE FLOW ON THE IMPLICIT REPRESENTED
SURFACES

Marching Cubes resolution Average steps of Crashing Storage
64 36.5 117.18 KB
128 53.4 768.32 KB
240 68.7 1123.15 KB
GT Mesh 88.6 1419.48 KB
Ours N/A 523.4 KB

Table 6: Time steps that the classic method (Azencot et al., 2014) with Marching Cubes on implicit
neural represented surfaces crashes. We repeat the process with 10 times and derive the averaged
results. However, ours can work well with the implicit neural representation.

For the case of implicit represented surfaces, as previously stated in the main context (Sec. 5.2),
for the classical method it is not convergent, leading to non-referable results. To substantiate our
claim regarding non-convergence, we include a new Tab. 6 that lists the simulation crashing time
steps across different marching cube resolutions for the traditional methods. This data will offer
a quantitative perspective on the limitations of the classic methods in robustness. We also include
the reference qualitative results in the supplementary video to exhibit the simulation process and
describe the non convergence on different resolutions. The results demonstrate that our meshless and
end-to-end method can achieve high adaptability and robustness for the simulation on the implicit
neural representation, while the classical method fails in marching cube meshes and needs further
complex geometry processing schemes to improve the mesh quality.

E.5 ABLATION STUDIES FOR THE NETWORK AND TRAINING DESIGN

We also include the ablation studies on the network size and sample count on our sphere jet case.
The results are exhibited in Tab. 7 and Tab. 8, which indicate that our method is relatively insensitive
to these settings unless the width is extremely small.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Ours

Elcott et

al.

Reference

GT

Time 0s Time 4s Time 8s

Stable

Fluid

Figure 11: Qualitative results for the sphere jet flow compared with more classical methods.

Network Size Error
4 layers, 128 2.89e2
4 layers, 256 2.21e2
4 layers, 64 4.57e2

Table 7: Ablation studies for network size for the sphere jet flow.

F DISCUSSIONS AND LIMITATIONS

F.1 DISCUSSIONS AND LIMITATIONS ON THE TOPOLOGY PROBLEMS

The first limitation is about the singularity problem. We don’t focus heavily on the singularity issues
related to topology, such as those highlighted by the Poincaré-Hopf Theorem, which is a complex
challenge. Our main interest lies in using neural approaches to simulate fluid dynamics and model
vortex dynamics on surfaces for visual effects (as described in Eq. 6), rather than dealing with
arbitrary vector fields. The scenes chosen in both Azencot et al. (2014); Ando et al. (2015) (which
do not mention the issue) and ours typically maintain non-zero measure zero velocity and avoid
poles to simplify the analysis. We initialize the simulation with finite vorticity, which makes it
hard for advection to generate infinite vorticity (or singularities) within our settings. Furthermore,
we employ the stream and curl regularization to avoid extreme values in the singularity points and
preserve system stability. According to Sard’s theorem, the number of poles has zero measure in
our simple cases, we maintain a very small probability of sampling at the poles, which improves
the stability of the simulation. Though the velocity field near singularities will be underfitted and
approximated by the network, potentially leading to inaccuracies and numerical dissipation near the
”cyclone”, the overall results provide empirically reasonable visual effects, which is the primary
goal of our application.

To further validate the effectiveness of our regularization and sampling, we applied our framework
to fit the velocity (− sin(θ), cos(θ)) on a sphere with spherical coordinates (1, θ, ϕ), which keeps a
singularity at the northern/southern pole ((1, 0, 0), (1, π, 0)). The errors and velocity magnitude are
shown in Fig. 12, where we achieve the desired velocity pattern. Although some errors appear in the
initial epochs, they become negligible over time, which is sufficient for graphics and visual effects.

Training Samples (millions) Error
60 2.89e2
40 3.12e2
80 2.79e2

Table 8: Ablation studies for sample number for the sphere jet flow.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Velocity Magnitude at 120

epoch

10

Error at 120 epoch

10

Error at 20 epoch

10

Velocity Magnitude at 20

epoch

10

Figure 12: Qualitative results of the numerical studies (Velocity magnitude and error) for the con-
stant sphere flow. (Views from the northern and southern poles)

Time 0

Time 1

Time 2

Ours Ref. (Function Fluids on Surfaces)

Time 0

Time 1

Time 2

Ours Ref. (Function Fluids on Surfaces)

Figure 13: Qualitative results for the sphere jet flow on the explicit torus and double torus.

