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A Equivalent Ways of Writing Equality-Constrained Greedy Rule

We first show that the greedy rule with a summation constraint, of choosing the max/min partial
derivatives, is an instance of the GS-q rule. We then show that this rule is also equivalent to steepest

descent in the 1-norm.

A.1 Greedy Rule Maximizes GS-q Progress Bound

For the optimization problem , the GS-q rule selects the optimal block b = {4, j}, by solving the

following minimization problem:

1
b= i i dp) + =—||da]|?
aggin iy _ (912,00 + 5]}

where dp, is the descent direction.

Solving for d;,. First let us fix b and solve for d;,. The Lagrangian of is,
1
L(dp, ) = (Vo f (@), db) + 5 [ldsl|* + Ady + d).
Taking the gradient with respect to dy, gives,
1
deﬁ(db, A) = Vuf(x) + adb + Al.

Setting the gradient equal to 0 and solving for d;, gives,
dp = —a(Vyf(z) + A1).
From our constraint, d; + d; = 0, we get
0=—a(Vif(z) + A+ V,f(x)+ ),

A= S (Vaf(a). 1),
Substituting in we get,
= —a (Vs (@)~ 5(Tuf @) 11).
This can be re-written as
=5 @@ - v 1]
Solving for b. Now, we plug in the optimal d; from in and solve for b to give

angmin —a {V4/(@), (Vf () = 5(Tuf (@ 0D) + S (Vs @) - 3

= argmin —|[Vof(@)|* + 5 (Vaf (2, D) + 519 @) = F(Vas (). 1)+

SV (@), ) (1,
——

2

= argain 3 |[Va (@)l + (VS (2), 1)°

= argmax [V (2)|F - 5 (Ve (), 1)?

= arglljrnaXHbe(a:)Hz - %(vif(x) +V;f(x))?
= argmax 5|94 (@) - V:f(2)V; £(z)

= arg max %(VJ(:L’) —V;f(@))?)
b

= arglr)nax |Vif(z) = V;f(x)].

12
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Therefore, the GS-q rule chooses the ¢ and j that are farthest apart, which are the coordinates with
maximum and minimum values in V f(x).

A.2 Greedy Rule is Steepest Descent in the 1-Norm (Lemma

The steepest descent method finds the descent direction that minimizes the function value in every
iteration. That is,

1
d= argmin {Vf(x)Td + ||d||%} . (28)
deR™|dT1=0 2a

The proof follows by constructing a solution to the steepest descent problem which only has two
non-zero entries. The Lagrangian of (28) is,

1
L(d,\) =V f(x)Td+ £||d||§ +Ad"1.
The sub-differential with respect to d and A is given by

1
DaL(d,2) = V() + 5 -0l d]} + A1,
ML(d, ) = dT1.

We have that the zero vector is an element of the sub-differential at the solution. From 0 € 9\ £(d, \)
we have d7'1 = 0. From 0 € 94£(d, \) at the solution we require

2a(=Vf(z) = A1) € 9lld|1,

or equivalently by using that 9;||d||? = 2||d||1sgn(d;) this subgradient inclusion is equivalent to
having for each coordinate 7 that

a(=Vif(z) = A1) = ||d]1sgn(d:), (29)

where the signum function sgn(d;) is +1 if d; is positive, —1 if d; is negative, and can take any value
in the interval [—1, 1] if d; is zero.

Let i € argmax;{V;f(z)} and j € argmin;{V;f(z)}. Consider a solution d such that d; =
0,d; = —0 for some 6 € R and d, = 0 forif & 7 i and k& # j. By construction the vector d has only
two non-zero coordinates and satisfies the sum-to-zero constraint required for feasibility. Thus, we
have a solution if we can choose J to satisfy for all coordinates.

