
A Equivalent Ways of Writing Equality-Constrained Greedy Rule364

We first show that the greedy rule with a summation constraint, of choosing the max/min partial365

derivatives, is an instance of the GS-q rule. We then show that this rule is also equivalent to steepest366

descent in the 1-norm.367

A.1 Greedy Rule Maximizes GS-q Progress Bound368

For the optimization problem (1), the GS-q rule selects the optimal block b = {i, j}, by solving the369

following minimization problem:370

b = argmin
b

⇢
min

db|di+dj=0
hrbf(x), dbi+

1

2↵
||db||2

�
, (24)

where db is the descent direction.371

Solving for db. First let us fix b and solve for db. The Lagrangian of (24) is,372

L(db,�) = hrbf(x), dbi+
1

2↵
||db||2 + �(d1 + d2).

Taking the gradient with respect to db gives,373

rdbL(db,�) = rbf(x) +
1

↵
db + �1.

Setting the gradient equal to 0 and solving for db gives,374

db = �↵(rbf(x) + �1). (25)
From our constraint, di + dj = 0, we get375

0 = �↵ (rif(x) + �+rjf(x) + �) ,

� = �1

2
hrbf(x), 1i.

Substituting in (25) we get,376

db = �↵

✓
rbf(x)�

1

2
hrbf(x), 1i1

◆
. (26)

This can be re-written as377 
di

dj

�
=

↵

2
(rif(x)�rjf(x))


�1
1

�
.

Solving for b. Now, we plug in the optimal db from (26) in (24) and solve for b to give378

argmin
b

�↵

⌧
rbf(x), (rbf(x)�

1

2
hrbf(x), 1i1)

�
+

↵

2
||(rbf(x)�

1

2
hrbf(x), 1i1)||2

⌘ argmin
b

�||rbf(x)||2 +
1

2
(hrbf(x), 1i)2 +

1

2
||rbf(x)||2 �

1

2
(hrbf(x), 1i)2+

1

8
(hrbf(x), 1i)2 h1, 1i| {z }

2

⌘ argmin
b

�1

2
||rbf(x)||2 +

1

4
(hrbf(x), 1i)2

⌘ argmax
b

||rbf(x)||2 �
1

2
(hrbf(x), 1i)2

⌘ argmax
b

||rbf(x)||2 �
1

2
(rif(x) +rjf(x))

2

⌘ argmax
b

1

2
||rbf(x)||2 �rif(x)rjf(x)

⌘ argmax
b

1

2
(rif(x)�rjf(x))

2)

⌘ argmax
b

|rif(x)�rjf(x)|. (27)
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Therefore, the GS-q rule chooses the i and j that are farthest apart, which are the coordinates with379

maximum and minimum values in rf(x).380

A.2 Greedy Rule is Steepest Descent in the 1-Norm (Lemma 2.1)381

The steepest descent method finds the descent direction that minimizes the function value in every382

iteration. That is,383

d = argmin
d2Rn|dT 1=0

⇢
rf(x)T d+

1

2↵
kdk21

�
. (28)

The proof follows by constructing a solution to the steepest descent problem (28) which only has two384

non-zero entries. The Lagrangian of (28) is,385

L(d,�) = rf(x)T d+
1

2↵
kdk21 + �d

T 1.

The sub-differential with respect to d and � is given by386

@dL(d,�) ⌘ rf(x) +
1

2↵
@kdk21 + �1,

@�L(d,�) ⌘ d
T 1.

We have that the zero vector is an element of the sub-differential at the solution. From 0 2 @�L(d,�)387

we have d
T 1 = 0. From 0 2 @dL(d,�) at the solution we require388

2↵(�rf(x)� �1) 2 @kdk21,

or equivalently by using that @ikdk21 ⌘ 2kdk1sgn(di) this subgradient inclusion is equivalent to389

having for each coordinate i that390

↵(�rif(x)� �1) = kdk1sgn(di), (29)

where the signum function sgn(di) is +1 if di is positive, �1 if di is negative, and can take any value391

in the interval [�1, 1] if di is zero.392

Let i 2 argmaxi{rif(x)} and j 2 argminj{rjf(x)}. Consider a solution d such that di =393

�, dj = �� for some � 2 R and dk = 0 for if k 6= i and k 6= j. By construction the vector d has only394

two non-zero coordinates and satisfies the sum-to-zero constraint required for feasibility. Thus, we395

have a solution if we can choose � to satisfy (29) for all coordinates.396

The definition of d implies ||d||1 = 2�, while sgn(di) = 1, sgn(dj) = �1 and sgn(dk) 2 [�1, 1].397

Thus, for d to be a steepest descent direction we must have:398

�↵rif(x)� ↵� = 2� (30)
�↵rjf(x)� ↵� = �2� (31)
�↵rkf(x)� ↵� 2 2�[�1, 1]. (32)

Solving for � in (30) gives399

� = �rif(x)� 2�/↵, (33)
and substituting this in (31) gives,400

� = �↵

4
(rif(x)�rjf(x)). (34)

It remains only to show that (32) is satisfied by d. Using the value of � (33) in (32) yields,401

�↵rkf(x) + ↵rif(x) + 2� 2 2�[�1, 1].