Another problem related with the topology is the cohomology term. Our method is mainly adopted
for the topology for genius zero, where the velocity can be estimated by the stream function with-
out more consideration of the time-variant cohomology component (as stated in Yin et al. (2023)
Proposition 5 for the surfaces removing several poles). For the surface with high genius, we find
it insufficient for the time-invariant cohomology term to handle highly turbulent flow and generate
complex visual effects. The problem can be further addressed by incorporating the solver in Yin
et al. (2023) with the neural network, which will be our future work. However, only for the visual
effects, our method still performs well for the high genius surfaces and shows the correct jet flow
behavior compared to the reference classic method. We plot the results in Fig. 13 with simple torus
and double torus cases with explicit torus and double torus meshes. They do demonstrate reasonable
visual effects on high-genus surfaces even without considering the time-variant cohomology.

F.2 DISCUSSIONS AND LIMITATIONS ON THE GEOMETRY PROBLEMS

As stated in Sec. 3.2, our method needs SDF for the flow on the implicit surfaces. This can pose
challenges when calculating normals for open surfaces. To overcome this, one can use an unsigned
distance field (UDF) to extend our framework to open surfaces, which is well applied in Chibane
et al. (2020); Yang et al. (2023); Long et al. (2023).

Moreover, in the practical scenarios, the non-smooth surface, imperfect SDF (common problems in
implicit neural representations such as Yifan et al. (2021)) and the complex surfaces (like unoriented
surfaces) can also limit our performances. Noisy surfaces and normals introduce numerical viscosity,
slowing down the simulation. But fortunately, we show that they do not drive our simulation to
crash, as the neural representation provides smoother and more robust results (as demonstrated in
Appendix E.4 with GT mesh data) compared to traditional methods. To further solve these issues, we
can construct smooth approximator and utilize a large number of samples from a smaller tube radius
(as described in King et al. (2023)) for improved performance. Additionally, the orientation problem
is addressed in King et al. (2023) and the extension for our method can be similarly constructed.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F.3 DISCUSSIONS AND LIMITATIONS ON THE TIME AND MEMORY CONSUMPTION

Our method actually keeps large advantages at the memory consumption albeit with the increased
time requirements. The low memory usage is crucial for handling and analyzing high-resolution
data. For example, a 2D simulation at a 4096x4096 resolution requires about 200MB per frame,
resulting in considerable memory demands for extended simulations. Similarly, high-resolution
3D grid simulations consume even more memory. Although mesh-based simulations can be more
efficient, they encounter mesh quality issues, as shown in the robustness tests in Appendix E.4.
The time cost remains high, as methods like siren or simple MLPs are too global and inefficient
for optimization, and inference sampling (particularly for implicit neural representations) is time-
consuming. To address the time consumption issue, a hybrid simulator to achieve both high speed
and performances is necessary. Fortunately, recent advances in hybrid representations (Müller et al.,
2022; Huang et al., 2023) have shown promising results in reducing training time from hours to
seconds while maintaining the expressiveness. Employing these more efficient representations hold
great promise for improvements of our method. In the inference time, a sampler (Sharp & Jacobson,
2022) with high efficiency can be adopted, which will provide huge saving for the inference time
with KD hierarchies.

G MORE IMPLEMENTATION DETAILS

We provide our implementation details for our numerical studies. Our experiments are all imple-
mented with Jax library (Bradbury et al., 2018) on an NVIDIA GeForce RTX 3090 GPU.

Sphere Jet: We adopt the 4-layers MLP (for shaper simulation results compared with siren) with
128 units for our implementation. The learning rate is set with the exponential decay from 1e − 5
to 1e − 7 with 60000 steps and batch size 1000 for each time step. The time step is chosen as
5e− 2. The initialization is the same as Azencot et al. (2014) and the initial vorticity is kept for the
whole simulation time. For the comparison, INSR uses the siren function with 4-layers 128 units
for advection, projection and correction respectively. The learning rate is set as 1e − 6. For each
process, the siren iterates for 40000 steps with batch size 5000. For the original PINN, we adopt
the MLP with 4-layers 128 units. The loss function is to enforce the incompressible Euler equation
directly, as showed in Appendix A.3 of Chen et al. (2023). The learning rate is set by 1e − 5 with
60000 steps and batch size 2000.