The definition of d implies ||d||; = 24, while sgn(d;) = 1, sgn(d;) = —1 and sgn(dy) € [—1,1].
Thus, for d to be a steepest descent direction we must have:

—aV;f(z) —ar =24 (30)
—aV,f(z) —aX=—-20 (31)
—aVif(z) — aX € 20[-1,1]. (32)
Solving for \ in gives
A=V, f(z) —2§/a, (33)
and substituting this in gives,
a
5= -2 (Vu () -V, 1(x). 64

It remains only to show that is satisfied by d. Using the value of A in yields,
—aVif(z)+aV,f(z) + 26 € 26[-1,1].
Now, substituting the value for § gives
~aVif() + aVif(a) = S(Vif (@) = V; /() € =5 (Vif(2) = V; (@) [-1, 1],
and multiplying by 2/« this is equivalent to
—2Vif(2) + Vif(x) + V;f(z) € =(Vif(z) = V; f(2))[-1,1],

13
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which can be satisfied for some value in [—1, 1] if
=2V f(z) + Vif(2) + V,f(2) < [Vif(z) = V; f(z)].

As Vi f(z) is between V; f(x) and V; f(x), we can write it as a convex combination 0V, f(x) +
(1 —-0)V,;f(z) for some 6 € [0,1]. Thus, we require

—2(0Vif(x) + (1= 0)V, f(2)) + Vif(x) + V; f(2)
= (1 =20)(Vif(2) = V;f(2)) <[Vif(x) = V;f(2)],
which holds because (1 — 26) € [—1,1].

We have shown that a two-coordinate update d satisfies the sufficient conditions to be a steepest
descent direction in the 1-norm. Substituting d back into the expression for steepest descent gives

1 1
: T 2 v T, . ]2
N V@) d+ o oldlly = Vi f(2)" dig + 5 ldis] 3

T 1
3 ] ;; .. ' .. .. 2
2 Hzl,ljn {dq,d GRgr\l(ll?-&-dj =0 " (-T) d” 2c ||d” ||1} '

The reverse inequality follows from the fact that a two coordinate update cannot lead to a smaller
value than updating all coordinates, so we have

1
mip V()T + 5l = win{
2c0 i,j

1
Vii f (@) dij + —|1disI7 ¢ -
deR™|dT1=0 i f(z) ']+2a|| ]”1}

min
di,j €R2 ‘drkdj =0

B Relating Lipschitz Constants

Proposition B.1. Suppose f is twice differentiable and

sup  max {d"V?f(z)d : (d,1) = 0, supp(d) = 2,||d|s <1} = L. (35)

z:{z,1)=a

Then f satisfies the following inequality:
L
fla+d) < f(2) + (Vf (). d) + [, (36)

Sfor x such that (x,1) = a and any d such that (d,1) = 0. That is, f is full-coordinate Lipschitz
smooth in the {1 norm with constant L.

Proof. Consider the optimization problem
m(?x{dTVQf(x)d :(d,1) =0,|d||; <1}. (37)
We will show that the maximum is achieved by at least one d satisfying d; = —d; # 0, d, = 0 for

all k£ # 1, j. That is, a two coordinate update achieves the maximum.

First, observe that Equation is a convex maximization problem over a (convex) polyhedron. As a
result, at least one solution occurs at an extreme point of the constraint set,

D={d:{d,1)=0,|d| <1}.

The proof proceeds by showing that all extreme points of D contain exactly two non-zero entries. Let
d. be any extreme point of D and suppose by way of contradiction that d. has at least three non-zero
entries. Denote these entries as dy, da, d3. Since at least one entry of d. must be negative and one
must be positive, we may assume without loss of generality that dy,dy > 0 and ds < 0.

Let € > 0 and define d, = d. + eje — eqe. For € sufficiently small it holds that d; + € > 0 and
do — € > 0 so that

(d1+6)+(d2—€)—|—d3:d1+d2—|—d3.

14
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We conclude
[dellv = |d1 + €] + |dz — €| + |da]
= (d1 4 €) + (d2 — €) + |ds]
= |di| + |d2| + |d3|
=dy +da+ds
= [|de|x
<1.