Now, substituting the value for � (34) gives402

�↵rkf(x) + ↵rif(x)�
↵

2
(rif(x)�rjf(x)) 2 �↵

2
(rif(x)�rjf(x))[�1, 1],

and multiplying by 2/↵ this is equivalent to403

�2rkf(x) +rif(x) +rjf(x) 2 �(rif(x)�rjf(x))[�1, 1],
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which can be satisfied for some value in [�1, 1] if404

�2rkf(x) +rif(x) +rjf(x)  |rif(x)�rjf(x)|.

As rkf(x) is between rif(x) and rjf(x), we can write it as a convex combination ✓rif(x) +405

(1� ✓)rjf(x) for some ✓ 2 [0, 1]. Thus, we require406

� 2(✓rif(x) + (1� ✓)rjf(x)) +rif(x) +rjf(x)

= (1� 2✓)(rif(x)�rjf(x))  |rif(x)�rjf(x)|,

which holds because (1� 2✓) 2 [�1, 1].407

We have shown that a two-coordinate update d satisfies the sufficient conditions to be a steepest408

descent direction in the 1-norm. Substituting d back into the expression for steepest descent gives409

min
d2Rn|dT 1=0

rf(x)T d+
1

2↵
||d||21 = rijf(x)

T
dij +

1

2↵
||dij ||21

� min
i,j

⇢
min

di,j2R2|di+dj=0
rijf(x)

T
dij +

1

2↵
||dij ||21

�
.

The reverse inequality follows from the fact that a two coordinate update cannot lead to a smaller410

value than updating all coordinates, so we have411

min
d2Rn|dT 1=0

rf(x)T d+
1

2↵
||d||21 = min

i,j

⇢
min

di,j2R2|di+dj=0
rijf(x)

T
dij +

1

2↵
||dij ||21

�
.

B Relating Lipschitz Constants412

Proposition B.1. Suppose f is twice differentiable and413

sup
x:hx,1i=a

max
d

�
d
>r2

f(x)d : hd, 1i = 0, supp(d) = 2, kdk1  1
 
= L1. (35)

Then f satisfies the following inequality:414

f(x+ d)  f(x) + hrf(x), di+ L1

2
kdk21, (36)

for x such that hx, 1i = a and any d such that hd, 1i = 0. That is, f is full-coordinate Lipschitz415

smooth in the `1 norm with constant L1.416

Proof. Consider the optimization problem417

max
d

�
d
>r2

f(x)d : hd, 1i = 0, kdk1  1
 
. (37)

We will show that the maximum is achieved by at least one d satisfying di = �dj 6= 0, dk = 0 for418

all k 6= i, j. That is, a two coordinate update achieves the maximum.419

First, observe that Equation (37) is a convex maximization problem over a (convex) polyhedron. As a420

result, at least one solution occurs at an extreme point of the constraint set,421

D = {d : hd, 1i = 0, kdk1  1} .

The proof proceeds by showing that all extreme points of D contain exactly two non-zero entries. Let422

de be any extreme point of D and suppose by way of contradiction that de has at least three non-zero423

entries. Denote these entries as d1, d2, d3. Since at least one entry of de must be negative and one424

must be positive, we may assume without loss of generality that d1, d2 > 0 and d3 < 0.425

Let ✏ > 0 and define d
0
e = de + e1✏ � e2✏. For ✏ sufficiently small it holds that d1 + ✏ > 0 and426

d2 � ✏ > 0 so that427

(d1 + ✏) + (d2 � ✏) + d3 = d1 + d2 + d3.
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We conclude428

kd0ek1 = |d1 + ✏|+ |d2 � ✏|+ |d3|
= (d1 + ✏) + (d2 � ✏) + |d3|
= |d1|+ |d2|+ |d3|
= d1 + d2 + d3

= kdek1
 1.

Thus, d0e 2 D. Define d00e = de� e1✏+ e2✏ and observe d00e 2 D by a symmetric argument. Moreover,429

de =
1

2
d
0
e +

1

2
d
00
e ,

i.e. the extreme point is a convex combination of two points in D. This contradicts the definition of430

an extreme point, so we have proved that every extreme point of D has at most two non-zero entries431

Since no point of D can have exactly one non-zero entry and 0 is the relative interior of D, we have432

shown every extreme point has exactly two non-zero entries.433

As a result, (37) is maximized at at least one extreme point de, where supp(de) = 2. Thus, we may434

restrict optimization to directions of support two, giving435

max
d

�
d
>r2

f(x)d : hd, 1i = 0, kdk1  1
 

= max
d

�
d
>r2

f(x)d : hd, 1i = 0, supp(d) = 2, kdk1  1
 

 L1.