Taylor vortices on inclined plane: We adopt 4-layer siren with 128 units representation to conduct
the positional encoding with the first layer frequency as 30. The time step is chosen as 5e− 3. The
initialization is set the same as McKenzie (2007), and we rotate the plane and make the normal be
(0.3,−0.5, 0.8). The domain size is set [−π, π] with the periodic boundary condition. The time step
is set as 0.05. The learning rate is set with the piece-wise constant from 1e − 5 with a decay factor
0.1 on 40000 and 60000 steps for total 80000 steps and batch size 1000. For comparison, INSR
adopts the siren MLP with 4 layers and 128 units per layer for advection, projection and correction
respectively. The learning rate is set as 1e − 5. For each process, the siren iterates for 20000 steps
with batch size 1000. For the original PINN, we adopt MLP with 4 layers and 128 units. The loss
function consists of the governing equation part which is the same as the one in sphere jet case and
the periodic boundary condition part. The learning rate is set by 1e − 5 with 60000 iterations and
batch size 1000.

Rotating sphere flow: For the construction of σ, we adopt 4-layer siren with 128 units represen-
tation (Sitzmann et al., 2020) with the first layer frequency as 30. The learning rate is set with the
exponential decay from 1e−6 to 1e−8 with 40000 steps and batch size 1000 for each time step. The
time step is chosen as 5e− 4 and 2e− 3. The initialization of the velocity is set as the Killing field
(−y, x, 0) with the rotated 4-degree Spherical Harmonics functions with order 4 and 5. For INSR
for our comparison, we adopt the siren function with 4-layers 64 units for advection, projection and
correction respectively. The learning rate is set as 5e − 4. For each process, the siren iterates for
10000 steps with batch size 1000.

Flow on the explicit meshes. We adopt a 4-layer siren with 128 units representation for both models
with the first layer frequency as 30. The learning rate is set with the exponential decay from 1e− 6
to 1e− 8 with 40000 steps and batch size 2400 for each time step. The time step is chosen as 5e− 2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and 8e− 2 for the hand and spot respectively. The hand model is initialized by two vortices with the
geodesic 0.41 by Crane et al. (2013b) and the spot model is set with 0.3.

Flow on the implicit mesh. First, we adopt 4-layer siren with 256 units to reconstruct the im-
plicit neural representation of the SDF function based on Sitzmann et al. (2020) with the uniform
sampling. The in the simulation, we take the rejection rules in Yang et al. (2021) to complete the
uniformly sampling for the simulation function and avoid the samples concentrating near the high
curvature area. The jet vortices are initialized by given two points on the mesh as an opposite pair.
Our simulation neural field is also implemented as 4-layer siren with 128 units representation with
the first layer frequency as 30. The learning rate is set with the exponential decay from 1e − 5 to
1e− 7 with 40000 steps and batch size 1000 for each time step. The time step is set by 5e− 2 and
2e− 2 for Armadillo and Lucy respectively.

Flow with conditioning: We adopt the encoder consists of 2-layer feature extraction MLP to reduce
image data to a 32-dimension feature space; siren network to generate 128-dimensional feature
with the input position x as neural field representation and an one-hot class encoder for image
categorization. Note that the first layer frequency for the siren network above is also 30. The
decoder is a 2-layer MLP that transforms the concatenated features from the encoders to the stream
function σ. Then following our Theorem 3.1, we can also derive the corresponding v and ω taking
the derivative with respect to x. In the inference time 32-dimension random Gaussian vector and
the corresponding image class are input to concatenate with the positional encoding to generate the
field value at the spatial point. The learning rate for the training process is set with the exponential
decay from 1e− 4 to 1e− 5 with 400000 steps and batch size 1000. We map the color of the input
images to the vorticity function and try to make the velocity field preserving the vortices shape as
alphabets via Mean Least Square loss and KL loss.

Flow for Helmholtz decomposition: We adopt the atmosphere data (100-metre wind velocity) on
Jan, 2024 (Raoult et al., 2017). We adopt 4-layer siren with 128 units representation for both models
with the first layer frequency as 100. The learning rate is set with the exponential decay from 1e− 4
to 1e − 5 with 200000 steps and batch size 1000. We try to make our velocity results closer to the
given data and derive the divergence-free component, similar as Richter-Powell et al. (2022).

28

	Preliminaries for the mathematical tools
	The differential geometry in Rn
	Introduction to the Closest Point method

	Proofs and derivations
	Proof for Theorem 3.1

	Conditioning property of our framework
	Pseudocode for advection
	Additional Experimental Results
	Results for rotating sphere flow
	More results for the Taylor vortices on the inclined plane
	More comparison results on the sphere jet flow
	Convergence verification for the flow on the implicit represented surfaces
	Ablation Studies for the network and training design

	Discussions and Limitations
	Discussions and limitations on the topology problems
	Discussions and limitations on the geometry problems
	Discussions and limitations on the time and memory consumption

	More Implementation Details