Thus, d, € D. Define d = d. — e1€ + eze and observe d. € D by a symmetric argument. Moreover,
1 1

de — 7d/ 7d//,

2°° + 2°°

i.e. the extreme point is a convex combination of two points in D. This contradicts the definition of
an extreme point, so we have proved that every extreme point of D has at most two non-zero entries
Since no point of D can have exactly one non-zero entry and 0 is the relative interior of D, we have
shown every extreme point has exactly two non-zero entries.

As a result, (37)) is maximized at at least one extreme point d., where supp(d.) = 2. Thus, we may
restrict optimization to directions of support two, giving

m:}x{dTVQf(x)d: (d,1) =0, ||d|, <1}
= max {dTV2f(x)d : (d,1) = 0,supp(d) = 2, ||d||; < 1}
< L.

It is now straightforward to obtain the final result using a Taylor expansion and the Lagrange form of
the remainder. In particular, for some parameter ’Conv({z, z 4+ d}) we have

Fla+d) = f@) + (@), d) + 5d V2 (x +ad)d
< f(@) +(Vf(2),d) + %HdH?mgX {oTV @) (0,1) =0, vy <1}
= f(x) + (Vf(z),d) + %Hd\ﬁmgxx {UTV2f(x')v : (v,1) = 0,supp(v) = 2,|jv[|; <1}

Ly
= f(2) + (Vf(z).d) + -],
which gives the result. O

Proposition B.2. The constant L in is exactly equal to %

Proof. Let d € R™ such that supp(d) = 2 and (d, 1) = 0. WLOG, suppose that the two non-zero

entries of d are d; and dy. Observe that (d, 1) = 0 implies d; = —ds and ||d||; = v/2||d||2. Thus we
have

Ly = sup max {dTVQf(;v)d: (d,1) = 0,supp(d) = 2,||d||2 < 1}

z:(z,1)=a

=2 sup m(rl:mx{d—rvgf(ac)d : (d,1) = 0,supp(d) = 2, ||d||; < 1}

z:(z,1)=a

= 2L17

where we have used Proposition to relate the variational characterizations to the Lipschitz
constants in question. This completes the proof.

O
Proposition B.3. Let || - || an arbitrary norm and define the dual norm on the feasible space,

loll« = sup {z"v: (2,1) = 0,5upp(z) = 2, ||z < 1} .
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Then the variational characterization based on the Hessian,
L= sup max{dTV2 f(@)d: (d,1) =0,supp(d) = 2,||d|| <1},

z:(x,1)=a
gives the two-coordinate Lipschitz constant of V f (see Equation (7)) in norm || - || on the feasible
space.

Proof. Let x be feasible (i.e. (x,1) = a) and define
D ={d: (d,1) = 0,supp(d) = 2, [|d[| < 1}.

Suppose d is some be feasible 2-coordinate update, not necessarily unit norm. The fundamental
theorem of calculus implies

Vijf(lv + d) ij / V .CC + td ddt
0

Taking norms on both sides, we obtain

IVij f(z +d) = Vi; f(z *_H/ Vi f(x + td)ddt|

/ HV x')d||.dt

< Hd||/ sup {d'TV3, f(z+td)d'} dt
0 d'eD
< L|d]|,

where we have used the definition of the dual norm. For the reverse inequality, let L be the Lipschitz
constant of V f in norm || - ||. Observe that for any feasible = and 2-coordinate update d, there exists
€ (0,1) and & = x + «d such that

Vi f(@)d =V f(x+d) — Vi; f(z).
Using this, we obtain
d'V3f(@)d < ||d|[IVE £ (Z)d]|«
= Vi f(z + d) = Vij £ ()]«
< L.
Dividing by sides by ||d||?, taking ||d|| — 0, and supremizing over x, d gives
L= sup max {dTV2 x)d} <L

z:(x, 1)—11

We conclude L = L as desired. O

C Relationship Between Proximal-PL Constants

Lemma C.1. Suppose that F(x) = f(x) + g(z) satisfies the proximal-PL inequality in the {5-norm
with constants Lo, j1o. Then F also satisfies the proximal-PL inequality in the ¢1-norm with constants
Ly and iy € [p2/n, po]-