It is now straightforward to obtain the final result using a Taylor expansion and the Lagrange form of436

the remainder. In particular, for some parameter x0Conv({x, x+ d}) we have437

f(x+ d) = f(x) + hrf(x), di+ 1

2
d
>r2

f(x+ ↵d)d

 f(x) + hrf(x), di+ 1

2
kdk21 max

v

�
v
>r2

f(x0)v : hv, 1i = 0, kvk1  1
 

= f(x) + hrf(x), di+ 1

2
kdk21 max

v

�
v
>r2

f(x0)v : hv, 1i = 0, supp(v) = 2, kvk1  1
 

= f(x) + hrf(x), di+ L1

2
kdk21,

which gives the result.438

Proposition B.2. The constant L1 in (35) is exactly equal to L2
2 .439

Proof. Let d 2 Rn such that supp(d) = 2 and hd, 1i = 0. WLOG, suppose that the two non-zero440

entries of d are d1 and d2. Observe that hd, 1i = 0 implies d1 = �d2 and kdk1 =
p
2kdk2. Thus we441

have442

L2 = sup
x:hx,1i=a

max
d

�
d
>r2

f(x)d : hd, 1i = 0, supp(d) = 2, kdk2  1
 

= 2 sup
x:hx,1i=a

max
d

�
d
>r2

f(x)d : hd, 1i = 0, supp(d) = 2, kdk1  1
 

= 2L1,

where we have used Proposition B.3 to relate the variational characterizations to the Lipschitz443

constants in question. This completes the proof.444

445

Proposition B.3. Let k · k an arbitrary norm and define the dual norm on the feasible space,446

kvk⇤ = sup
�
z
>
v : hz, 1i = 0, supp(z) = 2, kzk  1

 
.
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Then the variational characterization based on the Hessian,447

L = sup
x:hx,1i=a

max
d

�
d
>r2

f(x)d : hd, 1i = 0, supp(d) = 2, kdk  1
 
,

gives the two-coordinate Lipschitz constant of rf (see Equation (7)) in norm k · k on the feasible448

space.449

Proof. Let x be feasible (i.e. hx, 1i = a) and define450

D = {d : hd, 1i = 0, supp(d) = 2, kdk1  1} .
Suppose d is some be feasible 2-coordinate update, not necessarily unit norm. The fundamental451

theorem of calculus implies452

rijf(x+ d)�rijf(x) =

Z 1

0
r2

ijf(x+ td)ddt

Taking norms on both sides, we obtain453

krijf(x+ d)�rijf(x)k⇤ = k
Z 1

0
r2

ijf(x+ td)ddtk⇤


Z 1

0
kr2

ijf(x
0)dk⇤dt

 kdk
Z 1

0
sup
d02D

�
d
0>r2

ijf(x+ td)d0
 
dt

 Lkdk,
where we have used the definition of the dual norm. For the reverse inequality, let L̃ be the Lipschitz454

constant of rf in norm k · k. Observe that for any feasible x and 2-coordinate update d, there exists455

↵ 2 (0, 1) and x̃ = x+ ↵d such that456

r2
ijf(x̃)d = rijf(x+ d)�rijf(x).

Using this, we obtain457

d
>r2

ijf(x̃)d  kdkkr2
ijf(x̃)dk⇤

= kdkkrijf(x+ d)�rijf(x)k⇤
 L̃kdk2.

Dividing by sides by kdk2, taking kdk ! 0, and supremizing over x, d gives458

L = sup
x:hx,1i=a

max
d2D

�
d
>r2

f(x)d
 
 L̃

We conclude L̃ = L as desired.459

C Relationship Between Proximal-PL Constants460

Lemma C.1. Suppose that F (x) = f(x) + g(x) satisfies the proximal-PL inequality in the `2-norm461

with constants L2, µ2. Then F also satisfies the proximal-PL inequality in the `1-norm with constants462

L1 and µ1 2 [µ2/n, µ2].463

Proof. Proximal-PL inequality in the `2-norm implies464

F (x)� F (x⇤)  �L2

µ2
min
y

⇢
hrf(x), y � xi+ L2

2
ky � xk22 + g(y)� g(x)

�

 �L2

µ2
min
y

⇢
hrf(x), y � xi+ L2

2n
ky � xk21 + g(y)� g(x)

�

 �L2L1n

L2µ2
min
y

⇢
hrf(x), y � xi+ L1

2
ky � xk21 + g(y)� g(x)