Proof. Proximal-PL inequality in the /5-norm implies

Fo) = F@) < =2 min { (970 = 2) + 52y = 2l + ) - o)

|
<~ min {(V 1)y o) + 52y = ol + )~ ) |

2

< i L s,y =+ By ol + o)~ o)}
212 Y

:—Llnmin{(Vf(xLy—@-f'l;Hy—x”%‘f'g(y)—g(x)}v
pa v
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where the last inequality follows from|Karimireddy et al.|[2018][Lemma 9] with the choice of

B = 42, hy) = (Vf(x),y —2) + g(y) — g(x), and V(y) = \/L2/2n|ly — z||. Note that
B € (0,1] since Lyn > Ly and h(z) = V() = 0 so that the conditions of the lemma are satisfied.
We conclude that proximal-PL inequality holds with 11 > po/n.

We establish the reverse direction similarly; starting from proximal-PL in the ¢;-norm,

F@) = F@) < = ain { (9 (0)y = 2) + 5l =l + 90) - ala)

}
|

Ly . Ly
<~ 2 amin { (5 (a)oy = ) + S~ 213 + 0) - o)
M1 Y 2
LiLy . Ly
< -2 min {(V 1)y - o+ Gy~ ol + ) - o)
1MWy 2
Ly . Ly
— 2 i { (V1) o+ Sy~ ol + )~ ) |
M1 Y 2
where now we have used the same lemma with V (y) = \/L1/2|ly — x|z and 5 = 42, noting that
B € (0,1] since L; < Ly. This shows that us > 1, which completes the proof. O

D Analysis of GS-q for Bound-Constrained Problem

In this section, we show linear convergence of greedy 2-coordinate descent under a linear equality
constraint and bound constraints for the problem in when using the GS-q rule. First, we introduce
two definitions which underpin the theoretical machinery used in this section.

Definition D.1 (Conformal Vectors). Let d,d’ € R™. We say that d’ is conformal to d if
{i:dl £0}C {idi £0},
that is, the support of d’ is a subset of the support of d, and d;d, > 0 for every i € {1,...n}.

Definition D.2 (Elementary Vector). Let S C R™ be a subspace. A vector d € S is an elementary
vector of S if there does not exist d’ conformal to d with strictly smaller support, that is

{id;#0) G {i:d;#0}.
With these definitions in hand, we can state Lemma which is the key property we use in our

proof strategy.

Lemma D.3 (Conformal Realizations). Let S be a subspace of R™ and t = min,¢cgs supp(x). Let

T € {t,...,n}. Then every non-zero vector x of S C R"™ can be realized as the sum
x:d1+"'+ds+ds+la

where dy, . ..,ds are elementary vectors of S that are conformal to x and ds1 € S is a vector
conformal to x with supp(dsy1) = 7. Furthermore, s < mn — 7.

We include a proof in Appendix see|Tseng and Yun|[2009, Proposition 6.1] for an alternative
(earlier) statement and proof. Using this tool, we prove the following convergence rate for 2-coordinate
descent with the GS-q rule.

Theorem D.4. Let the function F(z) = f(x) + h(z), where f : R" — R is a smooth function and
h(x) is the box constraint indicator,

h(z) = 0 ifl;<z;<w;forallic{l,...,n}
" loo otherwise

Assume that F' satisfies the proximal-PL condition in the 2-norm with constant constant |15 and that
f is 2-coordinate-wise Lipschitz in the 2-norm. Then, minimizing

min f(z),
subject to (x,1) =y, x; € [l;, ;) (38)
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using 2-coordinate descent with coordinate blocks selected according to the GS-q rule obtains the
following linear rate of convergence:

) - < (1 - ’”)k (F() - 7). (39)

We provide the proof in Appendix The proof instantiates a more general result which holds for
arbitrary functions h and larger blocks sizes.

D.1 Proof of Lemma

Proof. The proof extends Bertsekas|[ 1998, Proposition 9.22]. Consider « € S. If supp(x) = 7, then
let d; = x and we are done. Otherwise, by Lemmathere exists an elementary vector d; € S that
is conformal to z. Let

[2]; —7[di]; >0 Vjwith[z]; >0 and

fy:max{'y

[z]; —~[di]; <0 Vjwith [z]; < 0.}.

The vector «yd; is conformal to z. Let = © — ~yd;. If supp(x1) < 7, choose d2 = T and we are
done. Note that dy € S since S is closed under subtraction. Otherwise, let x = Z and repeat the
process. Let s be the number of times this process is conducted. Each iteration reduces the number of
non-zero coordinates of x by at least one. Since it terminates when supp(z) = 7, we have s < n — 7.

O

D.2 Proof of Theorem[D.4]

We prove the result by instantiating a more general convergence theorem for optimization with linear
constraints Ax = ¢, where A € R™*™, and general non-smooth regularizers h. We assume A is full
row-rank and that the proximal operator for £ is easily computed. Note that, in this setting, block
coordinate descent must operates on blocks b; C [n] of size m + 1 < 7 < n in order to maintain
feasibility of the iterates. Let Uy, (dp, ) map block update vector dj, from R™ to R™ by augmenting it
with zeros and define
qu‘, = {dbz : AUb7<db7) = 0}
That is, Sp, is the null space of A overlapping with block b;.

As mentioned before, the notions of conformal and elementary vectors introduced in the previous
section provide necessary tools for our convergence proof. The following Lemmas provide the main
show the utility of these definitions for optimization.

Lemma D.5 (Necoara and Patrascul[2014} Lemma 2]). Given d € Null(A), if d is an elementary
vector of Null(A), then

supp(d) < rank(A) + 1.
Lemma D.6 (Bertsekas|[[1998} Proposition 9.22]). Let S be a subspace of R™. Then vector d € S is
either a elementary vector of S, or there exists an elementary vector d' € S that is conformal to d.

Lemma D.7 (Tseng and Yun|[2009) Lemma 6.1]). Let h be a coordinate-wise separable and convex
Sunction. For any x, x + d € dom(h), let d be expressed as d = dy + - - - + ds for some s > 1 and
some non-zero dy € R" conformalto dfort =1,...,s. Then

Wa+d) —h(z) > S (b (0 +d) — h()).
t=1

We are now ready to prove our general convergence result for block-coordinate descent with linear
constraints and the GS-q block selection rule. We emphasize that in the following theorem: (i) h need
not be the indicator for box constraints; (ii) A many consist of many coupling constraints; and (iii)
the convergence rate improves with block-size 7, unlike many similar results.
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Proposition D.8. Fix block size 7 > m + 1 and let B be the set of all blocks b; C [n] of size T.
Consider solving the linearly constrained problem

min F(z) := f(2) + h(z),

subject to Ax = ¢

where the gradient of f is T-coordinate Lipschitz with constant Lo and h is convex and coordinate-
wise separable. Suppose F' satisfies the proximal-PL inequality in the 2-norm with constant ji2. Then
the block-coordinate descent method with blocks given by the GS-q rule converges as

M k
k * 2 0 *

Proof. Block-coordinate Lipschitz continuity of V f give the following version of the descent lemma:
L
FHY) < Fah) + (T Fh), 25— g + 2 - k)

We have z#t1 = zF + Uy (d;.) by definition of the update rule. Substituting this into the descent
lemma gives

, . L
F@) < F@) + (Vo f@¥), di) + 3y 13
= P+ G < (@) + (T f (@), dye) + 223+ B(a*) + ha) - h()
= F(a") < Fa®) + (Vo f ("), dj) + %Ild;} 15+ hos (@ + djs) — b (23)-

Substituting in the choice of coordinate block b* according to the GS-q rule and the definition of d
gives