�

= �L1n

µ2
min
y

⇢
hrf(x), y � xi+ L1

2
ky � xk21 + g(y)� g(x)

�
,
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where the last inequality follows from Karimireddy et al. [2018][Lemma 9] with the choice of465

� = L2
L1n

, h(y) = hrf(x), y � xi + g(y) � g(x), and V (y) =
p

L2/2nky � xk1. Note that466

� 2 (0, 1] since L1n � L2 and h(x) = V (x) = 0 so that the conditions of the lemma are satisfied.467

We conclude that proximal-PL inequality holds with µ1 � µ2/n.468

We establish the reverse direction similarly; starting from proximal-PL in the `1-norm,469

F (x)� F (x⇤)  �L1

µ1
min
y

⇢
hrf(x), y � xi+ L1

2
ky � xk21 + g(y)� g(x)

�

 �L1

µ1
min
y

⇢
hrf(x), y � xi+ L1

2
ky � xk22 + g(y)� g(x)

�

 �L1L2

L1µ1
min
y

⇢
hrf(x), y � xi+ L2

2
ky � xk22 + g(y)� g(x)

�

= �L2

µ1
min
y

⇢
hrf(x), y � xi+ L2

2
ky � xk22 + g(y)� g(x)

�
,

where now we have used the same lemma with V (y) =
p
L1/2ky � xk2 and � = L1

L2
, noting that470

� 2 (0, 1] since L1  L2. This shows that µ2 � µ1, which completes the proof.471

D Analysis of GS-q for Bound-Constrained Problem472

In this section, we show linear convergence of greedy 2-coordinate descent under a linear equality473

constraint and bound constraints for the problem in (13) when using the GS-q rule. First, we introduce474

two definitions which underpin the theoretical machinery used in this section.475

Definition D.1 (Conformal Vectors). Let d, d0 2 Rn. We say that d0 is conformal to d if476

{i : d0i 6= 0} ✓ {i : di 6= 0} ,

that is, the support of d0 is a subset of the support of d, and did
0
i � 0 for every i 2 {1, . . . n}.477

Definition D.2 (Elementary Vector). Let S ⇢ Rn be a subspace. A vector d 2 S is an elementary478

vector of S if there does not exist d0 conformal to d with strictly smaller support, that is479

{i : d0i 6= 0} ( {i : di 6= 0} .

With these definitions in hand, we can state Lemma D.3, which is the key property we use in our480

proof strategy.481

Lemma D.3 (Conformal Realizations). Let S be a subspace of Rn and t = minx2S supp(x). Let482

⌧ 2 {t, . . . , n}. Then every non-zero vector x of S ✓ Rn can be realized as the sum483

x = d1 + · · ·+ ds + ds+1,

where d1, . . . , ds are elementary vectors of S that are conformal to x and ds+1 2 S is a vector484

conformal to x with supp(ds+1) = ⌧ . Furthermore, s  n� ⌧ .485

We include a proof in Appendix D.1; see Tseng and Yun [2009, Proposition 6.1] for an alternative486

(earlier) statement and proof. Using this tool, we prove the following convergence rate for 2-coordinate487

descent with the GS-q rule.488

Theorem D.4. Let the function F (x) = f(x) + h(x), where f : Rn �! R is a smooth function and489

h(x) is the box constraint indicator,490

h(x) =

⇢
0 if li  xi  ui for all i 2 {1, . . . , n}
1 otherwise

Assume that F satisfies the proximal-PL condition in the 2-norm with constant constant µ2 and that491

f is 2-coordinate-wise Lipschitz in the 2-norm. Then, minimizing492

min
x2Rn

f(x),

subject to hx, 1i = �, xi 2 [li, ui] (38)
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using 2-coordinate descent with coordinate blocks selected according to the GS-q rule obtains the493

following linear rate of convergence:494

f(xk)� f
⇤ 

✓
1� µ2

L2(n� 1)

◆k �
f(x0)� f

⇤�
. (39)

We provide the proof in Appendix D.2. The proof instantiates a more general result which holds for495

arbitrary functions h and larger blocks sizes.496

D.1 Proof of Lemma D.3497

Proof. The proof extends Bertsekas [1998, Proposition 9.22]. Consider x 2 S. If supp(x) = ⌧ , then498

let d1 = x and we are done. Otherwise, by Lemma D.6 there exists an elementary vector d1 2 S that499

is conformal to x. Let500

� = max

⇢
�

���� [x]j � �[d1]j � 0 8j with [x]j > 0 and

[x]j � �[d1]j  0 8j with [x]j < 0.

�
.