L
k+1y k : : k 20 7% 2
F(a™h) < Fa )+g}gg{db§ggbi {Vo f @), do) + = [l 3

+ hy, (, +dy,) — o, (xffi)}}-
For clarity, we define the quadratic upper bound to be the function
L *
V(a*,dy) = (Vo f(2%),db,) + g |13 + o (2, + ) = (),

which gives

K1y < ok - : k
F(z") < F(2%) + miy {db?lelgbi {(V(z 7db,-)}} . (40)

We must control that the right-hand-side of (40} in terms of the full-coordinate minimizer
L
d* = argmind € Null(A) {(Vf(xk), d) + 72||d||§ + h(z® +d) - h(xk)} .

in order to apply the prox-PL inequality. We briefly digress and consider conformal realizations of d*
in order to do so.

By lemma d* has a conformal realization
d*=dj+---+d +d .,

where r <n — 7 and dj, .. . d;: are elementary vectors of Null(A) and d;", ; € Null(A). Lemmam
gives supp(d;) < m + 1; therefore there exists b; € B such that dj € Sy, foralll =1,...,r. By
construction, supp(d;, ;) = 7 and so there also exists b; € B such that d;,, € Sy,. Let B C B be
the smallest set of blocks such that

Vie{l,...,r+1}, 3, € B, d; €8,
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s49  and observe that |B| < n — 1.
550

ss1 Returning to (40), we can use the fact that the value of V (2*, d;) obtained at the minimizing block
ss2 b® € B s less than or equal to the average over the subset of blocks 5:

1
i d < — d 41
m{‘“ Vit ) }— 7 2 iy, (V- @n
553 Combining this result with (40) and (41), we obtain

F(aF) < F(*) + % S min {V(etd,))

v ,dbiESb
1
= F(z") + = min V (2, dy,
(=) |B| dy, €5y, .Vbi€B Z ( b:)
' ' b;eB
:F(mk)—i—é min {(Vf(xk) Zdb'>+ Z L
|B| dy, €S, 7bicB ’ ‘ 2

biEB bjEB
+ Z (o, (xf, + dy,) — o, (25)) } (42)
b;€B

For all b; € B, substituting any dp, € Sp, for the vector in S, that minimizes @) can only increase
ss4  the upper bound. Choosing the d; corresponding to each block b; € B yields

1 r+1 T+1
SF(m’“)+B< Zd* +Z—||d*||2
r+1
# 3 (nat +1) - (eh) )
=1
555  We now use d* = ;:11 dj and apply lemmatwice to obtain
1 r+1
Pt < Pt) + (V6 93+ I

r+1
57 (o (al, + i) — o () )

=1

P < F { )+ 2 (a4 ) h(ﬁ)}

)—‘UJI

— P+ {<Vf( o)+ 22 al + (e 4 d) A k)}. 3)

[B] e
556 Applying the prox-PL inequality in the || - ||2 norm gives

F(z"*1) < F(a¥) - %(F(x’w ~FY)

M2 k *

—Fa" - — 2 (F — F*).

@) - o P~ F)

557 Subtracting F'* from both sides and applying the inequality recursively completes the proof. O

s58  Instantiating Propositionwith A=1"T,¢c=~,7=2and

i 3 < ) < ) ] ...
h(z) = {0 ifl; < Ti S U foralli e {1,...,n}
oo otherwise

559 18 sufficient to obtain Theorem
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E Greedy Rules Depending on Coordinate-Wise Constants

We first derive the greedy GS-q rule, then steepest descent in the L-norm, and then give a dimension-
independent convergence rate based on the L-norm.