The vector �d1 is conformal to x. Let x̄ = x � �d1. If supp(x1)  ⌧ , choose d2 = x̄ and we are501

done. Note that d2 2 S since S is closed under subtraction. Otherwise, let x = x̄ and repeat the502

process. Let s be the number of times this process is conducted. Each iteration reduces the number of503

non-zero coordinates of x by at least one. Since it terminates when supp(x) = ⌧ , we have s  n� ⌧ .504

505

D.2 Proof of Theorem D.4506

We prove the result by instantiating a more general convergence theorem for optimization with linear507

constraints Ax = c, where A 2 Rm⇥n, and general non-smooth regularizers h. We assume A is full508

row-rank and that the proximal operator for h is easily computed. Note that, in this setting, block509

coordinate descent must operates on blocks bi ⇢ [n] of size m + 1  ⌧  n in order to maintain510

feasibility of the iterates. Let Ubi(dbi) map block update vector dbi from R⌧ to Rn by augmenting it511

with zeros and define512

Sbi = {dbi : AUbi(dbi) = 0} .
That is, Sbi is the null space of A overlapping with block bi.513

As mentioned before, the notions of conformal and elementary vectors introduced in the previous514

section provide necessary tools for our convergence proof. The following Lemmas provide the main515

show the utility of these definitions for optimization.516

Lemma D.5 (Necoara and Patrascu [2014, Lemma 2]). Given d 2 Null(A), if d is an elementary517

vector of Null(A), then518

supp(d)  rank(A) + 1.

Lemma D.6 (Bertsekas [1998, Proposition 9.22]). Let S be a subspace of Rn. Then vector d 2 S is519

either a elementary vector of S, or there exists an elementary vector d0 2 S that is conformal to d.520

521

Lemma D.7 (Tseng and Yun [2009, Lemma 6.1]). Let h be a coordinate-wise separable and convex522

function. For any x, x+ d 2 dom(h), let d be expressed as d = d1 + · · ·+ ds for some s � 1 and523

some non-zero dt 2 Rn conformal to d for t = 1, . . . , s. Then524

h(x+ d)� h(x) �
sX

t=1

(h (x+ dt)� h(x)) .

We are now ready to prove our general convergence result for block-coordinate descent with linear525

constraints and the GS-q block selection rule. We emphasize that in the following theorem: (i) h need526

not be the indicator for box constraints; (ii) A many consist of many coupling constraints; and (iii)527

the convergence rate improves with block-size ⌧ , unlike many similar results.528
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Proposition D.8. Fix block size ⌧ � m + 1 and let B be the set of all blocks bi ⇢ [n] of size ⌧ .529

Consider solving the linearly constrained problem530

min
x2Rn

F (x) := f(x) + h(x),

subject to Ax = c

where the gradient of f is ⌧ -coordinate Lipschitz with constant L2 and h is convex and coordinate-531

wise separable. Suppose F satisfies the proximal-PL inequality in the 2-norm with constant µ2. Then532

the block-coordinate descent method with blocks given by the GS-q rule converges as533

F (xk)� F
⇤ 

✓
1� µ2

L2(n� ⌧ + 1)

◆k �
F (x0)� F

⇤�
.

Proof. Block-coordinate Lipschitz continuity of rf give the following version of the descent lemma:534

f(xk+1)  f(xk) + hrf(xk), xk+1 � xki+
L2

2
kxk+1 � x

kk22

We have x
k+1 = x

k + Ubk(d
⇤
bk) by definition of the update rule. Substituting this into the descent

lemma gives535

f(xk+1)  f(xk) + hrbkf(x
k), d⇤bki+

L2

2
kd⇤bki k

2
2

) f(xk+1) + h(xk+1)  f(xk) + hrbkf(x
k), dbki+

L2

2
kd⇤bki k

2
2 + h(xk+1) + h(xk)� h(xk)

) F (xk+1)  F (xk) + hrbkf(x
k), d⇤bki+

L2

2
kd⇤bki k

2
2 + hbk(x

k
bk + d

⇤
bk)� hbk(x

k
bk).

Substituting in the choice of coordinate block b
k according to the GS-q rule and the definition of d⇤bk536

gives537

F (xk+1)  F (xk) + min
bi2B

⇢
min

dbi
2Sbi

�
hrbif(x

k), dbii+
L2

2
kd⇤bki k

2
2

+ hbi(x
k
bi + dbi)� hbi(x

k
bi)
 �

.