E.1 GS-q Rule with Coordinate-Wise Constants

The GS-q rule under an equality constraint and coordinate-wise Lipschitz constants is given by

L; L;
. : d iy Ry R 44
arngmn{dbld?llgj=0<vbf(x)’ o)+ 2 " + 27 @9

Solving for d,. We first fix b and solve for d;,. The Lagrangian of the inner minimization in is:
Li o Lj o
L(d,\) = (Vif(x), dp) + ?di + 7dj + A(d; + dj).
Set the gradient with respect d; to zero we get

and solving for d; gives

—Vif(z) = A
d; = 4
I, (45)
Similarly, we have
—V,f(z)—A
d; = ]T (46)
Since d; = —d; we have
~Vif(x) =X Vf(x)+ A
L; B L; ’
and solving for A gives
—(L;Vif(z) + LiV, f(2))
= . 4
Substituting in gives
1 ‘ —(L;Vif(z) + LiV; f(x))
1 (=LiVif(z) — LiVif(z) + L;Vif(2) + L;V; f(z)
L Li+L;
L Li+L;
_ Vif(@) - Vf()
L+ L; ’

and similarly
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Solving for b. 'We now use the optimal d; and d; in (44),

arg min {Vif(il?)dz' + V; f(z)d; + ?df + ;d?}
b

L; L;
Vif(@)d; = V;f(@)d; + 5-di + ;df}

(Vif @) = V(e + 5

_ argmin { - V@ =Y/ @)? | (Vif(e) - vjf<x>>2}

= b Lz + Lj Q(Lz + LJ)
1(Vif(x) = V;f (@)

:argbmln 3 Litl, }

_ (Vif (x) = V;f (@)

arglr)nax{ Li+i, }

E.2 Steepest Descent with Coordinate-Wise Constants

Here, we show that steepest descent in the L-norm always admits at least one solution which updates
only two coordinates. Steepest descent in the L-norm, subject to the equality constraint, takes steps
in the direction d that minimizes the following model of the objective:

1
d € argmin {Vf(as)Td+ ||d|’i}, (48)
deR™|dT1=0 20

This is a convex optimization problem for which strong duality holds. Introducing a dual variable
A € R, we obtain the Lagrangian

£(d,0) = V()" d 4+ 5|l ~ M)

The subdifferential with respect to d and ) yields necessary and sufficient optimality conditions for a
steepest descent direction,

1
VaL(d,A\) =V f(x)+ 229 Al =0

(for some subgradient g € 9||d||%)
VAL(d,\) =d"'1=0.
The second condition is simply feasibility of d, while from the first we obtain,
20(=V f(z) + A1) € d||d|[7
a(=Vf(z)+ A1) € ||d||L(VL © sgn(d)), (49)

where element m of sgn(d) is 1 if d,, is positive, —1 if d,,, is negative, and can be any value in [—1, 1]
if d;, 1s 0. The following lemma shows that these conditions are always satisfied by a two-coordinate
update.

Lemma E.1. Let o > 0. Then at least one steepest descent direction with respect to the 1-norm has
exactly two non-zero coordinates. That is,

1
: Ty S (12 —
min  Vf@)Td+ |l

deR™[dT1=0
1
i i Viifx) diy + —||di;||3 ¢ - 50
rr;ljn{dijeRgr'lgle_o i f (@) dig + o] JIL} (50)

Proof. Similar to the steepest descent in the 1-norm, the proof follows by constructing a solution to
the steepest descent problem in Eq. Which only has two non-zero entries. Let ¢ and 5 maximize
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(Vif(z) = V;f(x))/(v/Li + \/L;)?. Our proposed solution is d such that d; = —4,d; = § for
some ¢ € R and dj, j2; ; = 0. In order for this relationship in @ to hold, we would require

—aV () +al € ||d| (VL © sgn(d)). (51)
From the definition of L-norm and our definition of d that
ldllz = VL6 + /L;6
=6(v/Li + VLj).