For clarity, we define the quadratic upper bound to be the function538

V (xk
, dbi) = hrbif(x

k), dbii+
L2

2
kd⇤bki k

2
2 + hbi(x

k
bi + dbi)� hbi(x

k
bi),

which gives539

F (xk+1)  F (xk) + min
bi2B

⇢
min

dbi
2Sbi

�
V (xk

, dbi)
 �

. (40)

We must control that the right-hand-side of (40) in terms of the full-coordinate minimizer540

d
⇤ = argmin d 2 Null(A)

⇢
hrf(xk), di+ L2

2
kdk22 + h(xk + d)� h(xk)

�
.

in order to apply the prox-PL inequality. We briefly digress and consider conformal realizations of d⇤541

in order to do so.542

543

By lemma D.3, d⇤ has a conformal realization544

d
⇤ = d

⇤
1 + · · ·+ d

⇤
r + d

⇤
r+1,

where r  n� ⌧ and d
⇤
1, . . . d

⇤
r are elementary vectors of Null(A) and d

⇤
r+1 2 Null(A). Lemma D.5545

gives supp(d⇤l )  m + 1; therefore there exists bi 2 B such that d⇤l 2 Sbi for all l = 1, . . . , r. By546

construction, supp(d⇤r+1) = ⌧ and so there also exists bi 2 B such that d⇤r+1 2 Sbi . Let B̄ ✓ B be547

the smallest set of blocks such that548

8 l 2 {1, . . . , r + 1} , 9bi 2 B̄, d
⇤
l 2 Sbi ,
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and observe that |B̄|  n� 1.549

550

Returning to (40), we can use the fact that the value of V (xk
, dj) obtained at the minimizing block551

b
k 2 B is less than or equal to the average over the subset of blocks B̄:552

min
bi2B

⇢
min

dbi
2Sbi

�
V (xk

, dbi)
 �

 1

|B̄|
X

bi2B̄

min
dbi

2Sbi

�
V (xk

, dbi)
 
. (41)

Combining this result with (40) and (41), we obtain553

F (xk+1)  F (xk) +
1

|B̄|
X

bi2B̄

min
dbi

2Sbi

�
V (xk

, dbi)
 

= F (xk) +
1

|B̄|
min

dbi
2Sbi

,8bi2B̄

8
<

:
X

bi2B̄

V (xk
, dbi)

9
=

;

= F (xk) +
1

|B̄|
min

dbi
2Sbi

,8bi2B̄

⇢
hrf(xk),

X

bi2B̄

dbii+
X

bi2B̄

L2

2
kdbik2

+
X

bi2B̄

�
hbi(x

k
bi + dbi)� hbi(x

k
bi)
��

. (42)

For all bi 2 B̄, substituting any dbi 2 Sbi for the vector in Sbi that minimizes (42) can only increase
the upper bound. Choosing the d

⇤
l corresponding to each block bi 2 B̄ yields554

 F (xk) +
1

|B̄|

✓
hrf(xk),

r+1X

l=1

d
⇤
l i+

r+1X

l=1

L2

2
kd⇤l k2

+
r+1X

l=1

�
hbi(x

k
bi + d

⇤
l )� hbi(x

k
bi)
�◆

.

We now use d
⇤ =

Pr+1
l=1 d

⇤
l and apply lemma D.7 twice to obtain555

F (xk+1)  F (xk) +
1

|B̄|

✓
hrf(xk),

r+1X

l=1

d
⇤
l i+

L2

2
kd⇤k2

+
r+1X

l=1

�
hbi(x

k
bi + d

⇤
l )� hbi(x

k
bi)
�◆

F (xk+1)  F (xk) +
1

|B̄|

⇢
hrf(xk), d⇤i+ L2

2
kd⇤k2 + h(xk + d

⇤)� h(xk)

�

= F (xk) +
1

|B̄|
min
d2S

⇢
hrf(xk), di+ L2

2
kdk22 + h(xk + d)� h(xk)

�
. (43)

Applying the prox-PL inequality in the k · k2 norm gives556

F (xk+1)  F (xk)� µ2

|B̄|
(F (xk)� F

⇤)

= F (xk)� µ2

L2(n� ⌧ + 1)
(F (xk)� F

⇤).

Subtracting F
⇤ from both sides and applying the inequality recursively completes the proof.557

Instantiating Proposition D.8 with A = 1>, c = �, ⌧ = 2 and558

h(x) =

⇢
0 if li  xi  ui for all i 2 {1, . . . , n}
1 otherwise

is sufficient to obtain Theorem D.4.559
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E Greedy Rules Depending on Coordinate-Wise Constants560

We first derive the greedy GS-q rule, then steepest descent in the L-norm, and then give a dimension-561

independent convergence rate based on the L-norm.562

E.1 GS-q Rule with Coordinate-Wise Constants563

The GS-q rule under an equality constraint and coordinate-wise Lipschitz constants is given by564

argmin
b

⇢
min

db|di+dj=0
hrbf(x), dbi+

Li

2
d
2
i +

Lj

2
d
2
j

�
. (44)

Solving for db. We first fix b and solve for db. The Lagrangian of the inner minimization in (44)is:565

L(d,�) = hrbf(x), dbi+
Li

2
d
2
i +

Lj

2
d
2
j + �(di + dj).