Also, we know that sgn(d;) = —1, sgn(d;) = 1, sgn(dy) = [—1, 1]. Therefore, we would need

—aVif(@) + o = =6v/Li(v/Li + \/I;) (52)

—aV, f(z) + aX = 6y/L;(\/Li + /L) (53)

—aVif(z)+ar= (5\/> \F-&- \/> (54)
From (52), A = V, f(x) — g Li(vL; + /L;). Substituting X in (33), we get

—aV;f(2) +aVif(#) = 0V Li(V/Li + VL) = 0v/L;(VLi + VL)
aV,f(z) — aV;f(z) = §(VLi + V/L;) (V' Li + /Ly),

From this we get,

- mmm ~ V(). (55)

Using A in means that for variables k # ¢ and k # j that we require
—aVif(z) +aVf(z —5\Ff+\/ € 0VLr(WLi + /L)~
~o(Vif(x) - ka eé (VLi + /L \fﬂ/

—aka()
vy VI VT

Using the definition of § this is equivalent to

_Vif(z) = Vif(2) c Vif(z) = V;f(x)
VL + VL VL ++/L;

which holds due to the way we chose ¢ and j.

[7131]a

We have shown that a two-coordinate update d satisfies the sufficient conditions to be a steepest
descent direction in the L-norm. O

E.3 Convergence result for coordinate-wise Lipschitz case
Lemmaallows us to give a dimension-independent convergence rate of a greedy 2-coordinate
method that incorporates the coordinate-wise Lipschitz constants, by relating the progress of the

2-coordinate update to the progress made by a full-coordinate steepest descent step. If we use L, as
the Lipschitz-smoothness constant in the L-norm, then by the descent lemma we have

P < k) + VAT d 4 T b

From Lemma if we use the greedy two-coordinate update to set d* and use a step size of
a =1/L, we have

f*) < f(@®) + min {Vf(:z:k)TdJr L2Ld||%}-

dldT1=0
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Now subtracting f* from both sides and the proximal-PL assumption in the L-norm,

SR = 1) < f@) — £6) = 5D L)

= (") = @) = () - )
L

—(1- ) s - )

It is possible to obtain a faster rate using a smallest setting of the L; such that f is 1-Lipschitz in the
L-norm. However, it is not obvious how to find such L; in practice.

F General Equality Constraints

Rather a constraint of the form ) |, x; = -y, we could also consider general equality constraints of the
form ), a;x; = ~y for positive weights a;. In this case the greedy rule would be

{ajvif(l“) —a;V;[f(x) } ’

arg max

1.7 a1 + az

and we could use a 6% of the form

" = T j—az [a2 V1 f(w*) — a1 Va f(w*)].

Unfortunately, the greedy rule in this case appears to requirer O(n?). However, if re-parameterized in
terms of variables x;/a, then the constraint is transformed to ) . 2; = ~ and we can use the methods
discussed in this work (although the ratio approximation also relies on re-parameterization so makes
less sense here).

We could also consider the case performing greedy coordinate descent methods with a set of linear
equality constraints. With m constraints, we expect this to require updating m + 1 variables.
Although it is straightforward to define greedy rules for this setting, it is not obvious that they could
be implemented efficiently.

G Additional Experiments

In Figure we repeat the scaled version of our equality-constrained experiment with different seeds.
We updated the Greedy(Ratio) method with

ix € argmax(V, f(z*) — p)/\/Li, i € argmin(V;f(a*) — p)s/\/L;, (56)
i J

where 1 is the mean of V f(2¥). We observed that the Greedy(Ratio) and Greedy(Switch) approxi-
mations consistently performed similarly to the exact Greedy Li method.

We repeated the experiment that compares different greedy methods under equality and bound
constraints with different seeds in Figures and@ We see that the GS-q and GS-1 have a small
but consistent advantage in terms of decreasing the objective while the GS-s and GS-1 rules have a
consistent advantage in terms of moving variables to the boundaries. Finally, we see that the GS-1
rule only updates 2 variables on most iterations (over 85%) while it updates 3 or fewer variables on
all but a few iterations.
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Figure 3: Comparison of different random and greedy rules under 4 choices for the random seed used
to generate the data (and for the sampling in the randomized methods).
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Figure 4: Comparison of different greedy rules under 4 choices for the random seed used to generate
the data.
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Figure 5: Comparison of number of interior variables updated by GS-1, GS-q and GS-s in every
iteration for data generated by different random seed
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Figure 6: Number of variables updated by GS-1 with different random seed used to generate the data.
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