Set the gradient with respect di to zero we get566

rif(x) + Lidi + � = 0,

and solving for di gives567

di =
�rif(x)� �

Li
. (45)

Similarly, we have568

dj =
�rjf(x)� �

Lj
. (46)

Since di = �dj we have569

�rif(x)� �

Li
=

rjf(x) + �

Lj
,

and solving for � gives570

� =
�(Ljrif(x) + Lirjf(x))

Li + Lj
. (47)

Substituting (47) in (45) gives571

di =
1

Li

✓
�rif(x)�

�(Ljrif(x) + Lirjf(x))

Li + Lj

◆

=
1

Li

✓
�Lirif(x)� Ljrif(x) + Ljrif(x) + Lirjf(x)

Li + Lj

◆

=
1

Li

✓
�Lirif(x) + Lirjf(x)

Li + Lj

◆

= �rif(x)�rjf(x)

Li + Lj
,

and similarly572

dj =
rif(x)�rjf(x)

Li + Lj
.
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Solving for b. We now use the optimal di and dj in (44),573

argmin
b

⇢
rif(x)di +rjf(x)dj +

Li

2
d
2
i +

Lj

2
d
2
j

�

⌘ argmin
b

⇢
rif(x)di �rjf(x)di +

Li

2
d
2
i +

Lj

2
d
2
i

�

⌘ argmin
b

⇢
(rif(x)�rjf(x))di +

Li + Lj

2
d
2
i

�

⌘ argmin
b

⇢
� (rif(x)�rjf(x))2

Li + Lj
+

(rif(x)�rjf(x))2

2(Li + Lj)

�

⌘ argmin
b

⇢
�1

2

(rif(x)�rjf(x))2

Li + Lj

�

⌘ argmax
b

⇢
(rif(x)�rjf(x))2

Li + Lj

�
.

E.2 Steepest Descent with Coordinate-Wise Constants574

Here, we show that steepest descent in the L-norm always admits at least one solution which updates575

only two coordinates. Steepest descent in the L-norm, subject to the equality constraint, takes steps576

in the direction d that minimizes the following model of the objective:577

d 2 argmin
d2Rn|dT 1=0

⇢
rf(x)T d+

1

2↵
||d||2L

�
, (48)

This is a convex optimization problem for which strong duality holds. Introducing a dual variable578

� 2 R, we obtain the Lagrangian579

L(d,�) = rf(x)T d+
1

2↵
||d||2L � �(dT 1).

The subdifferential with respect to d and � yields necessary and sufficient optimality conditions for a580

steepest descent direction,581

rdL(d,�) = rf(x) +
1

2↵
g � �1 = 0

(for some subgradient g 2 @||d||2L)

r�L(d,�) = d
T 1 = 0.

The second condition is simply feasibility of d, while from the first we obtain,582

2↵(�rf(x) + �1) 2 @||d||2L
↵(�rf(x) + �1) 2 ||d||L(

p
L� sgn(d)), (49)

where element m of sgn(d) is 1 if dm is positive, �1 if dm is negative, and can be any value in [�1, 1]583

if dm is 0. The following lemma shows that these conditions are always satisfied by a two-coordinate584

update.585

Lemma E.1. Let ↵ > 0. Then at least one steepest descent direction with respect to the 1-norm has586

exactly two non-zero coordinates. That is,587

min
d2Rn|dT 1=0

rf(x)T d+
1

2↵
||d||2L =

min
i,j

⇢
min

dij2R2|di+dj=0
rijf(x)

T
dij +

1

2↵
||dij ||2L

�
. (50)

Proof. Similar to the steepest descent in the 1-norm, the proof follows by constructing a solution to588

the steepest descent problem in Eq. 48 which only has two non-zero entries. Let i and j maximize589
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(rif(x) � rjf(x))/(
p
Li +

p
Lj)2. Our proposed solution is d such that di = ��, dj = � for590

some � 2 R and dk,k 6=i,j = 0. In order for this relationship in (49) to hold, we would require591

�↵rf(x) + ↵�1 2 kdkL(
p
L� sgn(d)). (51)

From the definition of L-norm and our definition of d that592

kdkL =
p
Li� +

p
Lj�

= �(
p

Li +
p
Lj).

Also, we know that sgn(di) = �1, sgn(dj) = 1, sgn(dk) = [�1, 1]. Therefore, we would need593

�↵rif(x) + ↵� = ��

p
Li(

p
Li +

p
Lj) (52)

�↵rjf(x) + ↵� = �
p
Lj(

p
Li +

p
Lj) (53)

�↵rkf(x) + ↵� = �

p
Lk(

p
Li +

p
Lj)[�1, 1] (54)

From (52), � = rif(x)� �
↵

p
Li(

p
Li +

p
Lj). Substituting � in (53), we get594

�↵rjf(x) + ↵rif(x)� �

p
Li(

p
Li +

p
Lj) = �

p
Lj(

p
Li +

p
Lj)

↵rif(x)� ↵rjf(x) = �(
p

Li +
p
Lj)(

p
Li +

p
Lj),

From this we get,595

� =
↵

(
p
Li +

p
Lj)2

(rif(x)�rjf(x)). (55)

Using � in (54) means that for variables k 6= i and k 6= j that we require596

�↵rkf(x) + ↵rif(x)� �

p
Li(

p
Li +

p
Lj) 2 �

p
Lk(

p
Li +

p
Lj)[�1, 1]

�↵(rif(x)�rkf(x)) 2 �(
p
Li +

p
Lk)(

p
Li +

p
Lj)[�1, 1]

�↵
rkf(x)�rif(x)

(
p
Li +

p
Lk)

2 �(
p
Li +

p
Lj)[�1, 1]

Using the definition of � (55) this is equivalent to597

�rif(x)�rkf(x)p
Li +

p
Lk

2 rif(x)�rjf(x)p
Li +

p
Lj

[�1, 1],

which holds due to the way we chose i and j.598

We have shown that a two-coordinate update d satisfies the sufficient conditions to be a steepest599

descent direction in the L-norm.600

E.3 Convergence result for coordinate-wise Lipschitz case601

Lemma E.1 allows us to give a dimension-independent convergence rate of a greedy 2-coordinate602

method that incorporates the coordinate-wise Lipschitz constants, by relating the progress of the603

2-coordinate update to the progress made by a full-coordinate steepest descent step. If we use LL as604

the Lipschitz-smoothness constant in the L-norm, then by the descent lemma we have605

f(xk+1)  f(xk) +rf(xk)T dk +
LL

2
kdkk2L.

From Lemma E.1, if we use the greedy two-coordinate update to set dk and use a step size of606

↵ = 1/LL we have607

f(xk+1)  f(xk) + min
d|dT 1=0

⇢
rf(xk)T d+

LL

2
kdk2L

�
.
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Now subtracting f
⇤ from both sides and the proximal-PL assumption in the L-norm,608

f(xk+1)� f(x⇤)  f(xk)� f(x⇤)� 1

2LL
D(xk

, LL)

= f(xk)� f(x⇤)� µL

LL
(f(xk)� f

⇤)

=

✓
1� µL

LL

◆
(f(xk)� f

⇤)

It is possible to obtain a faster rate using a smallest setting of the Li such that f is 1-Lipschitz in the609

L-norm. However, it is not obvious how to find such Li in practice.610

F General Equality Constraints611

Rather a constraint of the form
P

i xi = �, we could also consider general equality constraints of the612

form
P

i aixi = � for positive weights ai. In this case the greedy rule would be613

argmax
i,j

⇢
ajrif(x)� airjf(x)

a1 + a2

�
,

and we could use a �
k of the form614

�
k = � ↵

a1 + a2
[a2r1f(w

k)� a1r2f(w
k)].

Unfortunately, the greedy rule in this case appears to requirer O(n2). However, if re-parameterized in615

terms of variables xi/ai then the constraint is transformed to
P

i xi = � and we can use the methods616

discussed in this work (although the ratio approximation also relies on re-parameterization so makes617

less sense here).618

We could also consider the case performing greedy coordinate descent methods with a set of linear619

equality constraints. With m constraints, we expect this to require updating m + 1 variables.620

Although it is straightforward to define greedy rules for this setting, it is not obvious that they could621

be implemented efficiently.622

G Additional Experiments623

In Figure 3, we repeat the scaled version of our equality-constrained experiment with different seeds.624

We updated the Greedy(Ratio) method with625

ik 2 argmax
i

(rif(x
k)� µ)/

p
Li, jk 2 argmin

j
(rjf(x

k)� µ)s/
p
Lj , (56)

where µ is the mean of rf(xk). We observed that the Greedy(Ratio) and Greedy(Switch) approxi-626

mations consistently performed similarly to the exact Greedy Li method.627

We repeated the experiment that compares different greedy methods under equality and bound628

constraints with different seeds in Figures 4, 5, and 6. We see that the GS-q and GS-1 have a small629

but consistent advantage in terms of decreasing the objective while the GS-s and GS-1 rules have a630

consistent advantage in terms of moving variables to the boundaries. Finally, we see that the GS-1631

rule only updates 2 variables on most iterations (over 85%) while it updates 3 or fewer variables on632

all but a few iterations.633
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Figure 3: Comparison of different random and greedy rules under 4 choices for the random seed used
to generate the data (and for the sampling in the randomized methods).

Figure 4: Comparison of different greedy rules under 4 choices for the random seed used to generate
the data.
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Figure 5: Comparison of number of interior variables updated by GS-1, GS-q and GS-s in every
iteration for data generated by different random seed

Figure 6: Number of variables updated by GS-1 with different random seed used to generate the data.
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